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The Important State Coordinates
of a Nonlinear System

Arthur J. Krener1

University of California, Davis, CA and
Naval Postgraduate School, Monterey, CA
ajkrener@ucdavis.edu

Summary. We offer an alternative way of evalating the relative importance of the
state coordinates of a nonlinear control system. Our approach is based on making
changes of state coordinates to bring the controllability and observability functions
into input normal form. These changes of coordinates are done degree by degree and
the resulting normal form is unique through terms of degree seven.
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1 The Problem

The theory of model reduction for linear control systems was initiated by B. C.
Moore [6]. His method is applicable to controllable, observable and exponen-
tially stable linear systems. The reduction is accomplished by making a linear
change of state coordinates to simultaneously diagonalize the controllability
and observability gramians and make them equal. The diagonal entries of the
gramians are the singular values of the Hankel map from past inputs to future
outputs. The reduction is accomplished by Galerkin projection onto the states
associated to large singular values. The method is intrinsic, the reduced order
model depends only on the dimension of the reduced state space.

Jonckheere and Silverman [4] extended Moore’s methodology to control-
lable, observable but not necessarily stable linear system. Their method is
based on simultaneously diagonalizing the positive definite solutions of the
control and filtering Riccati equations and making them equal. The diago-
nal entries are called the characteristic values of the system and reduction is
achieved by Galerkin projection ontothe states associated to large character-
istic values. The method is sometimes called LQG balancing and reduction.
Two nice features of their approach is that it is applicable to unstable sys-
tems and LQG controller of the reduced order model is the Galerkin projec-
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tion of the LQG controller of the high order model. This method is intrinsic.
Mustafa and Glover [7] extended Jonckheere and Silverman using H∞ rather
than LQG methods. This method is intrinsic once the attenuation level, γ has
been specified.

Moore’s method was extended to asymptotically stable nonlinear sys-
tems by Scherpen [8]. Scherpen and Van der Schaft [10] extended Jonckheere
and Silverman to nonlinear systems and Scherpen [9] extended Mustafa and
Glover. Unfortunately none of the nonlinear extensions are intrinsic, the re-
duced order model depends on choices made during the reduction process.

We build on the fundamental method of Scherpen and offer an alterna-
tive way of computing the reduced order model. Because of space limitations
we shall restrict our attention to Moore’s method and Scherpen’s nonlinear
generalization,

2 Linear Balancing and Reduction

2.1 Minimal Realizations

Consider an autonomous finite dimensional linear system

ẋ = Fx + Gu
y = Hx

(1)

where x ∈ IRn, u ∈ IRm, y ∈ IRp. The linear system (1) initialized at
x(−∞) = 0 defines a mapping from past inputs {u(s) : −∞ < s ≤ 0} to
future outputs {y(t) : 0 ≤ t < ∞} called the Hankel map. The map fac-
tors through the state x(0) at time t = 0. This map has infinite dimensional
domain and infinite dimensional range but it factors through the finite dimen-
sional state space x(0) ∈ IRn although n might be very large. The state space
representation is a very succint way of describing an infinite dimensional map-
ping. One goal of model reduction is to reduce the state dimension as much
as possible while keeping the essential features of the Hankel map.

The first step in linear model reduction is to check whether the system (1)
is a minimal realization of the Hankel mapping and if it is not minimal then to
reduce it to a minimal realization. This procedure is classical and goes back to
Kalman and others circa 1960. We check whether the system is controllable,
i.e., the system can be excited to any state x(0) when started at x(−∞) = 0
by using an appropriate control trajectory {u(s) : −∞ < s ≤ 0}. This will be
possible iff F,G is a controllable pair, i.e., the smallest F -invariant subspace
Vc containing the columns of G is the whole state space. If the system cannot
be excited to every state then we should restrict the state space to Vc. The
restricted system is controllable and has the same Hankel map.

Then we check whether this reduced system is observable in the sense that
any changes in the initial condition x(0) can be detected by changes in the
resulting output tajectory. The system is observable iff H,F is an observable
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pair, i.e., the largest F -invariant subspace Vu contained in the kernel of H
is zero. If the system is not observable then x(0) can be perturbed in the
directions of Vu without changing the output trajectory. To make the system
observable we must project Vu to zero. The projecteded system is observable
and has the same Hankel map.

In summary, a linear system (1) is a minimal realization (of smallest state
dimension) of the Hankel map iff it is controllable and observable. Any real-
ization can be made minimal by restricting to its controllable directions and
projecting out its unobservable directions.

2.2 Linear Input-Output Balancing

So far we have discussed linear systems that exactly realize the Hankel map.
B. C. Moore [6] considered reduced order systems that approximately realize
the Hankel map. His basic intuition was that we should ignore directions that
are difficult to reach and that don’t affect the output much.

To quantify these ideas, he introduced the controllablity and observability
functions of the system. The controllability function is

πc(x0) = inf
1
2

∫ 0

−∞
|u(s)|2 ds (2)

subject to the system dynamics (1) and

x(−∞) = 0, x(0) = x0.

If πc(x0) is large then it takes a lot of input energy to excite the system in the
direction x0 and so this direction might be ignored in a reduced order model.

The observability function is

πo(x0) =
1
2

∫ ∞

0

|y(t)|2 dt (3)

subject to the system dynamics (1) and

x(0) = x0, u(t) = 0.

If πo(x0) is small then changes in this direction lead to small changes in the
output energy and so this direction might be ignored in a reduced order model.

If F is Hurwitz, F,G is a controllable pair and H,F is an observable pair
then it is not hard to see that

πc(x) =
1
2
x′P−1

c x, πo(x) =
1
2
x′Pox

for some positive definite matrices Pc, Po that are the unique solutions of the
linear Lyapunov equations,
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0 = FPc + PcF
′ + GG′

0 = F ′Po + PoF + H ′H.

Pc, Po are called the controllablity and observability gramians of the system.
Moore realized that large and small are relative terms and one needs scales

to measure such things. This can be accomplished by using one gramian to
scale the other and vice versa. Trivally there is a linear change of state coor-
dinates so that, in the new coordinates also denoted by x,

Pc = Po =

σ1 0
. . .

0 σn


where σ1 ≥ σ2 ≥ . . . ≥ σn > 0. These are called the Hankel singular values
and they are the nonzero singular values of the Hankel map.

A reduced model can be obtained by only keeping the states corresponding
to large σi. More pecisely suppose σk >> σk+1, let x1 denote the first k
coordinates of x and x2 denote the remaining n−k coordinates. We partition
the system matrices accordingly[

ẋ1

ẋ2

]
=

[
F11 F12

F21 F22

] [
x1

x2

]
+

[
G1

G2

]
u

y =
[
H1 H2

] [
x1

x2

] (4)

The reduced model is then obtained by Galerkin projection onto the x1 sub-
space,

ẋ1 = F11x1 + G1u
y = H1x1.

(5)

Notice several things. Viewed abstractly model reduction of a linear system
involves injection and a surjection that is similar to minimal realiztion theory.
The major difference is that in the former we need a sense of scale on IRn that
is supplied to one gramian by the other. In minimal realization theory we did
not need a scale because a direction is either controllable or not, a direction
is either unobservable or not.

The eigenvalues of F play an indirect role in the reduction process. By
assumption they are all in the open left half plane. It is very hard to excite
the system in a direction corresponding to a very stable eigenvalue and so
πc tends to be very large in such a direction. Moreover, a state direction
corresponding to a very stable eigenvalue tends to damp out quickly and so
it has very little output energy as measured by πo. Hence the very stable
directions of F tend to correspond to small Hankel singular values and they
tend to drop out of the reduced model.



Important State Coordinates 5

3 Nonlinear Balancing and Reduction

Scherpen [8] generalized Moore to affine nonlinear systems of form

ẋ = f(x) + g(x)u
y = h(x). (6)

where the unforced dynamics u = 0 is asymptotically stable. She defined the
controllability and observability functions (2, 3) as did Moore subject to the
nonlinear system (6).

She noted that if πc is smooth then it satisfies the Hamilton-Jacobi-
Bellman equation

0 = ∂πc

∂x (x)f(x) + 1
2

(
∂πc

∂x (x)g(x)
) (

∂πc

∂x (x)g(x)
)′ (7)

and if it πo smooth then it satisfies the Lyapunov equation

0 = ∂πo

∂x (x)f(x) + 1
2 |h(x)|2. (8)

Suppose that the system has a Taylor series expansion

ẋ = f(x) + g(x)u = Fx + Gu + O(x, u)2

y = h(x) = Hx + O(x)2. (9)

If F is Hurwitz, F,G is a controllable pair, and H,F is a observable pair
then it is not hard to prove that there exists locally smooth, positive definite
solutions to the above PDEs and

πc(x) =
1
2
x′P−1

c x + O(x)3

πo(x) =
1
2
x′Pox + O(x)3

where Pc, Po are the controllability and observability gramians defined above.
So far nonlinear balancing looks very much like linear balancing but, in

general, there is not a nonlinear change of state coordinates that simultane-
ously “diagonalizes” both πc(x) and πo(x).

So Scherpen invoked the Morse lemma to show that after a nonlinear
change of state coordinates

πc(x) =
1
2
|x|2,

πo(x) =
1
2
x′Q(x)x, Q(0) = Po.

Then after a further nonlinear change of coordinates πc(x) is unchanged
and
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πo(x) =
1
2
x′

 τ1(x) 0
. . .

0 τn(x)

x

where τi(x) are called the singular value functions. It is not hard to see that
τi(0) = σ2

i where σi are the Hankel singular values of the linear part of the
system.

The Hankel singular values σi of the linear part of the system are intrinsic
and hence so are their squares, τi(0). But the singular value functions τi(x)
are not [3]. For example, choose any two distinct indices i 6= j and any c ∈ IR.
Define τ̄i(x) = τi(x) + cx2

j , τ̄j(x) = τj(x) − cx2
i and τ̄k(x) = τk(x) otherwise.

Then πc(x) is unchanged and

πo(x) =
1
2
x′

 τ̄1(x) 0
. . .

0 τ̄n(x)

x

Scherpen’s next step was to make an additional change of coordinates so
that if x is in a coordinate direction x = (0, . . . , xi, . . . , 0) then

πc(x) =
1
2
σ̄i(xi)−1x2

i

πo(x) =
1
2
σ̄i(xi)x2

i

where σ̄i(0) = σi and σ̄i(xi)2 ≈ τi(x).
Scherpen obtain a reduced order model by neglecting states with small

σ̄i(x). Suppose for all x ∈ X , a neighborhood of 0 ∈ IRn,

σ̄1(x) ≥ . . . ≥ σ̄k(x) >> σ̄k+1(x) ≥ . . . ≥ σ̄n(x) > 0

then as before we partition x = (x1, x2) and Galerkin project onto the states
cooresponding to large σ̄i(0).

Unfortuantely this approach to obtaining a reduced order model is not
intrinsic. The resulting reduced order system is not independent of the par-
ticular coordinate changes that led to it. Also it depends on the choice of
singular value functions τi(x).

One nice feature of this approach is that the controllability function of the
reduced order model is the restriction of the controllability function of the full
order model. However this is not true for the observability functions but they
do agree to O(x)3.

4 The New Approach
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Following Moore and Scherpen we consider the optimal control problem of
steering from x = 0 at t = −∞ to an arbitrary x at t = 0 while minimizing
the energy of the input

πc(x) = inf
1
2

∫ 0

−∞
|u|2dt

for the system

ẋ = f(x, u) = Fx + Gu + f [2](x, u) + . . .
y = h(x) = Hx + h[2](x) + . . . .

(10)

where f [d](x, u), h[2](x) denotes homogeneous polynomials of degree d. Scher-
pen only considered systems affine in u but it is an easy generalization to the
above.

If F is Hurwitz and F,G is a controllable pair then there is an unique,
locally smooth and positive definite optimal cost πc(x) and an unique, locally
smooth optimal control u = κ(x) which solve the HJB equations

0 =
∂πc

∂x
(x)f(x, κ(x))− 1

2
|κ(x)|2 (11)

κ(x) =
(

∂πc

∂x
(x)

∂f

∂u
(x, κ(x))

)′
(12)

Moreover, following Al’brecht [1], the Taylor series of πc(x), κ(x) can be com-
puted term by term from the Taylor series of f(x, u),

πc(x) =
1
2
x′P−1

c x + π[3]
c (x) + . . . + π[r]

c (x) + O(x)r+1

κ(x) = Kx + κ[2](x) + . . . + κ[r−1](x) + O(x)r

where Pc > 0 and K = G′P−1
c are the controllability gramian and the optimal

feedback of the linear part of the system.
As before we also consider the output energy released by the system when

it starts at an arbitrary x at t = 0 and decays to 0 as t →∞,

πo(x) =
1
2

∫ ∞

0

|y|2dt.

If F is Hurwitz and H,F is an observable pair then there is a unique locally
smooth and positive definite solution πo(x) to the corresponding Lyapunov
equation

0 =
∂πo

∂x
(x)f(x) +

1
2
h′(x)h(x) (13)

Again the Taylor series of πo(x) can be computed term by term from the
Taylor series of f and h,
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πo(x) =
1
2
x′Pox + π[3]

o (x) + . . . + π[r]
o (x) + O(x)r+1

where Po > 0 is the observability gramianof the linear part of the system.
From [6], [8] we know that we can choose a linear change of coordinates

so that in the new coordinates also denoted by x

πc(x) =
1
2
|x|2 + π[3]

c (x) + O(x)4

πo(x) =
1
2
x′

 τ1 0
. . .

0 τn

x + π[3]
o (x) + O(x)4

where the so called singular values τ1 ≥ τ2 ≥ . . . ≥ τn > 0 are the ordered
eigenvalues of PoPc. If this holds then we say that the system is in input
normal form of degree one. Because of space limitations we shall restrict our
attention to the generic case where the singular values τ1 > τ2 > . . . > τn > 0
are distinct.

A system with distinct singular values is in input normal form of degree d
if

πc(x) =
1
2

n∑
i=1

x2
i + O(x)d+2

πo(x) =
1
2

n∑
i=1

η
[0:d−1]
i (xi)x2

i + O(x)d+2

(14)

where η
[0:d−1]
i (xi) = τi + . . . is a polynomial in xi with terms of degrees 0

through d − 1. They are called the squared singular value polynomials of
degree d− 1.

There is also an output normal form of degree d where the forms of πc(x)
and πo(x) are reversed.

The proof of the following is omitted because of page limitations. The full
details can be found in [5].

Theorem Suppose the system (10) is Cr, r ≥ 2 with controllable, observ-
able and exponentially stable linear part. If the τi are distinct and if d < r−1
then there is a change of state coordinates that takes the system into input
normal form of degree d (14). The change of coordinates that achieves the
input normal form of degree d is not necessarily unique but the input normal
form of degree d ≤ 6 is unique. If f, h are odd functions the input normal
form of degree d ≤ 12 is unique.

The differences between input normal form of degree d and Scherpen’s
normal form are threefold. First the former is only approximate through terms
of degree d + 1 while the latter is exact. The second difference is that in
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the former the parameters η
[0:d−1]
i (xi) only depend on xi while in the latter

the parameters τi(x) can depend on all the components of of x. Thirdly the
parameters η

[0:d−1]
i (xi) of the former are unique if d ≤ 6 while the parameters

τi(x) of the latter are not unique except at x = 0 [3] .
Recently Fujimoto and Scherpen [2] have shown the existence of a normal

form where πc is one half the sum of squares of the state coordinates and

∂πo

∂xi
(x) = 0 iff xi = 0. (15)

It is closer to our input normal form of degree d (14) which has similar prop-
erties. The controllability function πc is one half the sum of squares of the
state coordinates through terms of degree d + 1 and

∂πo

∂xi
(x) = O(x)d+1

if xi = 0. But the normal form of Fujimoto and Scherpen is not unique while
the input normal form of degree d ≤ 6 is unique.

Notice that if a system with distinct singular values τi = τi(0) is in input
normal form of degree d then its controllability and observability functions are
”diagonalized” through terms of degree d + 1. They contain no cross terms
where one coordinate multiplies a different coordinate. This is reminiscent of
the balancing of linear systems by B. C. Moore [6].

For linear systems the singular value τi is a measure of the importance of
the coordinate xi. The ”input energy” needed to reach the state x is πc(x) and
the ”output energy” released by system from the state x is πo(x). The states
that are most important are those with the most ”output energy” for fixed
”input energy”. Therefore in constructing the reduced order model, Moore
kept the states with largest τi for they have the most ”output energy” per
unit ”input energy”.

In Scherpen’s generalization [8] of Moore, the singular value functions τi(x)
measure the importance of the state xi. To obtain a reduced order model, she
assumed τi(x) > τj(x) whenever 1 ≤ i ≤ k < j ≤ n and x is in a neighborhood
of the origin. Then she kept the states x1, . . . , xk in the reduced order model.
But the τi(x) are not unique.

For nonlinear systems in input normal form of degree d, the polynomial
η
[0:d−1]
i (xi) is a measure of the importance of the coordinate xi for moderate

sized x. If the τi are distinct and d ≤ 6 then η
[0:d−1]
i (xi) is unique. The leading

coefficient of this polynomial is the singular value τi so in constructing a
reduced order model we will want to keep the states with the largest τi. But
τi can be small yet η

[0:d−1]
i (xi) can be large for moderate sized xi. If we are

interested in capturing the behavior of the system for moderate sized inputs,
we may also want to keep such states in the reduced order model.

To obtain a reduced order model we proceed as follows. We start by mak-
ing a linear change of coordinates to take the system into input normal form
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of degree 1. If the singular values are distinct this change of coordinates is
uniquely determined up to the signs of the coordinates. In other words replac-
ing xi by −xi does not change the input normal form of degree 1. Next one
computes the Taylor series expansions to degree d + 1 of the controllability
and observability functions, πc(x), πo(x). Then degree by degree one makes
changes of state coordinates to bring the system into input normal form of de-
gree d. The input normal form of degree d are intrinsic but the changes of state
coordinates that achieve are not. We defer for a later paper [5] the discussion
of which changes should be used . Suppose that the input energies that we
shall use are all less than c2

2 for some constant c > 0. Then we expect the sys-
tem to operate in |x| < c where x are the input normal coordinates of degree
d. We compare the sizes of η

[0:d−1]
i (xi) for |xi| < c and split them into two

categories, large and small. The reduced order model is obtained by Galerkin
projection onto the coordinates corresponding to the large η

[0:d−1]
i (xi).

5 Conclusion

We have developed a way of finding state coordinates that lend themselves
to measuring there relative importance. The measure of importance is unique
up to degree 6 (degree 12 for odd systems). Unfortunately the coordinates are
not unique beyond degree one. Since a reduced order model is obtained by
Galerkin projection in these coordinates, it is not unique. Further research is
needed to clarify these issues.

Research supported in part by NSF DMS-0505677.
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