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Abstract In this paper we find an exact formula for the number of affine equivalence
classes under permutations for binary polynomials degree d = 6 invariant under
the cyclic group (also, called monomial rotation symmetric), for a prime number of
variables; this extends previous work for 2 < d <5.
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1 Introduction

An n-variable Boolean function f is a map from the n dimensional vector space
’3 = {0, 1}" into the two-element field 5, that is, a Boolean function can be thought
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2 F. Luca, P. Stanica

as a multivariate polynomial over [F», called the algebraic normal form (ANF)

f&x, ..o x0) =ao + Z aixi + Z aijXiXj +---+a. .nXix2...xXn,

1<i<n I<i<j<n

where the coefficients ag, a;j, ..., a12.., € 2, and ‘+’ is the addition operator over
F5. The maximum number of variables in a monomial is called the (algebraic) degree.
If all monomials in its ANF have the same degree, the Boolean function is said to
be homogeneous. A function of degree at most one is called affine; if it further has
a constant term equal to zero is a linear function (see [8] for more on cryptographic
Boolean functions).

We define the (right) rotation operator p, on a vector (xi, X2, ...,X,;) € 5 by
pn(x1,x2, ..., x,) = (X4, X1,...,Xx,—1). Hence, ,0,’; (the composition of p with itself
k times) acts as a k-cyclic rotation on an n-bit vector. We extend it to monomials
and binary strings, naturally. A Boolean function f is called rotation symmetric if
it is invariant under cyclic rotation of inputs, that is, for each input (xy, ..., x,) in

n fEK(x1, .. x0) = f(x1,...,xp), forl < k < n. It is known [12] that the
number of Boolean functions classes invariant under rotation symmetry is 287, where
&n = % Zk‘n ¢ (k) 2%, and ¢ is Euler’s totient function.

We call any representation of a rotation symmetric function f (x1, ..., x,) the short

algebraic normal form (SANF) if we write f as

ap+ajx; + Zaljxl-xj + -t an.ax1x2.. . X,

where ag,ai,ayj,...,a12.., € T2, and the existence of a representative term
X1Xj, ... x;, implies the existence of all the other in the rotation symmetry class.

If the SANF of f is of the form x1x;, . .. x;, (thus, its ANF1is f(X) = x1x, ... x;, +
X2Xjs41 -+« - Xig+1+ - FXpXi—1 ... X;;—1), we call such a function a monomial rotation
symmetric (MRS) function (of degree d). We shall use the notation (1, ia, ..., ig) for
such a function, regardless of the order, among or within the terms. If d divides n, then
it is possible for some of the monomials in the above representation to be identical, so
the representation considers only one copy of each term. However, since we consider
only prime dimensions, every term occurs only once.

We say that two Boolean functions f, g : 5 — I are affine equivalent if g(x) =
f(xA +b), for all x € F%, where A € GL,(F3) (n x n nonsingular matrices over
the finite field F>, with the usual operations) and b is an n-vector over F,. We say
f (XA + b) is a nonsingular affine transformation of f(x). It is easy to see that if f
and g are affine equivalent, then they have the same weight and nonlinearity. In general,
these invariants are not sufficient, although we know that two quadratic functions are
affine equivalent if and only if their weights and nonlinearity are the same (see [4]).
However, in general, that is not the case for higher degrees.

We say that two MRS f, ¢ whose SANFs are x1x;, ... x;,, respectively, x1xj, . .. x},

. . P . .
are P-equivalent [2] and written f ~ g, if f, g are affine equivalent under a permu-
tation of variables (we often write f ~ g, or, X1x;, ...X;; ~ X1Xj,...Xj;, OF €ven
(1, i2,...,iq9) ~ (1, ja, ..., ja), for easy displaying).

@ Springer



Counting permutation equivalent degree six binary... 3

An n x n matrix C is circulant, denoted by C(cy, c2, ..., cy), if all its rows
are successive (right) circular rotations of the first row. On the set C, of circulant
matrices an equivalence relation was introduced in [2]: for Ay = C(ay,...,a,),
Ay =C(by,...,by), then A| = Ay ifand only if (ay, ..., a,) = ,o,’j(bl, ..., by), for
some 0 < k < n — 1. It was shown that the set of equivalence classes (with notation
(-)) form a commutative monoid, under the natural operation (A) - (B) := (AB).
Moreover, the previous operation partitions the invertible n x n circulant matrices into
equivalence classes, say C;/~, and consequently, (C;/~, -) becomes a group.

Let f be an MRS function of degree d, with the SANF xx}, ... x;,. We associate
to f the (unique) equivalence class Ay of the circulant matrix C(f) whose first row
has 1’s in positions {1, j2, ..., jz} and 0’s elsewhere. We say that Ay is a circulant
matrix equivalence class. Throughout this paper, we only consider circulant matrices
whose entries are 0 and 1; we call these matrices 0/1-circulants.

For a binary (row) vector (a1, az, . .., a,) of dimension n, we let A(ay, az, . .., ap)
= {i|a; = 1}, and by abuse of notation, A(C(a)) = A(a). We say that the vector a
has support A(a). Similarly, for a single monomial term x;, ... x;, of degree d in n
variables, we define A(x;, ...x;,)) = {ij|j = 1,2,...,d}. We extend the notion of
support to the MRS function f with SANF x; x;, ... x;, by A(f) = A(xjy ... xi,)
(not unique, but we consider all such sets equal under a cyclic rotation permutation
of the indices). That is, for Ay as above then A(f) = {1, jo, ..., ja} = {2, 2 +
L.o..,ja+1}="---.

We define the (circulant) weight of a 0/1-circulant to be the number of 1’s in each
row, that is, the size of the support of any row.

We recall now (see [2]) another type of equivalence between circulant matrices and
their equivalence classes. Two circulant matrices A, B are called P—-Q equivalent, if
PB = AQ, where P, Q are permutation matrices. The notion of P—Q equivalence
extends naturally from circulant matrices to equivalence classes, as any product of
permutation matrices is also a permutation matrix, and any two representative matrices
A1, Ay of an equivalence class (A) are related by a rotation of the row order. The next
result shows a connection between P-equivalence and P—Q equivalence.

Theorem 1 (Canright—-Chung—Stanica [2]) Two MRS Boolean functions f, g inn vari-
ables are P-equivalent if and only if their corresponding circulant matrix equivalence
classes Ay and Ay are P—Q equivalent.

The next fact (a case where the bipartite Addm problem is true) is mentioned
without proof in [13, Section 9], where it is stated that a method of Babai [1] for a
related conjecture can be extended to this case. A proof (provided by the first author
of [13]) can be found in Cusick and Stanica [9].

Theorem 2 Let p > d be a prime number and let A, B be two p x p 0/1-circulants
with weight d whose first rows have support A(A), respectively, A(B). Then the
following are equivalent:

(i) There existu,v € Zj, such that gcd(u, p) =1 and A(A) = uA(B) +v.

(i) A, B are P—Q equivalent.

Cusick and Stinicd [9] found the following asymptotic for the number of equiva-
lence classes for any degree in prime dimension.

@ Springer



4 F. Luca, P. Stanica

Theorem 3 (Cusick and Stanicd [9]) The number of equivalence classes of degree
d > 3 MRS functions in p > 7 (prime) variables (where p > d) satisfies

1 P 1 p) ( (p—1)/2 )
_ E _ .
p(p—1) (d) =S =00 (d \rw@ =21

Eqp=-—p"+0 (p‘H) ,

Hence,

and also

T et A a-4) .
Eap= 7 _E( : P +0<p )zfdzs.

The main result of this paper is to find the exact number of equivalence classes
(and representatives of these classes) for sextic (degree 6) MRS (whose SANF is f =
x1x;xjxpxsx; with A(f) = {1,1, j, k, s, t}) in prime dimensions; the cubic, quartic
and quintic cases were done previously in [2,4-7,9]; in [11], one of us completely
solved the case of quartics in prime power dimension.

2 The result

Since the degree of our MRS will not change throughout, we let E(p) be the number
of equivalence classes of degree 6 MRS functions in p variables, where p is a prime
number. We start with the following lemma, which enables us to narrow down the
representatives of equivalence classes, whose proof (for any degree d) can be found
in [9] (or, one can work it out easily using Theorem 2).

Lemmad4 Let f be an MRS of degree 6 in prime p dimension whose support is
A(f) ={1,i2,...,ic}. Then, its P-equivalence class under permutation of variables
contains an MRS g of support A(g) ={1,2, j3, ..., je}-

In this section, we use the Theorems 1 and 2 to get an exact count for E(p), where
p is a prime number. For easy writing, we sometimes write 7 to mean ab™!, or \/a to
mean a!/2, etc., in the prime field .

Since we have to consider several disjoint cases, we slightly change notations in
this section. We denote by E(p)i the number of distinct equivalence classes under
variable permutations of sextic MRS in p variables, for p = k (mod 30), where
ke{l,7,11,13,17, 19, 23, 29} (from past work, the count seemed to always depend
upon residues modulo (d — 1)!, although in this case, we compressed the count to

residues modulo 30).

@ Springer
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Theorem 5 Suppose p > 7 is a prime. Then the number E(p)i of P-equivalence
classes of sextic MRS in p variables is

E(p) =

p*=14p*+86

p>—194p+841

7

20
p2—194p4265

pi—14p3+86
7

p*—14p3+86

20
p2—274p+921

720

pr—14p>+86

p>—274p+345

7

20

s

’

’

’

k=1
k e {7,13,19)
k=11

k e {17,23,29}.

Proof Since p is prime, by Lemma 4 it is sufficient to find the number of nonequivalent
MRS with support {1, 2, a, b, ¢, d}. For that purpose, we fix3 < j <k <s <t <
p and look at possible 3 < a < b < ¢ < d < p such that {1,2, j, k,s,t} ~
{1,2,a,b,c,d}. By Theorem 2, two such tuples are equivalent if and only if there
existu, vsuchthat{1,2, j, k,s,t} = uf{l,2,a,b,c,d}+v.Given j, k, s, t, the values
of a, b, c, d are determined by considering every possibility for u(1, 2, a, b, c,d) +v
among the 6! permutations of {1, 2, j, k, s, t}. While one can do it by hand (with enough
patience), we used Mathematica to solve these 6! systems and removed duplications,
and we obtained the following 30 possible values of {a, b, ¢, d} (unordered tuples):

{j. ks, t}; {3—j,3—k3—53—1};
1 k—1 s—1 r—1 1 J—1 s—1 r—1
1 1 1 1 N 1 1 .1 ;
R R R +j—1] {+k—l R R +k—J
TR EY el SIS Sk YU Sk P FOFIDE S DV Ak Y S Sl S G iy
-1’ s—1’ 1’ -1’ r—1’ r—1 t—1° t—1]"°
1 k—1 s—1 r—1 1 j—1 s—1 r—1
2— - , - , , ;12— ,2— ,2— ,2— ;
j—1 j—1 j—1 j—1 k—1 k—1 k—1 k—1
1 i—1 k—1 r—1 1 i—1 k—1 s—1
2-—2-1 2“2 D2 —2-L o 2T T
s—1 s—1 s—1 s—1 r—1 r—1 r—1 r—1
| R s=2 1=2 X Lo d=2 g sm2 12
j—2 T2 =2 T2 k=2 Tk—2"" Tk-2 Tk—2]|
TP b SO S P TP A A RN St O
s—2’ s—2 2’ s—=21" t—2’ r—2" t—2 =21
1 k-2 -2 =2 1 -2 -2 )
2+ L S, Y oo lag P S, S :
i—2 i—2 j—2 i—2 k-2 k-2 k-2 k-2
1 ) k—2 ) 1 -2 k-2 -2
2 ——2-1T ST s o —2-L1 2 T2 12k
s—2 s—2 s—2 s—2 t—2 t—2 t—2 t—2
., - . . . . . .
1-2 -, - -, u J.,1+t J., 12 2 / 1,1+k ],1+t ].,
k—j k—j k—j k—j 5= 5= 5= 5=
) i—1 k—j —j - - 5 — -
T A P U O P el I o B A R
t—j t—j t—j t—j k—j k—j k—j k—j
s —k s—2 s—1 t—s t—k t—s t—2 t—1
1+ 1 b Il —— 1 —— 1+ — 1+ —— |
s—j s— s—j s—j r—j t—j r—j t—j
k=2 k—1 k—j ik, [, k=2 k=1 k=] s—k)|
s—k’ s—k’ s—k’ s—k|’ t—k’ t—k’ t—k’ t—k|’

@ Springer



6 F. Luca, P. Stanica

lJrs—j 1+s—2 l+s_ll t—s]. 1+)?—j l+t—s 1+t—2 l+t_1

s—k’ s—k’ s—k’ s—k|’ t—k’ t—k’ -k’ t—k

s—2 s—1 s—J s —k t—j t—k t—2 t—1
1-—=1-2=—,1-=% 1 e A P N :

r—s r—s t—s r—s r—s r—s r—s t—s
()

The set above would have a cardinality smaller than 30 if two (or more) such tuples

would overlap. Using a Mathematica program to go through the (320) = 435 such
systems, we found the following distinct possibilities when the set (1) has fewer than
30 distinct elements.
Case 1. j = 27" (1 = (=3 k= j+2,s =2j,t =2j+1(orj =271+
(—3)1/2),k = j+2,s = 2j,t = 2j 4 1, whose class is in fact equivalent to
the previous one), under p = 1 (mod 6). Certainly, by Gauss’ reciprocity, —3 is a
quadratic residue modulo p if p =1 (mod 6), and so, the above values exist. In this
case the set (1) has cardinality 5

{j,k,s,t};{3—j,3—k,3—5,3—1};

QNI DU ek R Sl U e
k—1"" k=1 k=1 k—1/J’
1 ji—1 k—1 r—1

1 o1 ) 1 , ;

+s—1 +s—1 +s—1 s—l]

IR R Al A Sl SO
t—1’ t—1° t—1’ t—1]"

The contribution to E(p)y is

1, ifk e {1,7,13,19}.

Case 2. {j.k.s.1) = 2«/573%\_/@7 3f5+2«§2§\/§75’ «/§+}§2_{§75, 37\/22ﬁ75
(there are other values, but they are all included in the same class; we used the complex
numbers representation to avoid cumbersome notations). In this case the set (1) has
cardinality 6.

The minimal polynomial of v'2+/5 — 5is f(x) = x*+10x245, whichis irreducible
by Eisenstein’s criterion, of discriminant 2! . 53, The roots of the polynomial are
o = V2J/5-5, 8 = V=25—5, —a, —B. We showed (by a different method)
in [9] that if p = 1 (mod 5), then —10 + 2+/5 are quadratic residues modulo p
(regardless of the choice for the involved roots). We shall use this fact along with a
result of Carlitz [3] (see also [10, Theorem 3]), who showed (among other things) that
a polynomial of the form x* + rx2 + s splits into the product of four distinct monic
linear polynomials modulo p if and only if (throughout, (-) is the Legendre symbol)

(i): ’(r2—4s): ’(—r—Zz‘):L @
P P P

@ Springer



Counting permutation equivalent degree six binary... 7

where s = 1> (mod p). For our polynomial x* + 10x? + 5, taking r = 10,s = 5,
then for p = 1 (mod 5) (thus, (%) — 1), it is immediate that

(5) _ (102—4.5) B (80) B (16~5) B (5) _

p ’ P P p p '

It suffices to show the last identity of (2) (for brevity, we use t = /5 for the integer ¢
with 5 = 12 (mod p)), that is

—10-2V5) _,
p - ’

ie., —10 — 2/51s a quadratic residue modulo p, which follows from our previous
work [9], mentioned above.

Thus, if p =1 (mod 5), then we have another class of cardinality 6 whose repre-
sentative can be taken to be {1, 2, j, k, s, t} with {J, k, s, ¢} given by the above values.
The contribution to E(p)y is

1, ifk e {1, 11}.

Case 3. {j, k. s, 1} = {j, 33, 1 4 C=DUVED) 5 4 (=AY } (and the cor-

responding conjugate, all belonging to the same equivalence class). Certainly, these
values existif p =1 (mod 6), as we previously observed. In this case, the set (1) has
cardinality 10. Counting all these tuples, we found 10(p — 7)/6 (since the degree of
the function is 6 and there are p — 7 possible values for j, which renders 10 possible
tuples; we also divided by 6, since order is not important, so for each value of j, say,
there are 3! more tuples giving the same function). The number of classes in this case
and the contribution to E(p)i is

-7
pT, if kefl,7,13,19).
Case 4. {j,k,S,t} = {j,3—j,s,3_s} (OL {j,k,S,t} = {J7k7k+ lak_.]+2})

This happens when {j, k,s,t} ={3—k,3—j,3—¢t,3—s} (respectively, {j k,s,t}

= {ﬁ +1, ﬁ +1, E +1, ﬁ + 1} ) However, the two cases are equivalent,
since any class with representative based on the first possibility contains a tuple based
upon the second possibility. In this case the set (1) reduces to the following list of 15
possible values of {a, b, ¢, d} (unordered tuples):

1 j j — 1 -2
{j,S—j,s,3—s};[ U et e e ]

TN A R

1+ L j—s—1 j+s—4]|. 1 s —jts+l j+s-2]
2—jl2—j j=2 " j=2 s—1's—1" s—1 7 s—1 ’
{1+ 1 I —j+s—1 j+s—4]; { 1 1 1—s s—Z];

) ) . 24+ —. 3+ ——.2 ,2
2—5 2—35 s—2 s—2 +1—j +1—j +j—1 +j—1

@ Springer



8 F. Luca, P. Stanica

SN WL NN St B S Al R P EFILIN Sl AU S ek
1 ’ 1 ’ -1’ -1/ 2’ 2’ 2’ s=2"
1 1 2 — -1 2j =3 2j -5 2j —4 3j+5—-6
2 — 34— 24 5,2_’_3. . .! ’ .j+s ’ .j+S ’ .j-i-s
2 2 -2 j—=2 jH+s=3 j4+s=3 j+s—-3 j+s-3
4—-3j 5-3; -3j 3 3j -6 j—2 j— 1 2j—3 2j-3
LA A e ) F PR kS RS Ak O A i
3—-2j 3-2j 3-2j 2j -3 j—s j—s j—s j-—s

s

j—3s+3 3-2s s—2 s—1 1l 4—-3s 5-3s j—3s+3 j+35—6
j—s j—s’ s—j s—j Tol3-2s73—-2s7 3-25s = 2s-3
2s =3 j+25s—=5 j+2s—4 j+35—-6 3)
jH+s=3" j+s=3" j+s—=3" j+s-3]|"

s

For counting purposes, we consider only tuples {a, b, ¢, d} in the list above satis-
fyinga +b =3 (mod p),c+d =3 (mod p) (in some order), that is, we have the
following tuples in list (3) satisfying these conditions

{/,3—1J,8,3—s}

4—3j 5-3j —3j+s5+3 3j+s—6]
H3—2j’3—2j’ 3-2j ' 2j-3 ]
I4—3s 5-3s j—3s+3 j+3s—6]

3-2s'3—-2s 3—-2s = 2s—3

!
possible value for {a, b, ¢, d}, namely

If{j,s} = {SijTg, M} (which exists if p = 1 (mod 6)) then there is only one

{j,3—j,5,3—s}.

The count for the number of tuples in this case is w (excluding the fixed
tuple mentioned above) which gives a contribution to E(p); of

if kef{l,7,13,19},

1((p—5)(p—3) _1) _(p=D(p-=T7)
3 8 o 24 ’

and to E(p)i of

(p—=3)(p-3)

, if ke {ll,17,23,29}.
24

In the remaining cases, every class will contain 30 elements, for a contribution to
E(p)y of

(P47 =5 1-6-1-10-BgT —15. =D pd — 14p3 4+ 56p2 —T4p + 31

= L if k=1,
30 720 !
P2 5.1 _10.257 5. @=DG=D 443 isc 0 a0 17s
£l % e 750 PR i ke 13,19),
(7 —6- 115 PR phouap sep?—34p-249
= i =
30 720 ’ ’

@ Springer



Counting permutation equivalent degree six binary... 9

(P72 =15 @P=D k43 4 s6p2 — 34p — 105
30 - 720

if ke ({17,23,29}.

Putting all these contributions together we find that

E(pp=1+1+

p—7 (p=Dp-7 p*—14p3 +56p% —74p +31
— +

24 720
pt — 14p3 +86p% — 194p + 841
= 0 ,if k=1,
p—7 (p=D(p=7 p*—14p3 +56p% —74p + 175
E(p) =1
(P =1+ ——+ N + 70 ,
4 3 2
— 14 86p2 — 194p + 265
_ 7 p+7é’0 PH2O e ke (713,19,
(p=3)p—=5 p*—14p3 +56p% —34p —249
E(p) =1
(Pl =1+ 24 + 720
4 3 2
— 14 —274 21
=P P +8;’§0 PN,
E(p)s = (p—3)(p—5)+p4—]4p3+56p2—34p—105
Pk 24 720
4 3 2 _
_pt-tdp +8$§O 274p+345’ it ke (17.23.29).
which concludes the proof of the theorem. O
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