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We report the fragmentation of brittle, granular aluminum spheres following high velocity impact
(0.5-2.0 km/s) on thin steel plates. These spheres, machined from isostatically pressed aluminum
powder, represent a prototypical metallic reactive material. The fragments generated by the impacts
are collected in a soft-catch apparatus and analyzed down to a length scale of 44 lm. With increasing
velocity, there is a transition from an exponential Poisson-process fragment distribution with a
characteristic length scale to a power-law behavior indicative of scale-invariance. A normalized
power-law distribution with a finite size cutoff is introduced and used to analyze the number and
mass distributions of the recovered fragments. At high impact velocities, the power-law behavior
dominates the distribution and the power-law exponent is identical to the universal value for brittle
fragmentation discussed in recent works. The length scale at which the power-law behavior decays is
consistent with the idea that the length of side microbranches or damage zones from primary cracks
is governing this cutoff. The transition in fragment distribution at high strain-rates also implies
a significant increase in small fragments that can rapidly combust in an ambient atmosphere.
[http://dx.doi.org/10.1063/1.4746788]

I. INTRODUCTION

The fragmentation of brittle materials has recently
received considerable attention due to both pragmatic inter-
ests in material failure as well as the scale-invariant behavior
observed in brittle fragment distributions. In this work, we
focus on the failure properties of brittle reactive materials;
these compounds, inert under normal conditions, combust
rapidly under intense dynamic loading from a shock wave or
high-velocity impact.1–4 Many reactive material formula-
tions are designed to fragment heavily under high strain-rate
loading, resulting in a combustible metal debris cloud. The
fragmentation properties of such materials are key to their
ultimate combustion behavior, but little is currently known
about their dynamic failure.

There is also considerable interest in the basic form of
the fragment distribution of brittle materials. These distribu-
tions differ from those observed in metals and other ductile
materials, which are often characterized by an exponential
distribution with a characteristic length scale. Exponential
type forms for fragmenting metals are generally considered
to arise from uncorrelated nucleation of failure points or
cracks governed by Poisson statistics. The distributions of
Grady and Kipp5,6 and Mott and Linfoot7 are widely used for
high strain-rate fragmentation processes in which there is a
characteristic length or mass scale.

In the case of brittle materials, a power-law rather than
an exponential form is frequently observed.8–14 This corre-
sponds to a regime in which the fragment distribution has
certain aspects of scale-invariance and can be treated as a
fractal with a particular dimensionality. Oddershede and
coworkers suggested that the power-law behavior observed
in brittle fragment distributions could be interpreted in the

context of self-organized criticality, and proposed a fragment
distribution of the form,

NðmÞ / m#Df expð#m=moÞ;

describing the complementary cumulative distribution of
fragment number N over the fragment mass m with a finite
size cutoff mo. A relation between the shape of the material
and the fractal dimension Df was introduced and shown to
hold for a wide range of morphologies.8

Many authors have subsequently examined the statisti-
cal nature of brittle fragmentation, including a number of
discussions of universality in the power-law exponent.9 A
recent review by Åstr€om discusses much of the relevant
analysis in this area.15 Several authors have had success in
interpreting brittle fragmentation patterns using a combined
exponential and power-law form to treat large and small
fragments, respectively.9,16 The statistics of the fragment
pattern provides only indirect information on the mecha-
nism, but recent work has suggested that the fractal behavior
may arise from the microbranching of high-velocity
cracks.17–19 Sharon and Fineberg report increasing side-
branch lengths as the crack velocity approaches the limiting
Rayleigh wave speed, suggesting that higher rates of loading
may lead to an increase in the amount of material affected
by the side branching.17,20,21 Fineberg and Marder reviewed
the large body of recent work on microbranching of fast-
running cracks in brittle materials.22

The majority of experimental brittle fragmentation stud-
ies have focused on low velocity impact of samples, often by
dropping or crushing. In order to examine the evolution of
the fragment distribution of a brittle reactive material under
high strain-rate loading, we have performed high-velocity
impact experiments in which isostatically pressed granular
aluminum spheres were fired from a powder gun into a thina)Electronic mail: jphooper@nps.edu.
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steel plate. The spheres fully perforated the plate and were
heavily fragmented in the process; the resulting debris cloud
was caught in a soft-catch apparatus and analyzed.

These experiments reveal a transition from an exponen-
tial type distribution at low velocity impact (610 m/s) to
power-law behavior at higher velocities approaching 2 km/s.
The power-law exponent is, in all cases, very close to the
universal value for three-dimensional fragments suggested in
recent work.9 We introduce a normalized power-law distri-
bution with a finite size cutoff which is used to analyze the
mass distribution over a linear fragment scale. This form
provides a very good description of experimental data at
high impact velocities, and at the lowest velocity it was com-
bined with a standard exponential form to model the behav-
ior. We also consider simple ways to estimate the physical
parameters appearing in the theoretical forms. The fragment
distributions presented here provide a basis for analyzing the
combustion damage from reactive material debris clouds.

II. EXPERIMENTAL

Spherical porous aluminum projectiles 2.51 cm in diam-
eter were cut from a cylinder of Valimet H-2 aluminum pow-
der which had been isostatically pressed into a monolith at
20 ksi at ambient temperature. The resulting density of the
porous aluminum was 2.39 g/cc (about 15% porosity). No
detailed measurements of the fracture toughness were made,
but a simple Brazilian crush test on this material gave a ten-
sile strength of 8.27 MPa, two orders of magnitude lower
than standard 6061 aluminum. These spheres were then fired
at a thin steel plate using saboted launchers from a 42 mm
smooth-bore powder gun at Naval Surface Warfare Center,
Indian Head Division. Additional details of the experimental
setup can be found in Ref. 23. High speed video was used to
ensure that the spheres remained coherent before impact.
Target muzzle velocities of the spheres were 610 m/s,
1220 m/s, and 1829 m/s, and were measured using a laser
velocimeter at the end of the gun barrel. Actual projectile
velocities were within 610 m=s of the target velocity. Projec-
tiles impacted three thicknesses (0.912, 1.52, and 3.04 mm)
of 1018 steel plates bolted to a supporting steel frame. Rele-
vant material properties of the impact plate and the porous
aluminum projectile are given in Table I, and the various
shot configurations are listed in Table II. For the two thinnest
plates, projectiles fully perforated and fragmented into a de-
bris cloud inside the chamber. For the 3.04 mm plate, shots
at the two lowest velocities were sufficiently close to the bal-
listic limit that incomplete perforation was observed and the
majority of the sphere mass was in a single large fragment
on the impact side of the plate. The debris field from success-
ful perforation events was caught in a 1.5 m sonotube filled
with low-density shaving cream directly behind the impact
plate. Following each shot, the shaving cream was washed
from the tube with water and the remaining fragments were
fed through a sieve stack to measure the mass distribution
over linear particle size. Particles were sieved down to a size
of 44 lm, which was sufficient in all cases to recover approx-
imately 90% or more of the original sphere’s mass. A small
amount of mass (less than 2%) was lost during the sieving

process. A magnet was used to remove any steel fragments
that were extracted from the catch tube; the steel was gener-
ally far larger than the fragmented aluminum and was easily
identified and removed. The vibration of the sieve shaker
was sufficient to break up any aluminum particles that may
have agglomerated in the foam.

Spall-related fragmentation is expected to play a mini-
mal role in these experiments, in contrast to hypervelocity
impact of fully densified metals. Due to the thin impact
plates and the porosity of the aluminum, the shock wave
induced in the sphere from the impact will be attenuated
heavily by the porosity and rapidly overtaken by rarefaction
waves generated at the impact plate’s back surface. The ma-
jority of fragmentation is, thus, expected to arise from lateral
tensile expansion of the sphere as it compresses against the
plate and from inward crack propagation as the sphere
deforms and perforates the steel. Additionally, we observed
no evidence that aluminum fragments reacted heavily fol-
lowing this initial impact. Fragments were sharp and three-
dimensional and showed no signs of melting or widespread
conversion to oxide products. High-speed video showed a
brief impact flash when spheres struck the steel plate, but no
visible reaction following perforation. Thus, while we cannot
fully exclude that some aluminum combustion is occurring
during the soft-catch process, our data suggests it is likely
minimal. Separate experiments in which the fragment cloud
impacted a second thick steel plate (similar to the setup in
Ref. 4) did result in significant combustion, but in this work
we only consider the fragmentation from the initial thin-
plate perforation.

TABLE I. Material properties of the porous, pressed aluminum projectiles,
and the steel impact plate.

Property Value

Mean aluminium powder diameter 3:2 lm

Projectile density 2.39 g/cc

Projectile diameter 2.51 cm

Projectile tensile strength 8.27 MPa

Projectile sound speed 5430 m/s

Plate density 7.85 g/cc

Plate sound speed 5900 m/s

TABLE II. Exponents and fit parameters for all fragment distributions.

Power-law (Eq. (1))

Configuration a j 1=b (mm)

0.912 mm, 1220 m/s 0.05 1.65 1.89

0.912 mm, 1829 m/s 0.03 1.66 0.94

1.52 mm, 1220 m/s #0.06 1.69 2.58

1.52 mm, 1829 m/s 0.07 1.64 0.83

3.04 mm, 1829 m/s 0.05 1.65 1.58

Combined exponential and power-law (Eq. (4))

Configuration C l (mm) 1=b (mm)

0.912 mm, 610 m/s 0.02 0.72 0.23

1.52 mm, 610 m/s 0.01 0.87 0.40
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III. RESULTS AND DISCUSSION

We first consider the raw probability density functions
(PDFs) of fragment mass distributed over a linear sieve size s.
The recovered fragments were run through a series of increas-
ingly fine sieves on a sieve shaker table, and the final sample
mass in each sieve was measured. Masses were converted
into a piecewise continuous probability density function in
which each sieve covered the range of length scales between
itself and the next larger sieve. Data points for the experimen-
tal probability density functions are given at the midpoint of
each sieve range. Experimental points are normalized to the
total amount of mass collected for each individual shot. As
90% or greater of the original sphere mass was recovered, we
do not expect additional significant features in the size range
between our smallest sieve (44 lm) and the original particle
size of the pressed aluminum (3:2 lm).

The data for impact on the thinnest plate, 0.912 mm, are
shown in Figures 1 and 2. Solid lines represent fits to theoret-
ical forms, which are discussed below. At low velocities,
there is a distinct maximum in the fragment distribution, and
the overall form is that of an exponential distribution with a
characteristic length scale. At higher impact velocities, the
maximum disappears and behavior consistent with a power-
law distribution emerges; below approximately 1 mm, the
fragment PDF is nearly constant on a logarithmic scale. The
smallest fragments in the low velocity impact shot also devi-
ate from the exponential form and show a small region of
power-law type behavior, suggesting a mixture of the two
distributions is already occurring at an impact velocity of
610 m/s. The very largest fragments, in the size range of 0.7
to 1.0 cm, are generally large mass chunks from the initial
impact point of the sphere and deviate slightly from the over-
all fragment trend. The vast majority of the collected mass is
below 1 mm for all shots.

In Figures 3 and 4, we present analogous plots for a
thicker impact plate (1.52 mm), and the results are similar. As
would be expected, the total mass contained in the largest frag-
ments is reduced; the remainder of the fragment PDF is very

similar to the thinner plate, however. An exponential form is
present at the lowest impact velocity, giving way to a power-
law behavior at maximum velocity. At the largest plate thick-
ness, 3.04 mm, only the highest impact velocity (1829 m/s)
resulted in a clean perforation and fragmentation. The data sets
from all 1829 m/s impacts are shown in Figure 5. Save for
some variation in the very largest fragments, the fragmentation
patterns are quite similar; all are constant over approximately
1.5 decades of fragment size, down to the smallest size scale
measured. In all systems, this behavior then decays above a
cutoff value on the order of 1 mm.

Brittle fragment distributions are frequently presented in
the form of fragment number distributed over mass or vol-
ume, n(m) or n(v). For brittle materials with a power-law dis-
tribution, Åstr€om and coworkers have suggested the general
form,

nðvÞ / v#j f ðbvÞ;

FIG. 1. Mass probability density function for fragments generated by impact
and perforation of a 0.912 mm plate. Fits are based on Eqs. (1) and (4) and
are described in the text.

FIG. 2. Linear-scale mass PDF for impact on a 0.912 mm plate.

FIG. 3. Mass PDF for fragments generated by impact and perforation of a
1.52 mm plate.
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describing the number distribution of particles over the vol-
ume v. The function f is a damping function that cuts off the
power-law behavior above some length scale governed by b.
Frequently f ¼ expð#bvÞ is used, consistent with the origi-
nal form of Oddershede and coworkers.8 Assuming a size-
independent aspect ratio of unity, recasting this form into a
distribution of fragment number over linear size s yields

nðsÞ / sD#ðDjþ1Þexp
!
#ðbsÞD

"
;

where D is the dimensionality of the fragmenting object. As
discussed in Ref. 9, there is flexibility in the choice of the
damping function. In the general case, the above form could
be combined with some manner of exponential distribution
to fit a broad range of results if portions of the fragment
cloud are still mainly governed by a Poisson crack nucleation
process. For our data, few large fragments are found at high
impact velocities, and it is unnecessary to use a separate

distribution to fit these. Instead, we utilize the flexibility in
the damping function so that a single form covers the power-
law behavior (which is the majority of the mass) and also
incorporates the effect of a small number of larger frag-
ments. We thus use a form corresponding to

nðvÞ / v#j exp #ðbvÞ
1
D

! "
:

The linear scale is the most relevant for data from a siev-
ing process. Assuming that v ¼ sD, where s is a linear size of
our three-dimensional fragment, we have

nðsÞ / sD#ðDjþ1Þ expð#bsÞ;

where b is, as above, a damping constant that cuts off the
power-law behavior at larger sizes.

The majority of the fragment mass at the higher impact
velocities is well below 1 mm, and counting fragments in
this size range is not viable experimentally. Instead, we con-
vert the fragment number distributions to mass distributed
over a linear length scale using the relation

dM ¼ mdN ¼ qsDNonðsÞds;

where M is the cumulative mass distribution function (CDF)
and No is the total number of fragments. Based on the above
expressions, we introduce our final form for the fragment
distribution, suitable for direct comparison with a full nor-
malized distribution from the experimental sieve data

mðsÞ ¼ 1

so

s

so

# $#a expð#bsÞ
EaðbsoÞ

; (1)

where b is a constant controlling the cutoff of the power-law
behavior, so is a minimum fragment size, and EaðxÞ is the
generalized exponential integral function

EnðxÞ ¼
ð1

1

expð#xtÞ
tn

dt:

This form is normalized with respect to the total mass.
The true minimum fragment size for our materials is likely
equal to the original particle size in the pressed granular alumi-
num (3:2 lm); however, since the majority of the original
sphere’s mass is recovered in the sieving process, for simplic-
ity, we set so equal to the smallest sieve, 44 lm. The cumula-
tive distribution function corresponding to the PDF in Eq. (1) is

MðsÞ ¼ 1# s

so

# $1#a EaðbsÞ
EaðbsoÞ

: (2)

This represents the percent of fragment mass equal to or
smaller than a linear size scale s. The term a in Eqs. (1) and
(2) is related to the exponent j used by Åstr€om and co-
workers via the relation

a ¼ 2D# ðDjþ 1Þ:

Based on self-similar crack branching arguments, sev-
eral authors have suggested a universal value of the form

FIG. 4. Linear-scale mass PDF for impact on a 1.52 mm plate.

FIG. 5. Mass PDF for impact at 1829 m/s on plates of varying thickness.
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j ¼ ð2D# 1Þ=D, where D is the dimensionality.9,15,24,25

The corresponding fragment mass distribution exponent a in
Eq. (1) in this case would be exactly zero, and the fragment
number distribution n(s) would be a power-law of the form
s#D. For a ¼ 0, the above mass distribution reduces to a sim-
ple shifted exponential

mðsÞ ¼ b expð#bðs# soÞÞ
MðsÞ ¼ 1# expð#bðs# soÞÞ; (3)

for the PDF and CDF, respectively. For bs& 1 (i.e., for
small fragments), this reduces to the empirical Gaudin-
Schuhmann type cumulative mass distribution function

MðsÞ
Mo
/ ðbsÞn;

where n is close to one and Mo is the total fragment mass.26–28

This behavior has been observed experimentally in a number
of brittle fragmentation experiments.8,9,12,29

In this situation where the number distribution of frag-
ments has a power-law exponent equal to the “universal”
value, the corresponding mass distribution m(s) consists of a
flat region on a log-log scale below 1=b, decaying as the size
approaches 1=b. All our experimental shots converge to this
behavior at high velocities (see Figure 5), indicating that in
all cases the fragment distribution is consistent with the uni-
versal exponent discussed above. We again note that values
of a close to zero (such as we observe at high strain rates)
give an exponential type function for the mass distribution;
this, however, corresponds to a non-exponential, power-law
form when converted to the traditional fragment number dis-
tribution that most authors present. Smaller fragments in the
610 m/s impact velocity experiments also show evidence of a
region at small particle sizes, where the power-law term is
applicable and a is approximately zero.

The fit parameters using the above theoretical form are
given in Table II, along with the corresponding value of j
which is identical to that used in the previous works.9,15 Fits
are performed with a standard least-squares analysis using
the Levenberg-Marquardt algorithm. Our collected frag-
ments have a three-dimensional character, for which the pro-
posed universal value j is 5/3.

At the lowest impact velocity, a power-law form does
not provide a suitable fit for the entire experimental data,
which shows a clear characteristic length scale. For these
velocities, we find excellent agreement using a combination
of an exponential form with the above power-law distribu-
tion for small fragments. In the previous work, it has been
suggested that physically this could arise from Poisson
nucleation of main cracks combined with power-law regions
due to microbranches off these primary cracks.15 To treat the
main cracks, we introduce a standard exponential form, the
Mott distribution,6,7 for fragment number over mass for a
three-dimensional object,

nðmÞ ¼ 1

3m

m

l

# $1
3

exp # m

l

# $1
3

 !

:

Converting this to a mass distribution over a linear
length scale yields, for 3D fragmentation,

mðsÞ ¼ 1

6l
s

l

# $3

expð#s=lÞ:

For suitable fits, we combine the Mott form with our
expression in Eq. (1) for the 610 m/s shots

mðsÞ ¼ Cb expð#bðs# soÞÞ

þð1# CÞ 1

6l
sþ 2=b

l

# $3

exp # sþ 2=b
l

# $& '
: (4)

Here, C provides the normalization between the two dis-
tributions. In the combined expressions, the size of the frag-
ments in the exponential distribution is reduced by 2=b,
which corresponds physically to the Poisson fragment being
reduced by microbranching or damage regions near the crack
surface. The relationship between C and b is likely complex;
in the simplest case, as 1=b increases the region of the mate-
rial affected by the microbranches grows and C also
increases. However, in the case of our impact fragmentation
events, there is also spatial inhomogeneity of crack velocity
and strain rate in the sample to consider. Certain cracks may
be driven hard enough to branch extensively, but this may
only be occurring in relatively small regions of the sample
such as near the impact plate.

We next consider the parameter 1=b, which may be inter-
preted as a characteristic length scale for which the power-
law behavior is observed. As discussed above, several authors
have suggested that this cutoff is related to the maximum
length that microbranches can extend from a main crack. As
pointed out by Bouchbinder and Procaccia, it is very likely
that there is significant material dependence wrapped up in
this parameter, and there may be no universal behavior.30,31

They note specific differences in the brittle fragmentation of
PMMA versus soda-lime glass as a representative example. In
our case, however, there exists a distinct upper bound if we
assume that a Poisson nucleation process for main cracks is
still occurring at high impact velocities, and that the scale-
invariant behavior is arising from damage zones during
repeated microbranching. Since the fracture surface energy is
low for our pressed aluminum spheres and the impact condi-
tions are severe, 1=b should ultimately approach the spacing
l=2 between the Poisson-nucleated cracks and no remnant of
the primary-crack nucleation process will remain. The entire
distribution would then be a power-law form, as we indeed
observe at high velocities in this work.

In this regime, the only variation between fragmentation
events will be in the damping length 1=b, which will still
vary with a number of factors. The value l for main-crack
nucleation will itself decrease in some characteristic way with
the strain-rate. Additionally, the microbranching length is
expected to have a dependence on the crack velocity, which
may vary spatially throughout the sample in complex impact
events. Based on the previous work, we would expect two ve-
locity dependent features; below a certain critical velocity the
cracks will not branch, and above this point they should show
an approximately linear velocity dependence.22,30 This leads
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us to introduce the following form for the damping length at
or above the critical crack velocity:

1

bðvÞ
¼ l

2

v# vc

cR

# $
; (5)

where v is the crack velocity, l is the characteristic length
scale from primary crack nucleation, vc is the critical onset
velocity for microbranching, and vc ' cR=3 where cR is the
Rayleigh wave speed.20,21

As an estimate for b, one might examine low strain-rate
experiments (such as dropping or plate-smashing experi-
ments which are common in studies of brittle fragmentation)
and use the characteristic Poisson length from this, scaled to
higher strain-rates, to estimate the upper bound of 1=b.
Alternatively, one could directly estimate the average frag-
ment size l using an existing theoretical expression such as
that derived by Levy and Molinari32 or the energy-balance
relation derived by Grady.6 The latter takes the form

l ¼
ffiffiffiffiffi
12
p

Kf

qc_!

 !2
3

; (6)

where q is the density, c is the sound speed, _! is the strain rate,
and Kf is a dynamic fragmentation toughness. In Figure 6, the
shaded region shows an estimated range of values for 1=b in
this experiment using Eqs. (5) and (6). For reasonable values
of Kf (1 MPa m

1
2) and _! (103 to 104 s#1) for our materials and

impact conditions, Eqs. (5) and (6) yield a maximum value
for 1=b of approximately 0.5-2 mm, in line with what is
observed experimentally. The sphere will experience a range
of strain rates and crack velocities, but as an initial attempt
this method appears promising as a simple means of estimat-
ing an average b.

Overall, the trend for b observed in this work is consist-
ent with the idea that microbranching is governing this pa-
rameter, though clearly a fragment distribution alone cannot
fully confirm this. At the lowest impact velocities, the pro-
cess is dominated by an exponential distribution, but there is
still a small component of the power law form and 1=b
extends into a very small region away from the crack. The

larger impact velocities have larger values of 1=b, again con-
sistent with an increasing size of the microbranching region
at higher strain rates. The cutoff is larger for the 1220 m/s
experiments than for the 1829 m/s ones; if we assume that
the entire material is already being fragmented into a power-
law distribution by the microbranch damage zones at the
intermediate velocity, then this reduction at the highest ve-
locity could be explained by a decrease in the main-crack
spacing l with increasing strain rate.

Many pressed, granular composites similar to the basic
aluminum material, discussed here, are currently being
considered as reactive material formulations.1,23 The exis-
tence of a power-law fragment distribution at high impact
velocities has important implications for the combustion of
these materials. In particular, the distribution at high
strain-rates will be heavily biased towards very small metal
particulate, which will combust rapidly but provide little
ability to penetrate additional material. Standard ductile
metals exhibit the opposite behavior: non-combustible frag-
ments are centered around a large characteristic length scale.
Optimizing the dynamic fracture toughness and strain-rate
dependent fragment distribution of reactive materials
between these two regimes will be critical for their practical
implementation.

IV. CONCLUSIONS

In summary, we report the fragment distributions obtained
following impact of brittle, cold-pressed aluminum reactive
materials at velocities of 610, 1220, and 1829 m/s on thin steel
plates. Fragments were recovered from a soft-catch apparatus
and analyzed down to a scale of 44 lm. With increasing veloc-
ity, we observe a transition in the character of the fragment dis-
tribution from an exponential to a power-law form. A
normalized power-law distribution with a finite size cutoff is
introduced and used to analyze impacts at the two higher veloc-
ities. The exponent of the power-law behavior is very close to
the universal value discussed in the recent work. At the lowest
velocity, a combined fragment distribution is used, containing
both an exponential type form (specifically, the Mott distribu-
tion) and a simplified power-law term. The finite size cutoff pa-
rameter is consistent with the idea that this quantity is
determined by the length of microbranching regions from high-
velocity cracks nucleated by a standard Poisson process. At
high velocities, the cutoff approaches the average distance
between nucleated main cracks, and the entire fragment distri-
bution is, thus, dominated by a single power-law form. For
granular materials with very low fracture toughness such as the
pressed aluminum considered here, this may be a general
behavior and a means of estimating the power-law cutoff pa-
rameter for fragmentation at sufficiently high strain rates. The
measured fragment distributions provide a basis for future esti-
mates of combustion damage following high velocity impact of
reactive materials.
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