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1. SINGULAR EQUILIBRIA OF DYNAMICAL
SYSTEMS

We are interested in studying and classifying the
simplest ways an equilibrium of a control system
can be singular. Preliminary steps in this direction
can be found in ?. To understand what is meant
by a singular equilibrium, let us first study those
of a smooth dynamical system of the form

ẋ = f(x) (1.1)

where x ∈ IRn. We assume f is as smooth as is
needed.

An equilibrium is a state xe such that

f(xe) = 0.

The linear approximating system to (1.1) around
xe is

ż = Fz (1.2)

where

1 Partially supported by by NSF DMS-??????????

F =
∂f

∂x
(xe).

This linear system has an equilibrium at ze = 0.

The equilibrium xe is said to be hyperbolic if all
of the eigenvalues of F have nonzero real parts.
The key result follows.

Definition 1.1. Two equilibria of two dynamical
systems

ẋ = f(x) (1.3)

0 = f(xe) (1.4)

ż = g(z) (1.5)

0 = g(ze) (1.6)

are locally topologically conjugate if there is a
local homeomorphism

z = φ(x) (1.7)

that carries trajectories to trajectories

z(t) = φ(x(t)) (1.8)



for as long as they remain in the domain of the
local homeomorphism.

Theorem 1.1. Grobman-Hartman Theorem
Suppose (1.1) has an hyperbolic equilibrium at
xe. Then it is locally topologically conjugate to
its linear approximating system (1.2).

Therefore if xe is a hyperbolic equilibrium then
the local behavior of the dynamics (1.1) is similar
to that of its linear approximating system (1.2)
and the latter is well-understood. A singular equi-
librium is one that is not hyperbolic. It is around
such equilibria that the dynamics (1.1) can exhibit
truly nonlinear behavior.

The simplest examples of singular equilibria have
been studied and classified, see for example ?, ?.
To explain what one means by simple, one must
introduce some more concepts. Suppose we have
an open set X ⊂ IRn, we would like to consider
the set of all equilibria of all dynamical systems
(1.1) that are defined on X . This set is infinite
dimensional and difficult to handle so instead we
consider the k-jet bundle of all Ck maps f : X →
IRn. Given such a map f , at each x ∈ X we have
the k-jet of f at x,

(
x, f(x),

∂f

∂x
(x), . . . ,

∂kf

∂xk
(x)

)
. (1.9)

The set of all k-jets of all such maps is a vector
bundle over X . Typically we assume that k = 2
or 3.

We are particularly interested in the equilibrium
k-jets of the form

(
x, 0,

∂f

∂x
(x), . . . ,

∂kf

∂xk
(x)

)
. (1.10)

This is also a vector bundle over X . Let Ek(X )
denote the set of all equilibrium k-jets over X . An
equilibrium k-jet (1.10) is hyperbolic if

F =
∂f

∂x
(x)

has no zero or imaginary eigenvalues. Let Hk(X )
denote the set of all hyperbolic equilibrium k-
jets over X . This is an open and dense subset of
Ek(X ). The compliment of Hk(X ) in Ek(X ) is the
set Sk(X ) of singular k-jets. This set is stratified,
i.e., a union of disjoint submanifolds of varying
codimensions.

In particular Sk(X ) contains exactly two subman-
ifolds of codimension one in Ek(X ). One is the
zero singularities Zk(X ). These are equilibrium
k-jets (1.10) where ∂f

∂x (x) has one zero eigenvalue,
the other eigenvalues are not imaginary and a

nondegeneracy condition is satisfied. After a suit-
able change of coordinates, a dynamical system
realizing such a k-jet at an equilibrium can be
brought to the form

ẋ0 = a2x
2
0 + O(x)3

ẋ1 = F1x1 + O(x)2
(1.11)

where x0 ∈ IR, x1 ∈ IRn−1 and F1 is hyperbolic.
The nondegeneracy condition is that a2 6= 0.

By a minimal unfolding of a singularity we mean
a family of systems depending on as many pa-
rameters as the codimension of the singularity
and whose k-jets touch all nearby strata of lower
codimension in the set of equilibria. A minimal
unfolding of the zero singularity (1.11) is

ẋ0 = µx0 + a2x
2
0 + O(x)3

ẋ1 = F1x1 + O(x)2
(1.12)

It depends on one parameter µ ∈ IR because
Zk(X ) is of codimension one. At each value of the
parameter there is one equilibrium x = 0 which is
hyperbolic when µ 6= 0.

The other set of singularities of codimension one
is the imaginary singularities Ik(X ). These are
equilibrium k-jets (1.10) where ∂f

∂x (x) has one pair
of nonzero, imaginary eigenvalues, the other eigen-
values have nonzero real part and a nondegener-
acy condition is satisfied. After a suitable change
of coordinates, a dynamical system realizing such
a k-jet can be brought to the form

ẋ0 =
[

0 −ω
ω 0

]
x0 + λ1|x0|2x0

+λ2|x0|2
[
−x0,2

x0,1

]
+ O(x)4

ẋ1 = F1x1 + O(x)2

(1.13)

where x0 ∈ IR2, x1 ∈ IRn−2 and F1 is hyperbolic.
The nondegeneracy conditions are that ω 6= 0 and
λ1 6= 0.

A minimal unfolding of this singularity is

ẋ0 =
[

µ −ω
ω µ

]
x0 + λ1|x0|2x0

+λ2|x0|2
[
−x0,2

x0,1

]
+ O(x0, x1)4

ẋ1 = F1x1 + O(x0, x1)2.

(1.14)

It depends on one parameter µ ∈ IR because
Ik(X ) is of codimension one. When µ 6= 0 the
equilibrium is hyperbolic.

There are four submanifolds of singular equilibria
of codimension two. The best known are the cusp



singularities Ck(X ). These are a degenerate zero
singularities where a2 = 0. After a suitable change
of coordinates, a dynamical system realizing such
a k-jet can be brought to the form

ẋ0 = a3x
3
0 + O(x)4

ẋ1 = F1x1 + O(x)2
(1.15)

where x0 ∈ IR, x1 ∈ IRn−1 and F1 is hyperbolic.
The nondegeneracy condition is that a3 6= 0.

A minimal unfolding of the cusp singularity (1.15)
is

ẋ0 = µ1 + µ2x0 + a3x
3
0 + O(x)4

ẋ1 = F1x1 + O(x) (1.16)

It depends on two parameters µ1, µ2 because
Ck(X ) is of codimension two. It is called a cusp
as the two dimensional parameter space is split
by the cusp

4µ3
2 + 27a3µ

2
1 = 0. (1.17)

On one side of this cusp the system (1.16) has
one hyperbolic equilibrium and on the other side
it has three hyperbolic equilibria. On the cusp
itself except at µ1 = µ2 = 0, the system (1.16)
has two equilibria, one hyperbolic and the other a
zero singularity We refer the reader to ? for more
details.

After a suitable change of coordinates, a double
zero singularity is of the form

ẋ0 =
[

0 1
0 0

]
x0 +

[
0

b1x0,1x0,2 + b2x
2
0,2

]
+O(x)3

ẋ1 = F1x1 + O(x)2

where x0 ∈ IR2, x1 ∈ IRn−2 and F1 is hyperbolic.
The nondegeneracy condition is that b2 6= 0.
The set of double zero singularities is denoted by
DZk(X ). A minimal unfolding of this singularity
is

ẋ0 =
[

0 1
µ1 µ2

]
x0 +

[
0

b1x0,1x0,2 + b2x
2
0,2

]
+O(x)3

ẋ1 = F1x1 + O(x)2.

It depends on two parameters µ1, µ2 because
DZk(X ) is of codimension two. When the eigen-
values of

F0(µ) =
[

0 1
µ1 µ2

]
are not on the imaginary axis, the equilibrium is
hyperbolic. When the eigenvalues of F0(µ) are on

the imaginary axis and nonzero, the equilibrium
is an imaginary singularity. When one eigenvalue
of F0(µ) is zero and the other is not zero then the
equilibrium is a zero singularity. See ? for more
details.

The other two classes of singularities of codi-
mension two are the zero-imaginary singularities
ZIk(X) and the double imaginary singularities
DIk(X). The linear part of the former have one
zero eigenvalue, one pair of nonzero imaginary
eigenvalues ±ωi and the rest of the eigenvalues
off the imaginary axis.

The linear part of the latter have two pairs of
nonzero imaginary eigenvalues ±ω1i, ±ω2i and
the rest of the eigenvalues off the imaginary axis.
The two pairs must be nonresonant, if |ω1| ≤ |ω2|
then |ω2| 6= k|ω1| for k = 1, 2, 3. See ? and ? for
more details.

A parameterized dynamical system

ẋ = f(x, π),

where x ∈ X ⊂ IRn, π ∈ P ⊂ IRp, can have
multiple equilibria xe, πe where

f(xe, πe) = 0.

Since this is n equations in n + p unknowns
we expect that around most (xe, πe), the set of
equilibria is a p dimensional surface in X × P.
This is certainly true if the equilibrium (xe, πe) is
hyperbolic for the implicit function theorem then
asserts that locally the set of equilibria is a p
surface parameterized by π. A classical bifurcation
occurs when the set of equilibria intersects the
set of singular equilibria. One usually requires the
intersection to be nontangental.

Suppose p = 1. A fold (aka saddle-node) bifurca-
tion occurs when the k-jets of a curve of equilibria
intersect the set of zero singularities. A transcrit-
ical bifurcation occurs when the set of equilibria
locally consists of two curves which cross at a zero
singularity. A pitchfork bifurcation occurs when
the set of equilibria locally consists of two curves
which cross at a cusp singularity. A Hopf bifur-
cation occurs when the k-jets of a curve of equi-
libria intersect the set of imaginary singularities.
A Bogdanov-Takens bifurcation occurs when the
k-jets of a curve of equilibria intersect the set of
double zero singularities. A fold-Hopf bifurcation
occurs when the k-jets of a curve of equilibria
intersect the set of zero-imaginary singularities.
A double Hopf bifurcation occurs when the k-jets
of a curve of equilibria intersect the set of double
imaginary singularities.



2. SINGULAR EQUILIBRIA OF CONTROL
SYSTEMS

A control system is of the form

ẋ = f(x, u) (2.1)

where x ∈ X ⊂ IRn, u ∈ U ⊂ IRm. We assume
f is as smooth as is needed. An equilibrium is a
pair (xe, ue) such that

f(xe, ue) = 0.

Given such a map f , at each pair (x, u) ∈ X × U
we have the k-jet of f

(
(x, u), f(x, u),

∂f

∂(x, u)
(x, u), . . . ,

∂kf

∂(x, u)k
(x, u)

)
.

The set of all k-jets of all such maps is a vector
bundle over X × U .

We are particularly interested in the equilibrium
k-jets of the form

(
(x, u), 0,

∂f

∂(x, u)
(x, u), . . . ,

∂kf

∂(x, u)k
(x, u)

)
.

This is also a vector bundle over X × U . Let
Ek(X × U) denote the set of all equilibrium k-jets
over X × U . It is convenient to denote

F =
∂f

∂x
(x, u), G =

∂f

∂u
(x, u).

An equilibrium k-jet is linearly controllable if

rank
[
G FG F 2G . . . Fn−1G

]
= n.

Suppose m = 1. Let LCk(X × U) denote the
set of all linearly controllable equilibrium k-jets
over X × U . This is an open and dense subset
of Ek(X × U). The compliment of LCk(X × U)
in Ek(X × U) is the set SCk(X × U) of singular
k-jets of control systems. This set is stratified,
i.e., a union of disjoint submanifolds of varying
codimensions. We would like to describe the strata
of codimensions one and two.

There is one stratum of codimension one, the
fold control singularities, FCk(X ×U). These are
equilibrium k-jets where

rank
[
G FG F 2G . . . Fn−1G

]
= n− 1,

so there is one uncontrollable mode, and a non-
degeneracy condition is satisfied. It is shown in ?
that after a suitable change of state coordinates
and a state dependent change of input coordinates
(aka invertible state feedback), a control system

realizing such a k-jet at an equilibrium can be
brought to the form

ẋ0 = αx0 + γx0x1,1 +
n∑

j=1

δjx
2
1,j + O(x, u)3

ẋ1 = F1x1 + G1u + O(x, u)2
(2.2)

where x0 ∈ IR, x1 ∈ IRn−1 and F1, G1 are in
Brunovsky form,

F1 =


0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
0 0 0 . . . 0

 , G1 =


0
0
...
0
1


For notational convenience we define x1,n = u.
The nondegeneracy conditions are that α and
δ1 6= 0. We could further divide FCk(X ×U) into
those that are linearly stabilizable α < 0 and those
that are not α > 0.

A minimal unfolding is obtained by changing the
x0 dynamics to

ẋ0 = αx0 + µx1,1 + γx0x1,1 +
n∑

j=1

δjx
2
1,j

+O(x, u)3.

(2.3)

When µ 6= 0 the system is linearly controllable
around the equilibrium x = 0, u = 0 but the
integrated effect of the control on x0 changes sign
with µ.

Unlike a dynamical system, a control system
typically has a continuum of equilibria because
f(xe, ue) = 0 is n equations in n + m unknowns.
Since m = 1 the system (2.2) has a curve of
equilibria conveniently parameterized by xe

1,1 = µ,

xe
0(µ) =−δ1

α
µ2 + O(µ)3

xe
1,1(µ) = µ

xe
1,j(µ) = O(µ)2

ue(µ) = O(µ)2.

The linear approximating control system at the
µth equilibrium is

ż =
[

α 2δ1µ 0 . . . 0
0 F1

]
z +

[
0

G1

]
v + O(µ)2

in displacement coordinates z = x − xe(µ), v =
u−ue(µ). This linear system is controllable except
at µ = 0 and similar to a minimal unfolding.

When the input u is scalar, m = 1 there are three
strata of codimension two. The transcontrollable
singularities, T Ck(X × U) are degenerate folds



where the linearly uncontrollable eigenvalue is
zero. After a suitable change of state coordinates
and a state dependent change of input coordi-
nates, a control system realizing such a k-jet at
an equilibrium can be brought to the form

ẋ0 = βx2
0 + γx0x1,1 +

n∑
j=1

δjx
2
1,j + O(x, u)3

ẋ1 = F1x1 + G1u + O(x, u)2
(2.4)

where x0 ∈ IR, x1 ∈ IRn−1 and F1, G1 are in
Brunovsky form. The nondegeneracy condition
is that γ2 − 4βδ1 > 0. This implies that ẋ0

takes on both positive and negative values in any
neighborhood of x = 0.

A minimal unfolding is obtained by changing the
x0 dynamics to

ẋ0 = µ1x0 + µ2x1,1 + βx2
0 + γx0x1,1 +

n∑
j=1

δjx
2
1,j

+O(x, u)3.

(2.5)

When µ2 6= 0 the system is linearly controllable
around the equilibrium x = 0, u = 0. When
µ2 = 0 but µ1 6= 0 the equilibrium is a fold control
singularity.

The next stratum of codimension two is the two
real roots control singularities, T RRk(X × U).
After a suitable change of state coordinates and
a state dependent change of input coordinates,
a control system realizing such a k-jet at an
equilibrium can be brought to the form

ẋ0 = F0x0 + Γx0x1,1 +
n∑

j=1

∆jx
2
1,j + O(x, u)3

ẋ1 = F1x1 + G1u + O(x, u)2
(2.6)

where x0 ∈ IR2, x1 ∈ IRn−2, F1, G1 are in
Brunovsky form,

F0 =
[

α1 0
0 α2

]
Γ =

[
γ11 γ12

γ21 γ22

]
∆j =

[
δ1j

δ2j

]
The nondegeneracy conditions are that α1 6=
0, α2 6= 0, α1 6= α2, α1 6= 2α2, α2 6= 2α1 and
F0, ∆1 is a controllable pair.

A minimal unfolding is obtained by changing the
x0 dynamics to

ẋ0 = F0x0 + µ1x0,2e0,1 + µ2x1,1e0,2

+Γx0x1,1 +
n∑

j=1

∆jx
2
1,j + O(x, u)3

When µ1 6= 0, µ2 6= 0 the equilibrium is linearly
controllable. When µ1 = 0 but µ2 6= 0 the
equilibrium is a fold control singularity.

The third stratum, and last when m = 1, of
codimension two is the two complex roots control
singularities, T CRk(X × U). They are similar to
the two real roots control singularities except that

F0 =
[

α −ω
ω α

]
where α 6= 0, ω 6= 0.

3. SINGULAR EQUILIBRIA OF
MULTI-INPUT CONTROL SYSTEMS

In this section we consider the singular equilib-
ria control systems with several inputs, m >
1. First we must define the controllability (aka
Brunovsky) indices of a linear control system

ẋ = Fx + Gu.

The controllability matrix[
G FG F 2G . . . Fn−1G

]
has n rows and nm columns. Starting from the
left we delete a column if it is dependent on the
columns to its left. After reordering we obtain a
matrix of the form[

G1 . . . Fn1−1G1 . . . Gm . . . Fnm−1Gm

]
where n1 ≥ n2 ≥ . . . ≥ nm ≥ 0. These integers
are called the controllability indices. For generic
F, G they sum to n so that the system is linearly
controllable. Also for a generic system, they differ
by at most one. If k is the greatest integer not
exceeding n/m then the indices are either k + 1
or k. If either of these do not hold then the linear
system is singular.

Henceforth for ease of exposition we shall assume
that m = 2 and leave the general case to the
reader. If n is even then the generic controllability
indices are n1 = n2 = n/2. If n is odd then the
generic controllability indices are n1 − 1 = n2 =
(n− 1)/2. A control shift singularity occurs when
n1 is larger and n2 is smaller than the generic case.

The set of all control shift singularities CSk(X×U)
is a submanifold of Ek(X × U) of codimension
one. After a suitable change of state coordinates
and invertible state feedback, an equilibrium that
realizes a control shift singularity can be brought
to the form

ẋ1 = F1x1 + G1u1 + O(x, u)2 (3.1)

ẋ2 = F2x2 + G2u2 + O(x, u)2 (3.2)

where x1 ∈ IRn1 , x2 ∈ IRn2 , F1, G1 is in
Brunovsky form with state dimension n1 and



F2, G2 is in Brunovsky form with state dimension
n2. A minimal unfolding is

ẋ1 = F1x1 + µx2,1e1,1 + G1u1 + O(x, u)2

ẋ2 = F2x2 + G2u2 + O(x, u)2

where e1,1 is the unit column n1 vector in the x1,1

direction. If µ 6= 0 then the controllability indices
are n1 − 1, n2 + 1 and are generic.

When m = 2 another stratum of control singu-
larities is the set of double control fold singu-
larities, DCF k(X × U). This is of codimension
two. These singularities have one mode that is not
linearly controllable and the controllability indices
are as close together as possible. After a change
of coordinates and feedback a double control fold
singularity takes the form

ẋ0 = αx0 + O(x, u)2

ẋ1 = F1x1 + G1u1 + O(x, u)2

ẋ2 = F2x2 + G2u2 + O(x, u)2

where x0 ∈ IR, x1 ∈ IRn1 , x2 ∈ IRn2 , F1, G1 is
in Brunovsky form with state dimension n1 and
F2, G2 is in Brunovsky form with state dimension
n2.

When n is odd then n1 = n2 = (n − 1)/2 and
a minimal unfolding is obtained by transforming
the x0 dynamics to

ẋ0 = αx0 + µx1,1 + O(x, u)2.

If µ 6= 0 then the controllability indices are
generic, n1 − 1 = n2 = (n− 1)/2. Notice that the
minimal unfolding depends on a single parameter
even though the codimension is two.

When n is even then n1− 1 = n2 = (n− 2)/2 and
a minimal unfolding is obtained by transforming
the x0 dynamics to

ẋ0 = αx0 + µ1x1,1 + µ2x2,1 + O(x, u)2.

If µ2 6= 0 then the controllability indices are
generic, n1 = n2 = n/2. If µ2 = 0 but µ1 6= 0 then
the controllability indices are n1 − 2 = n2 = (n−
2)/2. Notice that the minimal unfolding depends
on two parameters.

The set of all double control shift singularities
DCSk(X × U) is a submanifold of Ek(X × U) of
codimension two when m = 2. For such singulari-
ties the first controllability index n1 is two greater
than the generic first index and the second index
is two less than the generic second index. After
a suitable change of state coordinates and invert-
ible state feedback an equilibrium that realizes a
double control shift singularity can be brought to
the form (3.1). A minimal unfolding is

ẋ1 = F1x1 + µ1x2,1e1,1 + µ2x2,2e1,2 + G1u1

+O(x, u)2

ẋ2 = F2x2 + G2u2 + O(x, u)2

If µ2 6= 0 then the controllability indices are n1 −
2, n2 + 2 and are generic. If µ2 = 0 but µ1 6= 0
then the controllability indices are n1 − 1, n2 + 1
and the equilibrium is a control shift singularity.

Since the equilibrium condition f(xe, ue) = 0 is n
equations in n+m variables we expect that locally
around most equilibria the set of equilibria is an
m dimensional surface. By the implicit function
theorem this is certainly true if the equilibrium is
linearly controllable. Suppose for simplicity m =
1 so we expect a curve of equilibrium. When
the k jet of an equilibrium intersects a control
singularity, a control bifurcation occurs. A control
system does not need a parameter to bifurcate
because it has continua of equilibria. If the control
system does have parameters

ẋ = f(x, u, π)

where x ∈ X ⊂ IRn, u ∈ U ⊂ IRm, π ∈ P ⊂ IRp.
Then the equilibrium condition f(xe, ue, πe) = 0
is n equations in n + m + p variables so then
typically the set of equilibria is locally an m +
p surface. When the k jets of these equilibria
intersect a strata of control singularities a control
bifurcation occurs, see ? for more details.

4. CONCLUSION

We reviewed the classification of the singularities
of dynamical systems of low codimension . Then
we classified the singularities of control systems of
low codimension.


