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In computations, it is now common to surround artificial boundaries of a computational 
domain with a perfectly matched layer (PML) of finite thickness in order to prevent 
artificially reflected waves from contaminating a numerical simulation. Unfortunately, the 
PML does not give us an indication about appropriate boundary conditions needed to 
close the edges of the PML, or how those boundary conditions should be enforced in a 
numerical setting. Terminating the PML with an inappropriate boundary condition or an 
unstable numerical boundary procedure can lead to exponential growth in the PML which 
will eventually destroy the accuracy of a numerical simulation everywhere. In this paper, 
we analyze the stability and the well-posedness of boundary conditions terminating the 
PML for the elastic wave equation in first order form. First, we consider a vertical modal 
PML truncating a two space dimensional computational domain in the horizontal direction. 
We freeze all coefficients and consider a left half-plane problem with linear boundary 
conditions terminating the PML. The normal mode analysis is used to study the stability 
and well-posedness of the resulting initial boundary value problem (IBVP). The result is 
that any linear well-posed boundary condition yielding an energy estimate for the elastic 
wave equation, without the PML, will also lead to a well-posed IBVP for the PML. Second, 
we extend the analysis to the PML corner region where both a horizontal and vertical PML 
are simultaneously active. The challenge lies in constructing accurate and stable numerical 
approximations for the PML and the boundary conditions. Third, we develop a high order 
accurate finite difference approximation of the PML subject to the boundary conditions. 
To enable accurate and stable numerical boundary treatments for the PML we construct 
continuous energy estimates in the Laplace space for a one space dimensional problem and 
two space dimensional PML corner problem. We use summation-by-parts finite difference 
operators to approximate the spatial derivatives and impose boundary conditions weakly 
using penalties. In order to ensure numerical stability of the discrete PML, it is necessary 
to extend the numerical boundary procedure to the auxiliary differential equations. This is 
crucial for deriving discrete energy estimates analogous to the continuous energy estimates. 
Numerical experiments are presented corroborating the theoretical results. Moreover, in 
order to ensure longtime numerical stability, the boundary condition closing the PML, or 
its corresponding discrete implementation, must be dissipative. Furthermore, the numerical 
experiments demonstrate the stable and robust treatment of PML corners.
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1. Introduction

Wave propagation problems are often formulated in unbounded or very large spatial domains. In numerical simulations, 
large spatial domains must be replaced by smaller computational domains by introducing artificial boundaries. Efficient 
and reliable domain truncation becomes essential, since it enables more accurate numerical simulations. More than thirty 
years of extensive research in this area has resulted in two standard, competing approaches for artificial boundary closures: 
high order local non-reflecting boundary condition (NRBC) [19,20], and damping layers such as the perfectly matched layer 
(PML) [1–12], grid stretching techniques [14] and others [13,15]. An NRBC is a boundary condition defined on an artificial 
boundary such that little or no spurious reflections occur as a wave passes the boundary. In the methods based on damping 
layers the domain is extended to include a layer where waves are damped by some modification or transformation of the 
system. In this paper we will focus on PMLs, where the underlying equations are transformed such that waves traveling 
into the layer are absorbed without reflections. A very important property of the PML is perfect matching. This means that 
there are no reflections as waves propagate from the physical domain into the layer. It is also important to note that the 
perfect matching property of the PML is only guaranteed for the continuous model. When numerical approximations are 
introduced, the discrete PML can allow some numerical reflections. However, for a well designed numerical approximation, 
these artificial reflections vanish as the mesh size approaches zero.

Often, PMLs (and NRBCs) are derived by assuming a homogeneous unbounded medium. When the PML is used in semi-
bounded domains, the PML introduces layer edges where the physical boundary conditions and the PML interact. This 
situation leads to an initial boundary value problem (IBVP) for the PML. A typical set-up can be found in [6,10]; where for 
the elastic wave equation a traction free boundary condition is used on one boundary with PML truncation on all others. 
Further complicating the matter, the PML is derived in the continuous setting under the assumption that it is an unbounded 
layer surrounding the truncated computational domain. However, in practice the PML is a layer of finite thickness. Thus, 
even when there is no physical boundary, the PML must be implemented as an IBVP. An effective PML boundary closure 
becomes important since it enables efficient numerical computations [11].

To be useful, any method for truncating a computational domain must not only be accurate but also inherit stability 
properties of the unbounded problem. In particular, if the original governing equation and its numerical approximations do 
not support growth, neither should the augmented system nor a corresponding numerical approximation. For hyperbolic 
systems, the temporal stability of the PML Cauchy problem is well known; see for example [3,2]. When the domain is 
bounded or semi-bounded more care is required, since a PML which is stable in an unbounded domain, can support growth 
when boundaries are introduced [10,6]. Having said that, in [4] it was shown that the PML for second order elastic wave 
equations on a half plane with the free-surface boundary condition at a boundary tangential to the damping direction does 
not support temporally growing modes. A key step taken in [4] was to transform the derivatives in the free surface boundary 
condition using the PML metric. Subsequently, using the normal mode analysis, the PML with the transformed boundary 
condition was proven stable. However, the analysis in [4] considers only a physical boundary entering into the layer and the 
boundary condition terminating the PML at a boundary normal to the damping direction was not taken into consideration.

In this paper we work with the first order form of the equations, and the story is different. The application of the PML 
adds, in a nontrivial way, lower order (undifferentiated) terms to the elastic wave equation. Standard boundary conditions 
for first order hyperbolic systems contain a linear combination of the unknown variables, while boundary conditions for 
second order systems often involve combinations of the unknown variables and their spatial and temporal derivatives. In 
the second order case such boundary conditions are transformed in the PML, while in the corresponding first order case 
the transformation leaves the boundary conditions unaltered. Though one may naturally expect that a stable scheme for 
the interior IBVP can be extended to PML by simply adding the PML terms and augmenting the auxiliary equations without 
altering the numerical boundary procedure. However, numerical experiments reported in the literature demonstrate that 
growth may occur. In particular, numerical experiments in [6], using a staggered grid approximation, suggest that growth 
can occur for the split-field PML of [2] when a free-surface boundary condition is imposed. Stable numerical approximations 
of the PML are also a challenge to finite/spectral element methods [8,15].

As an initial computation we consider a modal PML [3], with a damping profile that varies cubically, which is terminated 
by setting the incoming characteristics (corresponding to the one-dimensional problem in the normal direction) on the PML 
boundary to zero. We repeated the experiments of [6] for a two-dimensional aluminum solid with the free surface boundary 
conditions on the top surface of the solid, and PMLs along the other boundaries. The equations are written in first order 
form and are discretized using a high order finite difference scheme [18,23], which is provably stable without the PML. No 
extra or different boundary conditions are imposed in the PML. For comparison we also compute without the PML. The 
time history of the discrete energy, resulting from our numerical experiments, is plotted in Fig. 1. Without the PML the 
energy decays throughout the computation, while for the PML case, the discrete energy decays until t ∼ 800 and grows 
exponentially for t > 800. Numerical instabilities similar to Fig. 1 were seen in [6] when the PML was used to truncate a 
half-plane elastic media with a free-surface condition at the boundary. Though both the experiments shown in Fig. 1 and 
[6] show instability, it is not obvious what causes the instability. In particular, is it inherent in the PML formulation on 
bounded domains, or a result of the numerical approximation?

A first step in answering this question is to consider the problem from a theoretical point of view. We freeze the coef-
ficients of a two space dimensional (2D) modal PML [3] with damping in the horizontal direction, and consider separately 
the PML Cauchy problem, the lower half plane PML problem with the free surface boundary conditions at the upper hori-

https://www.researchgate.net/publication/266614775_SMART_layers_a_simple_and_robust_alternative_to_PML_approaches_for_elastodynamics?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/266614775_SMART_layers_a_simple_and_robust_alternative_to_PML_approaches_for_elastodynamics?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/3306928_Frequency_Dependence_of_the_Constitutive_Parameters_of_Causal_Perfectly_Matched_Anisotropic_Absorbers?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/29651159_Stability_of_Perfectly_Matched_Layers_Group_Velocities_and_Anisotropic_Waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/29651159_Stability_of_Perfectly_Matched_Layers_Group_Velocities_and_Anisotropic_Waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/29651159_Stability_of_Perfectly_Matched_Layers_Group_Velocities_and_Anisotropic_Waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/222700573_A_new_absorbing_layer_for_elastic_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/222700573_A_new_absorbing_layer_for_elastic_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/222700573_A_new_absorbing_layer_for_elastic_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/222700573_A_new_absorbing_layer_for_elastic_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/48178176_The_Analysis_of_Matched_Layers?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/222692066_Radiation_boundary_conditions_for_time-dependent_waves_based_on_complete_plane_wave_expansions?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/222537340_A_high-order_super-grid-scale_absorbing_layer_and_its_application_to_linear_hyperbolic_systems?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/258340954_A_Well-Posed_and_Discretely_Stable_Perfectly_Matched_Layer_for_Elastic_Wave_Equations_in_Second_Order_Formulation?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/266971083_Boundary_Waves_and_Stability_of_the_Perfectly_Matched_Layer_for_the_Two_Space_Dimensional_Elastic_Wave_Equation_in_Second_Order_Form?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/266971083_Boundary_Waves_and_Stability_of_the_Perfectly_Matched_Layer_for_the_Two_Space_Dimensional_Elastic_Wave_Equation_in_Second_Order_Form?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/266971083_Boundary_Waves_and_Stability_of_the_Perfectly_Matched_Layer_for_the_Two_Space_Dimensional_Elastic_Wave_Equation_in_Second_Order_Form?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/266971083_Boundary_Waves_and_Stability_of_the_Perfectly_Matched_Layer_for_the_Two_Space_Dimensional_Elastic_Wave_Equation_in_Second_Order_Form?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/266159702_Improved_forward_wave_propagation_and_adjoint-based_sensitivity_kernel_calculations_using_a_numerically_stable_finite-element_PML?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/266159702_Improved_forward_wave_propagation_and_adjoint-based_sensitivity_kernel_calculations_using_a_numerically_stable_finite-element_PML?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/215514388_A_Perfect_Matched_Layer_for_the_Absorption_of_Electromagnetic_Waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/222984039_High-Order_Local_Non-Reflecting_Boundary_Conditions_A_Review?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/223397152_Guided_elastic_waves_and_perfectly_matched_layers?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/262071872_The_role_of_numerical_boundary_procedures_in_the_stability_of_perfectly_matched_layers?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/262071872_The_role_of_numerical_boundary_procedures_in_the_stability_of_perfectly_matched_layers?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/284921325_Dynamic_earthquake_rupture_simulations_on_nonplanar_faults_embedded_in_3D_geometrically_complex_heterogeneous_elastic_solids?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/257592447_Simulation_of_Dynamic_Earthquake_Ruptures_in_Complex_Geometries_Using_High-Order_Finite_Difference_Methods?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/270033157_Application_of_the_multiaxial_perfectly_matched_layer_M-PML_to_near-surface_seismic_modeling_with_Rayleigh_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/270033157_Application_of_the_multiaxial_perfectly_matched_layer_M-PML_to_near-surface_seismic_modeling_with_Rayleigh_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/270033157_Application_of_the_multiaxial_perfectly_matched_layer_M-PML_to_near-surface_seismic_modeling_with_Rayleigh_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/270033157_Application_of_the_multiaxial_perfectly_matched_layer_M-PML_to_near-surface_seismic_modeling_with_Rayleigh_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/270033157_Application_of_the_multiaxial_perfectly_matched_layer_M-PML_to_near-surface_seismic_modeling_with_Rayleigh_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/270033157_Application_of_the_multiaxial_perfectly_matched_layer_M-PML_to_near-surface_seismic_modeling_with_Rayleigh_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
https://www.researchgate.net/publication/270033157_Application_of_the_multiaxial_perfectly_matched_layer_M-PML_to_near-surface_seismic_modeling_with_Rayleigh_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==


374 K. Duru et al. / Journal of Computational Physics 303 (2015) 372–395

Fig. 1. Time history of the maximum norm energy on the grid for aluminum waveguide with cs/cp = 0.4593.

zontal boundary, and the left half plane PML problem corresponding to the vertical right outer edge of the PML. The Cauchy 
problem is known to be stable [3,2], and will not be discussed further.

In the lower half plane problem, the free surface boundary interacts with the PML. In the first order case the PML metric 
transform leaves this boundary condition in the same form as without the PML. Stability of this lower half plane problem 
can be analyzed using normal mode analysis, and it is not surprising that this approach leads to the same analysis as for 
the second order formulation, see [4]. A first result is therefore that no growing modes are supported in the PML by the 
free surface boundary condition at a boundary parallel to the PML damping direction. In particular the analysis in [4] shows 
that Rayleigh waves modes are damped as they propagate along the boundary in the PML’s damping direction.

The second result concerns the left half plane problem, for which investigate the stability of linear boundary conditions 
using normal mode analysis. The result is that any linear boundary condition, which guarantees bounded solution for the 
elastic wave equation without the PML, can be used without supporting growing modes in the PML. In particular, commonly 
used boundary conditions such as: Dirichlet, traction free and characteristic boundary conditions are fine. However, while 
the free surface boundary conditions support Rayleigh wave modes propagating in the tangential directions without decay, 
the characteristic boundary conditions ensure that all boundary wave modes are dissipated.

An important objective of this paper is to develop a systematic procedure to effectively enforce these boundary condi-
tions in a PML in a discrete setting. The numerical method used in Fig. 1 is a high-order, summation-by-parts (SBP) finite 
difference scheme [24,22,18,23]. In these methods [18,23], boundary conditions are enforced weakly using a penalty tech-
nique known as the simultaneous approximation term (SAT) method [21]. The power of the SBP-SAT method is that if the 
continuous problem satisfies an energy estimate, stability can be guaranteed by a careful choice of penalty parameters and 
establishing analogous discrete energy estimates. It can also be shown that discontinuous finite/spectral elements and nodal 
finite volume methods satisfy the SBP property [17,25] and therefore can be interpreted as SBP-SAT schemes. Similar to 
SBP-SAT schemes, finite/spectral elements and nodal finite volume methods yield discrete energy estimates analogous to the 
continuous energy estimates of the partial differential equation (PDE).

The PML is a non-standard hyperbolic system, and for general systems like the elastic wave equation, there is no energy 
estimate for the PML, and hence no procedure of determining penalty parameters. In the computations presented in Fig. 1
we simply used the same penalties as without PML, where they yield a stable approximation. This approach can be disas-
trous as shown by Fig. 1. Clearly, good stability properties for the numerical method without the PML do not carry over 
once a PML is added, even if the PML is stable in the continuous setting.

Finally, we consider a one-dimensional model PML problem, and present a procedure to use this one dimensional model 
to derive SAT terms to be used in a two dimensional SBP finite difference scheme. The one-dimensional model includes only 
variations normal to the boundary, and it satisfies an energy estimate in the Laplace space. To ensure numerical stability of 
the discrete PML in a corresponding sense, it is crucial to be able to discretely mimic the derivation of the continuous energy 
estimate. The result is that, by including specific PML stabilizing penalties in the auxiliary equations we are able to derive 
discrete energy estimates that analogous to continuous energy estimates. A classification of dissipative and non-dissipative 
boundary procedures is also possible from this analysis.

The penalty terms can be directly applied in higher space dimensional settings, and two space dimensional numerical 
experiments verify that the PML stabilizing penalties are necessary also in two space dimensional settings. However, the 
two space dimensional experiments show that including the PML stabilizing penalties is sufficient to ensure long time 
stability. The final result, which we demonstrate numerically, is that the boundary condition (or its corresponding discrete 
implementation) must be dissipative [26]. The numerical experiments also demonstrate the stable and robust treatments 
of PML corners. Though the focus here is on SBP-SAT schemes, but the ideas developed in this paper can be extended to 
finite/spectral elements and nodal finite volume methods.
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The remainder of the paper will proceed as follows. In Section 2 we introduce the equations of linear elasticity and the 
corresponding PML equations. Stability of the continuous PML is analyzed in Section 3. In Section 4 we present numerical 
approximations and demonstrate numerical stability. Numerical experiments are presented in Section 5 verifying the analysis 
of previous sections. We offer a brief conclusion in Section 6.

2. Equations

In this section, the equations of linear elasticity and the corresponding modal PML equations are introduced.

2.1. Elastic wave equation

Consider the two space dimensional equations of linear elastodynamics
⎛

⎜⎜⎜⎜⎜⎜⎝

ρ ∂vx
∂t

ρ
∂v y
∂t

S

⎛

⎜⎝

∂σxx
∂t

∂σyy
∂t

∂σxy
∂t

⎞

⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

∂σxx
∂x + ∂σxy

∂ y
∂σxy
∂x + ∂σyy

∂ y
∂vx
∂x

∂v y
∂ y

∂vx
∂ y + ∂v y

∂x

⎞

⎟⎟⎟⎟⎟⎟⎠
, (1)

in an isotropic homogeneous elastic rectangular block, −x0 ≤ x ≤ x0, −y0 ≤ y ≤ y0, with x0, y0 > 0, where the unknown 
v =

(
vx, v y

)T is the particle velocity vector and 
(
σxx,σyy,σxy

)T is the stress vector. At the initial time t = t0 ≥ 0, we set the 
initial data

⎛

⎜⎜⎜⎝

vx (x, y, t = t0)
v y (x, y, t = t0)
σxx (x, y, t = t0)
σyy (x, y, t = t0)
σxy (x, y, t = t0)

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

v0
x (x, y)

v0
y (x, y)

σ 0
xx (x, y)

σ 0
yy (x, y)

σ 0
xy (x, y)

⎞

⎟⎟⎟⎟⎟⎠
. (2)

Here, ρ is the density and the compliance matrix is S = C−1, where C = CT > 0 is the stiffness matrix. Since the stiffness 
matrix is symmetric positive definite, it also follows that the compliance matrix is symmetric positive definite, S = ST > 0. 
In an isotropic medium the stiffness matrix is given by

C =

⎛

⎝
2µ + λ λ 0

λ 2µ + λ 0
0 0 µ

⎞

⎠ . (3)

Here, λ and µ are the first and the second Lamé parameters. The eigenvalues of C are µ, 2µ, 2 (µ + λ). For all µ > 0 and 
λ > −µ, the eigenvalues of C are strictly positive. The elastic wave equation supports two families of waves, the P-wave and 
the S-wave, with the corresponding wave speeds cp and cs defined by

cp =
√

2µ + λ

ρ
, cs =

√
µ

ρ
. (4)

In this work, we will consider constant elastic coefficients and scale time with cp such that density is unity ρ ≡ 1. Then we 
can introduce the non-dimensional parameter γ = cs/cp , the ratio of the wave-speeds. The case γ → 0 corresponds to the 
incompressible or acoustic limit. Note also that the scaling results to a non-dimensional stiffness matrix

C̃ =

⎛

⎝
1 1 − 2γ 2 0

1 − 2γ 2 1 0
0 0 γ 2

⎞

⎠ . (5)

The eigenvalues of the scaled stiffness matrix C̃ are γ 2, 2γ 2, 2 
(
1 − γ 2). For all µ > 0, λ ≥ 0, the velocity ratio satisfies 

0 < γ ≤
√

2/2. Nevertheless, in general the condition on γ for well-posedness is 0 < γ 2 < 1.
For completeness, we close the edges of the rectangle with the general linear boundary conditions

1 − r(x)
x

2
vx ± 1 + r(x)

x

2
σxx = 0,

1 − r(x)
y

2
γ v y ± 1 + r(x)

y

2
σxy = 0, at x = ±x0, (6)

1 − r(y)
x

2
γ vx ± 1 + r(y)

x

2
σxy = 0,

1 − r(y)
y

2
v y ± 1 + r(y)

y

2
σyy = 0, at y = ±y0. (7)
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The non-dimensional real constants r(x)
x , r(x)

y , r(y)
x , r(y)

y with |r(x)
x | ≤ 1, |r(x)

y | ≤ 1, |r(y)
x | ≤ 1, |r(y)

y | ≤ 1 are reflection coefficients. 
For particular sets of the reflection coefficients we have

clamped wall: r(x)
x = r(x)

y = −1, r(y)
x = r(y)

y = −1, (8a)

free surface: r(x)
x = r(x)

y = 1, r(y)
x = r(y)

y = 1, (8b)

characteristic: r(x)
x = r(x)

y = 0, r(y)
x = r(y)

y = 0. (8c)

Note that with |r(x)
x | = 1, |r(x)

y | = 1, |r(y)
x | = 1, |r(y)

y | = 1, then from (6)–(7) we have

vxσxx = v yσxy = 0, at x = ±x0,

vxσxy = v yσyy = 0, at y = ±y0. (9)

If |r(x)
x | < 1, |r(x)

y | < 1, |r(y)
x | < 1, |r(y)

y | < 1, then from (6)–(7) we have

vxσxx = ∓1 − r(x)
x

1 + r(x)
x

v2
x = ∓1 + r(x)

x

1 − r(x)
x

σ 2
xx, v yσxy = ∓γ

1 − r(x)
y

1 + r(x)
y

v2
y = ∓ 1

γ

1 + r(x)
y

1 − r(x)
y

σ 2
xy, at x = ±x0,

vxσxy = ∓γ
1 − r(y)

x

1 + r(y)
x

v2
x = ∓ 1

γ

1 + r(y)
x

1 − r(y)
x

σ 2
xy, v yσyy = ∓1 − r(y)

y

1 + r(y)
y

v2
y = ∓1 + r(y)

y

1 − r(y)
y

σ 2
yy, at x = ±y0. (10)

Using standard energy methods and the expressions (9)–(10), it can be shown that the scaled elastic wave equation (1)
with the boundary conditions (6)–(7) satisfies

Eγ (t) ≤ Eγ (0) , ∀t ≥ 0. (11)

Here

Eγ (t) =
∫

&

⎛

⎜⎝
1
2

(
v2

x + v2
y

)
+ 1

2

⎛

⎝
σxx
σyy
σxy

⎞

⎠
T

S̃

⎛

⎝
σxx
σyy
σxy

⎞

⎠

⎞

⎟⎠dxdy, (12)

with S̃ = C̃−1, is the scaled elastic energy. In the acoustic limit γ → 0, C̃ is no longer invertible so the energy (12) is not 
appropriate. However, if γ = 0 then σxy ≡ σ 0

xy , and σxx = σyy = −P denotes the acoustic pressure. We can define the energy

E0(t) =
∫

&

1
2

(
v2

x + v2
y + P 2

)
dxdy. (13)

We also have

E0 (t) ≤ E0 (0) . (14)

In this paper we will exclusively consider the PML in an elastic solid, with γ > 0. The analysis in [11] can be easily adapted 
to study the stability of the PML in acoustic media, with γ = 0.

2.2. PML for the elastic wave equation

The PML for the elastic wave equation in first order form is well established, see for instance [3] for the modal PML and 
[2] for the split field PML. As above, we consider an isotropic homogeneous elastic rectangular block. To begin with, let the 
Laplace transform of v (x, y, t) be defined by

v̂(x, y, s) =
∞∫

0

e−stv (x, y, t)dt, s = a + ib, ℜs = a > 0. (15)

We consider a setup where the PML is included in both the x-direction and y-direction. Take the Laplace transform of 
the elastic wave equation (1) in time. The PML can be constructed direction-by-direction using ∂/∂x → 1/Sx∂/∂x, ∂/∂ y →
1/S y∂/∂ y, for the vertical and horizontal layers, respectively. Here

Sx = 1 + dx(x)
s + α

, S y = 1 + dy(y)

s + α
, (16)

are the complex PML metrics, with s denoting the Laplace dual time variable. The time-dependent modal PML is defined by
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⎛
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∂σxx
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∂σxy
∂x + ∂σyy
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, (17)

⎛
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∂t

⎞
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=

⎛
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, (18)
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=

⎛
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∂vx
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⎞

⎟⎟⎟⎟⎠
. (19)

Here, dx(x), dy(y) ≥ 0 are the damping functions and α ≥ 0 is the complex frequency shift (CFS) [7]. The unknowns (
pxx, pxy

)T , 
(

p yx, p yy
)T , 

(
qxx,qxy

)T , 
(
qyx,qyy

)T are auxiliary variables introduced to localize the PML in time. The PML 
(17)–(19) is the same as the PML derived in [3]. It is possible to choose auxiliary variables differently in the Laplace space 
yielding a different system of PDEs in the physical space. However, all resulting PMLs can be shown to be linearly equivalent 
to (17)–(19). We will initialize the PML with zero initial data and terminate the PML (17)–(19) with the linear boundary con-
ditions (6)–(7). Note that the damping dx, dy and auxiliary functions vanish almost everywhere except in the layers defining 
the PML. In particular the x-dependent PML damping function dx(x) is nonzero, dx(x) > 0, dy(y) = 0, only in the vertical PML 
layers truncating the left and right edges of the computational domain and the y-dependent PML damping function dy(y)
is nonzero, dx(x) = 0, dy(y) > 0, in the horizontal PML layers truncating the bottom and top edges of the computational 
domain. There are also corner regions where both damping functions are simultaneously nonzero, dx(x) > 0, dy(y) > 0.

Without damping, dx(x) ≡ 0, dy(y) ≡ 0, we recover the elastic wave equation (1), which satisfies the energy estimate 
(11). However, the energy estimate is not applicable to the PML, (17)–(19) with dx(x) > 0 or dy(y) > 0.

3. Stability

Here, we perform the stability analysis of the PML. The analysis focuses on the constant coefficient problem. To succeed, 
we will divide the problem into 3: a) a vertical PML layer with dx > 0, dy = 0, b) horizontal PML layer with dx = 0, dy > 0, 
and c) a PML corner region with dx > 0, dy > 0. The stability analysis of each PML layer can be performed using normal 
mode analysis by considering separately the corresponding half-plane problems with dx > 0, dy = 0 or dx = 0, dy > 0, subject 
to the boundary conditions (6) and (7) respectively. We will focus on a vertical PML layer with dx > 0, dy = 0 and analyze 
the corresponding half-plane PML problems subject to the boundary conditions (6) and (7). A similar analysis is valid for the 
horizontal PML layer, with dx = 0, dy > 0. We will also show that the PML (17)–(19) with the boundary conditions (6)–(7)
ensure a stable and robust treatment of PML corners, when dx = dy > 0.

3.1. The vertical PML layer problem

Consider now the vertical PML layer with constant damping dx = d > 0, dy = 0. The auxiliary differential equation (19)
decouples from the modified elastic wave equation (17). Thus we consider (17)–(18) with dx = d > 0, dy = 0 subject to the 
boundary conditions (6)–(7). The stability analysis of the IBVP (17)–(18) with (6)–(7) is not as straightforward. Following 
[11], we simplify further by splitting the problem into: 1) a Cauchy problem (17)–(18) in −∞ < x < ∞, −∞ < y < ∞, 
with no boundary conditions, 2) a lower half-plane problem (17)–(18) in −∞ < x < ∞, −∞ < y ≤ y0 with the boundary 
condition (7) at y = y0, and 3) a left half-plane problem (17)–(18) in −∞ < x ≤ x0, −∞ < y < ∞ with the boundary 
condition (6) at x = x0. Each of the three problems can be analyzed separately.

For the Cauchy PML problem the stability of the PML is rather well understood for various classes of problems, see [3]
for the modal PML and [2] for the split field PML. The Cauchy problem will not be discussed further.

For the lower half-plane PML problem it is straight forward to adapt the theory developed in [10,4] for second order 
system. In isotropic elastic materials, the results of [10,4] show that the PML IBVP subject to the physical boundary condition 
(7) at y = y0, is asymptotically stable.

There is no stability theory yet for the left half-plane PML problem, with the boundary condition (6) terminating the PML 
at x = x0. Here, we develop a stability theory for the left half-plane problem. In particular, we prove that the corresponding 
PML IBVP does not support nontrivial growing modes.
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3.1.1. A PML half plane problem with damping normal to the boundary
We will now consider the left half-plane problem, that is the PML (17)–(18) in −∞ < x ≤ x0, −∞ < y < ∞, with the 

boundary condition (6) at x = x0. The ansatz

U (x, y, t) = est+iky yÛ (x) , (20)

yields

(Sxs)2̂v = A
d2̂v
dx2 + (i Sxky)

2B v̂ + (i Sxky)
(

C + CT
) d v̂

dx
, (21)

and

1
2Sxs

(
(Sxs) (I − R)

√
Âv + (I + R)

(
A

d v̂
dx

+ i
(

Sxky
)

C v̂
))

= 0, x = x0. (22)

In (21)–(22) we have eliminated the stress fields and the auxiliary variables. Here, Sx is the PML metric given by (16) and 
the coefficient matrices are given by

A =
(

1 0
0 γ 2

)
,

√
A =

(
1 0
0 γ

)
, B =

(
γ 2 0
0 1

)
, C =

(
0 1 − 2γ 2

γ 2 0

)
, R =

(
r(x)

x 0
0 r(x)

y

)

, I =
(

1 0
0 1

)
.

We will only consider |rx| ≤ 1, |ry| ≤ 1. Introducing ̂s = Sxs and ̂ky = Sxky simplifies the notation, so that we have

ŝ2̂v = A
d2̂v
dx2 + (îky)

2B v̂ + îky

(
C + CT

) d v̂
dx

, (23)

with the boundary condition

1
2̂s

(
ŝ (I − R)

√
Âv + (I + R)

(
A

d v̂
dx

+ îkyC v̂
))

= 0, x = x0. (24)

Note that the corresponding PML half-plane problem for the elastic wave equation in second order form yields the same 
system, (23) and (24). For the ordinary differential equation (23) we can construct modal solutions

v̂ = (eκx. (25)

Substituting (25) into (23) yields
(

ŝ 2I − κ2A + k̂ 2
y B − îkyκ

(
C + CT

))
( = 0, (26)

with all nontrivial solutions satisfying

det
(

ŝ 2I − κ2A + k̂ 2
y B − îkyκ

(
C + CT

))
= 0. (27)

The characteristic equation (27) has four roots κ = ±κ̂1, κ = ±κ̂2, with the corresponding eigenvectors

(
(+)
1 =

[
−îky
κ̂1
1

]

, (
(−)
1 =

[
îky
κ̂1
1

]

, (
(+)
2 =

[
κ̂2
îky

1

]

,(
(−)
2 =

[ −κ̂2
îky

1

]

,

where

κ̂1 =
√

ŝ 2 + γ 2̂k 2
y

γ 2 = Sx

√
s2 + γ 2k2

y

γ 2 , κ̂2 =
√

ŝ 2 + k̂ 2
y = Sx

√
s2 + k2

y .

Note in particular that since k̂y = Sxky , the eigen-functions ( j are independent of the PML parameter Sx . The general 
solution is

v̂ = θ1(
(+)
1 eκ̂1x + β1(

(−)
1 e−κ̂1x + θ2(

(+)
2 eκ̂2x + β2(

(−)
2 e−κ̂2x. (28)

It can be shown that for all d, α ≥ 0, ℜs > 0 and ky ∈ R, we have ℜκ̂1, ℜκ̂2 > 0; see Corollary 1 in Appendix A. Thus 
boundedness of the solution at x → −∞ implies β1, β2 = 0. The parameters θ1, θ2 are determined by the boundary condition 
(24). Dropping the superscript (+) and inserting (28) in (24) we obtain

1
2̂s

(
ŝ (I − R)

√
A (θ1(1 + θ2(2) + (I + R)

(
A (κ̂1θ1(1 + κ̂2θ2(2) + îkyC (θ1(1 + θ2(2)

))
= 0. (29)
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Since ̂s = Sxs, and κ̂1 = Sxκ1, κ̂2 = Sxκ2, ̂ky = Sxky where

κ1 =
√

s2 + γ 2k2
y

γ 2 , κ2 =
√

s2 + k2
y,

we have

1
2s

(
s (I − R)

√
A (θ1(1 + θ2(2) + (I + R)

(
A (κ1θ1(1 + κ2θ2(2) + ikyC (θ1(1 + θ2(2)

))
= 0. (30)

It is important to note that the system of equations (30) does not depend on any of the PML parameters d, α, and is 
identical to the corresponding equation for the undamped problem. This is unlike the corresponding equation for the lower 
half-plane problem, which depends on the PML parameters d, α, see [10,4]. Thus, if the undamped left half-plane problem 
is stable, it follows that the PML IBVP is also stable.

We can now rewrite (30) as

K
(

s,ky, r(x)
x , r(x)

y

)(
θ1
θ2

)
= 0,

where K
(

s,ky, r(x)
x , r(x)

y

)
is a 2 × 2 matrix. Stability can be characterized by the equation

C
(

s,ky, r(x)
x , r(x)

y

)
:= det

(
K

(
s,ky, r(x)

x , r(x)
y

))
= 0. (31)

If there is a root with ℜs > 0 then all corresponding IBVPs (damped/undamped, first/second order formulation) are unstable 
in every sense.

In addition, if there are purely imaginary roots s = iβ and corresponding nontrivial modes (θ1, θ2) ̸= 0, all corresponding 
IBVPs will support boundary wave modes. These boundary wave modes move orthogonally to the PML damping direction 
and are not damped by the PML. Since the determinant is independent of the PML parameters we can use results for the 
undamped IBVP to predict the existence of boundary modes along the outer boundary of a PML for different boundary 
conditions.

Theorem 1. Consider the constant coefficient left half plane PML problem with dx = d > 0, dy = 0 subject to the boundary condition 
(6) at x = x0 with |r(x)

x | ≤ 1, |r(x)
y | ≤ 1. The IBVP has no nontrivial solution of the form (25) with ℜs > 0.

Proof. Since the elastic wave equation (1) with the boundary condition (6) at x = x0 satisfy the energy estimate (11) we 
must have ℜs ≤ 0, for all ky ∈ R. Otherwise if ℜs > 0, then the energy will grow for some solutions, which is also in 
contradiction with the energy estimate (11). ✷

We consider in more detail three commonly used boundary conditions

clamped wall: r(x)
x = r(x)

y = −1, v̂x = 0, v̂ y = 0, (32a)

free surface: r(x)
x = r(x)

y = 1, σ̂xx = 0, σ̂xy = 0, (32b)

characteristic: r(x)
x = r(x)

y = 0,
1
2

v̂x + 1
2
σ̂xx = 0,

1
2
γ v̂ y + 1

2
σ̂xy = 0. (32c)

The determinant C
(

s,ky, r(x)
x , r(x)

y

)
is defined in the positive complex plane, ℜs ≥ 0, but it can be extended to the negative 

complex plane, ℜs < 0. We summarize the results as follows:

Theorem 2. Consider the determinant equation C
(

s,ky, r(x)
x , r(x)

y

)
= 0 defined by (31).

a) Clamped wall: There are no roots of C
(
s,ky,−1,−1

)
= 0 for all s ∈ C, thus implying θ1 = θ2 = 0.

b) Free surface: Any root s of C
(
s,ky,1,1

)
= 0 must be purely imaginary s = iβ , with β ∈ R.

c) Characteristic: Any root s of C
(
s,ky,0,0

)
= 0 must satisfy ℜs < 0.

Proof. See Appendix B. ✷

The clamped boundary condition (32a) does not support boundary wave modes. The purely imaginary roots of the free 
surface boundary condition correspond to Rayleigh wave modes propagating on the surface of an elastic solid without decay. 
When a PML is closed by the free surface boundary condition (32b) at the outer edge, Rayleigh wave modes are supported, 
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and propagate perpendicularly to the PML damping direction without decay along the outer edge. This is in contrast to the 
free surface boundary conditions at y = y0, where all Rayleigh wave modes are damped by the PML as they move along 
the boundary in the PML damping direction; see [10,4]. Only temporally decaying boundary modes can be supported by the 
characteristic boundary condition (32c).

3.1.2. One space dimensional energy estimate in the Laplace space
In the previous subsection we established, using modal analysis, the temporal stability of the continuous PML problem 

(17)–(18) subject to the boundary conditions (6) terminating the PML at x = x0. The remaining challenge lies in constructing 
numerical approximations and ensuring numerical stability. Extending this modal analysis to the discrete setting is possible, 
but non-trivial in all but the most simplified cases. This motivates the development of an energy estimate that can be used 
to guide the numerical implementation of boundary conditions. The power of the energy estimate is that we can construct 
stable numerical discretization by mimicking this continuous energy estimate in a discrete setting.

To begin, take the Laplace transform in time of the PML equations (17)–(19) and the boundary conditions (6)–(7), we 
have

⎛

⎜⎜⎜⎜⎝

ŝvx
ŝv y

S̃

⎛

⎝
sσ̂xx
sσ̂yy
sσ̂xy

⎞

⎠

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

1
Sx

∂σ̂xx
∂x

1
Sx

∂σ̂xy
∂x

1
Sx

∂ v̂x
∂x

0
1
Sx

∂ v̂ y
∂x

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
S y

∂σ̂xy
∂ y

1
S y

∂σ̂yy
∂ y

0
1

S y

∂ v̂ y
∂ y

1
S y

∂ v̂x
∂ y

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎝

v0
x

v0
y

S̃

⎛

⎜⎝
σ 0

xx
σ 0

yy

σ 0
xy

⎞

⎟⎠

⎞

⎟⎟⎟⎟⎟⎠
, ℜs > 0, (33)

1 − r(x)
x

2
v̂x ± 1 + r(x)

x

2
σ̂xx = 0,

1 − r(x)
y

2
γ v̂ y ± 1 + r(x)

y

2
σ̂xy = 0, at x = ±x0, (34)

1 − r(y)
x

2
γ v̂x ± 1 + r(y)

x

2
σ̂xy = 0,

1 − r(y)
y

2
v̂ y ± 1 + r(y)

y

2
σ̂yy = 0, at y = ±y0. (35)

Here U0 =
(

v0
x , v0

y,σ
0
xx,σ

0
yy,σ

0
xy

)T
denotes the initial data. In (33) we have eliminated the auxiliary variables. Introduce 

Û =
(

v̂x, v̂ y, σ̂xx, σ̂yy, σ̂xy
)T , and define the weighted scalar product

(
Û,U0

)

γ
=

∫

&

⎛

⎜⎝
1
2

(
v̂ ∗

x v0
x + v̂ ∗

y v0
y

)
+ 1

2

⎛

⎝
σ̂xx
σ̂yy
σ̂xy

⎞

⎠
H

S̃

⎛

⎜⎝
σ 0

xx
σ 0

yy

σ 0
xy

⎞

⎟⎠

⎞

⎟⎠dxdy, (36)

and the corresponding energy

Êγ (s) ≡
(
Û, Û

)
γ =

∫

&

⎛

⎜⎝
1
2

(
|̂vx|2 + |̂v y|2

)
+ 1

2

⎛

⎝
σ̂xx
σ̂yy
σ̂xy

⎞

⎠
H

S̃

⎛

⎝
σ̂xx
σ̂yy
σ̂xy

⎞

⎠

⎞

⎟⎠dxdy. (37)

Here, v∗ denotes the complex conjugate of v , ̂v H denotes the complex conjugate transpose of ̂v and ̃S = C̃−1, with ̃C defined 
in (5).

Theorem 3. Consider the constant coefficient PML equation in the Laplace space (33) with dx(x) ≡ d > 0, dy(y) ≡ 0 and ℜs > 0. The 
solution of the corresponding one space dimensional problem with vanishing derivatives in the y-direction and the boundary condition 
(34) at x = ±x0 , satisfies

ℜ(sSx)̂Eγ (s) = ℜ(Û, SxÛ0)γ + BT. (38)

Here ℜ(sSx) > 0 and BT = ℜ 
(∫ y=y0

y=−y0

(
v̂ ∗

x σ̂xx + v̂∗
yσ̂xy

) ∣∣∣
x=x0

x=−x0
dy

)
. If |r(x)

x | < 1, |r(x)
x | < 1, then BT < 0. With strict equality |r(x)

x | =

|r(x)
x | = 1 we have BT = 0.

Proof. Let dx(x) ≡ d > 0, dy(y) ≡ 0 and ∂/∂ y ≡ 0 in (33), and multiply equation (33) by SxÛH from the left. Adding the 
conjugate of the product and integrating over the whole domain gives

ℜ(sSx)̂Eγ (s) = ℜ(Û, SxÛ0)γ + BT. (39)
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For α = 0, we have sSx = s + d(x), implying ℜ(sSx) > 0, for all ℜs = a > 0 and d(x) ≥ 0. If α > 0 it can also be shown that 
ℜ(sSx) > 0, for all ℜs = a > 0, see equation (A.5) in Appendix A. Here, BT are boundary terms given by

BT = ℜ

⎛

⎝
y=y0∫

y=−y0

(
v̂∗

x σ̂xx + v̂∗
yσ̂xy

) ∣∣∣
x=x0

x=−x0
dy

⎞

⎠ . (40)

By applying the boundary condition (34) it follows that for |r(x)
x | = |r(x)

y | = 1 we have

BT = 0. (41)

For |r(x)
x | < 1, |r(x)

x | < 1 we have

BT = −
y=y0∫

y=−y0

(
1 − r(x)

x

1 + r(x)
x

|̂vx|2 + γ
1 − r(x)

y

1 + r(x)
y

|̂v y|2
)

x=−x0

dy −
y=y0∫

y=−y0

(
1 − r(x)

x

1 + r(x)
x

|̂vx|2 + γ
1 − r(x)

y

1 + r(x)
y

|̂v y|2
)

x=x0

dy ≤ 0,

(42)

or equivalently

BT = −
y=y0∫

y=−y0

(
1 + r(x)

x

1 − r(x)
x

|σ̂xx|2 + 1
γ

1 + r(x)
y

1 − r(x)
y

|σ̂xy|2
)

x=−x0

dy −
y=y0∫

y=−y0

(
1 + r(x)

x

1 − r(x)
x

|σ̂xx|2 + 1
γ

1 + r(x)
y

1 − r(x)
y

|σ̂xy|2
)

x=x0

dy ≤ 0.

(43)

The proof of the theorem is complete. ✷

While the boundary terms (42) or (43) will dissipate of energy, the boundary terms (41) is non-dissipative. Note that 
since the boundary terms BT are always zero or negative we can use Cauchy–Schwartz inequality to obtain a strict bound 
on the solution in terms of the initial data

√
Êγ (s) ≤ |Sx|

ℜ(sSx)

√
E0
γ . (44)

Here, E0
γ denotes the elastic energy for the initial data. However, the energy estimate (44) is not sharp. In particular, unlike 

the energy equation (39), the energy estimate (44) does not give any information on how energy is dissipated by the 
boundary terms.

Remark 1. It is important to note that a similar modal analysis in Subsection 3.1.1 and the energy estimates (39) and (44)
are also valid for the horizontal PML layer, that is when dx = 0, dy = d > 0.

3.2. The PML corner problem

Consider now a constant coefficient PML in the corner region, (17)–(19) with dx = dy = d > 0. Then, the PML metrics are 
identical S y = Sx . As above, the application of standard energy methods yields the energy equation

ℜ(sSx)̂Eγ (s) = ℜ(Û, SxÛ0)γ + BTx + BTy . (45)

Here, ̂Eγ (s) is the elastic energy defined in (37) and the boundary terms are given by

BTx = ℜ

⎛

⎝
y=y0∫

y=−y0

(
v̂∗

x σ̂xx + v̂∗
yσ̂xy

) ∣∣∣
x=x0

x=−x0
dy

⎞

⎠ , BTy = ℜ

⎛

⎝
x=x0∫

x=−x0

(
v̂∗

x σ̂xy + v̂∗
yσ̂yy

) ∣∣∣
y=y0

y=−y0
dx

⎞

⎠ . (46)

By (41)–(43), we know that the imposition of the boundary conditions (34)–(35) must satisfy BTx ≤ 0, BTy ≤ 0 for all 
|r(x)

x | ≤ 1, |r(x)
y | ≤ 1, |r(y)

x | ≤ 1, |r(y)
y | ≤ 1. As in the 1D case the boundary terms vanish if the corresponding reflection 

coefficients have unit absolute values. As before we classify the boundary procedure as non-dissipative or dissipative de-
pending on whether the boundary terms vanish or are negative definite. Finally we note that the PML corner problem with 
dx = dy = d > 0 also satisfies the energy estimate (44).
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4. Numerical approximations

In this section, we introduce several discrete approximations. We will use SBP finite difference operators to approximate 
all spatial derivatives in (17)–(19) and impose boundary conditions (6)–(7) weakly using penalties. In order to ensure nu-
merical stability we will choose penalty parameters such that we can derive discrete energy estimates analogous to the 
continuous energy estimate (39) and (45).

4.1. Spatial discrete operators

To begin with, consider the uniform discretization of the interval, −x0 ≤ x ≤ x0, with Nx number of grid points and the 
uniform spatial step hx > 0

xi = −x0 + (i − 1)hx, i = 1,2, . . . , Nx, hx = 2x0

Nx − 1
. (47)

Let Dx be a differentiation matrix approximating the first derivative, Dx ≈ ∂/∂x, on the uniform grid (47). The matrix Dx is 
an SBP operator (in one space dimension), if the following properties hold

Dx = H−1
x Q x, Q T

x + Q x = E Rx − E Lx, Hx = HT
x > 0. (48)

Here, E Lx = diag(1, 0, 0, . . . , 0), E Rx = diag(0, 0, 0, . . . , 1) pick out the left and right boundary values. The matrix Q x is 
almost skew-symmetric. The matrix Hx is diagonal with positive entries h(x)

ii > 0, thus defining a discrete norm. Note in 
particular that Hx defines a quadrature rule.

From the SBP property (48) we also have

Dx = H−1
x Q x = H−1

x

(
−

(
H−1

x Q x

)T
Hx + E Rx − E Lx

)
= −H−1

x DT
x Hx + H−1

x (E Rx − E Lx) . (49)

The most important property of the SBP finite difference operator Dx defined in (48) is that it mimics the integration-by-
parts property of the continuous operator. This is crucial in order to prove numerical stability. The SBP operator used in this 
study can be found in [22].

We discretize the rectangular domain, in the x- and y-directions, using Nx, N y grid points, respectively, with uniform 
spatial steps hx, hy > 0. A two space dimensional scalar grid function v is stacked as a vector of length Nx N y ,

v =
(

v11, v12, . . . , v Nx N y

)T
.

Spatial operators in higher space dimensions are derived using the Kronecker products,

Dx =
(

Dx ⊗ I y
)
, Dy =

(
Ix ⊗ D y

)
, Hx =

(
Hx ⊗ I y

)
, Hy =

(
Ix ⊗ H y

)
,

E+
x =

(
E Rx ⊗ I y

)
, E+

y =
(

Ix ⊗ E R y
)
, E−

x =
(

E Lx ⊗ I y
)
, E−

y =
(

Ix ⊗ E Ly
)
.

Here, Dx, D y are one space dimensional SBP operators with diagonal norms Hx, H y . The matrices E Lx, E Ly, E Rx, E R y are 
boundary operators, and Ix, I y are identity matrices of sizes corresponding to the number of grid points Nx, N y .

4.2. Stable discretization of the PML IBVP

The discrete approximation of the PML equations (17)–(19) using SBP operators with SAT enforcements of the boundary 
conditions (6)–(7) can be written as

⎛

⎜⎜⎜⎜⎜⎜⎝

dvx
dt

dvy
dt

S̃

⎛

⎜⎝

dσxx
dt

dσyy
dt

dσxy
dt

⎞

⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

Dxσxx + Dyσxy − dxqxx − dyqyx
Dxσxy + Dyσyy − dxqxy − dyqyy

Dxvx − dxpxx
Dyvy − dypyy

Dyvx + Dxvy − dxpxy − dypyx

⎞

⎟⎟⎟⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(x)
x H−1

x

(
E+

x F(+x)
x + E−

x F(−x)
x

)

α(x)
y H−1

x

(
E+

x F(+x)
y + E−

x F(−x)
y

)

β
(x)
x H−1

x

(
E+

x F(+x)
x − E−

x F(−x)
x

)

0
β

(x)
y
γ H−1

x

(
E+

x F(+x)
y − E−

x F(−x)
y

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
SATx

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(y)
x H−1

y

(
E+

y F(y)
x + E−

y F(−y)
x

)

α(y)
y H−1

y

(
E+

y F(y)
y + E−

y F(−y)
y

)

0

β
(y)
y H−1

y

(
E+

y F(y)
y − E−

y F(−y)
y

)

β
(y)
x
γ H−1

y

(
E+

y F(y)
x − E−

y F(−y)
x

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
SATy

, (50)
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⎛

⎜⎜⎜⎜⎝

dqxx
dt

dqxy
dt

dpxx
dt

dpxy
dt

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

Dxσxx − (dx + α)qxx
Dxσxy − (dx + α)qxy
Dxvx − (dx + α)pxx
Dxvy − (dx + α)pxy

⎞

⎟⎟⎠ − θx

⎛

⎜⎜⎜⎜⎜⎜⎝

α(x)
x H−1

x

(
E+

x F(+x)
x + E−

x F(−x)
x

)

α(x)
y H−1

x

(
E+

x F(+x)
y + E−

x F(−x)
y

)

β
(x)
x H−1

x

(
E+

x F(+x)
x − E−

x F(−x)
x

)

β
(x)
y
γ H−1

x

(
E+

x F(+x)
y − E−

x F(−x)
y

)

⎞

⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
PML stabilizing SATx term

, (51)

⎛

⎜⎜⎜⎜⎝

dqyx
dt

dqyy
dt

dpyy
dt

dpyx
dt

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

Dyσxy −
(
dy + α

)
qyx

Dyσxy −
(
dy + α

)
qxy

Dyvy −
(
dy + α

)
pyy

Dyvx −
(
dy + α

)
pyx

⎞

⎟⎟⎠ − θy

⎛

⎜⎜⎜⎜⎜⎜⎝

α(y)
x H−1

y

(
E+

y F(y)
x + E−

y F(−y)
x

)

α(y)
y H−1

y

(
E+

y F(y)
y + E−

y F(−y)
y

)

β
(y)
y H−1

y

(
E+

y F(y)
y − E−

y F(−y)
y

)

β
(y)
x
γ H−1

y

(
E+

y F(y)
x − E−

y F(−y)
x

)

⎞

⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
PML stabilizing SATy term

, (52)

where F(±x) , F(±y) are the SAT forcing terms defined by

F(±x)
x := 1 − r(x)

x

2
vx ± 1 + r(x)

x

2
σxx, F(±x)

y := 1 − r(x)
y

2
γ vy ± 1 + r(x)

y

2
σxy, at x = ±x0, (53)

F(±y)
x := 1 − r(y)

x

2
γ vx ± 1 + r(y)

x

2
σxy, F(±y)

y := 1 − r(y)
y

2
vy ± 1 + r(y)

y

2
σyy, at y = ±y0. (54)

Note that the matrices E(±)
x , E(±)

y project the SAT forcing on the boundaries, and if the boundary conditions (6)–(7) are sat-

isfied exactly then F(±x) ≡ 0 and F(±y) ≡ 0. The dimensionless real numbers α(x)
x , α(x)

y , β(x)
x , β(x)

y , θx and α(y)
x , α(y)

y , β(y)
x , β(y)

y , 
θy are penalty parameters determined by requiring stability. Note also that if θx ≠ 0, θy ≠ 0, the numerical boundary con-
ditions are extended to the auxiliary differential equations. Often, numerical stability is proven in the absence of the PML, 
when dy(y) = dx(x) = 0, and numerical boundary procedures are not extended to the auxiliary differential equation yielding 
the natural choice θx = θy = 0. However, we will show that the penalty parameter θx = θy = 1 is necessary for numerical 
stability when the PML is present, that is when dx(x) ̸= 0, dy(y) ̸= 0.

Below, we investigate numerical stability of the discrete approximations (50)–(52). We will consider first the undamped 
problem with dx(x) ≡ 0, dy(y) ≡ 0 and proceed later to the PML problem with dx(x) ≥ 0, dy(y) ≥ 0.

4.3. Stability analysis for the undamped discrete problem

We will begin with the undamped case, dx(x) ≡ 0, dy(y) ≡ 0. Then the auxiliary variables p, q decouple completely from 
the discrete elastic wave equation (50). We approximate the elastic energy (12) by a quadrature rule

Eγ h(t) =
N y∑

j=1

Nx∑

i=1

⎛

⎜⎝
1
2

(
v2

xi j + v2
yi j

)
+ 1

2

⎛

⎝
σxxi j
σyyi j
σxyi j

⎞

⎠
T

S̃i j

⎛

⎝
σxxi j
σyyi j
σxyi j

⎞

⎠

⎞

⎟⎠h(x)
ii h(y)

j j . (55)

Note that for all SBP operators considered in this study, the quadrature weights are positive h(x)
ii , h(y)

j j , > 0. Therefore, the 
discrete quantity Eγ h(t) defined in (55) is a discrete elastic energy. If the discrete solutions satisfy Eγ h(t) ≤ Eγ h(0) for all 
t ≥ 0, then we say that the numerical approximation is asymptotically stable.

Here we consider three separate penalty formulations for the undamped equations. Using standard energy analysis, the 
following can be shown to hold true (see [23] for details):

• Penalize all equations: Consider |r(x)
x | ≤ 1, |r(x)

y | ≤ 1, |r(y)
x | ≤ 1, |r(y)

y | ≤ 1. If α(x)
x = α(x)

y = 1, β
(x)
x = β

(x)
y = 1, α(y)

x =
α(y)

y = 1, β
(y)
x = β

(y)
y = 1, then

d
dt

Eγ h(t) = −1
2

N y∑

j=1

⎛

⎝
(

1 − r(x)
x

)
v2

x1 j +
(

1 − r(x)
y

)
γ v2

y1 j +
(

1 + r(x)
x

)
σ 2

xx1 j +

(
1 + r(x)

y

)

γ
σ 2

xy1 j

⎞

⎠h(y)
j j

− 1
2

N y∑

j=1

⎛

⎝
(

1 − r(x)
x

)
v2

xNx j +
(

1 − r(x)
y

)
γ v2

yNx j +
(

1 + r(x)
x

)
σ 2

xxNx j +

(
1 + r(x)

y

)

γ
σ 2

xyNx j

⎞

⎠h(y)
j j
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− 1
2

Nx∑

i=1

⎛

⎝
(

1 − r(y)
x

)
γ v2

xi1 +
(

1 − r(y)
y

)
v2

yi1 +

(
1 + r(y)

x

)

γ
σ 2

xyi1 +
(

1 + r(y)
y

)
σ 2

yyi1

⎞

⎠h(x)
ii

− 1
2

Nx∑

i=1

⎛

⎝
(

1 − r(y)
x

)
γ v2

xiN y
+

(
1 − r(y)

y

)
v2

yiN y
+

(
1 + r(y)

x

)

γ
σ 2

xyiN y
+

(
1 + r(y)

y

)
σ 2

yyiN y

⎞

⎠h(x)
ii .

(56)

• Penalize the velocity equations only: Let β(x)
x = β

(x)
y = β

(y)
x = β

(y)
y = 0.

– A free-surface boundary: Consider r(x)
x = r(x)

y = 1, r(y)
x = r(y)

y = 1. If α(x)
x = α(x)

y = 1, α(y)
x = α(y)

y = 1, then the solutions 
satisfy the energy conservation equation

d
dt

Eγ h(t) = 0. (57)

– A characteristic boundary: Consider r(x)
x = r(x)

y = 0, r(y)
x = r(y)

y = 0. If α(x)
x = α(x)

y = 2, α(y)
x = α(y)

y = 2, then the solutions 
satisfy the energy equation

d
dt

Eγ h(t) = −
N y∑

j=1

(
v2

x1 j + γ v2
y1 j

)
h(y)

j j −
N y∑

j=1

(
v2

xNx j + γ v2
yNx j

)
h(y)

j j

−
Nx∑

i=1

(
γ v2

xi1 + v2
yi1

)
h(x)

ii −
Nx∑

i=1

(
γ v2

xiN y
+ v2

yiN y

)
h(x)

ii , (58)

• Penalize the stress equations only: Let α(x)
x = α(x)

y = α(y)
x = α(y)

y = 0.

– A clamped wall: Consider r(x)
x = r(x)

y = −1, r(y)
x = r(y)

y = −1. If β(x)
x = β

(x)
y = 1, β(y)

x = β
(y)
y = 1, then the solutions 

satisfy the energy conservation equation

d
dt

Eγ h(t) = 0. (59)

– A characteristic boundary: Consider r(x)
x = r(x)

y = 0, r(y)
x = r(y)

y = 0. If β(x)
x = β

(x)
y = 2, β(y)

x = β
(y)
y = 2, then the solutions 

satisfy the energy equation

d
dt

Eγ h (t) = −
N y∑

j=1

(
σ 2

xx1 j + 1
γ

σ 2
xy1 j

)
h(y)

j j −
N y∑

j=1

(
σ 2

xxNx j + 1
γ

σ 2
xyNx j

)
h(y)

j j

−
Nx∑

i=1

(
1
γ

σ 2
xyi1 + σ 2

yyi1

)
h(x)

ii −
Nx∑

i=1

(
1
γ

σ 2
xyiN y

+ σ 2
yyiN y

)
h(x)

ii . (60)

If we penalize all the equations with appropriate penalty weights as above, then the numerical boundary procedure is 
asymptotically stable and dissipative for all |r(x)

x | ≤ 1, |r(x)
y | ≤ 1, |r(y)

x | ≤ 1, |r(y)
y | ≤ 1. Also of importance is that the numerical 

boundary procedure is dissipative even if the boundary condition, with |r(x)
x | = 1, |r(x)

y | = 1, |r(y)
x | = 1, |r(y)

y | = 1, is non-
dissipative in the continuous setting. Since the SAT imposition of boundary conditions is a consistent numerical procedure, 
the numerical dissipation will vanish in the limit of mesh refinement. When we penalize the velocity equations only or 
the stress equations only with appropriate penalty weights as above, we obtain discrete energy estimates which are in full 
accordance with the continuous energy estimates. In particular, the energy equations (57) or (59) demonstrate that the nu-
merical treatments of the free surface boundary condition or the clamped wall boundary condition is asymptotically stable 
and non-dissipative. It is also noteworthy that the characteristic boundary conditions is asymptotically stable and dissipative 
in all above cases since there is energy dissipation in the continuous problem.

When the damping is absent dx(x) ≡ 0, dy(y) ≡ 0, we conclude that the above penalty parameters result in asymptoti-
cally stable discrete approximations. Note also that the energy estimates are independent of the penalty parameters θx, θx . 
However when the damping is present dx(x) ̸= 0 or dy(y) ̸= 0, the story is different.

4.4. Stability of the discrete PML

As in the continuous case we cannot derive discrete energy estimates for the time dependent discrete PML problem. We 
will instead take the Laplace transform in time and choose penalties such that discrete energy estimates, analogous to (39), 
can be derived. Taking the Laplace transform, in time, of the semi-discrete constant coefficient problem (50)–(52) gives
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⎛

⎜⎜⎜⎜⎝

ŝvx
ŝvy

S̃

⎛

⎝
sσ̂xx
sσ̂yy
sσ̂xy

⎞

⎠

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Sx

Dxσ̂xx + 1
S y

Dyσ̂xy − α(x)
x

Sx
H−1

x

(
E+

x F̂(+x)
x + E−

x F̂(−x)
x

)
− α(y)

x
S y

H−1
y

(
E+

y F̂(y)
x + E−

y F̂(−y)
x

)

1
Sx

Dxσ̂xy + 1
S y

Dyσ̂yy − α(x)
y

Sx
H−1

x

(
E+

x F̂(+x)
y + E−

x F̂(−x)
y

)
− α(y)

y
S y

H−1
y

(
E+

y F̂(y)
y + E−

y F̂(−y)
y

)

1
Sx

Dxvx − β
(x)
x
Sx

H−1
x

(
E+

x F̂(+x)
x − E−

x F̂(−x)
x

)

1
S y

Dy v̂y − β
(y)
y

S y
H−1

y

(
E+

y F̂(y)
y − E−

y F̂(−y)
y

)

1
S y

Dy v̂x + 1
Sx

Dx̂vy − β
(x)
y

γ Sx
H−1

x

(
E+

x F̂(+x)
y + E−

x F̂(−x)
y

)
− β

(y)
x

γ S y
H−1

y

(
E+

y F̂(y)
x + E−

y F̂(−y)
x

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎝

v0
x

v0
y

S̃

⎛

⎜⎝
σ 0

xx
σ 0

yy

σ 0
xy

⎞

⎟⎠

⎞

⎟⎟⎟⎟⎟⎠

− (1 − θx)
dx

(s + α) Sx

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(x)
x H−1

x

(
E+

x F̂(+x)
x + E−

x F̂(−x)
x

)

α(x)
y H−1

x

(
E+

x F̂(+x)
y + E−

x F̂(−x)
y

)

β
(x)
x H−1

x

(
E+

x F̂(+x)
x − E−

x F̂(−x)
x

)

0
β

(x)
y
γ H−1

x

(
E+

x F̂(+x)
y − E−

x F̂(−x)
y

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
SATx

−
(
1 − θy

) dy

(s + α) S y

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(y)
x H−1

y

(
E+

y F̂(y)
x + E−

y F̂(−y)
x

)

α(y)
y H−1

y

(
E+

y F̂(y)
y + E−

y F̂(−y)
y

)

0

β
(y)
y H−1

y

(
E+

y F̂(y)
y − E−

y F̂(−y)
y

)

β
(y)
x
γ H−1

y

(
E+

y F̂(y)
x − E−

y F̂(−y)
x

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
SATy

.

(61)

We set the penalty parameter θx = θy = 1, extending the numerical boundary conditions to the auxiliary differential equa-
tions. The last two terms in the right hand side of (61) vanish. We approximate the scalar product (36) and the elastic 
energy (37) by a quadrature rule

〈
Û,U0

〉

γ h
(s) =

N y∑

j=1

Nx∑

i=1

⎛

⎜⎝
1
2

(
v̂∗

xi j v̂0
xi j + v̂∗

yi j v̂0
yi j

)
+ 1

2

⎛

⎝
σ̂xxi j
σ̂yyi j
σ̂xyi j

⎞

⎠
H

S̃i j

⎛

⎜⎝
σ̂ 0

xxi j
σ̂ 0

yyi j
σ̂ 0

xyi j

⎞

⎟⎠

⎞

⎟⎠h(x)
ii h(y)

j j , (62)

Êγ h(s) ≡
〈
Û, Û

〉

γ h
(s) =

N y∑

j=1

Nx∑

i=1

⎛

⎜⎝
1
2

(
|̂vxi j|2 + |̂v yi j|2

)
+ 1

2

⎛

⎝
σ̂xxi j
σ̂yyi j
σ̂xyi j

⎞

⎠
H

S̃i j

⎛

⎝
σ̂xxi j
σ̂yyi j
σ̂xyi j

⎞

⎠

⎞

⎟⎠h(x)
ii h(y)

j j . (63)

The quantity Êγ h(s) defined above is strictly positive if Û does not vanish identically.

4.4.1. The discrete PML strip problem
Let dx(x) ≡ d > 0, dy(y) ≡ 0 in (61). Consider the corresponding 1D problem and ignore the boundary terms at y = ±y0, 

we arrive at the discrete energy estimate

ℜ(sSx)Êγ h (s) = ℜ
〈
Û, SxU0

〉

γ h
(s) + BT num. (64)

Here, BT num is the contribution from the boundary, and is given by (65)–(69) for different combinations of boundary 
conditions and penalty parameters. If the numerical boundary procedure is stable then we say that the boundary terms must 
be zero BT num = 0 or negative BT num < 0. In particular that if BT num = 0 then the boundary procedure is non-dissipative, 
and if BT num ≤ 0 then the numerical boundary procedure is called dissipative. Note that the numerical boundary procedure 
can be dissipative even if the corresponding boundary condition in the continuous setting is non-dissipative.

Theorem 4. Consider the semi-discrete PML equation in the Laplace space (61), and let dx(x) ≡ d > 0, dy(y) ≡ 0 with D y = 0. We 
have

ℜ(sSx)Êγ h (s) = ℜ
〈
Û, SxU0

〉

γ h
(s) + BT num.

For specific values of the penalty parameters the following are true:
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• Penalize all equations: Consider |r(x)
x | ≤ 1, |r(x)

y | ≤ 1, |r(y)
x | ≤ 1, |r(y)

y | ≤ 1. If α(x)
x = α(x)

y = 1, β
(x)
x = β

(x)
y = 1, α(y)

x = α(y)
y =

1, β
(y)
x = β

(y)
y = 1, and θx = 1, the boundary term is

BT num = −1
2

N y∑

j=1

⎛

⎝
(

1 − r(x)
x

)
|̂vx1 j|2 +

(
1 − r(x)

y

)
γ |̂v y1 j|2 +

(
1 + r(x)

x

)
|σ̂xx1 j|2 +

(
1 + r(x)

y

)

γ
|σ̂xy1 j|2

⎞

⎠h(y)
j j

− 1
2

N y∑

j=1

((
1 − r(x)

x

)
|̂vxNx j|2 +

(
1 − r(x)

y

)
γ |̂v yNx j|2 +

(
1 + r(x)

x

)
|σ̂xxNx j|2

+

(
1 + r(x)

y

)

γ
|σ̂xyNx j|2

⎞

⎠h(y)
j j . (65)

• Penalize the velocity equations only. Let β(x)
x = β

(x)
y = 0:

– A free-surface boundary: Consider r(x)
x = r(x)

y = 1. If α(x)
x = α(x)

y = 1, θx = 1, then the boundary term is

BT num = 0. (66)

– A characteristic boundary: Consider r(x)
x = r(x)

y = 0, r(y)
x = r(y)

y = 0. If α(x)
x = α(x)

y = 2, α(y)
x = α(y)

y = 2, θx = 1, then the 
boundary term is

BT num = −
N y∑

j=1

(
|̂vx1 j|2 + γ |̂v y1 j|2

)
h(y)

j j −
N y∑

j=1

(
|̂vxNx j|2 + γ |̂v yNx j|2

)
h(y)

j j . (67)

• Penalize the stress equations only. Let α(x)
x = α(x)

y = 0:

– A clamped wall (penalize the stress equations only): Consider r(x)
x = r(x)

y = −1. If β(x)
x = β

(x)
y = 1, θx = 1, then the boundary 

term is

BT num = 0. (68)

– A characteristic boundary: Consider r(x)
x = r(x)

y = 0, r(y)
x = r(y)

y = 0. If β(x)
x = β

(x)
y = 2, β(y)

x = β
(y)
y = 2, θx = 1, then the 

boundary term is

BT num = −
N y∑

j=1

(
|σ̂xx1 j|2 + 1

γ
|σ̂xy1 j|2

)
h(y)

j j −
N y∑

j=1

(
|σ̂xxNx j|2 + 1

γ
|σ̂xyNx j|2

)
h(y)

j j . (69)

The estimates (65)–(69) are only possible with θx = 1. When d ̸= 0 and θx ≠ 1, these estimates do not hold due to the 
boundary terms arising from the PML. Numerical experiments presented in the next section demonstrate that it is essential 
the estimates hold, also for two space dimensional problems. We also note that in analogy with the previous section we can 
separate dissipative and non-dissipative boundary procedures. In equations (65), (67), (69) the boundary terms contribute 
to dissipation, and the corresponding numerical boundary procedures are called dissipative, while the numerical boundary 
procedures corresponding to (66), (68) are non-dissipative.

Numerical experiments performed in the next section also demonstrate that to guarantee long-time stability the numer-
ical boundary treatment must be dissipative. As seen above, for a linear well-posed boundary condition terminating the 
PML, a dissipative numerical boundary procedure can be derived using the following approaches:

a) The continuous boundary condition is dissipative, as in the characteristic boundary condition (32c). All stable penalty 
parameters will result in a dissipative numerical boundary procedure.

b) The continuous boundary condition is non-dissipative, for example using the clamped wall (32a) or the free surface 
boundary condition (32b). These boundary conditions need extra care, because not all penalty parameters will result to 
dissipative numerical boundary procedures. See for examples the penalty parameters corresponding to (66) and (68). To 
ensure a dissipative numerical boundary procedure we must penalize all equations appropriately using for example the 
penalty parameters yielding (65).

4.4.2. The discrete PML corner problem
Consider now a the discrete PML (61) in the corner region with dx = dy = d > 0 and θx = θy = 1. For this case the PML 

complex metrics are identical S y = Sx . As above, the application of standard energy methods yields the energy equation

ℜ(sSx)Êγ h (s) = ℜ
〈
Û, SxU0

〉

γ h
(s) + BT xnum + BT ynum. (70)
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Here, BT xnum , BT ynum are the corresponding boundary terms. With the specific penalty parameters as above the boundary 
terms are completely analogous to (65)–(69). It is therefore easy show that the boundary terms are negative semi-definite, 
that is BT xnum ≤ 0, BT ynum ≤ 0. The analysis here is restricted to dx = dy , however the numerical experiments presented 
in the next section demonstrate that the PML ensures a stable and robust treatment of PML corners with variable damping 
functions 0 ≤ dx(x) ̸= dy(y) ≥ 0.

5. Numerical experiments

In this section, we present numerical experiments. The experiments are designed to quantify numerical errors introduced 
by discretizing the PML as well as verify the stability analysis of the last section. We will first consider the vertical PML strip 
problem and proceed later to simulate a half-plane problem surrounded by the PML. The later situation involves both the 
vertical (with dx(x) ≥ 0, dy(y) = 0) and horizontal (with dx(x) = 0, dy(y) ≥ 0) PML layers, and PML corners (with dx(x) ≥ 0, 
dy(y) ≥ 0) where both layers are simultaneously active.

5.1. The vertical strip PML problem

To begin with, consider a rectangular elastic solid with the dimension (x, y) = [−50, 50] × [0, 50]. On the top surface 
of the elastic solid, at y = 50, we set the free surface boundary conditions, with r(y)

x = r(y)
y = 1 in (7). The bottom of the 

solid, at y = 0, is a fictional wall with r(y)
x = r(y)

y = 0 in (7), that is the characteristic boundary condition. Both boundary 
conditions in the y-direction will be enforced weakly by penalizing the velocity equations only. It is also possible to use 
different sets of penalties as discussed in the last section. In the x-direction we introduce two additional layers, having 
50 ≤ |x| ≤ 50 + δ in which the PML equations are solved. In order to complete the statement of the problem, at the edges 
of the PML, we set the well-posed boundary conditions (6) with |r(x)

x | ≤ 1, |r(x)
y | ≤ 1. We will vary the boundary parameters 

|r(x)
x | ≤ 1, |r(x)

y | ≤ 1 in the numerical experiments to determine optimal PML boundary closure. In particular we will consider 
separately, a free surface boundary condition with r(x)

x = r(x)
y = 1, a clamped wall boundary condition with r(x)

x = r(x)
y = −1

and a characteristic boundary conditions with r(x)
x = r(x)

y = 0. We will also consider different sets of penalty parameters 
presented in the previous section.

To begin we set the initial condition

vx = v y = e− log(2) x2+(y−25)2
9 , (71)

for the velocity fields, and zero initial condition for the stress fields and all auxiliary variables. The damping profile is a 
cubic monomial

d (x) =
{

0 if |x| ≤ 50,

d0

(
|x|−50

δ

)3
if |x| ≥ 50,

(72)

where d0 ≥ 0 is the damping strength. We will use

d0 = 4cp

2δ
ln

1
tol

, (73)

where cp denotes the P-wave speed, and tol is the magnitude of the relative PML error [12].
We discretize in space with a high order accurate SBP operator. The spatial operator has a sixth order accurate inte-

rior stencil and a third order accurate boundary closure, and thus yields a theoretical global fourth order accurate finite 
difference stencil [22]. All boundary conditions are enforced weakly using SAT, as described in the last section. Numerical 
approximation in time is obtained by the classical fourth order accurate Runge–Kutta scheme. The time step k is given by

k = 0.5
√

c2
p + c2

s

h. (74)

We investigate numerically the stability of the PML. We consider an aluminum solid defined by γ = 0.4593. The corre-
sponding P-wave and S-wave velocities are given by cp = 2.1772, cs = 1. In the coming experiments we set the magnitude 
of the relative PML error tol = 10−4. We will use the complex frequency shift α = 0.15 in this experiment. In a practical 
calculation the PML width is considerably short, we therefore use δ = 10, leading to the damping strength d0 = 4.0106. 
The width of the PML δ = 10 corresponds to 10% of the width of the computational domain. We will experiment with a 
free surface boundary condition, a clamped wall boundary condition, and a characteristic boundary condition to establish 
appropriate boundary conditions terminating the PML. We will also consider separately θx = 0 and θx = 1, and different 
penalty parameters in the experiments.

Set a uniform spatial step h = 1 in both x and y axes. We run the simulation until t = 5000, corresponding to 23 959 
time steps, and record the pointwise maximum norm of the velocity vector in the entire domain. In Fig. 2, numerical results 

https://www.researchgate.net/publication/215514350_High_Order_Difference_Methods_for_Time_Dependent_PDE?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
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Fig. 2. Time series of the L2 norm of the velocity vector for the PML without the PML stabilizing penalty, θx = 0.

Fig. 3. Time series of the L2 norm of the velocity vector without the PML, d(x) ≡ 0.

Fig. 4. Time series of the L2 norm of the velocity vector for the PML with the PML stabilizing penalty, θx = 1.

for θx = 0, using different penalty parameters are presented. Note that with θx = 0 numerical solutions grow for all choices 
of penalty parameters considered here. However, if the numerical boundary procedure is dissipative the numerical solution 
is stable over a short time but numerical growth occurs at a much later time. We also turned off the PML, d(x) ≡ 0, and 
run the same simulations as before. Numerical results are shown in Fig. 3. When the PML is absent, all solutions decay with 
time for all boundary parameters and all different choices of penalties.

From the previous section we know that the PML stabilizing SAT terms are essential for deriving an energy estimate 
already in one space dimension. Therefore we use θx = 1 in the next set of experiments, that is we include the PML 
stabilizing SAT term in the discrete auxiliary differential equations. Numerical results for this situation is presented in Fig. 4. 
Observe that, if θx = 1 and the boundary condition or a numerical enforcement of the boundary condition is dissipative then 
the numerical solutions are long-time stable. However, if the boundary condition is non-dissipative and the corresponding 
discretization is also non-dissipative, then the numerical solution is not long-time stable, even with θx = 1.

These numerical results indicate that the PML stabilizing penalty suggested by the one dimensional analysis are nec-
essary also for higher space dimensional problems. They also indicate that, to avoid growth one must additionally require 
a dissipative numerical boundary procedure. In isolation, neither of these will stabilize the PML, but together they will 
stabilize the PML.

In [6], numerical instabilities are seen to be more severe for small γ > 0, nearly incompressible materials. In the next 
experiment we will demonstrate the stability of our method for several velocity ratio γ . We set the relative PML error 
tol = 10−4 and terminate the PML with the characteristic boundary conditions. Since the P-wave speed cp increase with 
decreasing γ it also follows from (73) that the damping coefficient d0 will increase with decreasing γ . For various velocity 

https://www.researchgate.net/publication/270033157_Application_of_the_multiaxial_perfectly_matched_layer_M-PML_to_near-surface_seismic_modeling_with_Rayleigh_waves?el=1_x_8&enrichId=rgreq-e9b42d035fc7dc64e934ab71bb24610c-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIzNzMxMTtBUzozNTY4OTcyNzUzMDE4OTFAMTQ2MjEwMjM0OTg3Nw==
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Fig. 5. A vertical strip PML problem. Left column: the snapshots of the pointwise energy 
√(

v2
x + v2

y
)
/2 for γ = 0.2; Right column: the snapshots of the 

pointwise energy 
√(

v2
x + v2

y
)
/2 for γ = 0.4.

Fig. 6. A vertical strip PML problem.

ratios γ = 0.1, 0.2, 0.3, 0.4, 0.5 and the spatial step h = 1, we compute the solution for a longer time, until t = 10 000. The 
snapshots of the solution at t = 5, 20, 40 are shown in Fig. 5 for γ = 0.2, 0.4. Fig. 5 shows how the initial pulse spreads, 
being reflected by the free-surface and the absorption of waves by the PML. In both media the S-wave speed is cs = 1. The 
P-wave velocity is cp = 5 in the media with γ = 0.2 and cp = 2.5 in the media with γ = 0.4. In Fig. 5, it is apparent that 
the P-wave propagates twice as fast in the medium with γ = 0.2 than in the medium with γ = 0.4. The S-waves propagate 
at the same speed in both media. In Fig. 6(a) we have plotted the time history of the maximum energy on the grid. Observe 
that the energy decays from unity until ∼ 10−5.

Next, we evaluate the accuracy of the PML. The errors introduced when a PML is used in computations can be divided 
into two different categories: numerical reflections and the modeling error. Numerical reflections are discrete effects intro-
duced by discretizing the PML and seen inside the computational domain. The modeling error is introduced because the 
layer and the magnitude of damping coefficient are finite. Numerical reflections should converge to zero as the mesh is 
refined. Note that the modeling error is not caused by numerical approximations, and thus is independent of the numer-
ical method used. The modeling error is expected to decrease as the PML width or the magnitude of damping coefficient 
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Table 1
A vertical strip PML problem: PML errors for an alu-
minum solid with γ = 0.4593.

h error rate

1 1.3000 × 10−3 –
0.5 4.0100 × 10−5 4.9817
0.25 1.1548 × 10−6 5.1179
0.125 2.4567 × 10−8 5.5548

Table 2
A half-space problem with PML corners. PML errors for 
an aluminum solid with γ = 0.4593.

h error rate

1 5.7000 × 10−3 –
0.5 1.2569 × 10−4 5.4963
0.25 3.9609 × 10−6 4.9878
0.125 1.1326 × 10−7 5.1281

increases. For sufficiently small mesh sizes numerical reflections are infinitesimally small and the modeling error dominates 
the total PML error.

As before, we consider an aluminum solid defined by γ = 0.4593. The corresponding P-wave and S-wave velocities are 
given by cp = 2.1772, cs = 1. To quantify numerical errors we use the PML width, δ = 10 and set tol = 10−4h4 so that 
the PML error converges at least at the rate of the interior discretization. The factor 10−4 is empirically determined. We 
compute the solution until t = 50cp so that we can account for numerical reflections and the modeling error arriving from 
the outer edges of the computational domain. We also compute a reference solution in a larger domain without the PML. 
The error is defined as the pointwise maximum difference of the reference solution and the PML solution in the interior, 
(x, y) ∈ [−50, 50] × [0, 50]. In Fig. 6(b), we have plotted the numerical error against time for various resolutions. Table 1
gives the error at the final time. Observe that the error is decreasing, and it converges to zero at a high rate, as we refine 
the mesh, see Table 1 and Fig. 6(b).

5.2. The half-space problem with PML corners

We consider an isotropic linear elastic half-space with the free-surface boundary condition. To perform numerical simu-
lations we truncate the computational domain and surround the artificial boundaries with PML. The setup involves a vertical 
PML layer closing the left and right edges, and horizontal PML layer closing the bottom edge of the elastic block. There are 
also corner regions where the horizontal and vertical layers are both active. Numerical experiments in this section demon-
strates that the PML with appropriate numerical boundary procedures ensure robust treatment of corners. To do this we 
will repeat some of the numerical experiments of last subsection, investigating stability and accuracy.

The simulation setup and parameters are similar as before, with the PML stabilizing SAT terms θx = θy = 1. The only 
difference is that we have added a horizontal PML layer at the bottom of the elastic block, having −δ ≤ y ≤ 0, with δ = 10. 
The damping functions dx(x), dy(y) are a third degree monomial defined by (72). We consider the velocity ratios γ =
0.1, 0.2, 0.3, 0.4, 0.5 and propagate the solution until t = 10 000. The snapshots of the solution at t = 5, 20, 40 are shown in 
Fig. 7 for γ = 0.2, 0.4. Fig. 7 shows how the initial pulse spreads, being reflected by the free-surface and the absorption of 
waves by the PML. Note also that all downward propagating waves are perfectly absorbed by the PML at the bottom edge of 
the elastic block. In Fig. 8(a) we have plotted the time history of the maximum energy on the grid. Observe that the energy 
decays from unity until ∼ 10−6.

Next we quantify numerical accuracy. As before, we consider an aluminum solid defined by γ = 0.4593. To quantify 
numerical errors we use the PML width, δ = 10 and set tol = 10−4h4 so that the PML error converges at least at the rate 
of the interior discretization. We compute the solution until t = 50cp so that we can account for numerical reflections and 
the modeling error arriving from the outer edges of the computational domain. We also compute a reference solution in a 
larger domain without the PML. The error is defined as the pointwise maximum difference of the reference solution and 
the PML solution in the interior, (x, y) ∈ [−50, 50] × [0, 50]. In Fig. 8(b), we have plotted the numerical error against time 
for various resolutions. Table 2 gives the error at the final time. Note that because the horizontal PML layer is closer to 
the source, elastic waves penetrate the horizontal PML layer much earlier than the vertical PML layer. From Fig. 8(b) it is 
not therefore surprising that PML errors here appear much earlier and level up as time progresses. Table 2 and Fig. 8(b) 
demonstrate that the PML error is decreasing, and it converges to zero at a high rate, as we refine the mesh. The results 
here is also true when the PML completely surrounds the computational domain.
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Fig. 7. A half-space problem with PML corners. Left column: the snapshots of the pointwise energy 
√(

v2
x + v2

y
)
/2 for γ = 0.2; Right column: the snapshots 

of the pointwise energy 
√(

v2
x + v2

y
)
/2 for γ = 0.4.

Fig. 8. A half-space problem with PML corners.

6. Concluding remarks

We have presented an investigation of the well-posedness and stability of boundary conditions terminating the PML for 
the elastic wave equation in velocity-stress formulation. In the theoretical part of the paper we consider a 2D, constant 
coefficient PML with damping in the horizontal direction. Modal analysis in [2–4,10] of the corresponding Cauchy problem 
and of half-plane problems with horizontal physical boundaries show that no growth is expected in these settings. In this 
paper we analyze the remaining half-plane problem, with boundary normal to the damping direction, which corresponds to 
the boundary closure at the outer edge of a PML. We prove that linear well-posed boundary conditions for the elastic wave 
equation never support growing modes when they are used as PML boundary closure.

The challenge lies in constructing accurate and stable numerical approximations for the PML and the boundary condi-
tions. To do this, we construct a continuous energy estimate in the Laplace space for a simplified 1D problem and a 2D PML 
corner problem. By mimicking the continuous energy estimates in the discrete setting, we develop a numerical boundary 
procedure using the SBP-SAT methodology, and involving special stabilizing PML penalty terms in the auxiliary equations. 
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A classification into dissipative and non-dissipative boundary treatment is also developed. Numerical experiments for 2D 
problems with realistic variable coefficient PMLs show that the stabilizing PML penalty terms are essential for numerical 
stability. In addition, we find that to avoid unphysical growth the boundary procedure must be dissipative. Thus, we obtain 
a highly accurate and reliable domain truncation scheme.

We also note that the PML and our schemes have been successfully implemented in a large 2D finite difference open 
source code: FDMAP (http://pangea.stanford.edu/edunham/codes/codes.html), for wave propagation and dynamic earthquake 
rupture simulations. Since it can be shown that finite/spectral element schemes satisfy the SBP property [17,25], we believe 
that the numerical boundary procedure can be extended to these methods. However, this is worth exploring further.
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Appendix A. Some useful lemmata

Introduce the complex number z = x + iy and define the branch cut of 
√

z by

−π < arg (x + iy) ≤ π , arg
√

x + iy = 1
2

arg (x + iy). (A.1)

The following lemma was adapted from Lemma 6 in [16].

Lemma 1. Let kx be a real number and let s = a + ib be a complex number where a > 0. Consider the relation

κ =
√

s2 + k2
x . (A.2)

There are positive real numbers β0 ≥ 1, 0 < ϵ0 ≤ 1 such that ℜκ = β0a, ℑκ = ϵ0b.

As a preliminary we introduce d ≥ 0, α ≥ 0,

a′ = a
√

(a + α)2 + b2
, b′ = b

√
(a + α)2 + b2

, α′ = α
√

(a + α)2 + b2
, d′ = d

√
(a + α)2 + b2

, (A.3)

Sx = s + α + d
s + α

= 1 + d′ (a′ + α′) − id′b′, sSx = a
(
1 + d′ (a′ + α′)) + d′b′b + ib

(
1 + α′d′) . (A.4)

Note that

ℜ(sSx) =
√

(a + α)2 + b2
(

a′ (1 + d′ (a′ + α′)) + d′b′ 2
)

> 0. (A.5)

Lemma 2. Let kx be a real number and let s = a + ib be a complex number where a > 0. Consider the relations

κ =
√

s2 + k2
x . (A.6)

There are positive real numbers β0 ≥ 1, 0 < ϵ0 ≤ 1 such that

ℜ (Sxκ) =
(√

(a + α)2 + b2

)(
β0a′ (1 + d′ (a′ + α′)) + ϵ0d′b′ 2

)
> 0.

Proof. Consider κ =
√

s2 + k2
x = (β0a + iϵ0b) and Sx = 1 + d′ (a′ + α′) − iσ ′b′ , then we have

Sxκ =
(
1 + d′ (a′ + α′) − id′b′) (β0a + iϵ0b) ,

=⇒ ℜ (Sxκ) =
(√

(a + α)2 + b2

)(
β0a′ (1 + d′ (a′ + α′)) + ϵ0d′b′ 2

)
> 0. ✷
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As a consequence of Lemmas 1 and 2 we have the following:

Corollary 1. Let γ > 0 and ky be real numbers, and let s = a + ib be a complex number where a > 0. Consider the relations

κ1 = 1
γ

√
(sSx)2 + (γ Sxky)2, κ2 =

√
(sSx)2 + (Sxky)2. (A.7)

For all real numbers σ , α ≥ 0, the complex numbers κ1, κ2 have positive real parts ℜκ1 > 0, ℜκ2 > 0.

Appendix B. Proof of Theorem 2

B.1. Clamped wall boundary condition

Consider first the case of a clamped boundary with r(x)
x = r(x)

y = −1, implying I + R = 0. Thus, from (30) we have

(θ1(1 + θ2(2) = 0 ⇐⇒ ((1,(2)

(
θ1
θ2

)
= 0. (B.1)

Since the eigenvectors are complete we must have

C
(

s,ky, r(x)
x , r(x)

y

)
:= det ((1,(2) ≠ 0, ∀ky ∈ R, ℜs > 0,

implying θ1 = θ2 = 0, for all ℜs > 0. Thus the clamped boundary condition (32a) does not support boundary wave modes.

B.2. Free surface boundary condition

Consider now the free surface boundary condition with r(x)
x = r(x)

y = 1, implying I − R = 0. From (30) we have

1
s

⎛

⎝ (ky + κ2
1

ky
)γ 2 i 2 ky γ 2 i

2κ1 γ 2 κ2 + k2
y
(
2 γ 2−1

)

κ2

⎞

⎠
(

θ1
θ2

)
= 0,

thus yielding the determinant condition

1
s2 C0

(
s,ky

)
≡ det

⎛

⎝1
s

⎛

⎝ (ky + κ2
1

ky
)γ 2 i 2 ky γ 2 i

2κ1 γ 2 κ2 + k2
y
(
2 γ 2−1

)

κ2

⎞

⎠

⎞

⎠ ≠ 0, ℜs > 0. (B.2)

Here, C0
(
s,ky

)
is the Rayleigh dispersion relation defined by

C0
(
s,ky

)
≡

(
s2 + 2γ 2k2

y

)2
− 4γ 4k2

y

√
s2 + k2

y

√
s2 + γ 2k2

y

γ 2 = 0. (B.3)

The equation (1/s2)C0
(
s,ky

)
= 0 has exactly two non-zero, purely imaginary solutions s = iβ , β ∈ R for all 0 < γ 2 < 1

and ky ≠ 0.
The proof for s = iβ , can be easily adapted from [16]. Consider

lim
s→0

(1/s2)C0
(
s,ky

)
= lim

s→0

∂C0(s,ky)
∂s

∂(s2)
∂s

= 2γ 2(1 − γ 2)k2
y ≠ 0.

Therefore, s = 0 is not a solution of (1/s2)C0
(
s,ky

)
= 0. The purely imaginary roots are called generalized eigenvalues and 

correspond to Rayleigh wave modes propagating on the surface of an elastic solid without decay. This is in contrast to the 
free surface boundary conditions at y = 0, where all Rayleigh wave modes are damped by the PML, see [10,4].

B.3. Characteristic boundary condition

Finally, consider the characteristic boundary condition with r(x)
x = r(x)

y = 0, implying R = 0. From (30) we have

1
s

⎛

⎜⎝
−ky

(
s
κ1

+ 2γ 2
)

i −
(
κ2

2 +s κ2+
(
2 γ 2−1

)
k2

y

)
i

ky

κ2
1 γ 2+s κ1 γ +k2

y γ 2

κ1
2κ2 γ 2 + s γ

⎞

⎟⎠
(

θ1
θ2

)
= 0,
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yielding the determinant condition

1
s2 C0

(
s,ky

)
≡ det

⎛

⎜⎝
1
s

⎛

⎜⎝
−ky

(
s
κ1

+ 2γ 2
)

i −
(
κ2

2 +s κ2+
(
2 γ 2−1

)
k2

y

)
i

ky

κ2
1 γ 2+s κ1 γ +k2

y γ 2

κ1
2κ2 γ 2 + s γ

⎞

⎟⎠

⎞

⎟⎠ ≠ 0, ℜs > 0. (B.4)

The function C0
(
s,ky

)
is define by

C0
(
s,ky

)
= γ

ky

√
s2 + γ 2k2

y

×
((

s2 + 2γ 2k2
y

)2
+ 2γ 2k4

y − γ s2k2
y +

(√
s2 + γ 2k2

y +
√

s2 + k2
y

)
s3

+
√

s2 + γ 2k2
y

√
s2 + k2

y

(
s2 − 4γ 3k2

y

))
. (B.5)

We now characterize the solutions of the determinant of the equation C0
(
s,ky

)
= 0.

We know that the equation C0
(
s,ky

)
= 0, has no root s, with ℜs > 0. If ℜs > 0 then there is energy growth Eγ (t) >

Eγ (0), which is in contradiction with (11), and thus ℜs ≤ 0.
To investigate generalized eigenvalues, that is the limit ℜs → 0, we introduce s̄2 = s2/k2

y and consider the equation

C1 (s̄) ≡
(

s̄2 + 2γ 2
)2

+ 2γ 2 − γ s̄2 +
(√

s̄2 + γ 2 +
√

s̄2 + 1
)

s̄3 +
√

s̄2 + γ 2
√

s̄2 + 1
(

s̄2 − 4γ 3
)

= 0. (B.6)

Note that

1
s2 C0

(
s,ky

)
≡ γ

s̄2
√

s̄2 + γ 2
C1 (s̄) = 0. (B.7)

We will show that the equation (B.6) has no solution s̄ = 0 or s̄ = iξ , ξ ∈ R for all 0 < γ 2 < 1. Inserting s̄ = 0 in (B.6) we 
have C1 (0) = 2γ 2 ≠ 0 for all 0 < γ 2 < 1, and thus s̄ = 0 is not a solution.

Now if s̄ = iξ is a solution, then (B.6) becomes

(
2γ 2 − ξ2

)2
+ 2γ 2 + γ ξ2 − i

(√(
γ 2 − ξ2

)
ξ2 +

√(
1 − ξ2

)
ξ2

)
ξ2 −

√
γ 2 − ξ2

√
1 − ξ2

(
4γ 3 + ξ2

)
= 0. (B.8)

Considering first 0 < ξ2 < γ 2 and collecting the real and imaginary parts separately yields two equations
(√(

γ 2 − ξ2
)
ξ2 +

√(
1 − ξ2

)
ξ2

)
ξ2 = 0, (B.9)

(
2γ 2 − ξ2

)2
+ 2γ 2 + γ ξ2 −

√
γ 2 − ξ2

√
1 − ξ2

(
4γ 3 + ξ2

)
= 0, (B.10)

which must both be satisfied simultaneously. From equation (B.9), the only possible solution is ξ = 0, which is a contradic-
tion. Now consider ξ2 = γ 2 and insert in (B.8) above we have

γ 4 + 2γ 2 + γ 3 − i
√(

1 − γ 2
)
γ 2γ 2 = 0. (B.11)

Collecting the real and the imaginary parts separately gives

γ 4 + 2γ 2 + γ 3 = 0,

√(
1 − γ 2

)
γ 2γ 2 = 0. (B.12)

Since 0 < γ 2 < 1, these are contradictions. There are no solutions of (B.8) for 0 < ξ2 ≤ γ 2.
Now turning to γ 2 < ξ2 < 1 gives, upon collecting real and imaginary terms, the two conditions

(
2γ 2 − ξ2

)2
+ 2γ 2 + γ ξ2 − i

√(
γ 2 − ξ2

)
ξ2ξ2 = 0, (B.13)

i
√(

1 − ξ2
)
ξ2ξ2 −

√
γ 2 − ξ2

√
1 − ξ2

(
4γ 3 + ξ2

)
= 0. (B.14)
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Since the square root in (B.13) is purely imaginary, (B.13) cannot vanish yielding a contradiction. On the other hand if ξ2 = 1
then (B.8) becomes

(
2γ 2 − 1

)2
+ 2γ 2 + γ − i

√(
γ 2 − 1

)
= 0. (B.15)

This again yields a contradiction, as the square root is purely imaginary and there are no solutions of (B.8) for γ 2 < ξ2 ≤ 1.
The only remaining case is ξ2 > 1. In this case all the square roots in (B.8) are purely imaginary and every term is 

positive and nonzero. Thus there are no solutions ξ2 > 1 satisfying (B.8).
Thus all solutions of the equation 1/s2C0

(
s,ky

)
= 0, defined in (B.4), must satisfy ℜs < 0 for all σ , α ≥ 0. There are 

neither zero roots nor purely imaginary roots.
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