
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

1997

Logic programming and software maintence

Cooke, Daniel

J.C. Balzer AG, Science Publishers

D. Cooke, Luqi, "Logic programming and software maintenance," Annals of

Mathematics and Artificial Intelligence, v.21 (1997), pp. 221-229

http://hdl.handle.net/10945/52547



Annals of Mathematics and Artificial Intelligence 21 (1997) 221–229 221

Logic programming and software maintenance ∗

Daniel Cooke a and Luqi b

a Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA
b Computer Science, Naval Postgraduate School, Monterey, CA 93943, USA

The main objective of this short paper is to describe the relationship between software
maintenance and logic programming (both declarative and procedural), and to show how
ideas and methods from logic programming (in particular, methods invented by M. Gelfond)
can be used in software maintenance. The material presented in this paper partly appeared
in (Luqi and Cooke, 1995). The main difference is that (Luqi and Cooke, 1995) is aimed
mainly at software engineers, so it only briefly touches on the software engineering problems,
while describing in great detail the basics of logic programming. In contrast, in this paper,
we assume that the corresponding logic programming notions are well known, but describe
the corresponding software engineering applications in greater detail.

1. The problems of software maintenance: brief introduction (why, how, and
when)

Software maintenance: why? Real-life programs sometimes produce undesirable re-
sults, and sometimes do not run at all. One of the main objectives of software engi-
neering is to ensure that programs do exactly what we want them to do. One of the
main ideas in achieving this objective is the idea of formal specifications, according
to which, we formulate the program requirements (specifications) in precise (formal)
terms, and try to come up with verified programs, i.e., programs for which we can
prove that the program satisfies these specifications.

In the ideal situations, programs exactly follow specifications, and they are as
reliable as detailed mathematical proofs. The only thing that can possibly go wrong
in such situations is that the wrong program may be (incorrectly) proclaimed to be
correct because there was an (accidental) error in the proof. In this case, we need to
replace the wrong program by the correct one. Such corrections are called corrective
software maintenance.

From this “ideal” viewpoint, when we change our specifications, it is like chang-
ing the formulation of the theorem: we have to find a proof for the modified theorem,
and we have to find the a program that satisfies the new specifications.

In real life, when the specifications are changed, we do not have to design pro-

∗ Research sponsored by the AFOSR under contract F49620-93-1-0152; the NSF under grant numbers
CCR-9058453 and CDA-9015006; by the ARO under grant number ARO-145-91, and NASA NCCW
0089.

 J.C. Baltzer AG, Science Publishers



222 D. Cooke, Luqi / Logic programming and software maintenance

grams completely anew. Most often, the existing program can be modified so that it
satisfies the new specifications. Not only can the program be modified, it should be
modified (rather than written anew), because such a modification (i.e., re-use of the
existing code) is often the only way to produce the reliable software product under
limited human and time resources (see, e.g., [2,11]). These specification modifications
and the corresponding program modifications are also called software maintenance.

Software engineers usually distinguish between two types of specification modi-
fications:

• Perfective modifications occur, e.g., when we want to compute the solution to the
given equation with a better accuracy than the existing program provides.

• Adaptive modifications occur when the environment changes. For example, in order
to design a space mission, i.e., to choose a trajectory, the flight length, etc., we must
use the parameters of the spaceship such as its weight, fuel capability, etc. When
we upgrade the Space Shuttle (i.e., change these parameters), then we need to
modify the program. In software engineering, this necessity to constantly adapt the
program to an everchanging context is well recognized; it is, e.g., explicitly stated
in Lehman’s laws [10] (“For a software system to survive it must evolve”).

Comment. Not every program needs adaptive maintenance. Lehman actually classi-
fies programs into S-type programs whose specifications are not likely to change over
time (e.g., matrix multiplication or any numerical package) and E-type programs whose
specifications change over time. Large software systems usually contain programs of
both types, so adaptive maintenance is necessary.

Software maintenance: how? If the necessity to modify the software is recognized,
we face an important (and often difficult) problem of actually modifying the software
in the right way.

Software maintenance: when? The word “if” in the above paragraph actually hides
a crucial problem: how do we know that it is time for modifying software?

This problem is relatively easy for programs that solve well-defined problems
for a reasonably simple environment. For such programs, modifications are rare (how
often do we need to increase the accuracy of a numerical method?) and the need for
such modifications is easily recognizable.

For programs that operate in a more complex environment, the situation is much
more complicated. The environment is constantly changing, and programs are usually
designed in such a way that they still work correctly under (sufficiently) small changes:
for example, an operating system, usually, does not need maintenance if we simply
add one more workstation to the net. However, as the small changes accrue, we
may eventually arrive at a situation where the old program does not work correctly
anymore. Currently, the user decides when the maintenance is needed: e.g., the user
detects that the system is not performing the way it should (e.g., that there is an error
in a result), or that there has been some drastic change in the software environment



D. Cooke, Luqi / Logic programming and software maintenance 223

or context that requires that the system be modified (i.e., there is a need for adaptive
maintenance). Since the accrued changes are minor, it is very difficult to detect the
exact moment when the old software is no longer correct. However, if we do not
detect this moment exactly, if we wait until the program starts misbehaving, we may
get disastrous consequences, such as the explosion of the European Ariane 5 satellite
launcher on its June 4, 1996 maiden flight. The guidance software used on this flight
was originally designed for the the previous (slower) system Ariane 4; it worked well
for several (faster) modifications of Ariane 4, but with the upgrade to Ariane 5 the
flight became too fast for the guidance software to handle.

A major problem is, therefore, to detect when the maintenance is needed.
This detection problem can be informally reformulated in logical terms: If the

program was initially designed exactly according to some specifications, then the need
for maintenance means that there is an inconsistency between the (old) requirements
on which the program was based, and the new specifications that were added later. In
these terms, the problem is to detect inconsistencies.

2. Logic programming: an appropriate formalism for solving software
maintenance problems

Traditionally, classical (monotonic) logic has been used in software engineering. Tra-
ditionally in software engineering, specifications were described in terms of classical
(first order) logic. This is done either directly in terms of this logic, or indirectly, i.e.,
in terms of some specific formalism whose semantics are defined in terms of first order
logic.

In this formalism, a specification for a program consists of one or several logical
statements that describe the possible pairs (x, y), where x in an input, and y is an
output. If we want to add a new requirement to the system, this means that we have to
add a new formula that the pairs must satisfy. The more formulas we add, the fewer
pairs will satisfy all of them. In other words, the system, as described by the first order
logic, is monotonic in the following precise sense: Let us denote the set of all pairs
(input,output) that satisfy the given set of formulas S by p(S). Then, if we increase
the set of formulas, i.e., go from the original set S to a larger set S′ ⊃ S, we thus
decrease the set of all possible pairs: p(S′) ⊆ p(S).

Actual specifications are often non-monotonic. Modifications to the program specifi-
cations are indeed formulated mostly in terms of additional statements. However, in
real life, these statements may not necessarily mean new restrictions on the output;
sometimes, these new statements describe new exceptions to the previously formulated
requirements, exceptions that were not known before. When an additional statement is
a new exception, then the new set f (S′) of possible pairs (input,output) is not smaller,
but larger than the original set of pairs f (S): f (S′) ⊇ f (S).

Usually, additional requirements consist of statements of both types: some of
these statements bring new restrictions, some limit the previous restrictions. As a result,



224 D. Cooke, Luqi / Logic programming and software maintenance

we often get “incomparable” sets f (S) and f (S′), i.e., sets for which neither f (S) is
contained in f (S′), nor f (S′) is contained in f (S) (f (S) 6⊆ f (S′) and f (S′) 6⊆ f (S)).

In all these cases, the mapping f is non-monotonic. Non-monotonic logics (see,
e.g., [12–14]) can be useful in formulating the logic behind such mappings.

Logic programming seems to be the most appropriate non-monotonic logic for soft-
ware engineering. We believe that logic programming is the most adequate logical
formalism for describing software maintenance, for the following reasons:

• First, many software requirements are formulated in terms of common sense, and
logic programming seems to be a natural and adequate description of commonsense
reasoning. For example, logic programming provides a clear distinction between
immutable specifications (like “Bill and Sam are brothers”) that are absolutely true,
and mutable specifications that are typically true, but may have exceptions (like “It
may be assumed/believed that Bill and Sam are kind to each other”). Immutable
specifications are described by absolutely true facts and rules like

brothers(bill, sam)←,

while mutable specifications can be described as defaults like

kind to each other(bill, sam,S)← not abnormal situation(S).

• Second, logic programming is not only a declarative (specification) language. Logic
programming, in its Prolog form (and its variants), is also a reasonably efficient
procedural language. Therefore, if we formulate our restrictions on the pairs (in-
put,output) in terms of a logic program, we not only get a good formalization of
our specifications, but, when we apply a Prolog compiler to this specification, we
may, in many cases, actually get a good prototype implementation, that, given an
input, produces an output that is consistent with these specifications.

3. How to describe inconsistencies?

Reminder: inconsistencies need to be described. Logic programming in general (and
Prolog in particular) helps in the design of a program that satisfies given specifications
and thus, helps to solve the problem of how to maintain software.

However, as we have already mentioned, there is another problem that is, often,
even more important: to find out when it is necessary to change the software, i.e., in
logical terms, when adding a new requirement leads to an inconsistency. How can we
do it?

Prolog-type logic programming is not sufficient to describe inconsistencies. In tradi-
tional (first order) logic, inconsistency means that for some query q, we can conclude
both q and ¬q. In “standard” logic programming, there is no direct analog of incon-
sistency: the only negation available is negation as failure, according to which “not q”



D. Cooke, Luqi / Logic programming and software maintenance 225

is deduced if and only if q cannot be deduced. This definition automatically excludes
any possibility of an inconsistency.

Logic programs with classical negation. To describe inconsistency, we therefore need
to add another (more classical) negation operation to the “standard” logic programming
formalism. Such an addition was proposed by M. Gelfond and V. Lifschitz in [7,8]
(programs that use thus defined classical negation are called extended logic programs).

Extended logic programming, with a classical negation ¬, can indeed describe
inconsistency. For example, let des(In,Out) be the predicate that describes the desired
output Out for a given input In, and suppose that one of the requirements is that
the Out should be uniquely determined by the input In. This requirement can be
formulated as follows:

¬des(In,Out′)← des(In,Out),Out 6= Out′.

Then, if the logic program allows two different outputs (e.g., Out = 9 and Out′ =
10) for the same input (e.g., for the list In = [4, 5]), i.e., if we can conclude both
des([4, 5], 9) and des([4, 5], 10) from this program, we get ¬des([4, 5], 9) and thus,
inconsistency.

How to practically detect inconsistencies? Since classical negation is useful for de-
tecting inconsistencies, it is desirable to be able to incorporate classical negation into
Prolog. In their original papers, M. Gelfond and V. Lifschitz recommended the follow-
ing incorporation: for every predicate p whose classical negation ¬p is in the program,
we replace ¬p by a special new predicate np. This replacement actually takes place as
a result of the definition of an answer set for an extended logic program (from [7,8]):
namely, an answer set is defined as a stable model [6] for the replaced program if this
stable model does not contain p and np at the same time, and all atoms if the stable
model contains such a contradictory pair.

If we do such a replacement, then, informally, to get an answer to the query “p?”,
we can ask two questions: “p?” and “np?”. Then, depending on the answers to these
questions, we get four possibilities:

• If the Prolog’s answer to p is “yes” and to np is “no”, then the answer to the
original query is “yes”.

• If the Prolog’s answer to p is “no” and to np is “yes”, then the answer to the
original query is “no”.

• If the Prolog’s answer to both p and np is “no”, then the answer to the original
query is “unknown”.

• If the Prolog’s answer to both p and np is “yes”, then the answer to the original
query is “inconsistent”.

This algorithm is not completely in line with the standard semantics of classical nega-
tion. The above algorithm, however, is not exactly in line with the answer set se-
mantics for extended logic programs. Indeed, if we take a consistent logic program,



226 D. Cooke, Luqi / Logic programming and software maintenance

e.g., a fact p ←, and add to it a pair of inconsistent sets q ← and ¬q ←, then the
resulting extended logic program

p←
q ←
¬q ←

is inconsistent. Hence, from the viewpoint of the answer set semantics of extended
logic programs, its only answer set is {p,¬p, q,¬q}, and the answer to the query p
should be “inconsistent”. However, if we simply replace ¬q by nq, we get a logic
program

p←
q ←
nq ←

for which the answer to the query “p?” is “yes”, and to the query “np?” is “no”, which,
according to the above heuristic, means that the answer to the original query “q?” is
“yes” (and not “unknown” as the answer set semantics implies).

So, even for this simplest case of inconsistency the above algorithm is not in line
with the semantics. There are two possible ways of dealing with this problem:

• we can modify the algorithm, or

• we may use some modification of the semantics.

In principle, it is possible to modify the above algorithm so that it would be more in
line with the answer set semantics: For example, we can add a new predicate incon
and a new “meta-rule”

incon← P (X),¬P (X);

then, in order to get the answer to a query p, we ask not two but three queries: “p?”,
“np?”, and “incon?”, and return the answer “inconsistent” whenever the Prolog’s
answer to incon is “yes”. However, with this proposal, we, in effect, make the Prolog
compiler seek the answers to all possible queries even when we are interested in the
value of only one predicate. This will drastically increase the running time of the
Prolog program and, for large logic programs, make the idea unrealistic.

Gelfond’s modification of answer set semantics is most appropriate for the description
of software maintenance. Since trying to be as close to answer set semantics as
possible means a drastic increase in running time, we believe that it is preferable to
keep the original algorithm but to modify the semantics instead. Such a modification
was actually proposed by M. Gelfond himself (unpublished): If we are given an
extended logic program P, we can define its answer set as a stable model of the
program P ′ that is obtained from P by replacing each classical negation ¬p with a



D. Cooke, Luqi / Logic programming and software maintenance 227

new predicate np even if the resulting stable model contains a “contradictory” pair p
and np.

For example, if we apply this substitution to the above simple inconsistent ex-
tended logic program P, then the resulting logic program P ′ (without classical nega-
tion) has exactly one stable model {p, q,nq}. Therefore, in the modified semantics,
the above simple inconsistent program P has exactly one answer set {p, q,¬q}, so the
algorithm’s answer “yes” to the query “p?” is exactly what this semantics predicts.

We have used the above algorithm and the corresponding semantics to check
the inconsistency of several realistic specifications (see, e.g., a missile firing example
described in [11]). These initial successes of using the simplest logic programming
tools make us believe that the applications of more complicated and more realistic
logic programming formalisms and methods to software engineering will be fruitful
(provided, possibly, that additional research is done on the above modified semantics
of answer sets and on its unpublished extensions to epistemic specifications).

Remark: it is not necessary to ask two queries. In the above algorithm, to answer
a query “p?”, we have to run Prolog twice (for “p?” and for “np?”). It is relatively
easy to automate this “doubling” inside Prolog itself (this is how we actually dealt
with the applications). To do that, we can introduce the new predicates notl(.) and
ans(.,.), and add the following rules to the original Prolog program:

notl(P):-P,!,fail.
notl(P).

ans(P,true):-P,notl(not(P)).
ans(P,false):-not(P),notl(P).
ans(P,inconsistent):-P,not(P).
ans(P,incomplete).

Here, notl(P) stands for negation as failure (and one can easily trace that the
query “notl(P)?” returns “yes” if and only if the query P returns “no”), not(P)
stands for classical negation (it has to be specified by rules from the database), and
ans(P,A) returns one of the four possible answers A (“true”, “false”, “inconsistent”,
and “incomplete” meaning “unknown”) to the query P.

For example, if we have both des([4,5],9) and des([4,5],10) in the
logic program, and we have a rule (as above) that leads from des([4,5],10) to
the classical negation

not(des([4,5],9)),

then Prolog’s answer to the query

ans(des([4,5],9),A))

(or to a more general query ans(des([4,5],X),A))) is that A is “inconsistent”.



228 D. Cooke, Luqi / Logic programming and software maintenance

Checking completeness: an additional advantage of logic programming approach.
The logic programming approach not only helps us to solve the important software
engineering problem of checking the consistency of specifications, but it also helps with
the equally important problem of checking whether the specifications are complete (the
importance of checking completeness is emphasized in [4,5]).

Normally, the set of specifications is assumed to be complete. In logic program-
ming terms, this means that we are dealing with the logic programs that have a unique
answer set. The class of logic programs with unique answer sets is large [9]. For
example, logic programs that do not contain negation as failure at all, and programs in
which no negation as failure is contained in a loop (in particular, stratifiable programs
[1,3]) are guaranteed to have a unique answer set. We believe that all specifications that
are sufficiently complete to be considered for the purposes of a software development
project, correspond to a logic program with a unique answer set.

However, it is almost certain that the initial versions of the specifications for any
real system will not be complete in this sense. It is therefore desirable to design a
Prolog-based answering mechanics that would provide correct answers to queries even
if the program has several answer sets (i.e., if specifications are not complete).

Acknowledgements

Thanks to friends and colleagues, Valdis Berzins, Michael Gelfond, Joseph
Goguen, and Vladik Kreinovich for extensive comments and suggestions. Thanks
also to the excellent reviewers who gave prompt and excellent guidance.

References

[1] K. Apt and H. Blair, Arithmetic classification of perfect models of stratified programs, Fundamenta
Informaticae 13 (1990) 1–18.

[2] V.R. Basili, Viewing maintenance as reuse-oriented software development, IEEE Software 7(2)
(1990) 19–25.

[3] C. Baral and M. Gelfond, Logic programming and knowledge representation, Journal of Logic
Programming 19 (1994) 73–148.

[4] D. Cooke, A. Gates, E. Demirors, O. Demirors, M. Tanik and B. Kraemer, Languages for the
specification of software, Journal of Systems and Software 32 (1996) 269–308.

[5] A.M. Davis, A comparison of techniques for the specification of external system behavior, Com-
munications of ACM 31(9) (1988) 1098–1115.

[6] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: Proc. 5th
International Conference and Symposium on Logic Programming, Seattle, Washington (August
15–19, 1988), eds. R. Kowalski and K. Bowen, pp. 1070–1080.

[7] M. Gelfond and V. Lifschitz, Logic programs with classical negation, in: Proceedings of 7th
International Conference on Logic Programming (Jerusalem, 1990) pp. 579–597.

[8] M. Gelfond and V. Lifschitz, Classical negation in logic programs and deductive databases, Journal
of New Generation Computing 9(3,4) (1991) 365–387.

[9] M. Gelfond and H. Przymusinska, Stratified extended logic programs. Draft copy of a paper in
preparation.



D. Cooke, Luqi / Logic programming and software maintenance 229

[10] M. Lehman, Programs, life cycles, and laws of software evolution, Proceedings of the IEEE 68(9)
(1980) 1060–1075.

[11] Luqi and D.E. Cooke, How to combine nonmonotonic logic and rapid prototyping to help maintain
software, International Journal of Software Engineering and Knowledge Engineering 5(1) (1995)
89–118.

[12] C.V. Ramamoorthy and D. Cooke, The correspondence between methods of artificial intelligence and
the production and maintenance of evolutionary software, in: Proceedings of the Third International
IEEE Conference on Tools for Artificial Intelligence (November, 1991) pp. 114–118.

[13] C.V. Ramamoorthy, D. Cooke and C. Baral, Maintaining the truth of specifications in evolutionary
software, International Journal of Artificial Intelligence Tools 2(1) (1993) 15–31.

[14] J.-P. Tsai and T. Weigert, A knowledge-based approach for checking software information using a
non-monotonic reasoning system, Knowledge-Based Systems 3(3) (1990) 131–138.


