
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

2016

Hadoop MapReduce for Mobile Clouds

George, Johnu

http://hdl.handle.net/10945/52393

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/81224161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 1

Hadoop MapReduce for Mobile Clouds
Johnu George, Chien-An Chen, Radu Stoleru, Member, IEEE, Geoffrey G. Xie Member, IEEE

Abstract—The new generations of mobile devices have high processing power and storage, but they lag behind in terms of

software systems for big data storage and processing. Hadoop is a scalable platform that provides distributed storage and

computational capabilities on clusters of commodity hardware. Building Hadoop on a mobile network enables the devices to

run data intensive computing applications without direct knowledge of underlying distributed systems complexities. However,

these applications have severe energy and reliability constraints (e.g., caused by unexpected device failures or topology changes

in a dynamic network). As mobile devices are more susceptible to unauthorized access, when compared to traditional servers,

security is also a concern for sensitive data. Hence, it is paramount to consider reliability, energy efficiency and security for such

applications. The MDFS (Mobile Distributed File System) [1] addresses these issues for big data processing in mobile clouds. We

have developed the Hadoop MapReduce framework over MDFS and have studied its performance by varying input workloads in

a real heterogeneous mobile cluster. Our evaluation shows that the implementation addresses all constraints in processing large

amounts of data in mobile clouds. Thus, our system is a viable solution to meet the growing demands of data processing in a

mobile environment.

Index Terms—Mobile Computing, Hadoop MapReduce, Cloud Computing, Mobile Cloud, Energy-Efficient Computing, Fault-

Tolerant Computing

✦

1 Introduction

W ith advances in technology, mobile devices are
slowly replacing traditional personal computers.

The new generations of mobile devices are power-
ful with gigabytes of memory and multi-core proces-
sors. These devices have high-end computing hardware
and complex software applications that generate large
amounts of data on the order of hundreds of megabytes.
This data can range from application raw data to im-
ages, audio, video or text files. With the rapid increase
in the number of mobile devices, big data processing
on mobile devices has become a key emerging necessity
for providing capabilities similar to those provided by
traditional servers [2].

Current mobile applications that perform massive
computing tasks (big data processing) offload data and
tasks to data centers or powerful servers in the cloud [3].
There are several cloud services that offer computing
infrastructure to end users for processing large datasets.
Hadoop MapReduce is a popular open source program-
ming framework for cloud computing [4]. The frame-
work splits the user job into smaller tasks and runs these
tasks in parallel on different nodes, thus reducing the
overall execution time when compared with a sequential
execution on a single node. This architecture however,

• Johnu George, Chien-An Chen, and Radu Stoleru are with
Department of Computer Science and Engineering, Texas
A&M University, College Station, TX 77840.
E-mail:{stoleru,jaychen}@cse.tamu.edu, johnuge-
orge109@gmail.com

• Geoffrey G. Xie is with Department of Computer Science,
Naval Post Graduate School, Monterey, CA 93943
E-mail:xie@nps.edu

Manuscript received 29 Aug. 2013; revised 24 Jan. 2014; revised
28 Mar. 2014

fails in the absence of external network connectivity,
as it is the case in military or disaster response oper-
ations. This architecture is also avoided in emergency
response scenarios where there is limited connectivity to
cloud, leading to expensive data upload and download
operations. In such situations, wireless mobile ad-hoc
networks are typically deployed [5]. The limitations of
the traditional cloud computing motivate us to study
the data processing problem in an infrastructureless and
mobile environment in which the internet is unavailable
and all jobs are performed on mobile devices. We
assume that mobile devices in the vicinity are willing
to share each other’s computational resources.

There are many challenges in bringing big data ca-
pabilities to the mobile environment: a) mobile devices
are resource-constrained in terms of memory, process-
ing power and energy. Since most mobile devices are
battery powered, energy consumption during job exe-
cution must be minimized. Overall energy consumption
depends on the nodes selected for the job execution.
The nodes have to be selected based on each node’s
remaining energy, job retrieval time, and energy profile.
As the jobs are retrieved wirelessly, shorter job retrieval
time indicates lower transmission energy and shorter
job completion time. Compared to the traditional cloud
computing, transmission time is the bottleneck for the
job makespan and wireless transmission is the major
source of the energy consumption; b) reliability of data
is a major challenge in dynamic networks with unpre-
dictable topology changes. Connection failures could
cause mobile devices to go out of the network reach after
limited participation. Device failures may also happen
due to energy depletion or application specific failures.
Hence, a reliability model stronger than those used by
traditional static networks is essential; c) security is

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 2

also a major concern as the stored data often contains
sensitive user information [6] [7]. Traditional security
mechanisms tailored for static networks are inadequate
for dynamic networks. Devices can be captured by
unauthorized users and data can be compromised easily
if necessary security measures are not provided. To ad-
dress the aforementioned issues of energy efficiency, reli-
ability and security of dynamic network topologies, the
k-out-of-n computing framework was introduced [8] [9].
An overview of the previous MDFS will be described
in section 2.2. What remains as an open challenge is

to bring the cloud computing framework to a k-out-of-n
environment such that it solves the bottlenecks involved
in processing and storage of big data in a mobile cloud.

The Hadoop MapReduce cloud computing framework
meets our processing requirements for several reasons:
1) in the MapReduce framework, as the tasks are run
in parallel, no single mobile device becomes a bottle-
neck for overall system performance; 2) the MapReduce
framework handles resource management, task schedul-
ing and task execution in an efficient fault tolerant
manner. It also considers the available disk space and
memory of each node before tasks are assigned to
any node; 3) Hadoop MapReduce has been extensively
tested and used by large number of organizations for
big data processing over many years. However, the
default file system of Hadoop, HDFS (Hadoop Dis-
tributed File System) [10] is tuned for static networks
and is unsuitable for mobile environments. HDFS is
not suitable for dynamic network topologies because:
1) it ignores energy efficiency. Mobile devices have
limited battery power and can easily fail due to energy
depletion; 2) HDFS needs better reliability schemes for
data in the mobile environment. In HDFS, each file
block is replicated to multiple devices considering heavy
I/O bound jobs with strong requirements on backend
network connections. Instead, we need lightweight pro-
cesses which react well to slow and varying network
connections. Consequently, we considered k-out-of-n
based MDFS [8], instead of HDFS, as our underlying
file system for the MapReduce framework.

In this paper, we implement Hadoop MapReduce
framework over MDFS and evaluate its performance
on a general heterogeneous cluster of devices. We im-
plement the generic file system interface of Hadoop
for MDFS which makes our system interoperable with
other Hadoop frameworks like HBase. There are no
changes required for existing HDFS applications to be
deployed over MDFS. To the best of our knowledge,
this is the first work to bring Hadoop MapReduce
framework for mobile cloud that truly addresses the
challenges of the dynamic network environment. Our
system provides a distributed computing model for pro-
cessing of large datasets in mobile environment while
ensuring strong guarantees for energy efficiency, data
reliability and security.

2 Related Work & Background

There have been several research studies that at-
tempted to bring MapReduce framework to the het-
erogeneous cluster of devices, due to its simplicity and
powerful abstractions [11].

Marinelli [12] introduced the Hadoop based platform
Hyrax for cloud computing on smartphones. Hadoop
TaskTracker and DataNode processes were ported on
Android mobile phones, while a single instance of
NameNode and JobTracker were run in a traditional
server. Porting Hadoop processes directly onto mobile
devices doesn’t mitigate the problems faced in the mo-
bile environment. As presented earlier, HDFS is not well
suited for dynamic network scenarios. There is a need
for a more lightweight file system which can adequately
address dynamic network topology concerns. Another
MapReduce framework based on Python, Misco [13]
was implemented on Nokia mobile phones. It has a
similar server-client model where the server keeps track
of various user jobs and assigns them to workers on
demand. Yet another server-client model based MapRe-
duce system was proposed over a cluster of mobile
devices [14] where the mobile client implements MapRe-
duce logic to retrieve work and produce results from
the master node. The above solutions, however, do not
solve the issues involved in data storage and processing
of large datasets in the dynamic network.

P2P-MapReduce [15] describes a prototype imple-
mentation of a MapReduce framework which uses a
peer-to-peer model for parallel data processing in dy-
namic cloud topologies. It describes mechanisms for
managing node and job failures in a decentralized man-
ner.

The previous research focused only on the parallel
processing of tasks on mobile devices using the MapRe-
duce framework without addressing the real challenges
that occur when these devices are deployed in the
mobile environment. Huchton et al. [1] proposed a k-
Resilient Mobile Distributed File System (MDFS) for
mobile devices targeted primarily for military opera-
tions. Chen et al. [16] proposed a new resource al-
location scheme based on k-out-of-n framework and
implemented a more reliable and energy efficient Mobile
Distributed File System for Mobile Ad Hoc Networks
(MANETs) with significant improvements in energy
consumption over the traditional MDFS architecture.

In the remaining part of this section we present
background material on Hadoop and MDFS.

2.1 Hadoop Overview

The two primary components of Apache Hadoop are
the MapReduce framework and HDFS, as shown in
Figure 1. MapReduce is a scalable parallel processing
framework that runs on HDFS. It refers to two distinct
tasks that Hadoop jobs perform- the Map Task and
the Reduce Task. The Map Task takes the input data
set and produces a set of intermediate <key,value>

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 3

MapReduce
Program

Job Client

Submit Job

Hadoop JobTracker

HDFS Client

Name Node

File.txt

Block A

Block B

Hadoop TaskTracker

HDFS Client

 Data Node

A

M R

Client Node

Metadata
Operations

Data Read/
Write

Network

M

R

A B

Map Task

Reduce Task

File Blocks

Block
A

Datanodes
1,2

Block
B

Datanodes
1,2

Hadoop TaskTracker

HDFS Client

 Data Node

M R

B A B

Data Read/
Write

Assign Task 2Assign Task 1

Fig. 1. Hadoop architecture

pairs which are sorted and partitioned per reducer. The
map output is then passed to Reducers to produce the
final output. The user applications implement mapper
and reducer interfaces to provide the map and reduce
functions. In the MapReduce framework, computation
is always moved closer to nodes where data is located,
instead of moving data to the compute node. In the
ideal case, the compute node is also the storage node
minimizing the network congestion and thereby maxi-
mizing the overall throughput.

Two important modules in MapReduce are the
JobTracker and the TaskTracker. JobTracker is the
MapReduce master daemon that accepts the user jobs
and splits them into multiple tasks. It then assigns
these tasks to MapReduce slave nodes in the cluster
called the TaskTrackers. TaskTrackers are the process-
ing nodes in the cluster that run the tasks- Map and
Reduce. The JobTracker is responsible for scheduling
tasks on the TaskTrackers and re-executing the failed
tasks. TaskTrackers report to JobTracker at regular
intervals through heartbeat messages which carry the
information regarding the status of running tasks and
the number of available slots.

HDFS is a reliable, fault tolerant distributed file
system designed to store very large datasets. Its key
features include load balancing for maximum efficiency,
configurable block replication strategies for data protec-
tion, recovery mechanisms for fault tolerance and auto
scalability. In HDFS, each file is split into blocks and
each block is replicated to several devices across the
cluster.

The two modules in HDFS layer are NameNode and
DataNode. NameNode is the file system master daemon
that holds the metadata information about the stored
files. It stores the inode records of files and directories
which contain various attributes like name, size, per-
missions and last modified time. DataNodes are the file
system slave nodes which are the storage nodes in the
cluster. They store the file blocks and serve read/write
requests from the client. The NameNode maps a file to
the list of its blocks and the blocks to the list of DataN-
odes that store them. DataNodes report to NameNode

Plain File

Encrypted

Encrypted AES

AES

Erasure Coding Secret Sharing

Fig. 2. Existing MDFS architecture

at regular intervals through heartbeat messages which
contain the information regarding their stored blocks.
NameNode builds its metadata from these block reports
and always stays in sync with the DataNodes in the
cluster.

When the HDFS client initiates the file read opera-
tion, it fetches the list of blocks and their corresponding
DataNode locations from NameNode. The locations are
ordered by their distance from the reader. It then tries
to read the content of the block directly from the first
location. If this read operation fails, it chooses the
next location in the sequence. As the client retrieves
data directly from the DataNodes, the network traffic
is distributed across all the DataNodes in the HDFS
cluster.

When the HDFS client is writing data to a file, it
initiates a pipelined write to a list of DataNodes which
are retrieved from the NameNode. The NameNode
chooses the list of DataNodes based on the pluggable
block placement strategy. Each DataNode receives data
from its predecessor in the pipeline and forwards it to
its successor. The DataNodes report to the NameNode
once the block is received.

2.2 MDFS Overview

The traditional MDFS was primarily targeted for mil-
itary operations where front line troops are provided
with mobile devices. A collection of mobile devices
form a mobile ad-hoc network where each node can
enter or move out of the network freely. MDFS is
built on a k-out-of-n framework which provides strong
guarantees for data security and reliability. k-out-of-n
enabled MDFS finds n storage nodes such that total
expected transmission cost to k closest storage nodes
is minimal. Instead of relying on conventional schemes
which encrypt the stored data per device, MDFS uses
a group secret sharing scheme.

As shown in Figure 2, every file is encrypted using
a secret key and partitioned into n1 file fragments
using erasure encoding (Reed Solomon algorithm). Un-
like conventional schemes, the secret key is not stored
locally. The key is split into n2 fragments using Shamir’s
secret key sharing algorithm. File creation is complete
when all the key and file fragments are distributed
across the cluster. For file retrieval, a node has to

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 4

retrieve at least k1 (<n1) file fragments and k2 (<n2)
key fragments to reconstruct the original file.

MDFS architecture provides high security by en-
suring that data cannot be decrypted unless an au-
thorized user obtains k2 distinct key fragments. It
also ensures resiliency by allowing the authorized users
to reconstruct the data even after losing n1-k1 frag-
ments of data. Reliability of the file increases when
the ratio k1/n1 decreases, but it also incurs higher
data redundancy. The data fragments are placed on a
set of selected storage nodes considering each node’s
failure probability and its distance to the potential
clients. A node’s failure probability is estimated based
on the remaining energy, network connectivity, and
application-dependent factors. Data fragments are then
allocated to the network such that the expected data
transferring energy for all clients to retrieve/recover the
file is minimized.

MDFS has a fully distributed directory service in
which each device maintains information regarding the
list of available files and their corresponding key and
file fragments. Each node in the network periodically
synchronizes the directory with other nodes ensuring
that the directories of all devices are always updated.

3 Challenges

This section describes the challenges involved in the
implementation of MapReduce framework over MDFS.

1. Traditional MDFS architecture only supports a
flat hierarchy. All files are stored at the same level in
the file system without the use of folders or directories.
But the MapReduce framework relies on fully qualified
path names for all operations. The fully qualified path
is added to MDFS, as described in Section 4.4.6.

2. The capabilities of traditional MDFS are very
limited. It supports only a few functionalities such
as read(), write() and list(). A user calls the write()
function to store a file across the nodes in the network
and the read() function to read the contents of a file
from the network. The list() function provides the full
listing of the available files in the network.

However, MapReduce framework needs a fairly
generic file system that implements wide range of func-
tions. It has to be compatible with available HDFS
applications without any code modification or extra
configuration. The implementation detail is described
in Section 4.4.

3. MapReduce framework needs streaming access
to their data, but MDFS reads and writes are not
streaming operations. How the data is streamed during
read/write operations are described in Section 4.4.

4. During the job initialization phase of Hadoop,
JobTracker queries the NameNode to retrieve the in-
formation of all the blocks of the input file (blocks and
list of DataNodes that store them) for selecting the
best nodes for task execution. JobTracker prioritizes
data locality for TaskTracker selection. It first looks for

an empty slot on any node that contains the block. If
no slots are available, it looks for an empty slot on a
different node but in the same rack. In MDFS, as no
node in the network has a complete block for processing,
the challenge is to determine the best locations for each
task execution. Section 4.5 proposes an energy-aware
scheduling algorithm that overrides the default one.

5. The MapReduce and HDFS components are rack

aware. They use network topology for obtaining the
rack awareness knowledge. As discussed, if the node
that contains the block is not available for task exe-
cution, the default task scheduling algorithm selects a
different node in the same rack using the rack awareness
knowledge. This scheme leverages the single hop and
high bandwidth of in-rack switching. The challenge is
to define rack awareness in context of mobile ad-hoc
network as the topology is likely to change at any
time during the job execution. This challenge is also
addressed by the new scheduling algorithm described
in Section 4.5.

4 System Design

In this section, we present the details of our proposed
architectures, system components and the interactions
among the components that occur during file system
operations.

4.1 Requirements

For the design of our system, the following requirements
had to be met:

• Since the Hadoop JobTracker is a single entity
common to all nodes across the cluster, there
should be at least one node in the cluster which
always operates within the network range and
remains alive throughout the job execution phase.
The system must tolerate node failures.

• Data stored across the cluster may be sensitive.
Unauthorized access to sensitive information must
be prohibited.

• The system is tuned and designed for handling
large amounts of data in the order of hundreds of
megabytes, but it must also support small files.

• Though we primarily focus on mobile devices,
the system must support heterogeneous cluster
of devices which can be a combination of tradi-
tional personal computers, servers, laptops, mobile
phones and tablets depending on the working en-
vironment of the user.

• Like HDFS, the system must support sequential
writes. Bytes written by a client may not be visible
immediately to other clients in the network unless
the file is closed or flush operation is called. Append

mode must be supported to append the data to
an already existing file. Flush operation guarantees
that bytes up to that given point in the stream are
persisted and changes are visible to all other clients
in the system.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 5

• Like HDFS, the system must support streaming
reads. It must also support random reads where a
user reads bytes starting from an arbitrary offset
in the file.

4.2 System Components

In the traditional MDFS architecture, a file to be stored
is encrypted and split into n fragments such that any k
(<n) fragments are sufficient to reconstruct the original
file. In this architecture, parallel file processing is not
possible as even a single byte of the file cannot be
read without retrieving the required number of frag-
ments. Moreover, MapReduce framework assumes that
the input file is split into blocks which are distributed
across the cluster. Hence, we propose the notion of
blocks, which was missing in the traditional MDFS
architecture. In our approach, the files are split into
blocks based on the block size. These blocks are then
split into fragments that are stored across the cluster.
Each block is a normal Unix file with configurable block
size. Block size has a direct impact on performance as
it affects the read and write sizes.

The file system functionality of each cluster node is
split across three layers- MDFS Client, Data processing
layer and Network communication layer.

4.2.1 MDFS Client

User applications invoke file system operations using
the MDFS client, a built-in library that implements the
MDFS file system interface. The MDFS client provides
file system abstraction to upper layers. The user does
not need to be aware of file metadata or the storage
locations of file fragments. Instead, the user references
each file by paths in the namespace using the MDFS
client. Files and directories can be created, deleted,
moved and renamed like in traditional file systems.
All file system commands take path arguments in URI
format (scheme://authority/path). The scheme decides
the file system to be instantiated. For MDFS, the
scheme is mdfs and the authority is the Name Server
address.

4.2.2 Data processing layer

Data Processing layer manages the data and control
flow of file system operations. The functionality of this
layer is split across two daemons- Name Server and
Data Server.

4.2.2.1 Name Server: MDFS Name Server is a
lightweight MDFS daemon that stores the hierarchical
file organization or the namespace of the file system.
All file system metadata including the mapping of a file
to its list of blocks is also stored in the MDFS Name
Server. The Name Server has the same functionality
as Hadoop NameNode. The Name Server is always up-
dated with any change in the file system namespace. On
startup, it starts a global RPC server at a port defined
by mdfs.nameservice.rpc-port in the configuration file.

The client connects to the RPC server and talks to
it using the MDFS Name Protocol. The MDFS client
and MDFS Name Server are completely unaware of the
fragment distribution which is handled by the Data
Server. We kept the namespace management and data
management totally independent for better scalability
and design simplicity.

4.2.2.2 Data Server: The MDFS Data Server is
a lightweight MDFS daemon instantiated on each node
in the cluster. It coordinates with other MDFS Data
Server daemons to handle MDFS communication tasks
like neighbor discovery, file creation, file retrieval and
file deletion. On startup, it starts a local RPC server
listening on the port defined by mdfs.dataservice.rpc-
port in the configuration file. When the user invokes
any file system operation, the MDFS client connects to
the local Data Server at the specified port and talks
to it using the MDFS Data Protocol. Unlike Hadoop
DataNode, the Data Server has to be instantiated on
all nodes in the network where data flow operations
(reads and writes) are invoked. This is because the Data
Server prepares the data for these operations and they
are always executed in the local file system of the client.
The architecture is explained in detail in the subsequent
sections.

4.2.3 Network communication layer

This layer handles the communication between the
nodes in the network. It exchanges control and data
packets for various file operations. This layer abstracts
the network interactions and hides the complexities
involved in routing packets to various nodes in case of
dynamic topologies like in MANETs.

4.2.3.1 Fragment Mapper: The Fragment Map-
per stores information of file and key fragments which
include the fragment identifiers and the location of
fragments. It stores the mapping of a block to its list
of key and file fragments.

4.2.3.2 Communication Server: The Communi-
cation Server interacts with every other node and is
responsible for energy-efficient packets routing. It must
support broadcast and unicast, the two basic com-
munication modes required by MDFS. To allow more
flexible routing mechanisms in different environments,
it is implemented as a pluggable component which can
be extended to support multiple routing protocols.

4.2.3.3 Topology Discovery & Maintenance
Framework: This component stores the network
topology information and the failure probabilities
of participating nodes. When the network topology
changes, this framework detects the change through a
distributed topology monitoring algorithm and updates
the Fragment Mapper. All the nodes in the network
are thus promptly updated about network topology
changes.

There are two types of system metadata. The file
system namespace which includes the mapping of file

to blocks is stored in the Name Server while mapping of

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 6

Submit Job

MapReduce
Program

Job Client

Hadoop JobTracker

MDFS Client

Commun.
Server

Fragment
Mapper

Block 1
Frag A
Frag B

Block 2
Frag C
Frag D

Name Server

File.txt
Block 1

Block 2

 Data Server
A C

Hadoop TaskTracker

MDFS Client

Commun.
Server

M R

Client Node

Assign
Task

Metadata
Operations

Data Read/
Write

Data Read/
Write

Network

Fragment

Mapper

Block 1 Frag A
Frag B

Block 2 Frag C
Frag D

 Data Server
B D

Metadata
Operations

M

R

A B

C D

Map Task
Reduce Task

File Fragments

Fragment
Operations

Fragment
Operations

Name Server

File.txt
Block 1

Block 2

Fig. 3. Distributed Architecture of MDFS

block to fragments is stored in the Fragment Mapper. It
was our design decision to separate Fragment Mapper
functionality from the Name Server. There are two
reasons 1) The memory usage of Fragment Mapper can
grow tremendously based on the configured value of n
for each file. For example, consider a system with n set
to 10. For a 1 MB file with 4MB block size, only one
block is required but 10 fragments are created by k-out-
of-n framework. Hence, there are 10 fragment entries
in the Fragment Mapper and only 1 block entry in
the Name Server for this particular file. Since memory
requirements of Name Server and Fragment Mapper
are different, this design gives flexibility to run them
independently in different modes. 2) Fragment Mapper
is invoked only during network operations (read/writes)
while the Name Server is accessed for every file system
operation. Since the Name Server is a light weight
daemon that handles only the file system namespace,
the directory operations are fast.

4.3 System Architecture

We propose two approaches for our MDFS architecture-
a Distributed architecture where there is no central
entity to manage the cluster and a Master-slave archi-
tecture, as in HDFS. Although the tradeoffs between
the distributed architecture and the centralized archi-
tecture in a distributed system are well-studied, this
paper is the first to implement and compare Hadoop
framework on these two architectures. Some interesting
observations are also discovered, as described in sec-
tion 6.6. The user can configure the architecture during
the cluster startup based on the working environment.
It has to be configured during the cluster startup and
cannot be changed later.

4.3.1 Distributed Architecture

In this architecture, depicted in Figure 3, every par-
ticipating node runs a Name Server and a Fragment
Mapper. After every file system operation, the update
is broadcasted in the network so that the local caches
of all nodes are synchronized. Moreover, each node pe-
riodically syncs with other nodes by sending broadcast

messages. Any new node entering the network receives
these broadcast messages and creates a local cache for
further operations. In the hardware implementation,
the updates are broadcasted using UDP packets. We
assume all functional nodes can successfully receive
the broadcast messages. The more comprehensive and
robust distributed directory service is left as future
work.

This architecture has no single point of failure and no
constraint is imposed on the network topology. Each
node can operate independently, as each node stores
a separate copy of the namespace and fragment map-
ping. The load is evenly distributed across the cluster
in terms of metadata storage when compared to the
centralized architecture. However, network bandwidth
is wasted due to the messages broadcast by each node
for updating the local cache of every other node in the
network. As the number of nodes involved in processing
increases, this problem becomes more severe, leading to
higher response time for each user operation.

4.3.2 Master-Slave Architecture

In this architecture depicted in Figure 4, the Name
Server and the Fragment Mapper are singleton in-
stances across the complete cluster. These daemons can
be run in any of the nodes in the cluster. The node
that runs these daemons is called the master node.
MDFS stores metadata on the master node similar to
other distributed systems like HDFS, GFS [17] and
PVFS [18].

The centralized architecture has many advantages. 1)
Since a single node in the cluster stores the complete
metadata, there is no wastage of the device memory
by storing same metadata in all nodes when compared
to the distributed approach. 2) When a file is created,
modified or deleted, there is no need to broadcast any
message across the network to inform other nodes for
updating their metadata. This saves overall network
bandwidth and reduces transmission cost. Lesser trans-
mission cost leads to higher energy efficiency of the sys-
tem. 3) Since our system is assumed to have at least one
node that always operates within the network range,
the Name Server and the Fragment Mapper can be run
in the same node that hosts the Hadoop JobTracker.
It can be a static server or any participating mobile
device. Thus this approach doesn’t violate any of our
initial assumptions.

The major disadvantage of the centralized approach
is that the master node is a single point of failure.
However, this problem can be solved by configuring
a standby node in the configuration file. The standby
node is updated by the master node whenever there is
a change in the file system metadata. The master node
signals success to client operations only when metadata
change is reflected in both master and standby nodes.
Hence, data structures of the master and standby node
always remain in sync ensuring smooth failover.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 7

MapReduce
Program

Job Client

Submit Job

Hadoop JobTracker

MDFS Client

Commun.
Server

Fragment Mapper

Block 1
Frag A,
Frag B

Block 2
Frag C,
Frag D

 Data Server
A C

Hadoop TaskTracker

MDFS Client

Commun.
Server

 Data Server
B D

M R

Client Node

Assign
Task

Metadata
Operations

Data Read/
Write

Data Read/
Write

Network

M

R

A B

C D

Map Task

Reduce Task

File Fragments

Fragment
Operations

Name Server

File.txt
Block 1

Block 2

Fig. 4. Centralized Architecture of MDFS

MDFS CLient

Name Server

Data Server

File Retrieval
Module

Commu.
Server

Fragment
Mapper

k-out-of-n
framework

1

2
3

20
4

5 19

8

11

6 7

Topology
Discovery/

Maintenance
Unit

12
15

MDFS Client

Data Server

Commu.
Server

9

10

MDFS Client

Data Server

Commu.
Server

13

14

16-18

Control Flow

Data Flow

Fig. 5. Data Flow of a read operation

The master node can be loaded when large number of
mobile devices are involved in processing. There are sev-
eral distributed systems like Ceph [19] and Lustre [20]
that support more than one instance of metadata server
for managing the file system metadata evenly. Multi-
ple metadata servers are deployed to avoid scalability
bottlenecks of a single metadata server. MDFS can
now efficiently handle hundreds of megabytes with a
single metadata server and there is no need for multiple
metadata servers in our environment. For rest of the
discussion, we use centralized approach for simplicity.

4.4 System Operations

This section describes how the file read, file write, file
append, file delete, file rename, and directory operations
are performed in a centralized architecture.

4.4.1 File Read Operation

HDFS read design is not applicable in MDFS. For any
block read operation, the required number of fragments
has to be retrieved and then combined and decrypted
to recover the original block. Unlike HDFS, an MDFS
block read operation is always local to the reader as

the block to be read is first reconstructed locally. For
security purpose, the retrieved key/data fragments and
the decoded blocks are deleted as soon as the plain data
is loaded into the taskTracker’s memory. Although there
is a short period of time that a plain data block may be
compromised, we leave the more secure data processing
problem as future work.

The overall transmission cost during the read opera-
tion varies across nodes based on the location of frag-
ments and the reader location. As the read operation is
handled locally, random reads are supported in MDFS
where the user can seek to any position in the file.
Figure 5 illustrates the control flow of a read operation
through these numbered steps.

Step 1: The user issues a read request for file blocks
of length L at a byte offset O.

Steps 2-3: As in HDFS, the MDFS client queries the
Name Server to return all blocks of the file that span
the byte offset range from O to O+L. The Name Server
searches the local cache for the mapping from the file
to the list of blocks. It returns the list of blocks that
contain the requested bytes.

Step 4: For each block in the list returned by the
Name Server, the client issues a retrieval request to the
Data Server. Each file system operation is identified by
a specific opcode in the request.

Step 5: The Data Server identifies the opcode and
instantiates the File Retriever module to handle the
block retrieval.

Steps 6-7: The Data Server requests the Fragment
Mapper to provide information regarding the key and
file fragments of the file. The Fragment Mapper replies
with the identity of the fragments and the locations of
the fragments in the networks.

Steps 8-15: The Data Server requests the Communi-
cation Server to fetch the required number of fragments
from the locations which are previously returned by the
Fragment Mapper. Fragments are fetched in parallel
and stored in the local file system of the requesting
client. After fetching each request, the Communication
Server acknowledges the Data Server with the location
where the fragments are stored in the local file system.

Step 16: The above operations are repeated for
fetching the key fragments. These details are not in-
cluded in the diagram for brevity. The secret key is
constructed from the key fragments.

Step 17: Once the required file fragments are down-
loaded into the local file system, they are decoded and
then decrypted using the secret key to get the original
block.

Step 18: The key and file fragments which were
downloaded into the local file system during the re-
trieval process are deleted for security reasons.

Step 19: The Data Server acknowledges the client
with the location of the block in the local file system.

Step 20: The MDFS client reads the requested
number of bytes of the block. Steps 4-19 are repeated
if there are multiple blocks to be read. Once the read

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 8

MDFS CLient

Name Server

Data Server

File Creator
Module

Commu.
Server

K-out-of-n
framework

Fragment
Mapper

1

2
3

20
4

5 19

14

11

8 9

Topology
Discovery/

Maintenance
Unit

18
15

MDFS Client

Data Server

Commu.
Server

13

12

MDFS Client

Data Server

Commu.
Server

17

16

6-7

Control Flow

Data Flow

10

Fig. 6. Data Flow of a write operation

operation is completed, the block is deleted for security
reasons to restore the original state of the cluster.

If many clients are accessing the same file, the mo-
bile nodes that store the fragments may become the
hot spots. This problem can be fixed by enabling file
caching. Caching is disabled by default and each node
deletes the file fragments after the file retrieval. If
caching is enabled, the reader node caches the file
fragments in its local file system so that it does not fetch
the fragments from the network during the subsequent
read operations.

If the file fragments are available locally, the reader
client verifies the length of cached file with the actual
length stored in Name Server. This avoids the problem
of reading the outdated version of the file. If some
data has been appended to the file after caching, file
fragments are re-fetched from the network overwriting
the existing ones. Fragment availability increases due
to caching which leads to fair distribution of load in
the cluster without consuming extra energy. However,
caching affects system security due to higher availability
of file fragments in the network.

4.4.2 File Write Operation

HDFS write design is not applicable for MDFS as data
cannot be written unless the block is decrypted and
decoded. Hence in the MDFS architecture, when write
operation is called, bytes are appended to the current
block till the block boundary is reached or the file is
closed. The block is then encrypted, split into fragments
and redistributed across the cluster.

Our MDFS architecture does not support random
writes. Random writes make the design more compli-
cated when writes span across multiple blocks. This
feature is not considered in the present design as it is
not required for the MapReduce framework. Figure 6
illustrates the control flow of a write operation through
these numbered steps

Step 1: The user issues a write request for a file of
length L. The file is split into blocks of size [L/B] where

B is the user configured block size. The last block might
not be complete depending on the file length. The user
request can also be a streaming write where the user
writes to the file system byte by byte. Once the block
boundary is reached or when the file is closed, the block
is written to the network. In both scenarios, the data
to be written is assumed to be present in the local file
system.

Step 2: Similar to HDFS block allocation scheme,
for each block to be written, the MDFS client requests
the Name Server to allocate a new block Id which is
a unique identifier for each block. As all the identifiers
are generated by a single Name Server in a centralized
architecture, there will not be any identifier. However,
in the distributed architecture, an appropriate hashing
function is required to generate the unique global iden-
tifier. In our implementation, the absolute path of each
file is used as the hash key.

Step 3: The Name Server returns a new block id
based on the allocation algorithm and adds the block
identifier in its local cache. The mapping of file to list
of blocks is stored in the Name Server.

Steps 4-5: The MDFS client issues a creation request
to the Data Server which contains a specific opcode
in the request message. The Data Server identifies the
opcode and instantiates the File Creator module to
handle the block creation.

Step 6: The block stored in the local file system is
encrypted using the secret key. The encrypted block is
partitioned into n fragments using erasure encoding.

Step 7: The key is also split into fragments using
Shamir’s secret key sharing algorithm.

Steps 8-9: The Data Server requests the k-out-of-n
framework to provide n storage nodes such that total
expected transmission cost from any node to k closest
storage nodes is minimal.

Step 10: The Data Server requests the Fragment
Mapper to add the fragment information of each file
which includes the fragment identifier with the new
locations returned by the k-out-of-n framework. If the
network topology changes after the initial computation,
k-out-of-n framework recomputes the storage nodes
for every file stored in the network and updates the
Fragment Mapper. This ensures that Fragment Mapper
is always in sync with the current network topology.

Steps 11-18: The file fragments are distributed
in parallel across the cluster. The key fragments are
also stored in the same manner. These details are not
included in the diagram for brevity.

Steps 19-20: Once the file and key fragments are
distributed across the cluster, the Data Server informs
the client that the file has been successfully written
to the nodes. For security purposes, the original block
stored in the local file system of the writer is deleted
after the write operation as it is no longer needed.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 9

4.4.3 File Append Operation

MDFS supports Append operation which was intro-
duced in Hadoop 0.19. If a user needs to write to an
existing file, the file has to be open in append mode.
If the user appends data to the file, bytes are added to
the last block of the file. Hence, for block append mode,
the last block is read into the local file system of the
writer and the file pointer is updated appropriately to
the last written byte. Then, writes are executed in a
similar way as described in the previous section.

4.4.4 File Delete Operation

For a file to be deleted, all file fragments of every block
of the file have to be deleted. When the user issues a
file delete request, the MDFS client queries the Name
Server for all the blocks of the file. It then requests the
Data Server to delete these blocks from the network.
The Data Server gathers information about the file
fragments from the Fragment Mapper and requests
the Communication Server to send delete requests to
all the locations returned by the Fragment Mapper.
Once the delete request has been successfully executed,
the corresponding entry in the Fragment Mapper is
removed. In case of the distributed architecture, the
update has to be broadcast to the network so that the
entry is deleted from all nodes in the network.

4.4.5 File Rename Operation

The File Rename operation requires only an update
in the namespace where the file is referenced with the
new path name instead of the old path. When the user
issues a file rename request, the MDFS client requests
the Name Server to update its namespace. The Name
Server updates the current inode structure of the file
based on the renamed path.

4.4.6 Directory Create/Delete/Rename Operations

When the user issues the file commands to create, delete
or rename any directory, the MDFS client requests the
Name Server to update the namespace. The namespace
keeps a mapping of each file to its parent directory
where the topmost level is the root directory (’/’). All
paths from the root node to the leaf nodes are unique.
Recursive operations are also allowed for delete and
rename operations.

4.5 Energy-aware task scheduling

Hadoop Mapreduce framework relies on data locality

for boosting overall system throughput. Computation
is moved closer to the nodes where the data resides.
JobTracker first tries to assign tasks to TaskTrackers
in which the data is locally present (local). If this is
not possible (no free map slots or if tasks have already
failed in the specific node), it then tries to assign tasks
to other TaskTrackers in the same rack (non-local).
This reduces the cross-switch network traffic thereby
reducing the overall execution time of Map tasks. In
case of non-local task processing, data has to be fetched

Algorithm 1: Task Scheduling

Input: Sb, Fb, d, k
Output: X, C⋆

i // index b in C⋆

i
(b) is omitted

C⋆
i = 0

X ←− 1×N array initialized to 0
D ←− 1×N array
for j=1 to N do

D[j].node=j
D[j].cost=(Sb/k)× Fb(j)× dij

if D[j].cost == 0 then

D[j].cost=N2 // Just assign a big number

end

end

D ←− Sort D in increasing order by D.cost
for i=1 to k do

X[D[i].node]=1
C⋆

i += D[i].cost
end

return X, C⋆
i

from the corresponding nodes, adding latency. In a
mobile environment, higher network traffic leads to
increased energy consumption which is a major concern.
Therefore, fetching data for non-local data processing
results in higher energy consumption and increased
transmission cost. Hence, it is important to bring Map
Task processing nearer to the nodes that store the data
for minimum latency and maximum energy efficiency.

There are many challenges in bringing data locality to
MDFS. Unlike native Hadoop, no single node running
MDFS has a complete data block; each node has at
most one fragment of a block due to security reasons.
Consequently, the default MapReduce scheduling al-
gorithm that allocates processing tasks closer to data
blocks does not apply. When MDFS performs a read

operation to retrieve a file, it finds the k fragments
that can be retrieved with the lowest data transferring
energy. Specifically, the k fragments that are closest
to the file requester in terms of the hop-count are
retrieved. As a result, knowing the network topology
(from the topology maintenance component in MDFS)
and the locations of each fragment (from the fragments
mapper), we could estimate the total hop-count for each
node to retrieve the closest k fragments of the block.
Smaller total hop-count indicates lower transmission
time, lower transmission energy, and shorter job com-
pletion time. Although this estimation adds a slight
overhead, and is repeated again when MDFS actually
retrieves/reads the data block, we leave the engineering
optimization as the future work.

We now describe how to find the minimal cost (hop-
count) for fetching a block from a taskTracker. Al-
gorithm 1 illustrates the main change made to the
default Hadoop MapReduce scheduler such that the
data transferring energy is taken into account when
scheduling a task. The improved scheduler uses the
current network condition (topology and nodes’ failure

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 10

probability) to estimate the task retrieval energy and
assign tasks. Only nodes that are currently functional
and available may be selected. C⋆

i (b) is defined as the
minimal cost of fetching block b at node i. Let Fb be a
1×N binary vector where each element Fb(j) indicates
whether node j contains a fragment of block b (note that∑N

j=1 Fb(j) = n ∀b); Sb is the size of block b; di,j is
the distance (hop-count) between node i and node j;
the pair-wise node distance can be estimated efficiently
using all pair shorted distance algorithm X is a 1×N
binary decision variable where Xj = 1 indicates that
node j sends a data fragment to node i.

C⋆
i (b) = min

N∑

j=1

(Sb/k)Fb(j)di,jXj , s.t.
N∑

j=1

Xj = k

C⋆
i (b) can be solved by Algorithm 1, which minimizes

the communication cost for node i to retrieve k data
fragments of block b. Once C⋆

i (b) for each node is solved,
the processing task for block b is then assigned to node
p where p = arg mini C⋆

i (b). The time complexity of
Algorithm 1 is NlogN due to the sorting procedure, and
because it is performed once for each of the N node, the
time complexity for assigning a block to a taskTracker
is N2logN . Considering the size of our network (≤ 100)
and the processing power of the modern mobile devices,
the computational overhead of the scheduling algorithm
is minimal.

4.6 Consistency Model

Like HDFS, MDFS also follows single writer and multi-
ple reader model. An application can add data to MDFS
by creating a new file and writing data to it (Create
Mode). The data once written cannot be modified or
removed except when the file is reopened for append
(Append Mode). In both write modes, data is always
added to the end of the file. MDFS provides the support
for overwriting the entire file but not from any arbitrary
offset in the file.

If an MDFS client opens a file in Create or Append
mode, the Name Server acquires a write lock on the
corresponding file path so that no other client can open
the same file for write. The writer client periodically
notifies the Name Server through heartbeat messages
to renew the lock. To prevent the starvation of other
writer clients, the Name Server releases the lock after
a user configured time limit if the client fails to renew
the lock. The lock is also released when the file is closed
by the client.

A file can have concurrent reader clients even if it is
locked for a write. When a file is opened for a read, the
Name Server acquires a read lock on the corresponding
file path to protect it from deletion from other clients.
As the writes are always executed in the local file
system, the data is not written to the network unless the
file is closed or the block boundary is reached. So, the
changes made to the last block of the file may not be
visible to the reader clients while the write operation

is being executed. Once the write has completed, the
new data is visible across the cluster immediately. In
all circumstances, MDFS provides strong consistency
guarantee for reads such that all concurrent reader
clients will read the same data irrespective of their
locations.

4.7 Failure Tolerance

This section describes how MDFS uses k-out-of-n en-
coding technique and snapshot operation to improve the
data reliability and prevent node failures.

4.7.1 k-out-of-n reliability

In HDFS, each block is replicated a specific number of
times for fault tolerance, which is determined by the
replication factor configured by the user. In MDFS, the
k-out-of-n framework ensures data reliability where k
and n parameters determine the level of fault tolerance.
These parameters are per file configurable which are
specified at the file creation time. Only k nodes are
required to retrieve the complete file, ensuring data
reliability.

4.7.2 Snapshot operation

A snapshot operation creates a backup image of current
state which includes in-memory data structures. During
safe shutdown of the Name Server and Fragment Map-
per, a snapshot operation is automatically invoked to
save the state on the disk. On restart, the saved image
is used to rebuild the system state. Snapshot operations
are particularly useful when a user is experimenting
with changes that need to be rolled back easily in
the future. When client requests a snapshot operation,
the Name Server enters a special maintenance state
called safe mode. No client operations are allowed when
the Name Server is in safe mode. The Name Server
leaves safe mode automatically once backup is created.
The data server is not backup as it mainly handles
MDFS communication tasks like neighbor discovery, file
creation, file retrieval. These information varies with
time, so it is unnecessary to include in the snapshot.

4.8 Diagnostic Tools

MDFS Shell is a handy and powerful debugging tool to
execute all available file system commands. It is invoked
by hadoop mdfs <command><command args>. Each
command has file path URI and other command specific
arguments. MDFS shell can simulate complex cluster
operations like concurrent reads and writes, device fail-
ures, device reboots etc. All MDFS specific parameters
can be changed at run time using MDFS shell. MDFS
shell is particularly useful in testing new features and
analyzing its impact on overall performance of the
system. All file system operations are logged in a user
specific folder for debugging purposes and performance
analysis. If any issue is encountered, the operation logs
can be used to reproduce the issue and diagnose it.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 11

5 System Implementation

We have used Apache Hadoop stable release 1.2.1 [21]
for our implementation. Our MDFS framework consists
of 18,365 lines of Java code, exported as a single jar file.
The MDFS code does not have any dependency on the
Hadoop code base. Similar to DistributedFileSystem
class of HDFS, MDFS provides MobileDistributedFS
class that implements FileSystem, the abstract base
class of Hadoop for backwards compatibility of all
present HDFS applications. The user invokes this object
to interact with the file system. In order to switch from
HDFS to MDFS, the Hadoop user only needs to add
the location of jar file to the HADOOP CLASSPATH
variable and change the file system scheme to ‘mdfs’.
The parameter ‘mdfs.standAloneConf’determines the
MDFS architecture to be instantiated. If it is set
to false, all the servers are started locally as in
the distributed architecture. If it is set to true, the
user needs to additionally configure the parameter
‘mdfs.nameservice.rpc-address’to specify the location of
Name Server. In the present implementation, the Frag-
ment Mapper is started in the same node as the Name
Server. Since no changes are required in the existing
code base for MDFS integration, the user can upgrade
to a different Hadoop release without any conflict.

6 Performance Evaluation

In this section, we present performance results and
identify bottlenecks involved in processing large input
datasets. To measure the performance of MDFS on
mobile devices, we ran Hadoop benchmarks on a hetero-
geneous 10 node mobile wireless cluster consisting of 1
personal desktop computer (Intel Core 2 Duo 3 GHz
processor, 4 GB memory), 10 netbooks (Intel Atom
1.60 GHz processor, 1 GB memory, Wi-Fi 802.11 b/g
interface) and 3 HTC Evo 4G smartphones running
Android 2.3 OS (Scorpion 1Ghz processor, 512 MB
RAM, Wi-Fi 802.11 b/g interface). As TaskTracker
daemons are not ported to the Android environment
yet, smartphones are used only for data storage, and
not for data processing. Note that although the Hadoop
framework is not yet completely ported to Android
smartphones in our experiment, which will be our future
work, the results obtained from the netbooks should
be very similar to the results on real smartphones as
modern smartphones are equipped with more powerful
CPU, larger memory, and higher communication band-
width than the netbooks we used.

We used TeraSort, a well-known benchmarking tool
that is included in the Apache Hadoop distribution.
Our benchmark run consists of generating a random
input data set using TeraGen and then sorting the
generated data using TeraSort. We considered the
following metrics: 1) Job completion time of TeraSort;
2) MDFS Read/Writes Throughput; and 3) Network
bandwidth overhead. We are interested in the following
parameters: 1) Size of input dataset; 2) Block Size; and

 300

 310

 320

 330

 340

 350

 360

 370

 380

 390

 400

 0 2 4 6 8 10

H
a
d
o
o
p
 J

o
b
 T

im
e
 (

s
e
c
)

Block Size (MB)

TeraSort of 50 MB DataSet

(a)

 300

 320

 340

 360

 380

 400

 4 5 6 7 8 9 10

H
a
d
o
o
p
 J

o
b
 T

im
e
 (

s
e
c
)

Cluster Size

TeraSort of 50 MB DataSet

(b)

Fig. 7. Effect of (a) Block size (b) Cluster size on Job
Completion Time

3) Cluster Size. Each experiment was repeated 15 times
and average values were computed. The parameters k
and n are set to 3 and 10, respectively for all runs.
Each node is configured to run 1 Map task and 1
Reduce task per job, controlled by the parameters
‘mapred.tasktracker.map.tasks.maximum’and
‘mapred.tasktracker.reduce.tasks.maximum’respectively.
As this paper is the first work that addresses the
challenges in processing of large datasets in mobile
environment, we do not have any solutions to
compare against. MDFS suffers the overhead of data
encoding/decoding and data encryption/decryption,
but MDFS achieves better reliability and energy-
efficiency. Furthermore, MDFS uses Android phones as
storage nodes and performs read/write operations on
these phones, but HDFS data node is not ported on
Android devices. As a result, it is difficult to compare
the performance between HDFS and MDFS directly.

6.1 Effect of Block Size on Job Completion Time

The parameter ‘dfs.block.size’ in the configuration file
determines the default value of block size. It can be
overridden by the client during file creation if needed.
Figure 7(a) shows the effect of block size on job com-
pletion time. For our test cluster setup, we found that
the optimal value of block size for a 50MB dataset is
4 MB. The results show that the performance degrades
when the block size is reduced or increased further.

A larger block size will reduce the number of blocks
and thereby limit the amount of possible parallelism
in the cluster. By default, each Map task processes
one block of data at a time. There has to be sufficient
number of tasks in the system such that they can be run
in parallel for maximum throughput. If the block size
is small, there will be more Map tasks processing lesser
amount of data. This would lead to more read and write
requests across the network proving to be costly in a
mobile environment. Figure 7(a) shows that processing
time is 70% smaller than the network transmission
time for TeraSort benchmark. So, tasks have to be
sufficiently long enough to compensate the overhead in
task setup and data transfer for maximum throughput.
For real world clusters, the optimal value of block size
will be experimentally obtained.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

J
o
b
 C

o
m

p
le

ti
o
n
 r

a
te

Number of node failures

HDFS (1,3)

MDFS (3,9)

(a)

 260

 280

 300

 320

 340

 360

 380

 400

1 2 3 4 5 6 7 8 9

H
a
d
o
o
p
 J

o
b
 T

im
e
 (

s
e
c
)

Number of Iterations

1 node failed

2 node failed

3 node failed

Terasort of 100 MB DataSet (sec)

(b)

Fig. 8. Effect of (a) Comparison of job completion rate
between HDFS and MDFS (b) Job time vs. Number of
failures.

6.2 Effect of Cluster Size on Job Completion Time

The cluster size determines the level of possible paral-
lelization in the cluster. As the cluster size increases,
more tasks can be run in parallel, thus reducing the
job completion time. Figure 8(b) shows the effect of
cluster size on job completion time. For larger files,
there are several map tasks that can be operated in
parallel depending on the configured block size. So
the performance is improved significantly with increase
in cluster size as in the figure. For smaller files, the
performance is not affected much by the cluster size, as
the performance gain obtained as part of parallelism is
comparable to the additional cost incurred in the task
setup.

6.3 Effect of node failures on MDFS and HDFS

In this section, we compare the fault-tolerance capabil-
ity between MDFS and HDFS. We consider a simple
failure model in which a task fails with its processor
node and a taskTracker can not be restarted once it
fails (crash failure). There are total 12 nodes in the
network. In HDFS, each data block is replicated to 3
different nodes, and HDFS can tolerate to lose at most
2 data nodes; in MDFS, each data block is encoded and
stored to 9 different nodes (k = 3, n = 9), and MDFS
can tolerate to lose up to 6 data nodes. The reason we
set parameter (k, n) = (3, 9) in this experiment (rather
using the same n = 10 in the previous experiments) is
that (k, n) = (3, 9) has the same data redundancy as the
default HDFS 3-Replication scheme. This experiment
is independent to the previous experiments in which
n = 10. Note that although HDFS can tolerate to lose
at most 2 data nodes, it does not mean that the job
would fail if more than 2 nodes fail; if the failed node
does not carry the data block of the current job, it does
not affect the taskTracker; as a result, we see completion
rate gradually drops from 1 after more than 3 nodes fail.
Figure 8(a) shows that MDFS clearly achieves better
fault-tolerance when 3 or more nodes fail.

6.4 Effects of Node Failure Rate on Job Completion

Time

Our system is designed to tolerate failures. Figure 7(b)
shows the reliability of our system in case of node
failures. The benchmark is run for 10 iterations for

 1

 1.5

 2

 2.5

 3

 4 8 12 16 20 24

M
D

F
S

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Size of Input Dataset (MB)

MDFS Write

MDFS Read

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7

M
D

F
S

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Size of Input Dataset (MB)

MDFS Write

MDFS Read

(b)

Fig. 9. MDFS Read/Write Throughput of (a) Large files
(b) Small files

 0

 100

 200

 300

 400

 500

 20 40 60 80 100

H
a

d
o

o
p

 J
o

b
 T

im
e

 (
s
e

c
)

Size of Input Dataset (MB)

TeraSort

TeraGen

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

10 20 30 40 50

H
a

d
o

o
p

 J
o

b
 T

im
e

 (
s
e

c
)

Size of Input Dataset (MB)

Network Time (sec)
I/O Time (sec)

(b)

Fig. 10. (a) Job Completion time v.s. input dataset size
(b) Processing time vs. Transmission time

100 MB data. Node failures are induced by turning
off the wireless interface during the processing stage.
This emulates real world situations wherein devices
get disconnected from the network due to hardware or
connection failures. In Figure 7(b), one, two and three
simultaneous node failures are induced in iterations
3, 5 and 8 respectively and original state is restored
in the succeeding iteration. The job completion time
is increased by 10% for each failure but the system
successfully recovered from these failures.

In the MDFS layer, the k-out-of-n framework pro-
vides data reliability. If a node containing fragments is
not available, the k-out-of-n framework chooses another
node for the data retrieval. Since k and n are set to
3 and 10 respectively, the system can tolerate up to
7 node failures before the data becomes unavailable.
If any task fails due to unexpected conditions, Task-
Trackers notify the JobTracker about the task status.
JobTracker is responsible for re-executing the failed
tasks on some other machine. JobTracker also considers
a task to be failed if the assigned TaskTracker does not
report the failure in configured timeout interval.

6.5 Effect of Input Data Size

Figure 9(a) and Figure 9(b) show the effect of input
dataset size on MDFS throughput. The experiment
measures the average read and write throughput for dif-
ferent file sizes. The block size is set to 4 MB. The result
shows that the system is less efficient with small files
due to the overhead in setup of creation and retrieval
tasks. Maximum throughput is observed for file sizes
that are multiples of block size. This will reduce the to-
tal number of subtasks needed to read/write the whole
file, decreasing the overall overhead. In Figure 9(b), the
throughput gradually increases when the input dataset
size is increased from 1 MB to 4 MB because more data

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 13

can be transferred in a single block read/write request.
However, when input dataset size is increased further,
one additional request is required for extra data and
thus throughput drops suddenly. The results show that
maximum MDFS throughput is around 2.83 MB/s for
reads and 2.12 MB/s for writes for file sizes that are
multiples of block size.

Figure 10 shows the effect of input dataset size on
job completion time. The experiment measures the job
completion time for different file sizes ranging from 5
MB to 100MB. Files generated in mobile devices are
unlikely to exceed 100 MB. However, MDFS does not
have any hard limit on input dataset size and it can take
any input size allowed in the standard Hadoop release.
The result shows that the job completion time varies in
less than linear time with input dataset size. For larger
datasets, there is a sufficient number of tasks that can
be executed in parallel across the cluster resulting in
better node utilization and improved performance.

6.6 Centralized versus Distributed Architecture

The major difference between the distributed solution
and the centralized solution is that nodes in distributed
solution need to continuously synchronize their Name
Server and Fragment Mapper. Due to the synchro-
nization, the distributed solution needs to broadcast
directory information after a file is created or updated.
The broadcast messages directly impact the perfor-
mance difference between the centralized architecture
and the distributed architecture. When a MapReduce
job has more read operations, distributed architecture
might perform better as all metadata information can
be queried locally rather than contacting the centralized
server; when a MapReduce task has more write opera-
tions, centralized architecture might perform better due
to lesser broadcast messages.

Figure 11(a) compares the number of broadcast mes-
sages sent during file creation for different input dataset
sizes. The block size is set to 4 MB. As input dataset size
increases, the number of file blocks also increases. In a
distributed architecture, each block allocation in Name
Server and subsequent fragment information update in
Fragment Mapper needs to be broadcast to all other
nodes in the cluster so that their individual caches re-
main in sync with each other. Large usage of bandwidth
makes broadcasting a costly operation in wireless net-
works. This effect is much worse when the cluster size
grows. Figure 11(b) compares the number of broadcast
messages sent during file creation for varying cluster
sizes. The updates are not broadcast in a centralized
approach as the Name Server and Fragment Mappers
are singleton instances.

The results prove that the distributed architecture
is ideal for medium sized clusters with independent
devices and no central server. The overhead due to
broadcasting is minimal if the cluster is not large. For
large clusters, the communication cost required to keep
the metadata synchronized across all nodes becomes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

#
 o

f
B

ro
a

d
c
a

s
t

P
a

c
k
e

ts

Size of Input Dataset (MB)

Distributed Architecture

Centralized Architecture

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 5 6 7 8 9 10

#
 o

f
B

ro
a

d
c
a

s
t

P
a

c
k
e

ts

Cluster Size

Distributed Architecture
Centralized Architecture

(b)

Fig. 11. Effect of (a) Input dataset size on Network
bandwidth overhead in Centralized and Distributed Archi-
tecture (b) Cluster size

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

H
a
d
o
o
p
 J

o
b
 T

im
e
 (

s
e
c
)

Size of Input Dataset (MB)

TeraGen-EnergyUnaware
TeraGen-EnergyAware

TeraSort-EnergyUnaware
TeraSort-EnergyAware

Fig. 12. New task scheduling algorithm vs. Random

significant. Hence, a centralized approach is preferred
in large clusters. However, data reliability is guaranteed
by k-out-of-n framework in both architectures.

6.7 Energy-aware task scheduling v.s. Random task

scheduling

As mentioned in Section 4.5, our energy-aware task
scheduling assigns tasks to taskTrackers considering the
locations of data fragments. The default task scheduling
algorithm in Map-Reduce component is ineffective in
mobile ad-hoc network as the network topology in a
traditional data center is completely different from a
mobile network. Figure 12 compares the job completion
time between our energy-ware scheduling algorithm and
a random task scheduling. The default Map-Reduce
task scheduling in a mobile ad-hoc network is essen-
tially a random task allocation. In both TeraGen and
TeraSort experiments, our scheduling algorithm effec-
tively reduces the job completion time by more than
100%. Lower job completion time indicates lower data
retrieval time and lower data retrieval energy of each
taskTracker.

7 Roadmap for Mobile Hadoop 2.0

Porting both the jobTracker and the taskTracker dae-
mons to the Android environment is our ongoing work.
In future, we plan to integrate the energy-efficient
and fault-tolerant k-out-of-n processing framework pro-
posed in [9] into the Mobile Hadoop to provide better
energy-efficiency and fault-tolerance in a dynamic net-
work. We will also look into the heterogeneous prop-
erties of the hardware and prioritize between various

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603474,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 1, JANUARY 2014 14

devices based on the device specifications. For example,
if static devices are available in the network, they can
be prioritized over other mobile nodes in the cluster
for data storage as they are less likely to fail; if a
more powerful node like a laptop is present, it can be
assigned more tasks than a smartphone. How to balance
the processing load as well as the communication load
of each node is a practical question that needs to be
addressed. To mitigate the single point of failure issue in
the centralized architecture, we plan to develop a hybrid
model where the Name Server and Fragment Mapper
run concurrently on multiple master nodes. The hybrid
model can reduce the load of each master node, tolerate
failures, and improve the RPC execution time.

8 Conclusions

The Hadoop MapReduce framework over MDFS
demonstrates the capabilities of mobile devices to cap-
italize on the steady growth of big data in the mobile
environment. Our system addresses all the constraints
of data processing in mobile cloud - energy efficiency,
data reliability and security. The evaluation results
show that our system is capable for big data analytics
of unstructured data like media files, text and sensor
data. Our performance results look very promising for
the deployment of our system in real world clusters for
big data analytic of unstructured data like media files,
text and sensor data.

Acknowledgment

This work was supported by Naval Postgraduate School
under Grant No. N00244-12-1-0035 and NSF under
Grants #1127449, #1145858 and #0923203.

References

[1] S. Huchton, G. Xie, and R. Beverly, “Building and evaluating
a k-resilient mobile distributed file system resistant to device
compromise,” in Proc. MILCOM, 2011.

[2] G. Huerta-Canepa and D. Lee, “A virtual cloud computing
provider for mobile devices,” in Proc. of MobiSys, 2010.

[3] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users:
Can offloading computation save energy?” Computer, 2010.

[4] “Apache hadoop,” http://hadoop.apache.org/.
[5] S. George, Z. Wei, H. Chenji, W. Myounggyu, Y. O. Lee,

A. Pazarloglou, R. Stoleru, and P. Barooah, “Distressnet: a
wireless ad hoc and sensor network architecture for situation
management in disaster response,” Comm. Mag., IEEE,
2010.

[6] J.-P. Hubaux, L. Buttyán, and S. Capkun, “The quest for
security in mobile ad hoc networks,” in Proc. of MobiHoc,
2001.

[7] H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security in
mobile ad hoc networks: challenges and solutions,” Wireless
Communications, IEEE, 2004.

[8] C. A. Chen, M. Won, R. Stoleru, and G. Xie, “Resource
allocation for energy efficient k-out-of-n system in mobile ad
hoc networks,” in Proc. ICCCN, 2013.

[9] C. Chen, M. Won, R. Stoleru, and G. Xie, “Energy-efficient
fault-tolerant data storage and processing in dynamic net-
work,” in MobiHoc, 2013.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in Proc. of MSST, 2010.

[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” Commun. ACM, 2008.

[12] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices
using mapreduce,” Master’s thesis, School of Computer Sci-
ence Carnegie Mellon University, 2009.

[13] T. Kakantousis, I. Boutsis, V. Kalogeraki, D. Gunopulos,
G. Gasparis, and A. Dou, “Misco: A system for data analysis
applications on networks of smartphones using mapreduce,”
in Proc. Mobile Data Management, 2012.

[14] P. Elespuru, S. Shakya, and S. Mishra, “Mapreduce system
over heterogeneous mobile devices,” in Software Technologies
for Embedded and Ubiquitous Systems, 2009.

[15] F. Marozzo, D. Talia, and P. Trunfio, “P2p-mapreduce:
Parallel data processing in dynamic cloud environments,” J.
Comput. Syst. Sci., 2012.

[16] C. A. Chen, M. Won, R. Stoleru, and G. G. Xie, “Energy-
efficient fault-tolerant data storage and processing in dy-
namic networks,” in Proc. of MobiHoc, 2013.

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” SIGOPS Oper. Syst. Rev., 2003.

[18] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur,
“Pvfs: A parallel file system for linux clusters,” in Proc. of
Annual Linux Showcase & Conference, 2000.

[19] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn, “Ceph: A scalable, high-performance dis-
tributed file system,” in Proc. of OSDI, 2006.

[20] “Lustre file system,” http://www.lustre.org.
[21] “Hadoop 1.2.1 release,” http://hadoop.apache.org/docs/r1.

2.1/releasenotes.html.

Johnu George received his B.Tech degree
in Computer Science from National Institute
of Technology Calicut, India in 2009. He
was a research engineer at Tejas Networks,
Bangalore during 2009-2012. He completed
his M.S. degree in Computer Science from
Texas A&M University in 2014. His research
interests include distributed processing and
big data technologies for mobile cloud.

Chien-An Chen received the BS and MS
degree in Electrical Engineering from Univer-
sity of California, Los Angeles in 2009 and
2010 respectively. He is currently working
toward the PhD degree in Computer Science
and Engineering at Texas A&M University.
His research interests are mobile computing,
energy-efficient wireless network, and cloud
computing on mobile devices.

Radu Stoleru is currently an associate pro-
fessor in the Department of Computer Sci-
ence and Engineering at Texas A&M Uni-
versity. Dr. Stoleru’s research interests are
in deeply embedded wireless sensor systems,
distributed systems, embedded computing,
and computer networking. He is the recipient
of the NSF CAREER Award in 2013. He has
authored or co-authored over 80 conference
and journal papers with over 3,000 citations.

Geoffery G. Xie received the BS degree
in computer science from Fudan University,
China, and the PhD degree in computer
sciences from the University of Texas, Austin.
He is a professor in the Computer Science
Department at the US Naval Postgraduate
School. He has published more than 60 ar-
ticles in various areas of networking. His
current research interests include network
analysis, routing design and theories, un-
derwater acoustic networks, and abstraction

driven design and analysis of enterprise networks.

http://hadoop.apache.org/
http://www.lustre.org
http://hadoop.apache.org/docs/r1.2.1/releasenotes.html
http://hadoop.apache.org/docs/r1.2.1/releasenotes.html

