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Abstract— In this paper, we aim at learning robust and
discriminative subspaces from noisy data. Subspace learning is
widely used in extracting discriminative features for classifica-
tion. However, when data are contaminated with severe noise,
the performance of most existing subspace learning methods
would be limited. Recent advances in low-rank modeling provide
effective solutions for removing noise or outliers contained in
sample sets, which motivates us to take advantage of low-rank
constraints in order to exploit robust and discriminative subspace
for classification. In particular, we present a discriminative
subspace learning method called the supervised regularization-
based robust subspace (SRRS) approach, by incorporating the
low-rank constraint. SRRS seeks low-rank representations from
the noisy data, and learns a discriminative subspace from the
recovered clean data jointly. A supervised regularization function
is designed to make use of the class label information, and
therefore to enhance the discriminability of subspace. Our
approach is formulated as a constrained rank-minimization
problem. We design an inexact augmented Lagrange multiplier
optimization algorithm to solve it. Unlike the existing sparse
representation and low-rank learning methods, our approach
learns a low-dimensional subspace from recovered data, and
explicitly incorporates the supervised information. Our approach
and some baselines are evaluated on the COIL-100, ALOI,
Extended YaleB, FERET, AR, and KinFace databases. The exper-
imental results demonstrate the effectiveness of our approach,
especially when the data contain considerable noise or variations.

Index Terms— Image classification, low-rank constraints,
robust subspace discovery, subspace learning.

I. INTRODUCTION

SUBSPACE learning methods have been extensively
studied in pattern recognition and data mining

areas during the last two decades. Some representative
subspace learning methods include principal component
analysis (PCA) [1], linear discriminant analysis (LDA) [2],
locality preserving projections (LPPs) [3], neighborhood
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preserving embedding (NPE) [4], locality sensitive
discriminant analysis (LSDA) [5], and discriminative
locality alignment (DLA) [6]. The basic idea of subspace
learning methods is to find a low-dimensional projection
that satisfies some specific properties [7]. As unsupervised
methods, PCA [1] seeks such a subspace where the variance
of projected samples is maximized, while LPP [3] and
NPE [4] aim to find subspaces that can preserve the
locality relationships of samples. When class labels are
available, supervised subspace methods are more effective for
classification tasks. LDA [2] aims at finding a projection that
maximizes the interclass scatter and minimizes the intraclass
scatter at the same time. It extracts discriminative features for
classification tasks. LSDA [5] preserves both discriminant and
local geometrical structure in data. DLA [6] is designed based
on the patch alignment framework, which presents the idea of
part optimization and whole alignment. As a discriminative
model, it is suitable for the nonlinear classification problem.
In [8], two generic frameworks are presented to implement
supervised subspace learning for multilabel classification.
Note that the frameworks built in [6] and [8] provide us with
unified interpretations of many subspace learning methods.
LPP [3] and NPE [4] can also be extended to supervised
versions. Those methods usually obtain promising results
on clean data; however, when the data are corrupted by
considerable noise (e.g., missing pixels or outliers) or large
variations (e.g., pose variations in face images) in real
applications, their performance is heavily degraded [9].

To learn effective features from noisy data, many techniques
have been introduced, and sparse representation (SR) is among
the most successful ones. SR has proved to be robust to
noise, and has shown impressive results for face recognition
under noisy conditions [10], [11]. The idea of SR has also
been considered in dimensionality reduction and subspace
learning [12]–[15]. Zhang et al. [13] combine dimensionality
reduction and an SR classifier. A sparsity preserving projec-
tions method is proposed in [12], and its improved version is
introduced in [15]. Moreover, a linear subspace learning (LSL)
algorithm via sparse coding is described in [14], which
also involves dictionary learning. Most SR methods seek the
sparsest coding vector to represent each test sample by all
training samples. However, the underlying global structure of
data is not considered in these methods, and therefore they
may not be robust to noise when extra clean data are not
available [16].

Low-rank modeling has attracted a lot of attention recently,
which can recover the underlying structure of data [17], [18].
It is an extension of SR. When data are drawn from a
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Fig. 1. Framework of the proposed approach. We jointly remove noise from
data X and learn robust subspace P . The corrupted samples are mixed in the
original space, but they are well separated in the learned subspace.

single subspace, robust PCA (RPCA) [17] is able to recover
the corrupted data by minimizing the rank of data matrix.
As an extension of RPCA, low-rank representation (LRR) [16]
can recover corrupted data drawn from multiple subspaces.
RPCA has been successfully applied to background modeling,
and LRR achieves impressive performance on subspace
clustering. Many improved versions of LRR have been
developed. Latent LRR (LatLRR) [9] considers the effects
of hidden data. Low-rank coding-based balanced graph is
designed for clustering [19] and semisupervised classifica-
tion [20]. In addition, low-rank modeling has been applied
to outlier detection [21], domain adaptation [22], transfer
learning [23], [24], and dictionary learning [25]–[27].
Low-rank modeling usually suffers large computational
burden, and the idea of divide-and-conquer has been intro-
duced to solve this problem [28], [29], which makes low-rank
modeling scalable to larger data sets.

A. Our Contributions

As discussed above, the low-rank modeling has
shown impressive performance in various appli-
cations [16], [17], [30]. However, only a few of those
methods can take advantages of class label information during
low-rank learning, which is a key for classification purpose.
On the other hand, although the conventional subspace
learning approaches usually obtain good performance for
classification tasks, they have strong assumptions on the data
distribution, and therefore, they are sensitive to the noisy data.
The learned subspace has limited discriminability. Can we
leverage the advantages of both supervised subspace learning
and low-rank modeling for classification?

In this paper, we propose to exploit a discriminative
and robust subspace, which is insensitive to noise or
pose/illumination variations, for dimensionality reduction
and classification. In particular, we propose a novel linear
subspace approach named supervised regularization-based
robust subspace (SRRS) for pattern classification. As shown
in Fig. 1, the core idea of our approach is to jointly learn
LRRs from the noisy data, and a discriminative subspace
from the recovered clean data. Moreover, to improve the
classification performance of our approach, we naturally
incorporate class label information into our objective
function as supervised regularization. This regularization term

enables us to learn a discriminative subspace, which benefits
classification tasks. Finally, we formulate our model as a
constrained rank-minimization problem, and solve it using
the recently proposed augmented Lagrange multiplier (ALM)
algorithm [31]. The convexity of supervised regularization
term is proved theoretically. The experimental results on
six benchmark data sets show that our SRRS approach
outperforms the traditional subspace methods and several
state-of-the-art low-rank modeling methods in almost all cases,
especially when the data contain considerable variations or are
corrupted by noise.

This paper is a substantial extension of [32]. Compared
with [32], we provide more theoretical analysis, model
discussions, experimental evaluations, and applications in this
paper. In summary, our contributions include the following.

1) We have proposed a new feature extraction framework,
which smoothly integrates LSL and low-rank matrix
recovery. Supervised regularization is incorporated to
improve the classification performance.

2) We have designed an optimization algorithm to solve the
proposed model, and have proven the convexity of the
supervised regularization term.

3) Besides objection recognition and face recognition eval-
uated in [32], we have also extended the applications of
our model to kinship verification. We have also provided
a more comprehensive overview of related works.

The rest of this paper is organized as follows. We briefly
introduce some related works in Section II. Then, we describe
the proposed SRRS approach, theoretical analysis, and opti-
mization algorithm in Section III. Experiments are reported
in Section IV. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

In this section, we will review two categories of
related methods: 1) subspace learning and 2) low-rank
modeling.

A. Subspace Learning

Subspace learning has been extensively studied and widely
used in many real-world applications, such as face recog-
nition, object recognition, and visualization. The basic idea
of subspace learning methods is to project high-dimensional
samples into a low-dimensional subspace, in which some
specific properties could be satisfied. According to the usage
of class labels, subspace learning methods are mainly divided
into three categories: 1) unsupervised methods; 2) supervised
methods; and 3) semisupervised methods. In this paper, we
only focus on the supervised ones.

Supervised subspace learning methods are very effective
in extracting discriminative features, and usually achieve
promising performance in classification tasks. LDA [2] is
developed upon the Fisher criterion, which aims at finding
a projection to maximize the interclass scatter and minimize
the intraclass scatter simultaneously. Many supervised sub-
space methods have been proposed to improve LDA. Local
Fisher discriminant analysis (LFDA) [33] uses local neighbor-
hood information to construct the weighted between-class and
within-class scatter matrices, and then performs discriminant
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analysis. Subclass discriminant analysis [34] models the data
using mixture of Gaussians, and redefines the scatter matrices
used in LDA. LSDA [5] preserves both discriminant and local
geometrical structure in data. Those methods usually obtain
promising results on clean data, since they place specific
assumptions on data distributions. However, when the data are
corrupted by large amount of noise or large variations in real
applications, these assumptions may be invalid, and the noise
or variation can reduce the separability in a classification task.
Therefore, the performance is heavily degraded.

B. Low-Rank Modeling

Low-rank modeling is becoming popular and practical
recently [35], due to its successful applications in many fields,
such as data compression [17], subspace clustering [16], [36],
image processing [37], [38], and multimedia analysis [39].
RPCA [17] is a representative low-rank modeling method.
Given an observed and usually corrupted sample set X O ,
RPCA decomposes X O into a low rank, clean sample set X L

and a sparse, noisy sample set E , i.e., X O = X L + E . It shows
impressive performance in background modeling and shadow
removal. One major assumption in RPCA is that data are
drawn from a single subspace. In practice, the underlying
structure of data could be multiple subspaces. LRR is designed
to find underlying structures of noisy data [16]. Given a
sample set X = [x1, x2, . . . , xn], the objective function of
LRR is

min
Z

rank(Z), s.t. X = X Z (1)

where Z is the representation coefficient matrix, and the
sample set X is used as the dictionary. By replacing the rank(·)
function with nuclear norm, problem (1) can be converted into
a convex optimization problem.

The LRR may suffer from two problems. The first one
is insufficient data sampling since LRR simply uses the
data matrix itself as the basis for representation. Second,
the optimization of LRR requires multiple singular value
decomposition (SVD) calculations that are very time con-
suming. In [9], LatLRR is proposed to solve the insufficient
sampling problem by considering the effects of hidden data for
representation. In addition, active subspace [40] and divide-
factor-combine LRR [29] employ various matrix factorization
algorithms to tackle the above problems. The aim of these
low-rank modeling methods is to learn a graph Z , and they
do not utilize any supervised information. However, our goal is
to learn a discriminative low-dimensional subspace. Although
subspace learning methods can be combined with LatLRR [9],
the representation learnt by the LatLRR does not necessarily
guarantee an optimal input for the subsequent subspace learn-
ing. Nevertheless, our approach simultaneously seeks optimal
LRRs and discriminative subspaces.

The discriminative low-rank dictionary learning
(DLRD) [25] is a recently proposed dictionary learning
method, which introduces low-rank constraints on the
subdictionaries for each class, and performs SR for face
recognition. The learned dictionary in DLRD is low-rank
and discriminative, which is beneficial to classification
tasks. Nevertheless, the testing stage of DLRD is very time

consuming, as it has to calculate sparse coefficients for every
test sample. This is also a key difference between DLRD and
our approach, since we perform classification on subspace
that is very efficient.

In [41], a low-rank method with structural incoherence is
applied to face recognition. It first decomposes raw images
into low-rank part and sparse part, and then applies PCA on
the low-rank part to obtain a subspace. Finally, it employs
SR for classification. They did not, however, learn the LRR
and a discriminative subspace simultaneously. In this manner,
the low-rank part is expected to be discriminative and benefit
classification tasks.

In [26], a structured LRR method is presented for image
classification. The differences between [26] and our approach
include the following.

1) Zhang et al. [26] learned a dictionary D to represent
the sample set X in the original sample space, but
our approach aims at learning a low-dimensional
discriminative subspace to reduce the dimensionality of
samples.

2) Zhang et al. [26] enforced a diagonal structure prior
on the coefficient matrix Z to introduce the supervised
information, but our approach employs the Fisher
criterion to learn discriminative features.

3) Zhang et al. [26] used the ridge regression model for
classifying new samples, but our approach adopts the
nearest neighbor (NN) classifier.

In [42], an LRR-based discriminative projection method is
proposed for feature extraction. It first applies LRR to recover
the data matrix, and then finds a discriminative projection
by designing a criterion that incorporates both clean data and
noise. In this case, LRR is regarded as a data preprocessing
method, and is performed only once to decompose sample set
into two parts: 1) the low-rank denoised samples and 2) the
associated sparse noise. However, this decomposition is not
guaranteed to be optimal for classification, as it does not
make use of any class prior information. On the contrary, our
approach iteratively learns subspace and decomposes sample
set, and it takes full advantage of class information through
supervised regularization.

In [43], a discriminant regularization term is incorporated
into the formulation of RPCA. This method differs from
our approach in two aspects. First, RPCA used in [43] can
only model one single subspace, whereas our approach is
able to discover multiple subspaces by virtue of LRR, which
fits well for multiclass classification problems. Second, the
method in [43] separately learns low-rank data representation
and subspace, which means the obtained subspace cannot be
guaranteed to be optimal, whereas our approach iteratively
learns LRRs and discriminative subspaces.

The most relevant method in the literature is low-rank
transfer subspace learning (LTSL) [23], [24], which incorpo-
rates low-rank constraint in subspace learning. However, there
are significant differences between LTSL and our approach.
First, the LTSL is a transfer learning method that seeks a
common subspace for two domains, whereas our approach lies
in supervised learning. Second, the LTSL employs low-rank
constraint in low-dimensional subspace in order to transfer
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knowledge across two domains. In our approach, the low-rank
constraint is enforced in the high-dimensional feature space in
order to preserve more information.

III. SUPERVISED REGULARIZATION-BASED

ROBUST SUBSPACE APPROACH

In this section, an SRRS approach is proposed. We first
formulate our approach as a regularized rank-minimization
problem. To solve this problem, we develop an efficient
optimization algorithm. The theoretical analysis on convexity
is also provided.

A. Problem Formulation

Let X denote the sample set that consists of n training
samples from c classes, i.e., X = [x1, x2, . . . , xn]. Given a
complete basis matrix A = [a1, a2, . . . , am] ∈ R

d×m , we can
represent each sample xi as a linear combination of the basis,
which is

X = AZ (2)

where Z ∈ R
m×n is the coefficient matrix. As suggested in

the existing subspace clustering methods, A is usually set as
the sample set X , i.e., A = X . We will discuss the choice of
basis matrix A at the end of this section.

To achieve our goal of seeking a robust subspace P ∈ R
d×p,

we first denote the projected low-dimensional sample set
as X̃ = PT X = PT AZ . Then, we in turn incorporate
low-rank constraint and supervised regularization to learn the
projection P .

First, due to the fact that n samples belong to c different
classes and n � c, these samples should be drawn from c
different subspaces, and therefore, the coefficient matrix Z is
expected to be low rank. In other words, the coefficient vectors
corresponding to samples from the same class should be highly
correlated.

Second, since class information is crucial to classification
problems, we design a supervised regularization term f (P, Z)
based on the idea of Fisher criterion [2], that is, f (P, Z) =
[Tr(SB(PT AZ))/Tr(SW (PT AZ))], where Tr(K ) is the trace
of matrix K . SB(PT AZ) and SW (PT AZ) are the between-
class and within-class scatter matrices

SB(PT AZ) = SB(X̃) =
c∑

i=1

ni (mi − m)(mi − m)T

SW (PT AZ) = SW (X̃) =
c∑

i=1

ni∑

j=1

(x̃i j − mi )(x̃i j − mi )
T

where mi is the mean sample of the i th class in X̃ , m is the
overall mean sample of X̃ , and x̃i j is the j th sample in the
i th class of X̃ .

By using Fisher criterion, the projected samples from
different classes should be far apart, while projected samples
from the same class should be close to each other.
Furthermore, Guo et al. [44] pointed out that this trace-ratio
problem can be converted into a trace difference problem.
We then rewrite f (P, Z) as f̄ (P, Z) = Tr(SW (PT AZ)) −
Tr(SB(PT AZ)).

Based on the above observations, we come up with the
following objective function:

min
Z ,P

rank(Z) + λ1 f̄ (P, Z), s.t. X = AZ (3)

where λ1 is a tradeoff parameter to balance the low rank and
discriminative terms.

However, the rank-minimization problem in objective (3)
is difficult to solve, since rank(·) is a nonconvex function.
Fortunately, nuclear norm is a good surrogate for the
rank-minimization problem [16], [17], [45], and then (3)
becomes

min
Z ,P

‖Z‖∗ + λ1 f̄ (P, Z), s.t. X = AZ (4)

where ‖Z‖∗ is the nuclear norm of a matrix (i.e., the sum of
singular values of the matrix) [46].

We also notice that the second term f̄ (P, Z) in (4) is not
convex to Z because of the term −Tr(SB), so we add an elastic
term to ensure the convexity

f̂ (P, Z) = Tr(SW ) − Tr(SB) + η‖PT AZ‖2
F. (5)

We theoretically prove the convexity of (5) in Section III-B.
Equation (5) can be equivalently expressed as

f̂ (P, Z) = ‖PT AZ(I − Hb)‖2
F − ‖PT AZ(Hb − Ht)‖2

F

+ η‖PT AZ‖2
F (6)

where η is a tradeoff parameter, ‖.‖F is the Frobenius norm,
I is an identity matrix in R

n×n , and Hb and Ht are two
constant coefficient matrices. In detail, Hb(i, j) = (1/nc)
only if xi and x j belong to the same class, where nc is the
number of samples in each class; otherwise, Hb(i, j) = 0.
Ht(i, j) = (1/n).

The supervised regularization term f̂ (P, Z) is convex with
respect to Z . We will provide the theoretical analysis to prove
it in Section III-B.

Orthogonality in a subspace means that any two basis
vectors in this subspace are orthogonal to each other, which
has the advantages of compactness and reducing redundancy.
To this end, an orthogonal constraint PT P = Ip is incorporated
into our framework, where Ip is an identity matrix in R

p×p .
By combining (4) and (6), we obtain the objective function as
follows:

min
Z ,P

‖Z‖∗ + λ1
(‖PT AZ(I − Hb)‖2

F

− ‖PT AZ(Hb − Ht)‖2
F + η‖PT AZ‖2

F

)

s.t. X = AZ , PT P = Ip. (7)

Note that our objective function in (7) is not convex with
respect to P , because of the orthogonal constraint PT P = Ip.

In real-world applications, as we discussed in Section I,
data usually contain considerable noise. To obtain robust
subspaces, we should identify noisy information in raw data,
and learn reliable subspaces from the recovered noise-free
data. In particular, we adopt the l2,1-norm (i.e., ‖ · ‖2,1) to
model the noise contained in data. l2,1-norm is a valid norm as
it satisfies three conditions for a norm: 1) positive scalability:
‖αE‖2,1 = |α|‖E‖2,1, where α is a real scalar; 2) triangle



2164 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

inequality: ‖B + E‖2,1 ≤ ‖B‖2,1 + ‖E‖2,1; and 3) existence
of a zero vector: if ‖E‖2,1 = 0, then A = 0. As ‖E‖2,1
encourages the columns of E to be zero, the assumption in
this paper is that some vectors in our data are corrupted, while
the others are clean. Then, we have a constraint X = AZ + E ,
and rewrite the objective function as

min
Z ,E,P

‖Z‖∗ + λ2‖E‖2,1

+ λ1
(‖PT AZ(I − Hb)‖2

F

− ‖PT AZ(Hb − Ht)‖2
F + η‖PT AZ‖2

F

)

s.t. X = AZ + E, PT P = Ip (8)

where ‖E‖2,1 = ∑n
j=1 (

∑d
i=1 ([E]i j )

2)
1/2

, and λ2 is a
tradeoff parameter.

We have described how to jointly learn discriminative
subspace and LRRs. In Section III-B, we will introduce the
optimization algorithm. Other than Fisher criterion discussed
above, other types of objectives, such as locality preserv-
ing, can also be easily incorporated into our framework by
reformulating the regularization term f̂ (P, Z).

B. Theoretical Analysis

We theoretically analyze the convexity of supervised
regularization term f̂ (P, Z) with respect to Z , which is critical
to ensure that our model is solvable using ALM algorithms.
In particular, to guarantee the convexity of (6), we provide
Theorem 1.

Theorem 1: If η > 1, the supervised regularization term
f̂ (P, Z) = ‖PT AZ(I − Hb)‖2

F − ‖PT AZ(Hb − Ht)‖2
F +

η‖PT AZ‖2
F is convex to Z when P is fixed.

Proof: Let T = PT AZ , where PT A can be regarded as
constant when optimizing Z . We then can convert f̂ (P, Z)
to f (T ) as follows:

f (T ) = ‖T (I − Hb)‖2
F − ‖T (Hb − Ht)‖2

F + η‖T ‖2
F. (9)

Now, we can rewrite T as a column vector,
T = [r1, r2, . . . , rn]T, where ri is the i th row vector
of T . Then, f (T ) is equivalent to

f (T) = ‖diag((I − Hb)
T)T‖2

2 − ‖diag((Hb − Ht)
T)T‖2

2

+ η‖T‖2
2 (10)

where diag(K ) is to construct a block diagonal matrix with
each block on the diagonal being matrix K .

The convexity of f (T) depends on whether its
Hessian matrix ∇2 f (T) is positive definite or not. ∇2 f (T)
will be positive definite if matrix S is positive definite

S = (I − Hb)(I − Hb)
T − (Hb − Ht)(Hb − Ht)

T + ηI. (11)

Note that we have the equations Hb Ht = Ht Hb = Ht and
Ht Ht = Ht . Then, we can obtain

S = (1 + η)I − 2Hb + Ht . (12)

To justify that if matrix S is positive definite, we employ
Lemma 1.

Lemma 1 (Weyl’s Inequality [47, Th. 1]): Let G denote
an n × n Hermitian matrix, the ordered eigenvalues

of G are λ1(G) ≥ · · · ≥ λn(G). If B and C are n × n
Hermitian matrices, then λn(B) + λn(C) ≤ λn(B + C).

Lemma 1 tells us the smallest eigenvalue of matrix (B + C)
is greater than or equal to the sum of the smallest eigenvalues
of B and C . In our problem, we need to make S positive
definite, which means the smallest eigenvalue of S should be
greater than 0. Thus, we employ Lemma 1 to evaluate the (12).
The minimal eigenvalues of −Hb and Ht are −1 and 0, so we
should ensure

(1 + η) − 2 + 0 > 0. (13)

Hence, we have η > 1 from (13), which could guarantee
that f (T ) is convex to T . Recall that T = PT AZ and PT A is
a constant. Therefore, we can further conclude that f (P, Z)
is convex to Z when η > 1 and P is fixed. �

C. Optimization

To solve (8), we adopt the recently proposed inexact
ALM algorithm [31]. First, we add a variable J and a new
constraint Z = J to relax the original problem

min
Z ,E,P,J

‖J‖∗ + λ2‖E‖2,1

+ λ1
(‖PT AZ(I − Hb)‖2

F

− ‖PT AZ(Hb − Ht)‖2
F + η‖PT AZ‖2

F

)

s.t. X = AZ + E, PT P = Ip, Z = J. (14)

Furthermore, (14) can be converted into the following
problem:

min
Z ,E,J,P,Y,R

‖J‖∗ + λ2‖E‖2,1

+ λ1
(‖PT AZ(I − Hb)‖2

F

− ‖PT AZ(Hb − Ht)‖2
F + η‖PT AZ‖2

F

)

+ Tr(Y T (X − AZ − E)) + Tr(RT (Z − J ))

+ μ

2

(‖X − AZ − E‖2
F + ‖Z − J‖2

F

)

s.t. PT P = Ip (15)

where μ > 0 is a penalty parameter and Y ∈ 	d×n and
R ∈ 	m×n are Lagrange multipliers.

To solve (15), we alternately update the variables P , J , Z ,
and E . First, we learn a subspace P given an initialized LRR
matrix Z . Second, on the fixed subspace P , we update the
LRR matrix J and Z and the noise matrix E . Although the
convergence of inexact ALM algorithm cannot be guaranteed
when there are three or more variables, some theoretical results
have been presented to ensure the convergence with mild
conditions [16]. In addition, we demonstrate the convergence
properties of our algorithm in the experiments.

1) Learn Subspace P on Fixed Low-Rank Representations:
We first discuss how to optimize P while fixing Z , J ,
and E . Note that ‖J‖∗ + λ2‖E‖2,1 + Tr(Y T(X − AZ − E)) +
Tr(RT(Z − J ))+ (μ/2)(‖X − AZ − E‖2

F +‖Z − J‖2
F) can be

regarded as constant.
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The objective function with respect to P becomes

Pk+1 = min
Pk

λ1
(∥∥PT

k AZk(I − Hb)
∥∥2

F

− ∥∥PT
k AZk(Hb − Ht)

∥∥2
F + η

∥∥PT
k AZk

∥∥2
F

)

s.t. PT
k Pk = Ip. (16)

For simplicity, let Zwk = AZk(I − Hb) and
Zbk = AZk(Hb − Ht). We derive the solution to the
projection vectors in Pk one-by-one. To obtain the i th column
in Pk [denoted as Pk(:,i)], we rewrite (16) as

Pk+1(:,i) = min
Pk(:,i)

λ1
(∥∥PT

k(:,i) Zwk
∥∥2

2 − ∥∥PT
k(:,i) Zbk

∥∥2
2

+ η
∥∥PT

k(:,i) AZk
∥∥2

2

)

+ βi
(
PT

k(:,i) Pk(:,i) − 1
)

(17)

where βi is the corresponding Lagrange multiplier.
By setting the derivative with respect to Pk(:,i) to zero, we

have

−λ1
(
Zwk ZT

wk − Zbk ZT
bk + ηAZk ZT

k AT)
Pk(:,i) = βi Pk(:,i).

(18)

Therefore, Pk(:,i) is the i th eigenvector of matrix
−λ1(Zwk ZT

wk − Zbk ZT
bk + ηAZk ZT

k AT), corresponding to the
i th smallest eigenvalue.

2) Learn Low-Rank Representations Z on Fixed Subspace:
Here, we show how to update Jk+1, Zk+1, and Ek+1 when
fixing Pk+1. After dropping the irrelevant terms with respect
to J , (15) can be rewritten as

Jk+1 = min
Jk

‖Jk‖∗ + Tr(RT(Zk − Jk)) + μk

2
‖Zk − Jk‖2

F

= min
Jk

1

μk
‖Jk‖∗ + 1

2
‖Jk − (Zk + (Rk/μk))‖2

F. (19)

Problem (19) can be effectively solved using the singular
value thresholding (SVT) operator [46]. SVT contains two
major steps. First, we perform SVD on the matrix S
(S = Zk + (Rk/μk)), and get S = US�S VS , where
�S = diag({σi }1≤i≤r ), σi is the singular value with rank r .
Second, we can obtain the optimal solution Jk+1 by thresh-
olding the singular values: Jk+1 = US�(1/μk)(�S)VS , where
�(1/μk)(�S) = diag({σi − (1/μk)}+), and t+ means the
positive part of t .

By ignoring terms independent of Z in (15), we have

min
Z ,Y,R

λ1
(‖PT AZ(I − Hb)‖2

F − ‖PT AZ(Hb − Ht)‖2
F

+ η‖PT AZ‖2
F

) + Tr(Y T(X − AZ − E))

+ Tr(RT(Z − J ))

+ μ

2

(‖X − AZ − E‖2
F + ‖Z − J‖2

F

)
. (20)

By setting the derivative with respect to Z to zero, we have

Zk+1 D/μk + (
AT Pk+1 PT

k+1 A
)−1

(I + AT A)Zk+1

= (
AT Pk+1 PT

k+1 A
)−1

Kk+1 (21)

where D = λ1((1+η)I+ HbHt
T − Hb − Ht Ht

T), and Kk+1 =
Jk+1 + AT(X − Ek) + (ATYk − Rk)/μk . Problem (21) is a

Algorithm 1 Solving Problem (15) by Inexact ALM
Input: data matrix X , parameter λ1, λ2, η, Z = J = 0,

E0 = 0, Y0 = 0, R0 = 0, μ0 = 0.1, μmax = 1010,
ρ = 1.3, k = 0, ε = 10−8

Output: Pk , Zk, Ek

1: while not converged do
2: update Pk+1 using (17), given others fixed

If k = 1, then Zk = I.
3: update Jk+1 using (19), given others fixed
4: update Zk+1 using (21), given others fixed
5: update Ek+1 using (23), given others fixed
6: update the multipliers Yk+1 and Rk+1

Yk+1 = Yk + μk(X − AZk+1 − Ek+1)
Rk+1 = Rk + μk(Zk+1 − Jk+1)

7: update the parameter μk+1 by
μk+1 = min(ρμk, μmax)

8: check the convergence conditions
‖X − AZk+1 − Ek+1‖∞ < ε and
‖Zk+1 − Jk+1‖∞ < ε.

9: k = k + 1
10: end while

standard Sylvester equation, which can be effectively solved
using the existing tools [48].

Similarly, after dropping terms independent of E , we can
rewrite (15) as

Ek+1 = min
Ek

λ2

μk
‖Ek‖2,1

+ 1

2
‖Ek − (X − AZk+1 + Yk/μk)‖2

F. (22)

The solution to problem (22) is presented in [16]. In particular,
let � = X − AZk+1 + Yk/μk , the i th column of Ek+1 is

Ek+1(:, i) =
⎧
⎨

⎩

‖�i‖ − λ2

‖�i‖ �i , if λ2 < ‖�i‖
0, otherwise.

(23)

As stated in the inexact ALM algorithm, we also need to
update the Lagrange multipliers Y and R, and the parameter μ
after optimizing the variables P , J , Z , and E .

D. Algorithm and Discussion

The above process is repeated until convergence.
The detailed algorithm of our optimization is outlined
in Algorithm 1.

After obtaining the optimal solution P∗ and Z∗, we project
both training samples and test samples onto P∗, and then
utilize NN classifier to predict the label vector of test samples.
The complete procedures of our SRRS approach are summa-
rized in Algorithm 2.

The time complexity of our approach mainly depends on
the complexity of Algorithm 1. In Algorithm 1, the most time-
consuming steps are Steps 2–4. Steps 2 and 4 cost O(n3) due
to the SVD decomposition, where n is the total number of
samples. The matrix inverse calculation in (21) costs O(n3),
and the state-of-the-art solution to a Sylvester equation costs
O(n3 + m3) (in our case, m = n). In all, the overall time
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Algorithm 2 SRRS Approach
Input: Training sample set X with label vectors L X ,

test sample set Y , low-rank coefficients Z
Output: Predicted label vector LY for test samples.

1: Normalize each sample xi to unit-norm,
xi = xi/ ‖xi‖.

2: Use Algorithm 1 to solve problem (15) and
obtain optimal solution P∗.

3: Project X and Y onto P∗:
X̃ = P∗T X Z , Ỹ = P∗TY .

4: Predict the label vector LY of Ȳ by using the
nearest neighbor (NN) classifier

complexity of our approach is O(tn3), where t is the number
of iterations.

Formula (4) is actually a general framework for robust
subspace learning and feature extraction. In this paper, we
design a supervised regularization term f̄ (P, Z) by virtue of
Fisher criterion. Other subspace learning baselines (e.g., LPP,
NPE, and LFDA) could also be extended under our framework
by reformulating the regularization term f̄ (P, Z).

In Algorithms 1 and 2, sample set X is utilized as dictionary
(i.e., A = X). When the sampling is insufficient, learning
an informative dictionary should enhance the classification
performance, which provides another interesting direction of
the future work.

In Step 3 of Algorithm 2, we project the recovered clean
training images X Z onto the subspace P . Ideally, we would
also like to project the clean test images onto P for classi-
fication. However, it is usually not practical to obtain clean
test images in real applications. In this paper, to show the
robustness of P for noisy data, we directly project noisy
images onto P . To enhance the classification performance,
one could apply some image denoising techniques before
projecting noisy test data onto P .

IV. EXPERIMENTS

The performance of our SRRS approach is evaluated on
six benchmark data sets, including object data sets [49], [50],
face data sets [51], [52], and KinFace data set [53]. We com-
pare our approach with related methods on the robustness to
different types of noise, including pixel corruption and large
pose/illumination variations. Our code is publicly available.1

A. Object Recognition With Pixel Corruption

We use two object data sets, COIL-100 [49] and ALOI [50],
in this experiment. The COIL data set contains various
views of 100 objects with different lighting conditions. Each
object contributes 72 images, which are captured in equally
spaced views. In our experiments, the images are converted
to grayscale, resized to 32 × 32, and then, the robustness is
evaluated on alternative viewpoints. We normalize the samples
so that they have unit norm that is favorable for optimiza-
tion. Unlike the most existing subspace learning experiments,

1https://github.com/smilesheng/SRRS

Fig. 2. Recognition rates of SRRS with different values of λ1 and λ2 on
COIL data set.

we also test the robustness of different methods to noise by
adding 10% pixel corruption to the original images. Some
examples of corrupted object images in COIL data set can
be found in Fig. 9.

In the experiments, we compare the proposed approach with
PCA [1], LDA [2], NPE [4], LSDA [5], RPCA [17] + LDA,
support vector machine (SVM) [54], FDDL [55], LatLRR [9],
and DLRD [25]. PCA and LDA are two representative unsu-
pervised and supervised subspace learning methods, and we
use them as our baseline. NPE can preserve the neighbor-
hood structure of data, which is less sensitive to outliers
than PCA. Here, we compare our method with the supervised
version of NPE. LSDA is a discriminant analysis method that
preserves both discriminant and local geometrical structural in
the data. RPCA is effective in removing noise from corrupted
data. Here, we incorporate it with LDA as a baseline. SVM is
a popular and powerful classifier. Here, we compared with
the nonlinear SVM classifier with RBF kernel. FDDL is a
dictionary learning method that learns a discriminative
dictionary using Fisher criterion. LatLRR and DLRD are two
low-rank modeling methods. LatLRR can effectively extract
salient features for image recognition, whereas DLRD learns
a low-rank dictionary for face recognition. Both of them also
demonstrate stable performance under noisy conditions.

We randomly select ten images per object to construct
the training set, and the test set contains the rest of the
images. This random selection process is repeated 20 times,
and we report the average recognition rates for each compared
method. In addition, we performed scalability evaluations, by
increasing the number of objects from 20 to 100. For our
approach and each compared method, the parameters are tuned
to achieve their best performance via fivefold cross validation.
Fig. 2 shows the performance of SRRS with different values
of λ1 and λ2 when the number of classes is 20. We can
also observe that the performance is not very sensitive to the
settings of λ2. Furthermore, SRRS obtains its best performance
when λ1 = 10−1. It also shows that the SRRS achieves the
best performance on the original data and corrupted data when
λ2 = 10 and λ2 = 1, respectively.

Fig. 3 shows the recognition rates of our approach and the
compared subspace methods (PCA, LDA, NPE, and LSDA)
versus varying feature dimensions. It shows that our
SRRS approach outperforms subspace methods in almost all
cases. When the images contain noise, the recognition rates
of compared subspace methods are severely degraded, but our
approach can still obtain good results. Namely, the subspace
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Fig. 3. Recognition rates of our approach and compared subspace methods versus varying feature dimensions on the original and corrupted COIL object
database. Note that LDA and our approach obtain at most c − 1 features, where c is the number of classes. (a) 20 classes. (b) 40 classes. (c) 60 classes.
(d) 80 classes. (e) 20 classes. (f) 40 classes. (g) 60 classes. (h) 80 classes.

TABLE I

AVERAGE RECOGNITION RATES (%) WITH STANDARD DEVIATIONS OF ALL COMPARED METHODS ON COIL OBJECT DATABASE

derived from our approach is robust to pixel corruption.
Table I shows the average recognition rates with standard
deviations of all compared methods. It can be observed from
Table I that the recognition rates of our approach vary slightly
when the number of classes increases from 20 to 100.

The total average results are also summarized in Table I.
We can see that our approach and LatLRR have lower
deviations than other methods, which demonstrates good
scalability. When the images are corrupted, all traditional
subspace methods have difficulty obtaining reasonable results.
However, three low-rank modeling-based methods achieve
remarkable performance. In most cases, our SRRS approach

achieves the best recognition results. Moreover, we utilize
other levels of corruption, such as 20%, 30%, 40%, and 50%
on COIL-20 database, and report the results in Fig. 4.
It shows that our SRRS approach consistently outperforms
other methods.

We also performed a significance test, McNemar’s test, for
the results shown in Table I, in order to demonstrate the
statistical significance of our approach compared with several
of the most representative state-of-the-art methods. We use a
significance level of 0.05. In another word, the performance
difference between two methods is statistically significant, if
the estimated p-value is lower than 0.05. Table II shows the
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TABLE II

p-VALUE BETWEEN SRRS AND OTHER METHODS ON THE COIL OBJECT DATABASE. THE ASTERISK * INDICATES THAT THE

DIFFERENCE BETWEEN METHOD A AND METHOD B IS STATISTICALLY SIGNIFICANT WHEN p = 0.05

Fig. 4. Average recognition rates of all compared methods on COIL database
with different levels of noise.

p-values of comparing SRRS with other methods. From this
table, the following conclusions can be reached.

1) The performance differences between our approach and
the methods (PCA, LDA, NPE, LSDA, RPCA + LDA,
SVM, and FDDL) are statistically significant in all cases.

2) On the original data set, the performance differ-
ences between our approach and DLRD/LatLRR are
statistically significant.

3) On the corrupted data set, the performance differences
between our approach and DLRD/LatLRR are not statis-
tically significant. The reason is that DLRD and LatLRR
are also able to handle the noisy data. But our approach
achieves higher recognition rates than them.

The ALOI data set contains 1000 general object categories
taken at different viewing angles. There are 72 equally spaced
views in each category. In our experiments, we select the
first 300 objects from this data set. All the images are
converted to grayscale and resized to the size of 36 × 48.
We also add 10% pixel corruption on the original images to
evaluate the performance of different methods. Some examples
of corrupted images in the ALOI data set can be found
in Fig. 9.

Ten images of each object are randomly selected as training
samples, and the others as test samples. This random selection
process was repeated 20 times. Fig. 5(a) shows the conver-
gence curves of our approach on the original data and the
corrupted data. It shows that the relative error on corrupted

Fig. 5. Properties of our approach on ALOI data set. (a) Convergence curve
(ρ = 1.3, μ = 0.1, and ε = 10−8). (b) Recognition rates of SRRS with
different values of η.

TABLE III

AVERAGE RECOGNITION RATES (%) ON ALOI OBJECT DATABASE

data (10% noise) is larger than that on the original data.
But, in both cases, our approach converges very well after
ten iterations. The relative error is calculated by ‖X − AZ −
E‖F/‖X‖F . Fig. 5(b) shows the recognition rates of SRRS
when parameter η is selected from the range [03]. We observe
that SRRS is not very sensitive to the choice of η when η > 1.
Furthermore, we set η to 1.5 to achieve the best recognition
performance. Table III shows the average recognition rates
with standard deviations for each compared method. It shows
that SVM, FDDL, and two low-rank methods obtain better
performance than the traditional subspace methods, and our
approach outperforms all these methods on the original data
set and the corrupted data set. In addition, by comparing
Tables I and III, we can observe that, for the data set with a
large number of classes, the classification task becomes more
difficult when data are corrupted.
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Fig. 6. Sample images in (a) YaleB, (b) FERET, and (c) KinFace data sets.

TABLE IV

AVERAGE RECOGNITION RATES (%) OF ALL COMPARED

METHODS ON YALEB AND FERET FACE DATABASES

B. Face Recognition With Illumination and Pose Variation

We also evaluate our approach on the Extended YaleB [51]
and the FERET [52] face databases. The YaleB face data set
consists of 2414 frontal face images of 38 classes, and each of
them contains about 64 images. Fig. 6(a) shows the examples
from the YaleB data set. We crop and resize the images to the
size of 28 × 32, and normalize the pixel values to [0, 1].

As suggested in [9], we randomly select 30 images per class
to construct the training set, and test set contains the rest of the
images. This random selection procedure is repeated 20 times,
and we show the average recognition rates in Table IV. It can
be observed that supervised methods perform much better
than the unsupervised method PCA. The reason is that PCA
has a high sensitivity to illumination effects contained in this
database. Due to the low-rankness property, the unsupervised
method LatLRR greatly improves the recognition rate of PCA.
In addition, the supervised low-rank method DLRD obtains
higher recognition rate than LatLRR. By incorporating super-
vised information and low-rankness property, our approach can
achieve an average recognition rate of 97.17% and outperform
all the other methods, which implies that our approach is
robust to variation illumination.

To evaluate the robustness to noise of the different methods,
we randomly choose a percentage (from 10% to 50%) pixels
and replace their values by random numbers that are uniformly
distributed on [0, 1]. Fig. 7 shows that, in noisy scenarios,
low-rank modeling-based methods (LatLRR, DLRD, and our
approach) consistently obtain better performance than other
methods. In particular, our SRRS approach can get the best
performance.

The FERET database contains 2200 face images collected
from 200 subjects, and each subject has 11 images. These
images were captured under various poses and expressions.
In this experiment, we randomly select the images from
50 individuals. Fig. 6(b) shows the images of one individual

Fig. 7. Average recognition rates of all compared methods on YaleB database
with different levels of noise.

that show large pose variations. The original size of each
image is 384 × 256. We cropped and resized them to the
size of 30 × 25.

We randomly select five images of each individual as
training samples, and the remaining samples are regarded as
test samples. Table IV lists the average recognition rates of all
compared methods over 20 runs. It reflects that our approach
can improve the recognition results over the existing methods.
Interestingly, the PCA can outperform some supervised
subspace methods on this database. A likely reason for this
is that large pose changes of one individual produce large
intraclass variations, which highly influence the performance
of supervised methods.

C. Face Recognition With Occlusions

The AR face database contains over 4000 facial images
collected from 126 subjects. For each subject, there are
26 frontal face images, taken under different illuminations,
expressions, and facial occlusions in two separate sessions.
In our experiments, we strictly follow the experimental settings
in [26], and conducted the following three experiments.

1) Sunglasses: Some face images contain the occlusion
of sunglasses, which are considered as corrupted samples.
To construct the training set, we choose seven neutral images
and one randomly selected image with sunglasses from each
subject (session 1). The test set contains the remaining neutral
images (session 2) and the rest of the images with sunglasses
(two images from sessions 1 and 3 images from session 2).
Thus, for each individual, there are 8 training images and
12 test images. The sunglasses cover about 20% of the face
image.

2) Scarf: We utilize the corrupted training images due to
the occlusion of scarf. Using a similar training/test setting as
above, we have 8 training images and 12 test images for each
individual. The scarf covers about 40% of the face image.

3) Sunglasses + Scarf: Moreover, we consider the case
where images contain both sunglasses and scarf. We select all
the seven neutral images and two corrupted images (one with
sunglasses and the other with scarf) at session 1 for training.
For each individual, there are 17 test images in total.
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Fig. 8. Visualization of LRR coefficients of two pairs of samples on FERET database. (a) LatLRR: same class. (b) LatLRR: different classes.
(c) Ours: same class. (d) Ours: different classes.

Fig. 9. Visualization of corrupted images (X), recovered images (AZ ), and noise (E) on five object and face databases. (a) COIL. (b) ALOI. (c) FERET.
(d) AR. (e) YaleB.

TABLE V

RECOGNITION RATES (%) OF ALL COMPARED

METHODS ON AR FACE DATABASES

Table V shows the recognition rates of compared methods
in three different scenarios. We can observe that LRDL obtains
the best result in the sunglasses case, and our approach
obtains the best results in the scarf case and the mixed case.
Fig. 9(d) shows that our approach can correctly recover the
clean images from the occluded face images. Therefore, we
can train robust classifiers from the recovered image set AZ .

D. Kinship Verification

Kinship verification is a recently investigated research topic,
which aims at determining kin relationships from photos.
It is still a very challenging task due to large variations in
different human faces. We also evaluate the performance of
our approach and related methods on kinship verification.
We conduct the kinship verification experiments on the
UB KinFace database Version 2 [53], [56]. This database con-
tains 600 face images that can be separated into 200 groups,
and each group consists of children, young parents,

and old parents. Fig. 6(c) shows example images in the
KinFace database, in which three columns (from left to right)
represent the images of children, young parents, and old
parents, respectively. Given two images of faces, our task is
to determine whether they are an accurate child–parent pair.

As suggested in [56], we employ the difference vectors
between the child and the parent as the features rather than
directly compare children with their parents. In particular, in
the experiments for children and old parents, we build 200 true
child–old parent pairs and 200 false child–old parent pairs. The
experiments for children and young parents are carried out in
a similar manner. Then, we conduct fivefold cross validation
for this verification problem. At each round, 160 true pairs
and 160 false pairs are used for training, and the rest is used
for testing. Average verification rates are reported in Table VI.
Our approach outperforms all the other methods. In this binary
classification problem, some traditional supervised methods
perform very poorly.

E. Discussion

The experimental results show that, compared with the
traditional subspace learning methods, our approach is robust
to noise and large variations. The reason is that the low-rank
property helps us obtain a better estimate of the underlying
distribution of samples from the recovered images, and then,
our approach learns a robust and discriminative subspace. The
resulting performance is better than the compared low-rank
modeling and dictionary learning methods.

Fig. 8 shows why our approach performs so well by
visualizing LRR coefficients of LatLRR and our approach.
In particular, we show the coefficients for representing
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TABLE VI

VERIFICATION RATES (%) ON UB KINFACE DATABASE (FIVEFOLD

CROSS VALIDATION). C VERSUS Y AND C VERSUS O DENOTE

CHILD–YOUNG PARENT VERIFICATION AND CHILD–OLD

PARENT VERIFICATION, RESPECTIVELY

Fig. 10. Training time (seconds) with different numbers of training samples
on COIL object database.

two pairs of samples. One pair, samples A and B, is selected
from the same class, while the other pair, samples A and C,
is selected from different classes. Fig. 8(a) and (b) shows
that, in LatLRR, samples from the same class contribute
more in the representation, as the coefficients within the same
class are a little larger than those in other classes. In some
sense, LatLRR could discover the subspace membership of
samples. Compared with LatLRR, Fig. 8(c) and (d) shows
that the coefficients of the same class are higher than others,
which implies our approach can clearly reveal the subspace
structure. Since we incorporate supervised regularization in
our model, the LRRs as well as the resulting subspace learnt
by our approach should be more discriminative than that of
the LatLRR.

Furthermore, Fig. 9 shows the corrupted images, the recov-
ered images, and the noisy part on five object and face
databases. It shows that, although training images (i.e., X)
have large pose variations and corruptions, the recovered
images AZ are very similar to each other, which helps us
learn a robust subspace for classification.

We evaluate the computational cost of different methods
when increasing the sample size. Taking COIL database as
an example, the training times are shown in Fig. 10. Since
PCA, LDA, NPE, and LSDA have similar computational
complexity, and FDDL has a similar complexity to DLRD, we
only compare against LatLRR, PCA, and DLRD. In Fig. 10,
we observe that the linear subspace method PCA has the

lowest training time. Our approach and LatLRR have similar
training time, which is much less than the time cost of DLRD.
Moreover, the test time of our approach is even less than that
of PCA, due to the fact that our approach can achieve the best
recognition rates with only a few features.

V. CONCLUSION

In this paper, a novel LSL approach, SRRS, is proposed for
feature extraction and classification. The proposed approach
iteratively learns robust subspaces from a low-rank learning
model, and naturally incorporates discriminative information.
The convexity of the supervised regularization term has been
theoretically proved. The experimental results on six bench-
mark data sets demonstrate the effectiveness of our approach
compared with the state-of-the-art subspace methods and low-
rank learning methods. Moreover, when the data contain
considerable noise or variations, our approach can improve
the classification performance.

In our future work, we will develop a divide-and-conquer
version of SRRS approach to make it scalable to larger data
sets, and we would also like to design the dictionary learning
algorithms to further enhance the classification performance.
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