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Computational provenance in hydrologic
science: a snow mapping example

BY JEFF DOZIER* AND JAMES FREW

Donald Bren School of Environmental Science and Management,
University of California, Santa Barbara, CA 93106-5131, USA

Computational provenance—a record of the antecedents and processing history of digital
information—is key to properly documenting computer-based scientific research.
To support investigations in hydrologic science, we produce the daily fractional snow-
covered area from NASA’s moderate-resolution imaging spectroradiometer (MODIS).
From the MODIS reflectance data in seven wavelengths, we estimate the fraction of each
500 m pixel that snow covers. The daily products have data gaps and errors because of
cloud cover and sensor viewing geometry, so we interpolate and smooth to produce our
best estimate of the daily snow cover. To manage the data, we have developed the Earth
System Science Server (ES3), a software environment for data-intensive Earth science,
with unique capabilities for automatically and transparently capturing and managing the
provenance of arbitrary computations. Transparent acquisition avoids the scientists
having to express their computations in specific languages or schemas in order for
provenance to be acquired and maintained. ES3 models provenance as relationships
between processes and their input and output files. It is particularly suited to capturing
the provenance of an evolving algorithm whose components span multiple languages and
execution environments.

Keywords: snow; remote sensing; data management; provenance
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*A
1. Introduction

(a ) The snow mapping problem

Of the seasonal changes that occur on the Earth’s land surface, perhaps the most
profound is the accumulation and melt of seasonal snow cover, affecting climate,
weather and the water balance. Snow exerts a huge influence on the hydrologic
cycle during the winter and spring for much of the Earth’s land area. Near many
mountain ranges, the seasonal snow cover is the dominant source of run-off,
filling rivers and recharging aquifers that more than a billion people depend on
for their water resources (Barnett et al. 2005).

König et al. (2001) and Dozier & Painter (2004) have reviewed developments
in remote sensing of snow and ice. Among them is the use of snow-covered
area from NASA’s moderate-resolution imaging spectroradiometer (MODIS) in
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hydrologic analysis and modelling. Unlike surface measurements, satellite
observations are able to show the distribution of snow over the topography.
Nearly daily maps are necessary for hydrologic and climate models because of the
dynamic nature of snow cover, which changes at a slower time scale than
atmospheric phenomena but faster than other surface covers. The availability of
daily global observations of snow cover was inconceivable prior to the satellite
era. Nowadays, the global MODIS snow-cover product (Hall et al. 2002) is
produced daily, and as an 8 day composite, at 500 m spatial resolution.

Snow-water equivalent is regularly estimated at coarse spatial resolution
(12–50 km) from passive microwave data, including SSM/R, SSM/I and
the EOS instrument AMSR-E, in a time series that goes back to 1978
(National Research Council 2007). However, at finer spatial resolutions
necessary for the mountains, remotely sensing snow-water equivalent is an
unsolved problem. Our measurements of snow-covered area can be combined
with point measurements to spatially interpolate snow-water equivalent
(Fassnacht et al. 2003; Molotch et al. 2004).
(b ) The computational provenance problem

Computational provenance refers to knowledge of the origins and processing
history of a computational artefact, such as a data product or an implementation of
an algorithm (Bose & Frew 2005). Provenance is an essential part of metadata for
Earth science data products, where both the source data and the processing
algorithms change over time. These changes can result from errors (e.g. sensor
malfunctions or incorrect algorithms) and from an evolving understanding of the
underlying systems and processes (e.g. sensor recalibration or algorithm
improvement). Occasionally, such changes are memorialized as product or
algorithm ‘versions’, but more often they are only manifest in mysterious differences
between data products that one would otherwise expect to be similar. Provenance
allows us to better understand the impacts of changes in a processing chain, and to
have higher confidence in the reliability of any specific data product.

The snow mapping problem provides an ideal application for provenance
capture and management. In §2, we show the steps to remotely sense fractional
snow cover from MODIS, and interpolate across time and space to fill in the
missing values and account for errors introduced by off-nadir views. In §3, we
describe our provenance management system, and, in §4, we show how it is
applied to the generation of MODIS snow maps.
2. Snow-covered area

Two products comprise information needed from MODIS for hydrologic
modelling in the snowmelt environment:

—From the daily satellite overpasses, we calculate the fractional snow cover for
each MODIS pixel that is not obscured by clouds. Requiring spectral
unmixing and multiple solutions of simultaneous linear equations, this
‘MODSCAG’ algorithm (MODIS snow-covered area and grain size) is
computationally intensive.
Phil. Trans. R. Soc. A (2009)
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—The daily maps of fractional snow cover form a time–space data cube, with
missing values because of cloud cover or sensor noise, and some less reliable
values because of the highly off-nadir viewing geometry. We interpolate and
smooth this data cube to provide our best estimate of the fractional snow
cover in each grid cell, every day. This product is more useful for inclusion in a
distributed energy balance snowmelt model than the raw daily estimates.
(a ) Fractional snow cover

Snow-covered area in the mountains usually varies at a spatial scale finer than
that of the ground instantaneous field of view of the remote-sensing instrument.
This spatial heterogeneity poses a ‘mixed-pixel’ problem, because the sensor may
measure the radiance reflected from a mixture of snow, rock or soil, and
vegetation. Painter et al. (2003) used spectral mixture analysis with the data
from an airborne imaging spectrometer, AVIRIS, with 224 contiguous spectral
bands, to estimate fractional snow-covered area for each pixel. While these
results with AVIRIS demonstrated the ability to derive both snow cover and
albedo at subpixel resolution, imaging spectrometer data are available too
infrequently to use them regularly in hydrologic models. Multispectral sensors,
such as the Landsat Thematic Mapper and MODIS, provide data over wider
swaths and at more frequent intervals than imaging spectrometers. From
MODIS, information is available at 500 m spatial resolution, at twice daily
intervals using the data from two satellites, Terra and Aqua.

In the spectral mixture analysis, an endmember is the spectral reflectance of a
pure surface cover. The MODIS algorithm uses a spectral library for snow
generated with model calculations for monodispersions of spheres. We calculate the
snow grains’ single-scattering properties over each MODIS band with the Mie
theory (Nussenzveig &Wiscombe 1980), and the reflectance of the snowpack with a
discrete-ordinates radiative transfer model (DISORT; Stamnes et al. 1988) at the
solar geometry of the image. The other endmembers are vegetation, rock or soil,
lake ice and photometric shade to account for the variability of the illumination
angle. For their reflectance values, we use the spectra measured in the field and
laboratory at 1 nm spectral resolution, convolved to the MODIS bandpasses.

The spectral mixture analysis is based on a set of simultaneous linear
equations that make up the components of a pixel’s reflectance. The MODIS
product suite includes MOD09, atmospherically corrected surface reflectance
(Kotchenova & Vermote 2007), along with a cloud mask that, unfortunately, has
errors of both omission and commission in snow–cloud discrimination. The
spectral mixing equation is

RS;l Z
XN
iZ1

FiRl;i Cel;

where RS,l is the pixel-averaged MODIS surface reflectance; Fi is the fraction of
endmember i; Rl,i is the reflectance of endmember i at wavelength l; N is the
number of spectral endmembers; and el is the residual error at l for the fit of the
N endmembers. The least-squares fit to Fi can be solved by several standard
methods. In full exploratory mode, there are 100 snow endmembers with effective
grain radii from 10 to 1100 mm, 25 vegetation endmembers, 25 soil endmembers
Phil. Trans. R. Soc. A (2009)
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Figure 1. (a) Elevations of the Sierra Nevada, Coast Ranges and southern Cascades. (b) MODIS
bands 2, 4 and 3 (0.841–0.876, 0.545–0.565 and 0.459–0.479 mm) on 19 January 2008. (c) Snow
cover in the Sierra Nevada and western Nevada on 19 January 2008. The Albers equal-area
projection, used by the California Data Exchange Center, has standard parallels at 40.58 N and
34.08 N, centre longitude 1208W.
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and therefore approximately 6000 combinatorial possibilities. In operational
mode, we reduce the number of snow endmembers by using intervals of
reflectance in MODIS band 5 rather than intervals of grain radius, and we reduce
the number of soil and vegetation endmembers because the time series allows us
to constrain the range of possibilities. The snow endmember can vary from pixel
to pixel, but within a pixel we assume that the snow endmember is the same; the
snow endmembers are spectrally too similar to one another to resolve different
snow endmembers in the same pixel. MODSCAG solves each possible
combination of endmembers and chooses the combination with the lowest error
for MZ7 MODIS spectral bands, defined by

r:m:s:e:Z
1

M

XM
lZ1

e2l

 !1=2

:

Figure 1 shows the topography of California’s Sierra Nevada, a MODIS image
from mid-January 2008, and the fractional snow cover derived from that image.
We have compared MODSCAG’s performance with fractional snow cover from
Landsat at 30 m spatial resolution, which has in turn been verified against aerial
photographs at sub-metre resolution (Rosenthal & Dozier 1996). The r.m.s.
difference between Landsat and MODIS fractional snow cover is generally in the
0.07–0.12 range, with part of the error caused by misregistration between
MODIS and Landsat.
Phil. Trans. R. Soc. A (2009)
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Figure 2. Representation of the process as interpolation and smoothing to fill in a sparse time–
space data cube, with (a) the filtered cube, where cloudy or noisy pixels are black, and (b) the
interpolated and smoothed cube. Data are for the combined Tuolumne and Merced River basins in
the Sierra Nevada, January to July 2004.
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Figure 3. Raw data and interpolation and smoothing for two locations in the Tuolumne River
drainage from October 2004 to July 2005. A point at (a) 3550 m near the eastern boundary of the
basin and (b) 1800 m near the seasonal snowline. The points show the raw MODIS snow-cover
measurements, but with cloudy and noisy data omitted. Diamonds and circles show the data at
sensor zenith angles less than and greater than 258, respectively. The lines show the smooth fit to
the data, including interpolation by date and then modest spatial smoothing.
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(b ) Time–space interpolation

Several confounding factors make the raw daily snow cover difficult to use in
hydrologic models. These include cloud cover, sensor noise, artefacts caused by
viewing geometry, angular effects on the signal caused by vegetation, other
elements such as subpixel clouds and imperfections in the retrieval algorithms.
However, the time series itself enables us to better estimate snow properties.

In effect, we can view the snow data as a sparse space–time cube that needs
filtering, smoothing and interpolation (figure 2). Filters replace cloudy or noisy
values in the cube with NaNs (‘not a number’) to set the right sparse values in
the cube. After filtering, the task is to interpolate and smooth the legitimate
values, which may have errors, to fill in the cube. Clouds are often extensive and
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


J. Dozier and J. Frew1026

 on June 1, 2016http://rsta.royalsocietypublishing.org/Downloaded from 
persistent in snow-covered areas, as is the case in winter in the Sierra Nevada.
Sometimes, software errors in the MODIS data processing stream have
contaminated data for a week or two. Occasional noisy images appear
throughout the history of MODIS.

When clouds do not obscure the pixels, viewing angles can perturb the signal.
Although the MOD09 product is resampled at 500 m resolution, in fact, the pixels
are elongated in both the along-track and cross-track directions at off-nadir views.
At the edge of the scan, the pixel is approximately 10 times as large as at nadir,
elongated by factors of 2 and 5 in the along-track and cross-track directions,
respectively. Therefore, the putative values of the MOD09 reflectance, and thereby
the derived snow cover, incorporate values in neighbouring pixels. The neighbours
may have more or less snow cover, so the error is not systematic. Topography and
forest cover also affect the viewing geometry. Within a given viewing area, there
can be considerable subpixel topographic variability. In forested areas, a sensor
‘sees’ greater fractions of the underlying ground at near-nadir views and lesser
fractions as the view angle increases (Nolin 2004). Finally, MODSCAG probably
has imperfections, especially at large view angles where the effect of subpixel
topographic variability is amplified.

We start filling in the space–time cube by smoothing the values along the time
axis. We choose this approach, rather than generalized three-dimensional
interpolation or generic data assimilation, because MODIS sensor zenith angles
oscillate between near-nadir and more than 658 in a regular 16 day pattern,
whereas there is only smooth variability in viewing angles across an image on
a particular day. From a set of fractional snow-cover values ŜðtÞ estimated at a
discrete set of times t, a smoothing spline (de Boor 2007) for the best estimate
of S(t) minimizes

q
XN
jZ1

wj ½ŜðtjÞKSðtjÞ�2Cð1KqÞ
ðtmax

tmin

xðtÞ d2S

dt2

� �2

:

The limits of integration are the time period of the analysis. A period of 32 days
covers two MODIS viewing angle cycles. The typical maximum is a whole snow
season. The smoothing parameter q is in the range of 0–1.When qZ0, S(t) is a least-
squares, straight-line fit to the data. When qZ1, S(t) is a natural cubic spline that
goes through each datum point. We generally let the MATLAB function csaps
choose qZ1/[1C(Dt)3/6] adaptively based on the average spacing Dt between data
points; therefore, q can vary spatially depending on the extent of cloud cover or
missing data. The weights w also vary from 0 to 1, and x(t) is a piecewise
polynomial approximation to provide weights for continuous values of t. In our
case, our confidence in the data decreases as the viewing angle increases, so we
choose weights wjZcos qs(p0/ps), the cosine of the viewing angle from the pixel to
the satellite multiplied by the ratio of a pixel’s area at nadir to that on day j.

If the data are distributed well along the abscissa, a smoothing spline
interpolates well; however, if there are large gaps in the input data, for example
from cloud cover, a smoothing spline can yield unlikely values in those gaps.
Therefore, after setting smoothed daily values for the fractional snow cover, we
interpolate between the missing days using a piecewise interpolant (Fritsch &
Carlson 1980). After interpolating and smoothing by date, we smooth the whole
time–space cube with a Gaussian filter. Figure 3 shows time interpolation for two
Phil. Trans. R. Soc. A (2009)
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locations in the 2004–2005 water year: one in the upper reaches of the Tuolumne
River basin at an elevation of 3550 m and the other at 1800 m near the seasonal
snowline. Because we have more confidence in the measures at near-nadir
viewing angles, the graph identifies those days when the sensor viewing angle is
within 258, true for approximately one-third of the observations; at that angle the
weight wjZ0.689.
3. Computational provenance in ES3

The Earth System Science Server (ES3) is a software environment for data-
intensive Earth science. ES3 has unique capabilities for automatically and
transparently capturing, managing and reconstructing the provenance of arbitrary,
unmodified computational sequences (Frew et al. 2008). Automatic acquisition is
critical to avoid the inaccuracies and incompleteness of human-specified
provenance (i.e. annotation). Transparent (i.e. invisible to the user) acquisition
avoids the computational scientists having to learn, and be constrained by,
a specific language, schema or system in which their problem must be expressed in
order for provenance to be captured and maintained. ‘Unmodified’ means that
provenance capture by ES3 requires no changes whatsoever to existing programs.

Unlike almost all other provenance management systems (Bose & Frew 2005;
Simmhan et al. 2005), ES3 captures provenance information from running
processes, as opposed to extracting it from static specifications such as scripts or
workflows. ES3 provenance management can thus be added to any existing
scientific computations, without modifying or respecifying them.

(a ) ES provenance model

ES3 models provenance as a directed graph of processes and their input and
output files. Here, we use ‘process’ in the operating system sense of a specific
execution of a program. In other words, each execution of a program or access to
a file yields a new set of provenance events.

Relationships between files and processes are captured by monitoring file system
events (open, close, read, write, etc.). This monitoring can take place atmany levels:
operating system calls; application library calls; and arbitrary checkpoints within
the source code. Any combination of monitoring levels may be active simul-
taneously, and all are transparent to the scientist–programmer using the system.

An ES provenance ‘report’ is a serialized graph of metadata representing the
files and processes resulting from a specific invocation event (e.g. a ‘job’). Nested
processes (processes that spawn other processes) are correctly represented. In
addition to retrieving the entire provenance of a job, ES3 supports arbitrary
forward (descendant) and/or reverse (ancestor) provenance retrieval, starting at
any specified file or process.

(b ) ES3 implementation

ES3 is implemented as a provenance-gathering client and a provenance-
managing server (figure 4). The client, which runs in the same environment as
the processes whose provenance is being tracked, is a set of logger processes that
intercept raw messages from various plugins in the execution environment:
Phil. Trans. R. Soc. A (2009)
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—Provenance-relevant operating system calls (e.g. open( )) are monitored via
the strace system call tracing facility.

—Application library calls are monitored by transparently substituting instru-
mented versions of the libraries. ES3 provides a set of instrumented libraries for
the IDL (ITT Visual Information Solutions, Boulder, CO) and MATLAB (The
MathWorks, Natick, MA) scientific programming environments. (Note that
these instrumented libraries are mostly simple wrappers for the vendor-provided
routines, and are thus relatively unaffected by software upgrades.)

—Arbitrary events (e.g. calls to specific functions) are monitored by automatically
invoked source-to-source preprocessors that transparently insert monitoring
statements in the interpreted source code. ES3 provides preprocessors for the
IDL and MATLAB source codes.

(Note that the execution time overhead incurred by these plugins is relatively
minor; for example, it is dwarfedby the computational complexityof theMODSCAG
algorithm. We would expect ES3 provenance capture to prove burdensome for
processes only where system call activity dominated their execution time.)
Phil. Trans. R. Soc. A (2009)
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Figure 6. Provenance of the snow-covered area algorithm (MODSCAG nesting expanded).
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The logger writes these provenance messages to local log files. A separate
annotator client optionally examines the files and directories being accessed by
the instrumented processes, retrieves certain non-provenance metadata (e.g.
README files and source code comments) and adds them to the log files.

A common transmitter client asynchronously scans the log files, assembles
the provenance events into a time-ordered stream, assigns unique identifiers
(UUIDs) to each file and process being tracked and submits a raw provenance
report to the ES 3 server. Since these reports contain only metadata, they are
quite compact.

Queries sent to the ES3 server return provenance reports in an XML-based
serialized graph format, directed either forward (descendants) or backward
(ancestors) from a specified data or process object. In addition to a graphical
display, as shown in figure 5, these reports are amenable to post-processing, such
as determining the differences between two provenance graphs (see Frew et al.
(2008) for an example).

It should be emphasized that provenance in ES3 is a post hoc description of a
processing sequence, not an executable workflow. While it is possible to
reconstruct and re-execute a computational sequence from an ES3 provenance
report, there is no guarantee that the files and programs referenced in the report
are accessible, or even still exist. The ES3 server includes a general storage
Phil. Trans. R. Soc. A (2009)
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facility that can be used to preserve snapshots of files or programs, and allow
robust references to them in the provenance reports, but this is not required for
provenance to be valid.
4. Capturing MODSCAG provenance

We use ES3 to track the provenance of a MODSCAG run using satellite imagery
of portions of the Sierra Nevada (figure 1). The snow-covered area product
involves processing steps implemented in IDL, C and UNIX shell scripts, and the
space–time interpolation uses MATLAB. The algorithms are under active
development. Figure 5 shows an idealized top-level workflow for MODSCAG.
A satellite image of surface reflectance is processed by MODSCAG into multiple
estimates of the surface composition of each pixel. MODSORT selects the best of
these estimates for each pixel and creates a suite of output grids whose cell values
are the percentage of snow (figure 1) and other components present at the
corresponding surface location, as well as estimates of snow grain size,
classification error, and whether the input pixel was too deeply shaded by the
surrounding terrain to be usable.

ES3 is particularly useful for elucidating ‘hidden’ provenance—dependencies
between files and processes that are not explicitly stated in the workflows or
scripts that invoke the processes—and for managing highly nested provenance
graphs. Requesting forward provenance for an actual MODIS image (figure 6)
reveals that the MODSCAG workflow step actually comprises 30 separate
invocations of the MODSCAG program, each using different starting assumptions
about surface composition, which MODSORT merges into a single set of output files.

The ES3 request that yielded figure 6 included a restriction to avoid expanding
nested workflows. Relaxing this restriction for an entire MODSCAG workflow would
yield a provenance graph too complex for a printed page. Instead, figure 7 shows the
combined forward and reverse provenance for a single one of the 30 MODSCAG

program invocations. Imagine variations in figure 7 replacing all 30 processes in
figure 6 to get an idea of the complexity of a complete MODSCAG ‘run’.

Note that since figure 7 is a portion of a much larger provenance graph, it
provides sufficient information for some provenance assertions but not others.
For example, it correctly shows that the file snm2007214.snow.pic is derived
from the image MOD09GA.A2007214.snm_cal-aea.005.Refl.bip, but
does not show any of snm2007214.snow.pic’s possible antecedents from
any of the other 29 MODSCAG invocations.

Although not illustrated here, we should mention that arbitrary metadata can
be associated with any component (node or edge) of a provenance graph (e.g. a
data object node often contains the URI for the associated file). The provenance
graph can thus be a convenient ‘scaffold’ for all of the metadata available for a
particular computation.

5. Conclusion

As climate and land-use change and populations grow, the empirical methods of
managing water, which are based on historical relationships between point
measurements and run-off, are likely to become less accurate, a conundrum that
Phil. Trans. R. Soc. A (2009)
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Milly et al. (2008) characterize as ‘stationarity is dead’. Hence, the usefulness of
distributed snowmelt models based on a judicious integration of remotely sensed
and surface measurements will increase (Bales et al. 2006).

However, the translation of reflectance measurements from MODIS into a
product that is useful for hydrologic analyses involves complicated, somewhat
arcane knowledge. Because snow changes dynamically, daily data allow one to
overcome the limitations imposed by clouds and off-nadir viewing to reconstruct
a daily time series. The daily product is useful for a variety of hydrologic models
Phil. Trans. R. Soc. A (2009)
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and analyses, including interpolation of spatially distributed snow-water
equivalent, without the need for the user to interpolate and filter the patchy
daily maps.

The complexity of the transformations that must be applied to render satellite
observations useful to the scientist makes it imperative to automate, as far as
possible, the acquisition and management of the associated metadata. We have
demonstrated the ability to capture provenance metadata for a significant
portion of the MODIS product workflow, without any effort on the part of the
scientists developing and refining these products. Furthermore, the provenance
we automatically collect can be rendered graphically in a form that is easily
intelligible to those who must evaluate the product’s fitness for use.

Our work is supported by NASA Cooperative Agreements NNG0C52A and NNG04GE66G and
Naval Postgraduate School grant N00244-07-1-0013.
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