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A SYSTEMATIC APPROACH TO DETERMINING THE MINIMUM
SAMPLING RATE FOR REAL-TIME SPACECRAFT CONTROL

Richard Zappulla II∗, and Marcello Romano†

Typical controller design and analysis methods utilize techniques for continuous-
time systems. However, digital computation is the favored approach to implement-
ing the resulting controllers. This leads to the natural question of choosing an ap-
propriate sampling rate for the controller. There exist several ”Rules of Thumbs”
for choosing a sample rate derived from primarily frequency domain properties of
the system. A metric to estimate the sample rate based on the system properties
rooted from first principles is developed. It is then validated via several case stud-
ies using representative mechanical systems, actuators, and controllers. Lastly, the
paper concludes with a discussion on the applications of this metric.

INTRODUCTION

Traditional control design and analysis methods are built the ability to express both the system
dynamics and controller outputs as a continuous-time function. The resulting controllers using
design typical methods such as Root Locus, Bode analysis and Lyapunov analysis are then typically
implemented digitally. To operate, a digital control system samples, typically at a fixed interval, the
current state of the continuous system to generate a reference trajectory. From there, the sampled
state and reference trajectory are then utilized by a controller to generate a desired control input
sends the command to an actuator to control the system. Generally, the faster a digital control system
performs this process, the more effectively it can compensate for variations in model parameters,
unmodeled effects, and sensor noise.1 However, as the rate of the digital controller increases, so
does the computational burden placed on the computational architecture (i.e. processor, memory,
PCI-bus, etc.). This naturally leads to the question, at what rate does the controller need to run to
achieve a desired level of performance?. In general, the minimum sampling rate for the GNC system
is influenced by numerous factors, such as, the ’speed’ of the underlying dynamics, acceptable error
tolerances, computational limitations, actuator strength, vehicle physical properties (i.e. mass and
inertia), ability to effectively track a commanded control input, sensitivity to uncertainties in plant
parameters and measurement noise, as well as other external factors, such as safety.1

To aid in determining the minimum sampling rate, there exists multiple ”Rules of Thumb” based
on engineering experience. One such rule of thumb states the minimum sampling rate should be
at least 10 times larger than the system bandwidth. Rules such as this are predicated on Euler’s
Approximation; that is, for a small enough time step, the non-zero discrete derivative sufficently
approximates the continuous derivative.2 Note, this time step is dependent upon the controller for-
mulation (e.g. PD, Lead-Lag, etc) and the response of the system to a given input (e.g. step input, si-
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nusoidal input, etc). For responses containing significant higher frequency components, the sample
time must be small in order to capture the these short period fluctuations. Another common metric
which can be used in determining the minimum sampling rate is the Nyquist Sampling Theorem,
which states the minimum sampling rate must be twice the frequency of the highest frequency of
interest. For spacecraft, these frequencies of interest are those up to and including the system band-
width. It is worthwhile to note, these rules of thumb are based on frequency domain properties of the
system, which are only defined for linear systems.3, 4 Lastly, the maximum sampling period can be
estimated by examining the Lipschitz constant of the system. Specifically, the maximum sampling
period for a system is one whose inverse is greater than or equal to the Lipschitz frequency (i.e.
Lipschitz constant) for the system. However, determining the Lipschitz constant is not trivial and
requires a priori knowledge of the control input to the system and its response.5–7 As suggested by
Ross, one such approximation method to estimate the Lipschitz frequency is to vary the sample and
hold time of a controller in a numerical simulation and assess the stability of the resulting system.6, 7

To the best of authors’ knowledge, no other metrics or methodologies for suggesting a minimum
sampling rate for the real-time control of a mechanical system has been proposed in literature which
utilize physical properties of the system and is rooted in first principles.

Motivated by this, a methodology was developed systematically from first principles, utilizing
the system properties, to estimate the minimum sampling rate necessary for the guidance and/or
control subsystems to achieve a desired performance. Several relevant (numerical) case studies are
performed using representative mechanical systems, actuators, and controllers to validate this met-
ric. The remainder of the paper is as follows: the minimum sampling rate metric is first developed.
Next, the metric is validated via numerical simulations using representative mechanical systems
including a three-axis spacecraft reorientation maneuver using an Eigenaxis-Quaternion feedback
controller, a simple harmonic oscillator with a PD controller, and the minimum-time control of a
double-integrator system using reaction control jets. Lastly, the paper will conclude with a discus-
sion on the application of this metric to the design of software and the selection of hardware.

MINIMUM SAMPLING RATE FORMULATION

Modern controllers are designed and analyzed in the continuous-time domain and implemented,
however, in a discrete manner via a digital computer, typically at a fixed interval, Tc. The use of
a digital computer fundamentally implies a non-zero delay to computational delay, ∆tc, associated
with sensor acquisition and computation of the control input. This further implies the control output
is held constant over the next computational period. Furthermore, actuators typically realize the
control input through the conversion of a digital commanded input to an analog signal via a digital-
to-analog conversion. As a result of this quantization process, the output of the actuator is limited to
discrete levels between zero to it maximum output. Exploiting these inherent features of a physical
system, a minimum sampling rate metric can be derived from first principles.

Consider first the generic model for a nonlinear system,

ẋ(t) = f(x(t), u(t), t) (1)

Over short the period over which the actuator output remains constant, the motion of a mechanical
system is assumed to be sufficiently described as rectilinear motion. As a result, the time-averaged
acceleration can be written as,

ẋ (t+ ∆tc)− ẋ(t)

∆tc
=

1

∆tc

∫ t+∆tc

t
u(τ) dτ (2)
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where u(τ) is the control input. Note, the first order difference equation in Eq. (2) approaches the
derivative dẋ/dt = u in the limit as ∆tc → 0. Rewritting Eq. (2) as,

∆ẋ = u(t)∆tc (3)

implies a minimum acceleration impulse which can be imparted onto the system.

Before continuing, it is worth noting, in the context of defining real-time for a system, the accel-
eration term can be interpreted as a dynamic bandwidth, ζBW. The dynamic bandwidth is defined
as,

ζBW =
Minimum Control Resolution
Appropriate Physical Quantity

(4)

Analogous to a system bandwidth, ωBW, the dynamic bandwidth is a system-level metric which
can be used to provide insight into the responsiveness of the system. However, unlike the system
bandwidth which is typically considered to be inversely proportional to the maximum responsive-
ness of the system, the dynamic bandwidth captures the minimum responsiveness of the system.3

Additionally, while the system bandwidth is only formally defined for linear systems, the dynamic
bandwidth is defined for both linear and nonlinear systems.3, 4

Continuing, Eq. (??) implies a corresponding change in the state of the system which can be
written in terms of the dynamic bandwidth as,

x (t+ ∆tc)− x(t) = ∆x =
1

2
ζBW∆t2c (5)

Furthermore, given an acceptable change in state (i.e. error) and dynamic bandwidth for a particular
application, the maximum sampling time, TRT, which captures the dynamics of the system can be
estimated as,

TRT =
1

2

√
2∆x

ζBW
(6)

Therefore, the resulting minimum sampling rate, fRT for a control system to be considered real-time
is

fRT = 2

√
ζBW

2∆x
(7)

Both the maximum sampling period and minimum sampling rate metrics proposed in Eq. (6)
and Eq. (7) respectively have several implications. First, both metrics are bounded by the physical
system (i.e. mass, inertial , actuator strength) as well as the control system implementation. The
proposed metrics provide insights into the system which are easily mapped to the physical system.
Furthermore, these metrics provide the designer with ’knobs’ they can adjust in order to estimate
the affects of changes on various aspects of the system.

NUMERICAL CASE STUDIES

To aid in the validation of this metric, several numerical case studies are performed using rep-
resentative mechanical systems, controllers, and actuators with discrete output levels. The systems
considered include a three-axis reorientation maneuver of a spacecraft using reaction wheels and an
Eigenaxis-Quaternion feedback controller;8, 9 a simple harmonic oscillator with a PD controller;3, 4

and a double integrator (DI) system with reaction control jets using the minimum-time optimal con-
trol policy.10 All of these controllers, with the exception of the minimum-time control policy for a
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double integrator system, have been shown to be stable in literature. For an implementation of the
minimum time control policy with a sample time Ts > 0, the system will spend most of the time
operating off of the switching curve. Resultantly, it is worthwhile to assess stability of the control
policy while off the switching curve prior to presenting the numerical case study results.

Stability of a Double Integrator System under a Minimum-Time Optimal Control Policy

The dynamics of a double integrator system whose state x = [x1, x2]T can be written as,

ẋ1(t) = x2(t)

ẋ2(t) =
u(t)

m

(8)

where m is the mass and u(t) ∈ [u−, u+] is the admissible control input bounded by both a maxi-
mum negative and positive input limit. The resulting minimum time control policy to move a system
from some initial condition to a desired terminal state,10

u∗(t) =


u−max for s(x(t)) > 0
u+

max for s(x(t)) < 0
u−max for s(x(t)) = 0 and x2(t) > 0
u+

max for s(x(t)) = 0 and x2(t) < 0

(9)

where the switching curve, s(x(t)), is given as,

s (x(t)) = x1(t) +
m

2|u|
|x2(t)|x2(t) = 0 (10)

For a non-zero Ts, maintaining the optimal bang-bang control policy would result in a limit cycle
about the equilibrium point. In an effort to assess stability of the control policy off the switching
curve, the optimal control policy in Eq. (9) is relaxed, allowing the control to vary continuously
between u− ≤ u ≤ u+. Next, the control law for s(x(t)) 6= 0 can be rewritten in terms of the
dynamic bandwidth, ζBW,

u(t) ≈ −k
(
x1(t) +

1

2ζBW
|x2(t)|x2(t)

)
(11)

where k ∈ R+ is a strictly positive constant converting the switching curve into a control input. For
now, no other bounds will be imposed upon k. Lyapunov’s Direct Method can be used to assess the
stability of the candidate control law.

Consider the following positive-definite, energy-like Lyapunov candidate function (LCF),

V (x) =
1

2
x2

1 +
1

2
λx2

2 (12)

where λ ∈ R̄+ is a non-negative constant and has units of s2. The time derivative of LCF along the
system trajectory is,

V̇ (x) = x2(x1 + λẋ2) (13)

Substituting the control law in Eq. (11) into Eq. (14) yields,

V̇ (x) = x1x2(1− λk)− λk

2ζBW
|x2|x2

2 (14)
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When the trajectory of V̇ (x) is in the vicinity of the origin such that |x3
2| << |x1x2|, the time

derivative of the LCF can be simplified as,

V̇ (x) ≈ x1x2(1− λk) (15)

This simplification allows one to gain insight into the dynamics of the LCF.

First, for 0 < k < 1, Quadrants II and IV, are ’stabilizing’ as V̇ (x) < 0 while Quadrants I
and III are ’destabilizing’ as V̇ (x) > 0. This is illustrated by the contours of the full, nonlinear
time derivative of V (x) is illustrated in Figure 1. In essence, when the trajectory x(t) moves into
Quadrants I or III, the control law adds energy into the system to move it back into either Quadrant
II or IV towards the switching curve in an effort to drivie the system towards the terminal state. For
k > 1, the (de)stabilizing quality of each quadrant is reversed. Therefore, this implies the logical
bound k ∈ [0, 1).
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ẋ

Ref. Switching Curve

Figure 1. Contours of the ∂V
∂t for the Nonlinear LCF for k = 0.5 and λ = 1

Numerical Case Study Results

Unless otherwise specified, the mass of the system was chosen to be unity for simplicity. Each
actuator is assumed to have a maximum control output of of unity and a resolution of 0.001, except
for the reaction jets which is a purely discrete actuator with two states: ON or OFF. Additionally,
each system was tuned to settle within 60 seconds and achieve stability with a delay of 1 second.
Furthermore, each system utilizes continuous dynamics propagated using a variable step solver and
a controller which is sampled with a fixed period, Ts. The controller sampling period was varied
between 0.001 seconds (1 kHz) to 1 second (1 Hz). Each scenario was run for 120 seconds and the
average steady-state error in x was recorded over the last 60 seconds. The results of each case study
were then compared with the predicted minimum change in state given by Eq. (5). To further aid in
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comparison, the dynamic bandwidth in Eq. (5) is replaced with the second-order equivalent system
bandwidth, ω2

BW = k/m and the result is presented.

Overall System Responses The combined responses of each system are illustrated together in
Figure 2. Each system was found to exhibit a log-linear response in the average minimum change
in the state x compared to the sampling rate. Additionally, in order to reduce the numerical noise
and increase clarity, each response was curve-fit to a log-linear response. This response, and its
estimated 1σ error are illustrated in subsequent figures to further highlight the trends of various
responses.
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Figure 2. Average Steady-State Error versus Controller Sample Time

Eigenaxis-Quaternion Feedback Controller The first case considered is a three-axis reorienta-
tion maneuver of spacecraft using an Eigenaxis-Quaternion feedback controller. Additionally, to
produce the torque, a set of 3 orthogonal reaction wheels were modeled and placed in the loop This
system is relevant as it is nonlinear in both the system dynamics and control. The system dynamics
are governed by Euler’s Equation and given as,

τ = Jω̇ + ωxJω (16)

where τ is the control torque, J is the inertia matrix about the center of mass in the spacecraft
body-frame, ω is the angular velocity of the spacecraft, and ωx is the matricial representation of the
cross product operator.9 Additionally, the Eigenaxis-Quaternion feedback controller is given as,

u(t) = −2kηerrJεerr − cJωerr + ωx
errJωerr (17)

where εerror ∈ R3 is a column vector containing the vector components of the error quaternion ,
ηerror ∈ R is the scalar component of the error quaternion, and the scalar gains c, k ∈ R+. The
stability of this controller was proven via Lyanpunov’s Direct method.8, 9 Lastly, the error angle was
defined as.,9

θerror = 2 cos−1 (ηerror) (18)
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In order to examine the effect of various physical properties, the inertia matrix was chosen to
be J = diag(1, 0.1, 10). Additionally, to meet the 60-second settling time, the scalar gains were
chosen to be k = 0.3 and c = 1.0. The results from the case study are presented in Figure 3. When
compared to the response of the system, the dynamic bandwidth closely matches the first-order
fitted response of the numerical experiment. Additionally, the dynamic bandwidth was observed to
maintain a similar level of error as the inertia was varied between the three axes. Lastly, the predicted
minimum sampling rate associated with using the system bandwidth and dynamic bandwidth both
over predict the minimum sampling rate in order to achieve a specific error level. The prediction
associated with the dynamic bandwidth estimate is within an order of magnitude as the numerical
response compared to using the system bandwidth metric. For this particular case, the predicted
error for a given sample time agrees very well with the numerical experiment.
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Figure 3. Average Steady-State Error Versus Controller Sample Time for a 3-Axis Spacecraft Reori-
entation maneuver
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Figure 4. Average Steady-State Error Versus Controller Sample Time for a Simple Harmonic Oscilla-
tor

Simple Harmonic Oscillator with PD Control The second case considered is a simple harmonic
oscillator (SHO) with a PD controller. The dynamics of a SHO are given as,

ẍ = − k
m
x (19)

where k ∈ R+ and is typically referred to as the spring constant for a mechanical system.3, 4 This
is a representative second-order system with a common controller. As illustrated in Figure 4 the
dynamic bandwidth sufficiently estimates the sample time required to achieve a desired level of
system performance. Similar to the first case, both metrics over-predict the sampling rate necessary
to achieve a given level of steady-state error. Likewise, the prediction associated with the dynamic
bandwidth is smaller than that associated with the system bandwidth and is within an order of
magnitude of the average numerical response.

Minimum-Time Optimal Control for a Double Integrator System The third case study considered
is a double integrator (DI) system under a minimum-time optimal control policy using discrete
actuators, such as reaction jets. There are two primary methods of implementing this particular
control policy. The first method is a clock-based method which assumes knowledge of the switching
time. The second method - the method implemented for this case study - involves the use of a full-
state switching curve, given in Eq. (10) , to determine the switching point. As illustrated by Figure 5,
the dynamic bandwidth sufficiently estimates the predicted steady-state error given a sampling time.
Note, since the system bandwidth and dynamic bandwidth are the same numerically, both methods
produce the same prediction. Lastly, compared to the SHO, the DI system with discrete actuators
produces substantially more variation in the steady-state error.
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Figure 5. Average Steady-State Error Versus Controller Sample Time for a Double-Integrator System
Under the Minimum-Time Optimal Control Policy

APPLICATIONS AND DISCUSSION

Minimum Sampling Rate for Tracking Transient Responses

As demonstrated, this metric provides an order of magnitude estimate for the sampling rate re-
quired to track a control signal to within a specified level of error. The dynamic bandwidth as given
in Eq. (4) provides the lower-bound on the steady-state tracking capability of the system. Redefining
the dynamic bandwidth to be equivalent to the maximum acceleration of the system,

ζBW =
Maximum Control Effort

Appropriate Physical Quantity
(20)

one can upper bound the transient tracking capability of the system. Rewriting Eq. (3) and sub-
stituting in Eq. (20), the maximum sampling time TRT and minimum sampling rate fRT can be
upper-bounded respectively as,

TRT =
1

fRT
=

∆ẋmax

ζBW
(21)

For example, consider the maximum change in error, ∆xerr/∆tc , of the previously exmained SHO
system during its transient period consisting of the first 60 seconds. As illustrated by Figure 6, the
dynamic bandwidth provides an estimated sampling rate to within 36% of the response of the sys-
tem, while the system bandwidth significantly underestimates the required sampling rate to achieve
a desired level of tracking error.

Guidance Path Re-Planning Rates

The applicability of this metric is not only for the low-level controller as demonstrated, however,
it can also be applied to the guidance, or path-planning, task as well. Since optimal control is
predicated on a predictive model, uncertainty in the navigation solution, actuator dynamics, and
unmodeled disturbances can degrade the quality of the solution over time and require an update to
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Figure 6. Maximum Change in Error During the Transient Phase for a SHO

the problem. As a result, this metric can be used to estimate the rate at which it is necessary to
generate a solution. To do so, however, requires the estimated error be bounded by some (error)
function, e,

e ≥ |f − f̂ | (22)

where f is the dynamics of the system and f̂ is the estimated dynamics of the system. Next,
differentiating Eq. (22) with respect to time yields the error dynamics, ė. Note, the change in error
over the real-time sampling period is,

∆e = ėTRT (23)

Substituting Eq. (23) into Eq. (6) as the change in position, one can solve for the time necessary to
replan given the bounded error function e as,

TRT =
1

2

ė

ζBW
(24)

CONCLUSIONS

When implementing a controller for a physical system, the rate at which the system is sam-
pled and controlled must be determined. Often times, this rate is chosen through various ”Rules of
Thumbs” which are rooted in the frequency domain. However, a new approach to determine the min-
imum sampling rate rooted in first principles for the real-time control of a spacecraft was presented
and validated via numerical case studies. This approach exploits the discrete nature associated with
the digital implementation of a modern control system along with a unique view on the underlying
dynamics to derive an estimate for the minimum sampling rate necessary for a control system to be
considered real-time. This metric, unlike other methodologies, is valid for both linear and nonlinear
systems. Additionally, the resulting formulation easily maps to the physical system. Several case
studies were performed using relevant linear and nonlinear systems including a spacecraft undergo-
ing a 3-axis reorientation maneuver using an Eigenaxis-Quaternion feedback controller to a double
integrator system under a minimum-time control policy. Each system considered utilized a realistic
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actuator with discrete output levels. From these case studies, the proposed metric was found to
sufficiently estimate the average steady-state output of the system. Additionally, by exercising the
flexibility of the definition dynamic bandwidth, an upper bound on the minimum sampling rate can
be found by estimating transient tracking capabilities of the system. Furthermore, an extension of
this metric was presented to estimate the rate at which the guidance path re-planning task must be
performed. This metric, while does not exactly predict the necessary sampling rate, provides an
estimate to well within an order of magnitude with few assumptions under ideal conditions.
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time, questions, and feedback, as this ultimately helped to refine the work presented.

REFERENCES
[1] M. C. Berg, N. Amit, and J. D. Powell, “Multirate digital control system design,” IEEE Transactions on

Automatic Control, Vol. 33, Dec 1988, pp. 1139–1150, 10.1109/9.14436.
[2] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems, Vol. 3, ch. 3,10.

Addison-wesley Menlo Park, 1998.
[3] K. Ogata, Modern Control Engineering, pp. 430—436, 439–440. Prentice-Hall, Inc, 1970.
[4] N. S. Nise, CONTROL SYSTEMS ENGINEERING, (With CD). John Wiley & Sons, fifth ed., 2007.
[5] I. M. Ross, P. Sehavat, A. Fleming, and Q. Gong, “Optimal Feedback Control: Foundations, Examples,

and Experimental Results for a New Approach,” Journal of Guidance, Control, and Dynamics, Vol. 31,
March-April 2008, pp. 307–321, 10.2514/1.29532.

[6] I. M. Ross, Q. Gon, F. Fahroo, and W. Kang, “Practical Stabilization Through Real-Time Optimal
Control,” Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, June 14-16
2006, pp. 304–309.

[7] I. M. Ross, A Primer on Pontryagin’s Principle in Optimal Control, pp. 63–74. Collegiate Publisher,
second ed., 2016.

[8] B. Wie, H. Weiss, and A. Arapostathis, “Quaternion Feedback Regulator for Spacecraft Eigenaxis Ro-
tations,” Journal of Guidance, Control, and Dynamics, Vol. 12, No. 3, 1989, pp. 375–380.

[9] B. Wie, Space Vehicle Dynamics and Control, pp. 349–362, 426–444. AIAA Education Series, sec-
ond ed., 2008.

[10] D. E. Kirk, Optimal Control Theory An Introduction, ch. 5, pp. 248–259. Dover, 2004.

11


	Introduction
	Minimum Sampling Rate Formulation
	Numerical Case Studies
	Stability of a Double Integrator System under a Minimum-Time Optimal Control Policy
	Numerical Case Study Results
	Overall System Responses
	Eigenaxis-Quaternion Feedback Controller
	Simple Harmonic Oscillator with PD Control
	Minimum-Time Optimal Control for a Double Integrator System


	Applications and Discussion
	Minimum Sampling Rate for Tracking Transient Responses
	Guidance Path Re-Planning Rates

	Conclusions
	Acknowledgment



