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ABSTRACT 

Atmospheric turbulence causes several effects on a propagating laser bearn We have previously studied the 

effects of beam spreading and beam wander, and feel we have a good understanding of their impact on C@ DIAL. 
Another effect is scintillation where atmospheric turbulence causes irradiance fluctuations within the envelope of 
the beam profile. We believe that scintillation at the target plays an important role in LIDAR return statistics. A 

Huygens-Fresnel wave optics computer simulation for propagating beams through atmospheric optical turbulence 

has been previously developed. We modify this simulation to include the effxts of reflective speckle and examine 

its application in comparison with experimental data. 

Introduction 

C02 DIAL (Differential Absorption LIDAR) systems are currently being used at Los Alamos National 

Laboratory. The system propagates a beam over long distances through the atmosphere. Beam energy is reflected 

from the earth’s surface (or some other target) back to the transmitterlreceiver assembly where the s i p 1  is 

detected. 
In an earlier paper we detailed a model for the spreading and wander of the beam due to turbulence.’ Our 

previous effort was based on well established work in the area of optical beam propagation through atmospheric 

optical turbulence.”’ In that work we discussed C:, the index of refraction structure parameter, C:, the 
temperature structure parameter and described methods of measuring each using scintillometers and temperature 

probes. In this paper we make use of data provided by a Scintech Scintillometer which works on the same 

principle as the Lockheed Scintillometer we discussed previously. 

Our model at that time did not account for changes in irradiance fluctuations levels with changing turbulence 
conditions. In this work we modify an existing model which accounts for transmitter to target as well as target to 



telescope scintillation and apply it to our ?stem with reflective speckle. The aim is to determine the importance of 

the effects of scintillation. 

Model 

The model we will use takes into m u n t  how atmospheric turbulence af fec ts  the intensity variance of the 

outgoing and returning beam, including the effects of target induced speckle. We neglect the effects of albedo 

variations at the target, fluctuations in laser output energy, detector noise and jitter although they may be included 

later as we improve our model. In this initial approach, we apply a Huygens-Fresnel wave optics computer 

simulation to model the effects of turbulence.' A random phase is added to the optical phase at the target to 

simulate reflective speckle. This random phase addition is kept constant from shot to shot to simulate an 

unchanging target. We then propagate this distorted phase front through a return path which includes atmospheric 

turbulence. 

The Huygens-Fresnel wave optics computer simulation uses an N x N array of complex numbers in a plane 

perpendicular to the propagation axis to represent the electric-field. In order to satisfy the Nyquist criterion, the 

grid size, Ax, is 

where A is thc laser wavelength, L is the propagation distance and N is the number of grid points per side. An 

initial electric-field which is Gaussian in nature (matching, as closely as possible, the characteristics of our real 

transmitter beam) is the input for the propagation simulation. The simulation propagates this initial electric-field 

by dividing the path into steps and applying a phase screen (simulating turbulence) at each step. Once at the 

target, the electric-field is randomized (simulating reflective speckle) through the relation 

'rejected = 'target e*.2a.romn) (2) 

where E,,, is the complex electric-field incident on the target after propagation through turbulence, ErdeCcrrd is 
the electric-field reflected from the target and random(n) is a uniformly distributed random number between 0 

and 1. This resulting electric-field is then propagated back to the telescope with turbulence effects induced using 

the same phase Screens as the path out. in the telescope plane, irradiance over an area equivalent to that seen by 

the telescope is summed to simulate the return signal that would be measured. The return signal is then analyzed 

over a number of realizations of turbulence to determine the normalized standard deviation of the mean. 
Following are examples of irradiance patterns simulated by the Huygens-Fresnel computer simulations. These 

were calculated and plotted using MATL.4B9 with a 512 X 512 array. The propagation distance nas 3300 m from 

transmitter to target taken in 5 steps of 660 m each. As the beam propagation path was horizontal, and about 3 m 

above ground, a constant C,' value was used. Figure 1 shows the case for zero turbulence with a Gaussian beam 

incident on target. 
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Figure 1. Image of Gaussian beam intensity on target with zero turbulence. The grid dimensions &own 
in a11 figures is in meters. 

The speckle pattern at the receiver from this Gaussian is depicted in Figure 2. After phase randomization at 

the target, the beam was propagated in 5 steps of 660 m each for a total distance of 3300 m to the telescope plane. 
As stated before, in this return propagation we simulated turbulence effects such that the beam propagated through 

the same turbulence as on the outgoing path. 

Figure 2. Image of speckle intensity pattern at the telescope with zero turbulence. 



Our analysis of the single shot speckle pattern reveals agreement with theory in irradiance distribution 

(exponential falloff) and correlation size. The theoretical value of the speckle correlation size, 0, for sqeckle 

generated by a Gaussian irradiance pattern on the target is" 

2 . A - L  
0, = - 

K. W, 
(3) 

where R is the wavelength of the LIDAR pulse, L is the propagation distance from the target to the telescope and 

wT is the beam spot size on the target. Figure 3 is a comparison of the correlation sizes produced by the 

simulation for zero turbulence with that predicted by theory. These were calculated by taking the autocorrelation 

of the single shot speckle pattern. We then estimated the correlation size from the point where the autocorrelation 

function ";is down by e-' of the peak value. 
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Figure 3. Comparison of simulated speckle size in zero turbulence (error bars) with that predicted by 

theory (line) as a function of beam diameter on target. 

Also, the contributions to irradiance fluctuations due only to reflective speckle for t h i s  situation are predicted at 

roughly 4.73% using, 

where DT is the diameter of the Gaussian beam at the target and D, is the effective diameter at the 

telescope/receiver. The computer simulation of irradiance fluctuations due only to independent reflective speckle 

(zero turbulence) yielded 4.51 % 2 0.40 %. Hence, the simulation yields results within the margin of error of that 

predicted by theory. 

While investigating the speckle generation portion of this model we found an interesting result: the correlation 

sizes decreased with increasing turbulence indicating a break up of the reflectiye speckle in the telescope plane. As 

an example of this effKt consider a beam diameter on target of DT = 0.231 m, the propagation distance 

L = 3300 m and the navelength A = 10.6 pm. In zero turbulence, the theoretical speckle coherence diameter is 



0, = 0.193 m. The simulation rendered a value of 0, = 0.198 0.016 m. For a turbulence level of 

C,' = 3 x m-m , the correlation size was found from the simulation to be D, = 0.099 2 0.016 m or about 

half of the zero turbulence value. It should be noted, however, that as turbulence increases, the beam on target is 
no longer a pristine Gaussian pattern as shall be seen below. Therefore comparison of these correlation sizes with 

that given by Equation (3) is of decreasing validity with increasing turbulence. 

Figure 4 shows the irradiance pattern at the target and the reflective speckIe pattern at the telescope plane for 
m-m. In Figure 5 we depict the progression from mild to severe distortion of the Gaussian beam on C,' = 1 x 

target for increasing levels of turbulence. Figure 6 is comparable to Figure 4 except for C.' = 5 x lo-" m-2". 
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Figure 4. Images of a) intensity pattern on target and b) its speckle intensity pattern at the telescope 
plane for c,' = 1 x 1 0 - l ~  m-2'3. 
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Figure 5. Image of intensity pattern on target with a) C: = 5 x m-2n , b) C,' = 1 x m-2/3 and c) 
c,Z = 3 10-13 ,,,3'3. 
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Figure 6. Images of a) intensity pattern on target and b) i ts  specWe intensity pattern at the telescope 
plane for C: = s x IO-= m-m. 

Figure 7 shows a side by side comparison of the computer simulated fluctuations of irradiance summations at 

the telescope aperture for two different levels of turbulence. There is a definite increase in these fluctuation$ for 
the higher turbulence level. This is reinforced by Figure 8 which shows a general increase in these fluctuations for 
increasing c:. 
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Figure 7. Computer simulation intensity summations (normalized) at aperture for C,' = 1 x lo-'' m-z" 
(left) and C,' = 6 x lo-'' m-*" (right) for the 128 realizations of turbulence. The horizontal lines represent 
the normalized mean and standard deviation from the mean. 

Figure 8. Variation 
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Turbulence level 
of irradiance fluctuations predicted by computer simulation versus C,' . 

With recent discussion of the importance of return path turbulence", we examined the effect of turbulence 

on the outgoing path relative to turbulence on the return path with results shown in Figure 9. In both cases the 

reflective speckle randomization remained constant for all 128 realiz~tions of turbulence thus simulating an 



unchanging target. For low turbulence, the rem path effects are greater. However, as turbulence levels increase, 

the outgoing path turbulence tends to dominate. This outgoing path effect does appear to saturate at 

C.2 = 1 x m-zn . One explanation for 

this beha$ior is that before saturation, there is an increasing variation of the intensity pattern on the target. This 
results in irradiation of different portions of the target (essentially different speckle generators) on each realization 

of atmospheric turbulence and a corresponding increase in the noise seen at the teleswpe. Since our target was 

modeled with a fixed randomization for speckle generation, the intensily variation on target has the effect, with 

increasing turbulence (before saturation), of illuminating an increasingly different set of speckle generators for 

each realization of turbulence. 
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Figure 9. Variation of irradiance fluctuations predicted by computer simulation for: a) turbulence on 

outgoing path only (solid line) and b) turbulence on return path only (dashed line) versus C,'. 

Measurements 

The LANL Tan Trailer system provided measurements for comparison with the computer simulation. 

Measurements were taken at the 3300 m (3 km site) and averaged over two minutes (-4OOO pulses). The values 

predicted by the computer simulation used 128 turbulence realizations and were based on one minute averages of 

C,' from the Scintech Scintillometer. The beam diameter on target was estimated from earlier measurements as 

- 2.5 m." In this case the entire beam was contained within the target area (- 4 m x 4 m). 



Note that the Sclntech measured path averaged values at the 3 km site at a height of 1.5 m above the surface. 

We have converted Scintech values to values at the 3 m beam height using13 , 

% 
C," (h) = C,' (h,) - [ $1 

where h, is the height of the Scintech measurements (1.5 m), h is the beam height (3 m), C2fiJ is the value of 
Scintech index of refraction structure parameter measurements and C:(h) are the adjusted values for the beam 

height. 

Results and Discussion 

Figures 10 and 11 compare the shot-to-shot noise on two measured lines to the results of the computer 

simulation. The two lines shown are typical of the results obtained on most of the 44 lines measured. 
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Figure 10. Comparison of the irradiance fluctuations predicted by the computer simuiation (soiid line) 

with that measured on a C02 wavelength (error bars) versus C: on 19 June 1996. In this case a 
propagation distance to the target of 3300 m and a beam diameter on target of 2.5 m were used. Diurnally 
varying values of Ci as measured by a Scintech scintillometer were used. 

The trend of increasing irradiance fluctuations with increasing C,' values seen in computer simulations is in 

general agreement with measured values. However, the level of irradiance fluctuations does not match. This may 



t 

be due in part to the fact that other noise sources such as laser noise, detector noise and jitter, at both the 

transmitter and target, were neglected in the computer simulation. 
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Figure 11. Comparison of the irradiance fluctuations predicted by the computer simulation (solid h e )  

with that measured on a second CO, wavelength (error bars) versus C,' on 19 June 1996. Parameters are 
the same as in the previous figure. 

The results seem to indicate that the computer simulation can be reasonably accurate in predicting the trend of 

measured irradiance fluctuations for our system under the same conditions. Our application of the model does not 
account for albedo variations, detector noise, jitter and other effects. We intend to improve our model by 

including these factors. Other improvements may include generating a larger number of phase Screens to better 

simulate turbulence. We may also increase the number of grid elements, A', for better resolution. These last two 

improvements will, however, have a significant effect on processing time. For each level of turbulence modeled, 
the 128 realizations of a 512 x 512 grid and 5 phase screens took approximately 6 hours to run on a Pentium 

200 MHz with 61 MB of RAM. 

Conclusions 

These initial results indicate that turbulence plays a measurable role in the irradiance fluctuations of a COz 
DIAL system. There is, in general, an increase in irradiance fluctuations with increasing C:. Our simulation also 



found that both paths to and from the target have varying relative importance depending on C,f . We also found 

an indication that turbulence breaks up the target induced speckle into smaller coherence sizes. 

Acknowledgments 

The authors would like to acknowledge usefid discussions on speckle with Edward P. MacKerrow and technical 

assistance from William M. Porch, L. John Jolin and the team at the Spill Test Facility. 

References 

1. Petrin R.R., Nelson, D.H., Schmitt, M.J., Quick, C.R, Quagliano, J.R., Sander, RK., T ie ,  J.J. and 

Whitehead, ,M., “Eff‘ects on DIAL Sensitivity: Atmospheric Phenomena, Proceedings of the CALIOPE 

Third Interim Technical Review, Vol. I, pp. 149-163, 1996. 

2. Beland, R.R, “Propagation Through Atmospheric Turbulence.” The Inpared Electro-optical Svstem 

Handbook, Vol. 2, SPIE, Bellingham, WA., pp. 157-232, 1993. 

3. Churnside, J.H., “Aperture Averaging of Optical Scintillations in the Turbulent Atmosphere,” Appl. Opt., Vd. 

30, NO. 15, pp. 1982-1994, May 1991. 

4. Fante, R.L., “Electromagnetic Beam Propagation in a Turbulent Media,” Proc. TEE, Vol. 63, pp. 1669-1692. 

December 1975. 

5. Fried, D.L., ‘‘Aperture Averaging of Scintillation,” J. Opt. Soc. Am. 57, pp. 169-175, 1967. 

6. Killinger, D.K., Churnside, J. H. and Rothman, L.S., “Atmospheric Optics,” Handbook of Optics, Vo/. 1. 

McGraw-Hill, New York, NY, pp. 44.34-44.36, 1995. 

7. Tatarski. V.I., Wave Propagation in a Turbulent Media, McGraw-Hill, New York, 1961. 

8. Davis, C.A., “Computer of Simulation of Wave Propagation through Turbulent Media,” Ph.D. Dissertation 

Naval Postgraduate School, June 1994. 

9. MATLAB, Version 5, The Mathworks, Inc., Natick, MA, December 1996. 

10. MacKerrow, E.P. and Schmitt, M.J., “Measurement of Integrated Specklc Statistics for COz Lidar Return 
from a Moving, Non-uniform, Hard-target,” J. Opt. Soc. Am., Manuscript Number A0-12433, accepted 

for publication 19 Feb 1997. 

11. Scharlemann, E.T., Pleasance, L., and Moms, J.R. “Performance Modeling for the KITFOX and JACK 

RABBIT Field Tests,” this proceedings. 

12. Petrin, R. R., Nelson, D.H., Schmitt, M.J., Quick, C.R.. Tim. J.J. and Whitehead, M., “Atmospheric Effects on 

COz Differential Absorption Lidar Sensitivity,” Proceedings of the SPIE Photonics West ’96 Symposium. 

13. Walters, D.L., Naval Postgraduate School, pcrsonal communication. May 1997. 


