
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

2011-02

Vision-based hand-gesture applications

Wachs, Juan Pablo

ACM

Juan Pablo Wachs, Mathias Kölsch, Helman Stern, Yael Edan, "Vision-based

hand-gesture applications," Communications of the ACM, v.54, no.2 (February

2011), pp. 60-71.

http://hdl.handle.net/10945/52012



60    communicAtions of tHe Acm    |   FeBrUAry 2011  |   voL.  54  |   No.  2

contributed�articles

There is  sTrong  evidence that future human-
computer interfaces will enable more natural, intuitive 
communication between people and all kinds of 
sensor-based devices, thus more closely resembling 
human-human communication. Progress in the 
field of human-computer interaction has introduced 
innovative technologies that empower users to 
interact with computer systems in increasingly 
natural and intuitive ways; systems adopting them 
show increased efficiency, speed, power, and 
realism. However, users comfortable with traditional 
interaction methods like mice and keyboards are 
often unwilling to embrace new, alternative interfaces. 
Ideally, new interface technologies should be 
more accessible without requiring long periods of 
learning and adaptation. They should also provide 
more natural human-machine communication. As 
described in Myron Krueger’s pioneering 1991 book 
Artificial Reality,27 “natural interaction” means voice 

and gesture. Pursuing this vision re-
quires tools and features that mimic 
the principles of human communica-
tion. Employing hand-gesture com-
munication, such interfaces have 
been studied and developed by many 
researchers over the past 30 years in 
multiple application areas. It is thus 
worthwhile to review these efforts and 
identify the requirements needed to 
win general social acceptance. 

Here, we describe the requirements 
of hand-gesture interfaces and the 
challenges in meeting the needs of var-
ious application types. System require-
ments vary depending on the scope of 
the application; for example, an en-
tertainment system does not need the 
gesture-recognition accuracy required 
of a surgical system. 

We divide these applications into 
four main classes—medical systems 
and assistive technologies; crisis man-
agement and disaster relief; enter-
tainment; and human-robot interac-
tion—illustrating them through a set 
of examples. For each, we present the 
human factors and usability consider-
ations needed to motivate use. Some 
techniques are simple, often lacking 
robustness in cluttered or dynamic 
scenarios, indicating the potential for 
further improvement. In each, the raw 
data is real-time video streams of hand 
gestures (vision-based), requiring ef-
fective methods for capturing and 
processing images. (Not covered is the 
literature related to voice recognition 
and gaze-tracking control.) 

Vision-Based 
Hand-Gesture 
Applications 

Doi:10.1145/1897816.1897838

Body posture and finger pointing are a natural 
modality for human-machine interaction, but 
first the system must know what it’s seeing. 

By JuAn PABLo WAcHs, mAtHiAs KöLscH,  
HeLmAn steRn, AnD yAeL eDAn 

 key insights
����Gestures are useful for computer 

interaction since they are the most 
primary and expressive form of human 
communication. 

����Gesture interfaces for gaming based 
on hand/body gesture technology 
must be designed to achieve social and 
commercial success. 

����no single method for automatic hand-
gesture recognition is suitable for every 
application; each gesture-recognition 
algorithm depends on user cultural 
background, application domain, and 
environment. 
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Basic communication form 
We humans use gestures to interact 
with our environment during the ear-
liest stages of our development. We 
also communicate using such gestures 
as body movement, facial expression, 
and finger pointing. Though much has 
been written about gesture interfaces, 
interface technology rarely adopts this 
media; consequently, expressiveness 
and naturalness elements are missing 
from most user interfaces. Hand-ges-
ture applications provide three main 
advantages over conventional human-
machine interaction systems: 

Accessing information while main-
taining total sterility. Touchless inter-
faces are especially useful in health-
care environments; 

Overcoming physical handicaps. 
Control of home devices and applianc-
es for people with physical handicaps 
and/or elderly users with impaired mo-
bility; and 

Exploring big data. Exploration 
of large complex data volumes and 
manipulation of high-quality im-
ages through intuitive actions benefit 
from 3D interaction, rather than con-
strained traditional 2D methods. 

Human-robot interaction is another 
application where the main motivation 
for gesture-based systems is to have 
this communication resemble natural 
human dialogue as much as possible. 
For example, imagine how intuitive it 
could be to use hand gestures to tell a 
robot what to do or where to go. Point-
ing to a dust spot to indicate “Clean 
that spot,” users would be able to tell a 
Roomba robotic vacuum cleaner what 
to do next. Finally, gestures provide 
a source of expressiveness when im-
mersed in realistic video games. Some 
notable technologies (such as Micro-
soft Kinect, Sony PSP, and Nintendo 
DS and Wii) include gesture recogni-
tion in their consoles. Unfortunately, 
only dynamic gestures (such as waving 
and fist hitting) are recognized so far. 
Dynamic hand-shape recognition, as 
in American Sign Language, remains a 
challenge. 

costs/Benefits 
The appeal of gesture interfaces de-
rives partly from their flexibility and 
customizability. Still, many require-
ments as to their functionality and 
performance are the same throughout 

most classes of use. As devices and 
hand-gesture interfaces proliferate as 
a result of inexpensive cameras and 
computational power, questions con-
cerning market acceptance also be-
come more frequent. Here are the basic 
requirements, though they are likely to 
vary depending on application: 

Price. Better camera quality, frame-
rate, distortion, and auto-shutter 
speed yield better performance but 
higher cost. Some inexpensive meth-
ods for achieving 3D reconstruction 
(such as flashing IR LED illuminators 
from multiple angles) can replace ste-
reo cameras. But the sum of the prices 
for discrete hardware components can 
add up for the typical consumer, as well 
as for a manufacturer. The cost of more 
advanced sensors and sensor setups 
must be weighed against any potential 
performance benefit. 

Challenges. Given a fixed budget, the 
challenge for the developer is to decide 
how the development budget should 
be spent and, especially, which hard-
ware the system cannot do without. 

Responsiveness. The system should 
be able to perform real-time gesture 
recognition. If slow, the system will be 
unacceptable for practical purposes. 
In 1963, Sheridan and Ferrell43 found 
maximum latency between “event oc-
currence” and “system response” of 
45ms was experienced by most of their 
human test subjects as “no delay.” 
Starting at 300ms, an interface feels 
sluggish, possibly provoking oscilla-
tions and causing a symptom known 
as “move and wait.” 

Challenges. Simple, computational-
ly efficient features are of great interest 
to machine-vision researchers, though 
more effective techniques must still be 
developed. 

User adaptability and feedback. 
Some systems are able to recognize 
only a fixed number of gestures se-
lected by the system designer; others 
adapt to a nuanced spectrum of user-
selected gestures. The type of gesture 
selected depends on the application; 
for example, in video games, learning 
gestures is part of a gratifying experi-
ence playing the game. In either case, 
feedback indicating the correctness of 
the gesture performed is necessary for 
successful interaction. 

Challenges. Most hand-gesture sys-
tems have a core algorithm trained 

offline (not in real time). Training a 
classifier online requires a fast, flexible 
online learning algorithm capable of 
generalizing from a few training sam-
ples. Presenting feedback to the user 
without increasing cognitive load is an 
additional problem. 

Learnability. Gesture patterns (the 
lexicon) used to control applications 
must be easy to perform and remem-
ber. These factors are strongly associ-
ated with learning rate and “memora-
bility” indices, as reported by Wachs.51 

Challenges. The learning rate de-
pends on task, user experience, and 
user cognitive skills. Hardly any litera-
ture exists on user performance as a 
function of gesture vocabulary size or 
user experience. Two exceptions are by 
Nielsen34 and by Kela et al.23 focusing 
on acceleration-based gestures. A pos-
sible solution is to adopt gestures that 
are natural and intuitive to the user; 
users are also more likely to remember 
them. 

Accuracy (detection, tracking, and 
recognition). Among these three main 
criteria affecting the performance of 
hand-gesture systems, detection de-
scribes whether a hand is in the cam-
era’s view. Tracking describes the 
ability to follow the hand from frame 
to frame. And recognition is based on 
how close the hand’s trajectories are 
to learned templates, based on dis-
tance metrics, and indicates the level 
of confusion of the given gesture with 
other gestures. For this article, we limit 
ourselves to performance measures for 
per-frame-analysis as opposed to ac-
tivity-recognition systems where more 
complex performance measures are 
considered.32 

Challenges. The main challenges for 
the three performance measures are at 
the forefront of research in machine 
vision. Detection is an extremely com-
plex problem due to hand shape, vari-
able lighting conditions, skin color, 
and hand size. Tracking complications 
arise from occlusions, cluttered envi-
ronments, and rapid motions causing 
motion blur. Addressing these chal-
lenges allows good recognition accu-
racy to follow. 

Low mental load. Having to recall 
gesture trajectories, finger configura-
tions, and associated actions is likely 
to add to a user’s mental load. Another 
source of mental (and physical) load 
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is when users’ hands cover the dis-
play, preventing them from seeing the 
graphics being guided. 

Challenges. The gestures should be 
simple, temporally short, and natural. 
For a given set of tasks, users should 
have to remember at most only a few 
postures. Iconic representations of 
gesture-command associations may 
also help relieve users’ mental load. 

Intuitiveness. The gesture types se-
lected by interface developers should 
have a clear cognitive association with 
the functions they perform. For ex-
ample, an open palm can represent 
a “stop” command, a closed fist with 
thumb up can represent “OK,” and a 
pointing finger can represent the di-
rection to move an object. Few users 
are able to remember complex shapes 
and unnatural finger configurations. 
Intuitiveness is associated with other 
usability terms (such as learnability 
and “easy to remember”). Other factors 
affecting user-gesture choices are gen-
eral knowledge, cultural environment, 
and linguistic capability.51 

Challenges. Intuitiveness is strongly 
associated with cultural background 
and experience. A gesture natural to 
one user may be unnatural to others. 
Moreover, Stern et al.46 showed there 
is no consensus among users regard-
ing gesture-function associations. This 
problem can be overcome by letting 
users decide which gesture best repre-
sents their intentions. The “Wizard of 
Oz” paradigm34 and analytical struc-
tured approaches51 help achieve this 
representation. 

Comfort. Lexicon design should 
avoid gestures that require intense 
muscle tension over long periods, a 
syndrome commonly called “Gorilla 
arm.” Gestures must be concise and 
comfortable while minimizing stress 
on the hand. Awkward, repetitive pos-
tures can strain tissues and result in 
pressure within the carpal tunnel. Two 
types of muscular stress are found: 
static, the effort required to maintain a 
posture for a fixed amount of time, and 
dynamic, the effort required to move a 
hand through a trajectory. 

Challenges. Measuring stress pro-
duced by hand gestures is very dif-
ficult. For stress-index measures, 
experiments vary from subjective ques-
tionnaires to electronic devices (such 
as electromyograms) that measure 

muscle activity. The main obstacle with 
physiological methods is that muscle 
potentials are highly variable within 
subjects and depend on external fac-
tors like positioning, temperature, and 
physiologic state. Instead, analytical 
approaches help assess stress based 
on the dynamics of musculoskeletal 
models. 

Lexicon size and multi-hand sys-
tems. For sign languages (such as 
American Sign Language), hand-ges-
ture-recognition systems must be able 
to recognize a large lexicon of both sin-
gle-handed and two-handed gestures. 
For multi-touch systems, lexicon size 
plays a minor role. In either case, the 
challenge is to detect (and recognize) 
as many hands as possible. 

Challenges. The different types of 
gestures to be recognized must be 
weighed against the system’s robust-
ness. A classifier that recognizes a 
small number of gestures generally 
outperforms the same system trained 
on more gestures. The challenge for 
the vision algorithm is to select robust 
features and classifiers such that the 
system’s performance is barely affect-
ed by lexicon size. Multi-hand systems 
pose additional challenges (such as 
disambiguation of mutual hand occlu-
sions and correctly associating hands 
and people). 

Come as you are.48 This phrase re-
fers to an HCI design that poses no 
requirement on the user to wear mark-
ers, gloves, or long sleeves, fix the back-
ground, or choose a particular illumina-
tion. Many methods encumber the user 
in order to track and recognize gestures 
by standardizing the appearance of the 
hands (markers, gloves, long sleeves) 
but make interaction cumbersome. 
The challenge for the vision algorithm 
is to recognize hand gestures without 
requiring the user wear additional aids 
or being wired to a device. 

Challenges. This flexibility constraint 
suggests a machine-vision-based solu-
tion that is not invasive. The drawback 
reveals itself with varied environments 
and user appearance. Assumptions 
about user characteristics and illumi-
nation affect system robustness. Near-
IR illuminators can help. Far-IR cam-
eras, ultrasonic, IR laser scanners, and 
capacitive imagers are also possible 
approaches for maintaining a system 
that lets users come as you are. 

Lexicon design 
should avoid 
gestures that 
require intense 
muscle tension 
over long periods, 
a syndrome 
commonly called 
“Gorilla arm.” 
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Reconfigurability. Hand-gesture sys-
tems are used by many different types 
of users, and related hand-gesture in-
terfaces are not “one size fits all.” Loca-
tion, anthropometric characteristics, 
and type and number of gestures are 
some of the most common features 
that vary among users. 

Challenges. This requirement is 
not technically challenging; the main 
problem is the choice of functionalities 
within the interface that can change 
and those that cannot. The designer 
should avoid overwhelming the user 
by offering infinite tunable parameters 
and menus. On the other hand, users 
should have enough flexibility that they 
can freely set up the system when a ma-
jor component is replaced or extended. 

Interaction space. Most systems 
assume users are standing in a fixed 
place with hands extended (limited 

by a virtual interaction envelope) and 
within the envelope recognize ges-
tures. But these assumptions do not 
hold for mobile ubiquitous hand-ges-
ture-recognition systems where the in-
teraction envelope surrounds only the 
mobile device. 

Challenges. Recognition of 3D body-
arm configurations is usually achieved 
through at least two cameras with 
stereo vision, a setup requiring pre-
vious calibration and usually slower 
response than single-camera-based 
systems. Monocular vision can be used 
to disambiguate 3D location using ac-
curate anthropomorphic models of the 
body, but fitting such a model to the 
image is computationally expensive. 

Gesture spotting and the immer-
sion syndrome. Gesture spotting con-
sists of distinguishing useful gestures 
from unintentional movement related 
to the immersion-syndrome phenom-
enon,2 where unintended movement is 
interpreted against the user’s will. Un-
intended gestures are usually evoked 
when the user interacts simultaneous-
ly with other people and devices or just 
resting the hands. 

Challenges. The main challenge 
here is cue selection to determine the 
temporal landmarks where gesture in-
teraction starts and ends; for example, 
hand tension can be used to find the 
“peak” of the gesture temporal trajec-
tory, or “stroke,” while voice can be 
used to mark the beginning and cul-
mination of the interaction. However, 
recognition alone is not a reliable mea-
sure when the start and end of a ges-
ture are unknown, since irrelevant ac-
tivities often occur during the gesture 
period. One solution is to assume that 
relevant gestures are associated with 
activities that produce some kind of 
sound; audio-signal analysis can there-
fore aid the recognition task.52 

While responsiveness, accuracy, 
intuitiveness, come as you are, and 
gesture spotting apply to all classes of 
gesture interface, other requirements 
are more specific to the context of the 
application. For mobile environments 
in particular, ubiquity and wearability 
represent special requirements: 

Ubiquity and wearability. For mo-
bile hand-gesture interfaces, these 
requirements should be incorporated 
into every aspect of daily activity in ev-
ery location and every context; for ex-

ample, small cameras attached to the 
body or distributed, networked sen-
sors can be used to access information 
when the user is mobile. 

Challenges. Hand-gesture systems 
that are spatially versatile and adapt-
able to changing environments and 
users require self-calibration. Small 
programmable sensors are expensive, 
and cross-platform environments have 
yet to be developed. 

In a literature review we undertook 
as we wrote this article, we found that 
the requirements outlined here are ac-
knowledged by only a few scientists, in-
cluding Baudel and Beaudouin-Lafon2 
and Triesch and Malsburg.48 

Hand-Gesture Recognition 
Hand gestures can be captured 
through a variety of sensors, includ-
ing “data gloves” that precisely record 
every digit’s flex and abduction angles, 
and electromagnetic or optical posi-
tion and orientation sensors for the 
wrist. Yet wearing gloves or trackers, 
as well as associated tethers, is uncom-
fortable and increases the “time-to-
interface,” or setup time. Conversely, 
computer-vision-based interfaces offer 
unencumbered interaction, providing 
several notable advantages: 

˲˲ Computer vision is nonintrusive; 
˲˲ Sensing is passive, silent, possibly 

stealthy; 
˲˲ Installed camera systems can per-

form other tasks aside from hand-ges-
ture interfaces; and 

˲˲ Sensing and processing hardware 
is commercially available at low cost. 

However, vision-based systems usu-
ally require application-specific algo-
rithm development, programming, 
and machine learning. Deploying them 
in everyday environments is a chal-
lenge, particularly for achieving the ro-
bustness necessary for user-interface 
acceptability: robustness for camera 
sensor and lens characteristics, scene 
and background details, lighting con-
ditions, and user differences. Here, we 
look at methods employed in systems 
that have overcome these difficulties, 
first discussing feature-extraction 
methods (aimed at gaining informa-
tion about gesture position, orienta-
tion, posture, and temporal progres-
sion), then briefly covering popular 
approaches to feature classification 
(see Figure 1). 

figure 1. Head and hand detection using 
depth from stereo, illumination-specific 
color segmentation, and knowledge of 
typical body characteristics.17

figure 2. Hue-saturation histogram of skin 
color. the circled region contains the hand 
pixels in the photo; the high spike is caused 
by grayish and white pixels.
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Motion. Frame-to-frame compari-
son against a learned background 
model is an effective and computa-
tionally efficient method for finding 
foreground objects and for observing 
their position and movement. This 
comparison requires several assump-
tions (such as a stationary camera or 
image pre-processing to stabilize the 
video) and a static background; for ex-
ample, Kang et al.21 employed the Lu-
cas-Kanade tracking method.29 

Depth. Range data from a calibrated 
camera pair40 or direct range sensors 
(such as LiDAR) is a particularly use-
ful cue if the user is expected to face 
the camera(s) and the hands are con-
sidered the closest object. Depth from 
stereo is usually coarse-grain and rath-
er noisy, so it is often combined with 
other image cues (such as color17,22,33). 
Well-calibrated stereo cameras are 
costly, and depth can be calculated ac-
curately only if the scene contains suf-
ficient texture. If texture is lacking, ar-
tificial texture can be projected into the 
scene through a digital light projector 
injecting structured light patterns.39 

Color. Heads and hands are found 
with reasonable accuracy based purely 
on their color.24,40 Skin color occupies 
a rather well-defined area in color 
spaces (such as Hue, Saturation, and 
Intensity, L*a*b*, and YIQ) so can be 
used for segmentation (see Figure 2 
and Hasanuzzaman et al.,19 Rogalla et 
al.,41 and Yin and Zhu53). Combined 
histogram-matching and blob-track-
ing with Camshift7 or the Viterbi al-
gorithm54 is a popular approach due 
to its speed, ease of implementation, 
and performance. Shortcomings stem 
from confusion with similar-colored 
objects in the background and limita-
tions with respect to posture recogni-
tion. Better optics and sensors often 
improve color saturation, therefore 
color-based algorithms; another ac-
curacy boost can be achieved through 
user-worn markers (such as colored 
gloves and bright LEDs). While sim-
plifying the interface implementa-
tion, these aids do not permit users to 
“come as you are,” so IR illumination 
can be used instead of markers. The IR 
light source illuminates users’ hands, 
allowing an IR camera to capture the 
images of the illuminated parts.44 In 
addition, reflective material affixed to 
a body part can increase the part’s re-

flection properties. 
Shape. Many objects can be distin-

guished by their shape, or silhouette. 
Different object orientations are often 
also revealed based on shape alone. 
Shape is available if the object is clearly 
segmented from the background scen-
ery, achievable in controlled environ-
ments (such as with chroma keying), 
often for stationary-camera systems 
(using a background model) and a bit 
less reliably with a good hand-color 
model.53 Popular methods include sta-
tistical moments,13 rule-based meth-
ods (see Figure 3 and Kawarazaki et 
al.22 and Yin and Zhu53), active shape 
models,12 and shape context.4 

Appearance. Methods that consider 
the intensity and/or color values across 
a region of interest are more powerful 
and robust than methods that consider 
shape alone. Since they do not rely on 
segmentation, they are generally able 
to handle situations with no intensity/
color distinction between foreground 
and background. The theoretical up-
per bound on lexicon size is much 
greater for appearance-based methods 
than for purely depth- and shape-based 
methods. The drawback is increased 
computational cost during training 
and recognition; for example, detect-
ing heads in all possible orientations 
or hands in all possible configurations 
is not currently possible at interactive 
frame rates. Examples of appearance-
based methods (such as by Viola and 
Jones49) have been employed for vari-
ous vision-based interfaces, including 
those reported by Hasanuzzaman.19 

Multi-cue. Rather than rely on a sin-
gle image cue, a number of schemes 
combine information from multiple 
cues. Motion-based region-of-interest 
designation, combined with appear-
ance-based hand, face, or body detec-
tion, improves speed and accuracy. 
Appearance and color for detection 
and motion cues, together with color, 
were used for hand-gesture interfaces 
(see Figure 4) by Kölsch et al.24 and 
Rauschert et al.40 Removal of any of 
these cues was shown to hurt perfor-
mance. Methods that segment a ges-
ture in an image based on color, then 
classify the shape, do not fall into this 
multi-cue category, since the cues are 
used sequentially, not cooperatively; 
that is, if the first cue fails, the second 
cue is useless. True multi-cue systems 

face similar difficulties with data com-
bination as classic sensor fusion: intra-
cue confidence is often unavailable for 
weighting; the data domains and/or 
ranges are often distinct; and the com-
bination function may be highly non-
linear. 

The extracted features are then 
subjected to various classifiers, from 
generic support vector machines10 to 
highly customized shape classifiers, 
as in Yin and Zhu.53 Some features 
perform classification implicitly; for 
example, the Lucas-Kanade-based 
tracker discards “unreliable” patches, 
and Camshift7 determines a decision 
boundary in space and color histo-
grams. 

Classification is sometimes exter-
nally combined with feature extrac-
tion, as in the boosting approach 
involving a combination of weak detec-
tors.49 Other methods involve a distinct 
translation step into feature space 
and subsequent classification; for ex-
ample, consider the motion track of a 
hand gesture, with its spatial location 
over time serving as feature vector and 
a hidden Markov model classifying 
hand trajectory into various temporal/
dynamic gestures26,33,40,42 (see Figure 5). 

As with speech recognition, dy-

figure 3. hand-gesture recognition using 
color segmentation, conversion into polar 
coordinates, and maxima detection to 
identify and count fingers.

figure 4. multi-cue hand tracking and 
posture recognition.24
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namic gesture segmentation (when the 
gesture starts and ends) is a challenge; 
in gesture research, such temporal 
segmentation is often called “gesture 
spotting” (see the section on require-
ments and challenges). Spotting is not 
only difficult but necessitates a lag be-
tween gesture start and finish (or later), 
limiting the responsiveness of the user 
interface. Other successful classifica-
tion methods are dynamic time warp-
ing, Hough transforms, mean-shift and 
Camshift, and Bayesian approaches. 

Applications 
The first application of hand-gesture 
control we review—medical systems 
and assistive technologies—provides 
the user sterility needed to help avoid 
the spread of infection. The second—
entertainment—involves naturalness 
of the interface as part of the user expe-
rience. The next—crisis management 
and disaster relief—involves a per-

formed task requiring quick user feed-
back. Finally, human-robot interaction 
must be natural and intuitive for the 
personal robot of the future. Here, we 
cover hand-gesture control interfaces 
for each category and discuss the re-
lated design considerations. 

Medical systems and assistive tech-
nologies. Gestures can be used to 
control the distribution of resources 
in hospitals, interact with medical in-
strumentation, control visualization 
displays, and help handicapped users 
as part of their rehabilitation thera-
py.35,50 Some of these concepts have 
been exploited to improve medical 
procedures and systems; for example, 
Face MOUSe35 satisfied the “come as 
you are” requirement, where surgeons 
control the motion of a laparoscope 
by making appropriate facial gestures 
without hand or foot switches or voice 
input. Graetzel et al.16 covered ways to 
incorporate hand gestures into doc-

tor-computer interfaces, describing a 
computer-vision system that enables 
surgeons to perform standard mouse 
functions, including pointer move-
ment and button presses, with hand 
gestures that satisfy the “intuitiveness” 
requirement. Wachs et al.50 developed 
a hand-gesture-tracking device called 
Gestix that allows surgeons to browse 
MRI images in an operating room (see 
Figure 6), using a natural interface to 
satisfy both “come as you are” and “in-
tuitiveness.” 

A European Community Project 
called WearIT@work30 satisfies the 
“comfort” requirement by encourag-
ing physicians to use a wrist-mounted 
RFID reader to identify the patient and 
interact through gestures with the hos-
pital information system to document 
exams and write prescriptions, helping 
ensure sterility. However, since this is 
an encumbered interface, the “come as 
you are” requirement is violated. We ex-
pect to see some of these new technolo-
gies (based on “smart instruments”) 
introduced directly into the operating 
room, where the direction/activation 
of a robotic end effecter could be per-
formed through gesture recognition.35 

For the impaired, the critical re-
quirements of a hand-gesture interface 
system are “user adaptability and feed-
back” and “come as you are.” In this 
context, wheelchairs, as mobility aids, 
have been enhanced through robotic/
intelligent vehicles able to recognize 
hand-gesture commands (such as in 
Kuno et al.28). The Gesture Pendant44 is 
a wearable gesture-recognition system 
used to control home devices and pro-
vide additional functionality as a medi-
cal diagnostic tool. The Staying Alive3 
virtual-reality-imagery-and-relaxation 
tool satisfies the “user adaptability 
and feedback” requirement, allowing 
cancer patients to navigate through a 
virtual scene using 18 traditional T’ai 
Chi gestures. In the same vein, a tele-
rehabilitation system18 for kinesthetic 
therapy—treatment of patients with 
arm-motion coordination disorders—
uses force-feedback of patient ges-
tures. Force-feedback was also used by 
Patel and Roy36 to guide an attachable 
interface for individuals with severely 
dysarthric speech. Also, a hand-worn 
haptic glove was used to help rehabili-
tate post-stroke patients in the chronic 
phase by Boian et al.5 These systems 

figure 5. motions reliably distinguished by hidden markov models,42 from moving the 
Wiimote in a square to swinging an arm, as in serving with a tennis racquet. the third 
gesture from the left describes a 90-degree roll angle around the z-axis (back and forth). 

figure 6. surgeon using Gestix to browse medical images.
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illustrate how medical systems and 
rehabilitative procedures promise to 
provide a rich environment for the po-
tential exploitation of hand-gesture 
systems. Still, additional research and 
evaluation procedures are needed to 
encourage system adoption. 

Entertainment. Computer games 
are a particularly technologically 
promising and commercially reward-
ing arena for innovative interfaces due 
to the entertaining nature of the inter-
action. Users are eager to try new in-
terface paradigms since they are likely 
immersed in a challenging game-like 
environment.45 In a multi-touch de-
vice, control is delivered through the 
user’s fingertips. Which finger touches 
the screen is irrelevant; most impor-
tant is where the touch is made and the 
number of fingers used. 

In computer-vision-based, hand-
gesture-controlled games,13 the sys-
tem must respond quickly to user 
gestures, the “fast-response” require-
ment. In games, computer-vision al-
gorithms must be robust and efficient, 
as opposed to applications (such as 
inspection systems) with no real-time 
requirement, and where recognition 
performance is the highest priority. 
Research efforts should thus focus on 
tracking and gesture/posture recogni-
tion with high-frame-rate image pro-
cessing (>10 fps). 

Another challenge is “gesture spot-
ting and immersion syndrome,” aim-
ing to distinguish useful gestures 
from unintentional movement. One 
approach is to select a particular ges-
ture to mark the “start” of a sequence 
of gestures, as in the “push to talk” ap-
proach in radio-based communication 
where users press a button to start talk-
ing. In touchscreen mobile phones, 
the user evokes a “swipe” gesture to 
start operating the device. To “end” 
the interaction, the user may evoke 
the “ending” gesture or just “rest” the 
hands on the side of the body. This 
multi-gesture routine may be prefer-
able to purely gaze-based interaction 
where signaling the end of the interac-
tion is a difficult problem, since users 
cannot turn off their eyes. The problem 
of discriminating between intentional 
gestures and unintentional movement 
is also known as the Midas Touch prob-
lem (http://www.diku.dk/hjemmesider/
ansatte/panic/eyegaze/node27.html). 

In the Mind-Warping augmented-
reality fighting game,45 where users in-
teract with virtual opponents through 
hand gestures, gesture spotting is 
solved through voice recognition. The 
start and end of a temporal gesture is 
“marked” by voice—the start and end 
of a Kung Fu yell; Kang et al.21 addressed 
the problem of gesture spotting in the 
first-person-shooter Quake II. Such 
games use contextual information like 
gesture velocity and curvature to ex-
tract meaningful gestures from a video 
sequence. Bannach et al.41 addressed 
gesture spotting through a sliding 
window and bottom-up approach in a 
mixed-reality parking game. Schlömer 
et al.42 addressed accelerometer-based 
gesture recognition for drawing and 
browsing operations in a computer 
game. Gesture spotting in many Nin-
tendo Wii games is overcome by press-
ing a button on the WiiMote control 
through the “push to talk” analogy. 

Intuitiveness is another important 
requirement in entertainment sys-
tems. In the commercial arena, most 
Nintendo Wii games are designed 
to mimic actual human motions in 
sports games (such as golf, tennis, and 
bowling). Wii games easily meet the 
requirement of “intuitiveness,” even 
as they violate the “come as you are” 
requirement, since users must hold 
the WiiMote, instead of using a bare 
hand. Sony’s EyeToy for the Playstation 
and the Kinect sensor for Microsoft’s 
Xbox360 overcome this limitation 
while achieving the same level of im-
mersion through natural gestures for 
interaction. These interfaces use hand-
body gesture recognition (also voice 
recognition in Kinect) to augment the 
gaming experience. 

In the research arena, the intuitive 
aspect of hand-gesture vocabulary is 
addressed in a children’s action game 
called QuiQui’s Giant Bounce20 where 
control gestures are selected through 
a “Wizard of Oz” paradigm in which a 
player interacts with a computer appli-
cation controlled by an unseen subject, 
with five full-body gestures detected 
through a low-cost USB Web camera. 

“User adaptability and feedback” 
is the most remarkable requirement 
addressed in these applications. In 
entertainment systems, users profit 
from having to learn the gesture vo-
cabularies employed by the games. A 

for sign languages 
(such as American 
sign Language), 
hand-gesture-
recognition systems 
must be able to 
recognize a large 
lexicon of single-
handed and two-
handed gestures. 
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training session is usually required to 
teach them how the gestures should 
be performed, including speed, trajec-
tory, finger configuration, and body 
posture. While beginners need time to 
learn the gesture-related functions, ex-
perienced users navigate through the 
games at least as quickly as if they were 
using a mechanical-control device or 
attached sensors.8,37 

Intelligent user interfaces that rely 
on hand/body gesture technology face 
special challenges that must be ad-
dressed before future commercial sys-
tems are able to gain popularity. Aside 
from technical obstacles like reliabil-
ity, speed, and low-cost implementa-
tion, hand-gesture interaction must 
also address intuitiveness and gesture 
spotting. 

Crisis management and disaster 
relief. Command-and-control systems 
help manage public response to natu-
ral disasters (such as tornados, floods, 
wildfires, and epidemic diseases) and 
to human-caused disasters (such as 
terrorist attacks and toxic spills). In 
them, the emergency response must 
be planned and coordinated by teams 
of experts with access to large volumes 
of complex data, in most cases through 
traditional human-computer interfac-
es. One such system, the “Command 
Post of the Future,”47 uses pen-based 
gestures.11 Such hand-gesture interface 
systems must reflect the requirements 
of “fast learning,” “intuitiveness,” 
“lexicon size and number of hands,” 
and “interaction space” to achieve sat-
isfactory performance.26 The first two 
involve natural interaction with geo-
spatial information (easy to remember 
and common gestures); the last two 
involve the system’s support of col-
laborative decision making among in-
dividuals. Multimodality (speech and 
gesture), an additional requirement 
for crisis-management systems, is not 
part of our original list of requirements 
since it includes modalities other than 
gestures. The pioneering work was 
Richard A. Bolt’s “Put-That-There” sys-
tem,6 providing multimodal voice in-
put plus gesture to manipulate objects 
on a large display. 

DAVE_G,40 a multimodal, multi-
user geographical information system 
(GIS), has an interface that supports 
decision making based on geospatial 
data to be shown on a large-screen dis-

play. Potential users are detected as 
soon as they enter the room (the “come 
as you are” requirement) through a 
face-detection algorithm; the detected 
facial region helps create a skin-color 
model applied to images to help track 
the hands and face. Motion cues are 
combined with color information to 
increase the robustness of the tracking 
module. Spatial information is con-
veyed using “here” and “there” manip-
ulative gestures that are, in turn, recog-
nized through a hidden Markov model. 
The system was extended to operate 
with multiple users in the “XISM” sys-
tem at Pennsylvania State University26 
where users simultaneously interface 
with the GIS, allowing a realistic deci-
sion-making process; however, Krahn-
stoever et al.26 provided no detail as to 
how the system disambiguates track-
ing information of the different users. 

Other approaches to multi-user 
hand-gesture interfaces have adopted 
multi-touch control through off-the-
shelf technology,15,31 allowing design-
ers to focus on collaborative user 
performance rather than on hand-
gesture-recognition algorithms, These 
systems give multiple users a rich 
hand-gesture vocabulary for image 
manipulation, including zoom, pan, 
line drawing, and defining regions of 
interest, satisfying the “lexicon size 
and number of hands” requirement. 
Spatial information about objects on 
the GIS can be obtained by clicking 
(touching) the appropriate object. 

These applications combine col-
laborative hand-gesture interaction 
with large visual displays. Their main 
advantage is user-to-user communi-
cation, rather than human-computer 
interaction, so the subjects use their 
usual gestures without having to learn 
new vocabularies; for example, sweep-
ing the desk can be used to clean the 
surface. 

Human-robot interaction. Hand-
gesture recognition is a critical aspect 
of fixed and mobile robots, as suggest-
ed by Kortenkamp et al.25 Most impor-
tant, gestures can be combined with 
voice commands to improve robust-
ness or provide redundancy and deal 
with “gesture spotting.” Second, hand 
gestures involve valuable geometric 
properties for navigational robot tasks; 
for example, the pointing gesture can 
symbolize the “go there” command for 

Aside from 
technical obstacles 
like reliability, 
speed, and low-cost 
implementation, 
hand-gesture 
interaction must 
also address 
intuitiveness and 
gesture spotting. 
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and robot interact with objects on a 
table, the interaction space is large 
enough to include both user and ob-
jects. Rogella et al. 41 reported 95.9% 
recognition accuracy. 

Nickel and Stiefelhagen33 devel-
oped a system that recognizes dynamic 
pointing gestures that rely on head 
and arm orientation for human-robot 
interaction. The system uses a hidden 
Markov model to recognize trajectories 
of the segmented hands and up to 210 
gestures, satisfying the requirement of 
“lexicon size and number of hands.” 

Yin and Zhu53 implemented a 
programming-by-demonstration ap-
proach in which the robot learns ges-
tures from a human user (the instruc-
tor), satisfying the requirement of 
“user adaptability and feedback.” The 
system uses eight static gestures to 
control a hybrid service robot system 
called HARO-1. Calinon and Billard9 
also used a programming-by-demon-
stration paradigm, allowing users to 
help the robot reproduce a gesture 
through kinesthetic teaching; in it, 
the user teaches the robot 10 dynamic 
gestures acquired through sensors at-
tached to the torso and upper and low-
er arm, hence violating the “come as 
you are” and “comfort” requirements. 

Most approaches we’ve reviewed 
here employ a stereo camera to ac-
quire hand gestures. Some systems 
also add voice detection, thereby solv-
ing the “gesture spotting” problem 
and improving recognition accuracy. 
Most of them detect static hand ges-
tures but are not robust enough to 
recognize more than 10 gestures, so 
do not satisfy the requirement of “lexi-
con size and number of hands.” Two-
handed dynamic-gesture multimodal 
interaction is thus a promising area 
for future research. 

conclusion 
Hand-gesture implementation in-
volves significant usability challenges, 
including fast response time, high rec-
ognition accuracy, quick to learn, and 
user satisfaction, helping explain why 
few vision-based gesture systems have 
matured beyond prototypes or made it 
to the commercial market for human-
computer devices. Nevertheless, multi-
touchscreens and non-joystick and 
-keyboard interaction methods have 
found a home in the game-console 

mobile robots. For a robotic arm, hu-
man users may use the “put it there” 
command while pointing to the ob-
ject and then the place. Hand actions 
can be used to manipulate operations 
(such as grasp and release), since a hu-
man hand is able to simulate the form 
of the robot gripper. All these aspects 
of robot interaction help satisfy the 
“intuitiveness” requirement. Third, 
people with physical handicaps are 
able to control robots through gestures 
when other channels of interaction are 
limited or impossible without special 
keyboards and teach-pendants, or ro-
bot controls, satisfying the “come as 
you are” requirement. Fourth, such an 
interface brings operability to begin-
ners who find it difficult to use sophis-
ticated controls to command robots. 
Hand-gesture control of robots faces 
several constraints specific to this cat-
egory of interfaces, including “fast,” 
“intuitive,” “accuracy,” “interaction 
space,” and “reconfigurability.” While 
most systems succeed to some extent 
in overcoming the technical require-
ments (“accuracy”), the interaction 
aspects of these systems involve many 
unsolved challenges. 

Using stereo vision to develop a co-
operative work system, Kawarazaki22 
combined robotic manipulators and 
human users with hand-gesture in-
structions to recognize four static ges-
tures; when users point at an object on 
a table with their forefinger the robot 
must be able to detect it. Chen and 
Tseng10 described human-robot inter-
action for game playing in which three 
static gestures at multiple angles and 
scales are recognized by a computer-
vision algorithm with 95% accuracy, 
satisfying the “accuracy” requirement. 

Using Sony’s AIBO entertainment 
robot, Hasanuzzaman19 achieved in-
teraction by combining eight hand ges-
tures and face detection to identify two 
nodding gestures and the hand (left or 
right) being used, allowing for a larger 
lexicon than hand gestures alone. 

Rogalla et al.41 developed a robot-
ic-assistant interaction system using 
both gesture recognition and voice 
that first tracks gestures, then com-
bines voice and gesture recognition 
to evoke a command. Once the hand 
is segmented, six gestures are trained 
using a hand contour as the main fea-
ture of each gesture. Since the user 

market, commercial appeal suggesting 
that hand-gesture-based interactive 
applications could yet become impor-
tant players in next-generation inter-
face systems due to their ease of access 
and naturalness of control. 

Four recommended guidelines help 
evaluate future hand-gesture interfaces 
to increase the likelihood of their wide-
spread commercial/social acceptance: 

Validation. Rigorous statistical vali-
dation procedures for gesture-based 
systems on public, standard test sets. A 
system’s performance can be demon-
strated through several statistical mea-
sures32: sensitivity/recall, precision/
positive predictive value, specificity, 
negative predictive value, f-measure, 
likelihood ratio, and accuracy; 

User independence. User indepen-
dence while permitting customizabil-
ity enhances acceptability; 

Usability criteria. Provide usabil-
ity criteria to evaluate learnability, ef-
ficiency, ease of remembering, likeli-
hood of errors, and user satisfaction; 
performance can be evaluated through 
task completion time and subjective 
workload assessment through, say, the 
NASA Task Load Index (http://human-
systems.arc.nasa.gov/groups/TLX/) 
and the Subjective Workload Assess-
ment Technique38; and 

Qualitative/quantitative assessment. 
Provide qualitative and quantitative as-
sessments of this modality compared 
to other modalities (such as voice rec-
ognition); for example, user perfor-
mance when using alternative modali-
ties can be compared with the metrics 
outlined in the guideline concerning 
usability criteria. 

Questions. Reviewing the HCI liter-
ature as we wrote this article revealed 
increasing adoption of certain prin-
ciples and heuristics that contribute to 
the design of hand-gesture-recognition 
systems: 

Context support in hand-gesture rec-
ognition. Gestures are context-depen-
dent. Gestures and their types and uses 
are determined by the context in which 
they are applied. Task domain analysis 
helps identify users’ intended actions, 
goals, and means. Previously, HCI re-
searchers adopted task analysis to help 
determine suitable features for natural 
HCI.26,40 

The trade-off between increasing 
the number of gestures to be recog-
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nized and the performance of the rec-
ognition is a well-known obstacle in 
the design of gesture-based interfaces. 
The more freely a system allows users 
to express themselves, the less accu-
rate it gets; conversely, the greater the 
rigor in specifying gestures, the greater 
the likelihood the system will perform 
accurately. 

A common approach toward achiev-
ing this trade-off is to create a set of 
specific grammars or vocabularies for 
different contexts. The system dynami-
cally activates different subsets of vo-
cabularies and grammars according 
to the context, instead of maintaining 
a single large lexicon. This built-in 
feature reduces complexity in gesture-
recognition systems, as separate ges-
ture-recognition algorithms are used 
for smaller gesture subsets. Context 
is captured in many ways, including 
hand position, interaction log, task, 
type of gesture, and how the user inter-
acts with devices in the environment. 

Methods for hand-gesture recogni-
tion. No single algorithm for hand-ges-
ture recognition favors every applica-
tion. The suitability of each approach 
depends on application, domain, 
and physical environment. Neverthe-
less, integration of multiple methods 
lends robustness to hand-tracking al-
gorithms; for example, when a tracker 
loses track of a hand due to occlusion, 
a different tracker using a different 
tracking paradigm can still be active. 
Occlusion is usually disambiguated 
through the stereo cameras to create 
depth maps of the environment. Com-
mon approaches for hand-gesture 
tracking use color and motion cues. 
Human skin color is distinctive and 
serves to distinguish the human face 
and hand from other objects. Trackers 
sensitive to skin color and motion can 
achieve a high degree of robustness.40 

Regarding classification, gestures 
are the outcome of stochastic process-
es. Thus, defining discrete representa-
tions for patterns of spatio-temporal 
gesture motion is a complicated pro-
cess. Gesture templates can be deter-
mined by clustering gesture training 
sets to produce classification meth-
ods with accurate recognition per-
formance; Kang et al.21 described ex-
amples of such methods, including 
hidden Markov models, dynamic time 
warping, and finite state machines. 

Finally, Kang et al.21 also addressed 
the problem of gesture spotting 
through sliding windows, distinguish-
ing intentional gestures from captured 
gestures through recognition accuracy 
of the observed gestures. 

Intuitive gestures (selection and teach-
ing) in interface design. Ideally, gestures 
in HCI should be intuitive and sponta-
neous. Psycholinguistics and cognitive 
sciences have produced a significant 
body of work involving human-to-hu-
man communication that can help find 
intuitive means of interaction for HCI 
systems. A widely accepted solution for 
identifying intuitive gestures was sug-
gested by Baudel et al.,2 and in Höysni-
emi et al.’s “Wizard-of-Oz” experiment, 
an external observer interprets user 
hand movement and simulates the sys-
tem’s response.20 Called “teaching by 
demonstration,” it is widely used for 
gesture learning. Rather than pick the 
gestures during the design stage of the 
interface, they are selected during real-
time operation while interacting with 
the user, thus mimicking the process 
of parents teaching gestures to a tod-
dler.9 First, the parents show the tod-
dler a gesture, then assist the toddler to 
imitate the gesture by moving the tod-
dler’s own hands. The toddler learns 
the skill of producing the gesture by 
focusing on his or her own active body 
parts. Hand gestures play an important 
role in human-human communica-
tion. Analysis of these gestures based 
on experimental sociology and learn-
ing methodologies will lead to more ro-
bust, natural, intuitive interfaces. 
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