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Abstract—This paper employs a computational optimal control
framework to develop a mission planning tool for a team of
heterogeneous unmanned vehicles conducting a nominal mine
countermeasures (MCM) mission. We first describe our motiva-
tion for developing vehicle-specific sensor models for unmanned
surface and underwater vehicles working collaboratively to
detect mines. Next, we describe the sonar detection models used
to evaluate the performance of a long-range, forward-looking
detection sonar and a high-resolution sidescan sonar deployed
from these unmanned vehicles. Results from multiple computer
simulations which highlight the flexibility and utility of this
solution framework are presented.

I. INTRODUCTION

Over the last two decades, unmanned vehicle systems have
grown steadily more capable, reliable, and ubiquitous, but
most systems are still designed to conduct specific mission
sets in a particular domain, with capabilities largely dependent
on sensor payloads. But as system designers increasingly turn
to commercial technologies and open architectures, it is easier
than ever for robotic systems to inter-operate. As a result,
multiple dissimilar vehicles can be combined into a collab-
orative team to overcome individual vehicle limitations and
deliver advanced capabilities–even across operating domains.
Autonomous vehicle teams have great potential in a wide
range of scientific, commercial and defense applications, and
they are especially well-suited for remote sensing in maritime
domains.

To maximize the utility of a heterogeneous vehicle team
for a given sensing mission, motion planning algorithms
must consider the capabilities and limitations of each team
member. At a minimum, they should incorporate dynamic and
operational constraints to produce feasible trajectories. Opti-
mization techniques can be used to allocate effort according to
individual vehicles sensor performance. Such techniques can
produce motion plans which are superior to conventional lawn
mower survey patterns, which may be sub-optimal for certain
sensors and infeasible for under-actuated vehicles to follow
exactly.

Autonomous systems must also operate with imperfect
information about their environment. This is particularly true
in the maritime domain, where sensor accuracy usually de-
pends on acoustic conditions and vehicle motion is subject

to unknown disturbances at the water surface. In underwa-
ter search applications, the ability to detect and localize a
target with sonar is impacted by several factors including
acoustic noise, ambiguous geometry, and aspect-dependence.
Consequently, the performance of an autonomous system may
depend greatly on its ability to cope with uncertainty. Motion
planning algorithms which consider uncertainty, therefore, can
increase a system’s overall robustness.

Optimal control provides a useful mathematical framework
for solving motion planning problems with dynamic con-
straints and different performance criteria. Recent develop-
ments in numerical methods have made it possible to explicitly
incorporate parameter uncertainty into the objective function
of an an optimal control problem [1], [2], [3], [4]. Moreover,
these generalized optimal control problems can incorporate
sensor performance models to produce optimal vehicle tra-
jectories for a given sensor configuration. Researchers have
successfully applied these methods to solve motion planning
problems with complex, multi-agent interactions in a variety
of scenarios including optimal search, path coverage, and force
protection [5].

In this paper, we employ this computational optimal control
framework as a mission planning tool for a team of dissimilar
vehicles conducting a nominal mine countermeasures (MCM)
mission. We first describe our motivation behind developing
vehicle-specific sensor models for Unmanned Surface Ves-
sels (USVs) and Autonomous Underwater Vehicles (AUVs)
working collaboratively to detect mines. Next, we describe the
sonar detection models used to simulate the performance of a
long-range, forward-looking sonar (FLS) and a high-resolution
sidescan sonar (SS) deployed from these unmanned vehicles.
Results from computer simulations which highlight the flex-
ibility and utility of this solution framework are presented.
Finally, we suggest directions for future research.

II. SONAR DETECTION MODELS

There are a number of complex sensing missions which
could utilize autonomous vehicle teams to deliver a mix of
different capabilities, particularly in environments which pose
a risk to humans. The U.S. Navy has embraced this vision, and
invested heavily in vehicle and sensor technologies for mine
countermeasures (MCM). In general, MCM operations are
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Fig. 1. The Naval Postgraduate School’s SeaFox USV and REMUS 100 AUV

conducted in a sequence of phases, each performed by various
types of vehicles and sensors [6]. Presently, these assets re-
quire dedicated support from manned platforms, but a current
thrust of naval research is aimed at enabling autonomous
systems to support other unmanned vehicles during MCM
operations [7]. Fig. 1 shows a SeaFox USV and a REMUS
100 AUV, two of the fleet-representative vehicles used at
the Naval Postgraduate School (NPS) Center for Autonomous
Vehicle Research (CAVR). In this paper, we consider sensor-
based motion planning strategies for a heterogeneous team
comprised of these types of vehicles.

To address this problem of interest, we first develop models
for two types of sensors routinely deployed in different phases
of an MCM operation: 1) a long-range FLS for the target
detection phase, and 2) a high-resolution SS for the subse-
quent reacquisition and identification phase. As these sensors
are rigidly-mounted onto autonomous vehicles, models for
detection performance should depend on individual vehicle dy-
namics and three-dimensional problem geometry, particularly
when searching for bottom mines with FLS from a surface
craft. Models should also reflect the region of poor sidescan
coverage in the near-nadir area directly below an AUV’s path.
Many sensor models that have been widely-used in search the-
ory do not address these geometric effects. Examples include
“cookie cutter” models, which assume positive detection of
all targets within a fixed range of the sensor, and lateral range
curves, which graph detection probability versus the sensor’s
“point of closest approach” to the target [8], [9], [10].

The signal excess model, first proposed in [11] and still
widely used for sonar performance modeling [12], [13], [14],
simulates the conditions under which an active sonar system
can detect an underwater mine-like object (MLO). This model
assumes that detections will only occur when the acoustic
energy transmitted by the sonar (ping) can overcome the two-
way propagation losses in the environment such that the re-
ceived signal (echo) exceeds a detection threshold. This signal
excess can be computed using well-known sonar equations.
The signal excess for an active sonar operating against a noise

background is given in [10]:

SE = SL� 2PL+ TS � (N �AG)�DT, (1)
where SE = signal excess,

PL = one-way propagation loss,
TS = target strength,
N = omni-directional sonar self-noise,

AG = array gain,
DT = detection threshold.

An equivalent expression that includes signal processing terms
for either frequency modulated (FM) or continuous wave (CW)
pulse types can be found in [15]:

SE = SL� 2PL+ TS � (N �DI + 10 logB)

� (5 log d� 10 logBT � 5 log n), (2)
where DI = directivity index,

B = pulse bandwidth [Hz],
T = pulse duration [s],
d = detection index,
n = number of pings used in detection decisions.

Each term in (1) and (2) are expressed in dB, unless otherwise
specified. For sonar performance analysis, the terms of the
signal excess equation can be combined into two terms:

SE(t) = FOM � PL (D(t)) (3)
where FOM = Figure of Merit,

PL = Propagation Losses, and

D = Distance from the target.

Figure of Merit is useful for analyzing the performance of
different passive or noise-limited active sonar designs, as this
metric is independent of range or a specific operating region
for these cases (unlike reverberation-limited active sonar).
Even though exact design parameters for Navy sonars are
difficult to obtain (and potentially classified), a Figure of Merit
suitable for relative performance analysis can still be estimated
from sonar design reference manuals [15] or commercial sonar
specifications [16], [17]. The signal excess of a given sonar’s
FOM is especially attractive for simulating detections along a
moving vehicle’s trajectory ~x(t), since it depends only on the
distance between the vehicle and the mine location ~! at each
moment in time: D(t) =

��[dx dy dz]T
�� = k~! � ~x(t)k. Here

the uncertain mine location ~! is characterized by the probabil-
ity density function � : ⌦ ! R. We assume that propagation
losses are due primarily to spherical spreading and absorption
of the acoustic energy as it travels through the water, “a useful
working rule for initial design and performance comparisons”
[15]. In the following equation, a is the frequency-dependent
absorption coefficient of seawater.

PL(~x(t), ~!) = 20 log10 (k~! � ~x(t)k) + a k~! � ~x(t)k (4)

Tabulated values of a for different frequencies can be found
in sonar design references such as [15] and [18], while [19]



Fig. 2. An ATLAS sonar mounted on the NPS SeaFox USV

provides an equation for a in dB/km as a function of frequency
in kHz:

a =
0.11f2

1 + f2
+

44f2

4100 + f2
+ 0.0003f2 + 0.003 (5)

If we assume that signal excess is a normally-distributed ran-
dom variable with variance �2, the instantaneous probability
of detection for a single glimpse with the sonar can be written
in terms of its cumulative normal distribution �:

p(~x(t), ~!) = �

✓
SE (~x (t) , ~!)

�

◆
(6)

with typical values of � lying between 3 dB and 9 dB [8],
[10], [20]. Practically speaking, at times when PL = FOM ,
detection probability is p(t) = 0.5, i.e., the sonar has an equal
probability of either detecting or missing a mine. We further
assume that detection can be modeled by a Poisson process
in which detection opportunities, or glimpses, occur at rate �,
producing the detection rate DR(~x(t), ~!) = �p(~x(t), ~!) [8].

A. Forward Looking Sonar

A Figure of Merit for a long range, forward-looking sonar
(FLS) similar to the Autonomous Topographic Large Area
Sonar (ATLAS) mounted on the NPS SeaFox USV (Fig. 2) can
be computed from a nominal design specification. This type
of sonar is used to perform wide-area mine detection during
the first phase of mine countermeasures (MCM) operations
[6]. Following the design example for a mine-hunting sonar
in [15], we can, for example, specify a 200 kHz sonar with
120-degree horizontal field of view, 5-degree vertical field of
view, and nominal operating range of 400 meters [21]. From
the specified operating frequency and desired beam widths we
can compute the directivity indices for a linear transmit array
and cylindrical receive array. Assuming the sonar operates at
10 W power, we compute a transmitter source level of 197 dB.
The source level, array geometry, and FM signal processing in
this design yield a FOM of 72 dB as shown in Table I, where
all specified or assumed parameters are italicized.

B. Sidescan Sonar

Next, we estimate a Figure of Merit for a short range, side-
looking sonar similar to the sidescan sonar used on the NPS
REMUS 100 AUV. This type of sensor is representative of

TABLE I
ACTIVE SONAR DESIGN PARAMETERS FOR NOISE-LIMITED FOM

FLS Sidescan

Specified or Assumed

NominalRange 400 m 40 m

Frequency 200 kHz 900 kHz

Transmit Beam Widths

Horizontal 120

�
0.4�

V ertical 5

�
40

�

Receive Beam Widths

Horizontal 2

�
0.4�

V ertical 2

�
40

�

Propagation Loss, PL 71 dB at 400m 43 dB at 40m

Pulse Length, T

FM 10 ms —
CW — 6.67 µs

Pulse Bandwidth, B

FM 80 kHz —
CW — 150 kHz

5 log d 10 dB 3 dB

5 logn 10 dB 3 dB

Computed
Directivity Index, DI

Transmit 16 dB 27 dB
Receive 35 dB 27 dB

Source Level, SL 197 dB 204 dB
Ambient or Self-Noise, N 35 dB 44 dB
Target Strength, TS -30 dB -30 dB

Figure of Merit, FOM 72 dB 49 dB

high-resolution sonar used to reacquire previously-detected
MLOs and identify them for subsequent neutralization [6].
Following the design example for a sidescan sonar in [15],
and using manufacturer specifications for a 900kHz sidescan
sonar [16], we can compute a FOM for this sensor as well.
Assuming the sonar operates at 4W, we compute a transmitter
source level of 204 dB. The source level, array geometry, and
CW signal processing in this design yield a FOM of 49 dB as
shown in Table I, where all specified or assumed parameters
are italicized.

C. Geometry Impacts

The signal excess detection model developed thus far, for
a given sonar’s Figure of Merit, depends only on the omni-
directional distance to the MLO of interest. This is equivalent
to other popular sonar detection models used in search theory
such as the definite range model or lateral range curves.
Although useful for computing a constant sweep width for
coverage planning algorithms [9], both of these models fail
to address regions of negligible detection performance located
directly below an underwater vehicle using sidescan sonar or a
surface craft using forward-looking sonar. Furthermore, most
physical sonar systems are designed with a specific beam
pattern and do not perform equally well in all directions.



Therefore, to more accurately estimate a sonar’s true detection
performance when mounted on a vehicle, we enforce its beam
geometry in three dimensions. This is achieved by defining
horizontal and vertical fields of view (FOV) relative to the ve-
hicle’s body-fixed axes, and degrading detection performance
outside of these limits. First, we define the horizontal FOV
to lie between its lower and upper azimuth angles in the
horizontal plane, denoted ↵L and ↵U , respectively, where
the superscript b indicates angles resolved in the body-fixed
reference frame.

b↵L = �↵FOV

2
, b↵U = +

↵FOV

2
(7)

Likewise the vertical FOV is defined between its lower and
upper elevation angles in the vertical plane, denoted "L and
"U , respectively.

b"L = "DE � "FOV

2
, b"U = "DE +

"FOV

2
(8)

where "DE is a fixed downward elevation angle selected to
ensure that the sonar can ensonify the sea floor. The azimuth
angle and elevation angle between the vehicle and MLO
of interest in the inertial navigation frame, denoted by the
superscript n, are computed as:

n↵ = atan2(!y � y,!x � x) = atan2(dy, dx) (9)

n" = arctan

 
�!z � 0p

(!x � x)2 + (!y � y)2

!

= arctan

 
� dzp

dx2 + dy2

!
(10)

To determine the azimuth angle to a potential mine in the
sonar’s FOV, the vector from the vehicle to the MLO must be
rotated from the navigation frame into the vehicle’s body-fixed
reference frame. For a vehicle at heading angle  , the rotated
vector is:

bdx = ndx cos( ) + ndy sin( ) (11)

bdy = � ndx sin( ) + ndy cos( ) (12)

b↵ = atan2(bdy, bdx) (13)

Using these angles, we define scalar masking functions that
degrade detection performance for mines with azimuth (ele-
vation) angles that lie outside the sonar’s horizontal (vertical)
field of view. Each masking factor is constructed from two
sigmoidal functions: one that smoothly transitions the scalar
multiplier value from 0 to 1 as a mine “enters” the lower FOV
boundary, and one that transitions it back down to 0 as a mine
“exits” the upper FOV boundary. The azimuth and elevation
masking functions are given in (14) and (15), respectively.

F↵(~x(t), ~!) =
1

1 + ep↵(↵L � b↵)
+

1

1 + ep↵(b↵ � ↵U )
� 1

(14)
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Fig. 3. F↵ vs. azimuth angle and p↵ for a 120-degree horizontal FOV

Fig. 4. DR vs. azimuth angle only for a 120-degree horizontal FOV

F"(~x(t), ~!) =
1

1 + ep"("L�")
+

1

1 + ep"("�↵U )
� 1 (15)

The p↵ and p" parameters can be tuned to
adjust the growth rate of their respective sigmoid
functions. Applying these masking functions results
in the geometry-dependent sonar detection rate
DR(~x(t), ~!) = �p(~x(t), ~!)F↵(~x(t), ~!)F"(~x(t), ~!). Fig. 4
illustrates this noise-limited detection rate as a function of
target position relative to a forward-looking sonar located at
(400 m, 800 m) with azimuth masking factor F↵(~x(t), ~!)
corresponding to a 120-degree horizontal field of view. The
color scale ranges from a detection probability of 0 (blue)
to 1 (dark red). The effect of the elevation masking factor is
ignored for this plot (e.g., F"(~x(t), ~!) = 1).

Because many sonar systems, e.g. sidescan sonar, perform
poorly during turning maneuvers, another scalar term is ap-
plied to degrade detection performance as a function of vehicle
turn rate, r(t). A Gaussian-like function which reaches a
maximum value of 1 for straight line motion is

Fr(~x(t)) = e�
1
2 [

r(t)
�r

]
2

. (16)



This modifier is used to account for the adverse effects of
non-zero turn rate. It can be adjusted by the tuning parameter
�r and produces the sidescan sonar detection rate:

DR(~x(t), ~!) = �p(~x(t), ~!)F↵(~x(t), ~!)F"(~x(t), ~!)Fr(~x(t)).
(17)

A primary consideration in selecting these scalar functions
is their numerical smoothness, which greatly aids numeric
gradient computations, and their tuning parameters can be
adjusted to reflect most sonar geometries.

D. Optimal Search Objective Function

In this section we derive the probability that a vehicle’s
sonar completely fails to detect a mine using the sonar detec-
tion rate function obtained above. Minimizing this objective
function will thereby maximize the probability that the sonar
successfully detects the mine. In this framework, we assume
that the detection probability on a sufficiently small time
interval [t, t + �t] is PD (�t) = DR(~x(t), ~!)�t [8]. We
also assume that this quantity is independent of the detection
probability on all prior time intervals. Therefore, using the
complement, the probability of not detecting a mine at time
t+�t is

PND(t+�t) = PND(t) [1� PD (�t)]

= PND(t) [1�DR(~x(t), ~!)�t] . (18)

This equation can be rearranged as the difference equation

PND(t+�t)� PND(t)

�t
= �PND(t)DR(~x(t), ~!). (19)

In the limit as �t ! 0 we obtain

ṖND(t) = �PND(t)DR(~x(t), ~!), (20)

which has the closed form solution:

PND(t) = e�
R Tf
0 DR(~x(⌧),~!)d⌧ . (21)

In this paper, we seek to minimize the expected probability
that a sonar fails to detect a mine at the uncertain mine location
~! characterized by the probability density function � defined
in Section II [5]. Therefore, the cost function becomes

J = E {PND(Tf )} =

Z

⌦
e�

R Tf
0 DR(~x(⌧),~!)d⌧�(~!)d~!. (22)

Note, the cost J is a function of the uncertain parameter ~! and
has the standard form of the running cost in the generalized
optimal control problem formulation described in [1] .

III. OPTIMAL MCM SEARCH BENCHMARK PROBLEM

A. Vehicle Dynamics

We simulate an Unmanned Surface Vehicle (USV) with
bow-mounted FLS conducting an initial MCM search at

constant velocity using the following dynamic equations of
motion (EOM):

ẋ(t) = V cos( (t))

ẏ(t) = V sin( (t))

 ̇(t) = r(t) (23)

ṙ(t) =
1

T
(Ku(t)� r(t))

where u(t) = �rudder(t)

These equations implement a simple, slow-speed Nomoto
turning model in state space form: ~̇x(t) = f (~x(t), ~u(t))
with state vector ~x ⌘ [x, y, , r]

T . The parameters K [1/s] and
T [s] can be identified as described in [22]. The state variables
(x, y) define the vehicle’s position in meters along the (north,
east) axes of the navigation reference frame;  describes the
vehicle’s heading angle in radians measured clockwise from
the North axis; and r is the vehicle’s turn rate in radians per
second. The vehicle travels with constant forward velocity
V measured along the body-fixed x-axis, of 2.5 m/s. For
simplicity, we use these same equations of motion (23), with
constant velocity V = 1.5 m/s and constant depth z = 3 m, to
simulate AUV motion. More accurate AUV dynamic equations
are presented in [23].

B. Problem Scaling

We wish to solve this optimal search problem numerically,
but the domains of our state variables and uncertain parameters
have different orders of magnitude. It is important to properly
scale the problem before applying a numeric solver. This can
be achieved by defining canonical units for distance, time,
etc. and transforming the original problem variables into non-
dimensional versions with similar domains [24]. For this prob-
lem, we define the canonical distance unit DU = 100 meters,
and the canonical time unit TU = 100 seconds. This produces
the canonical velocity unit of V U = DU

TU = 1 m/s. We can
restate our state variables in canonical units as follows:

x =
x

DU
, y =

y

DU
,  =  , r =

r

1/TU
, t =

t

TU
(24)

Our chosen scaling must also be applied to the Nomoto
parameters and control input:

K = (TU)K, T =
T

TU
, u = u (25)

Substituting these expressions into our original dynamics for
x and y yields their state space equations in canonical units:

ẋ =
dx

dt
=

d(DUx)

d(TUt)
=

DU

TU

dx

dt
= V Uẋ

ẋ =
1

V U
ẋ =

1

V U
V cos( ) = V cos( ) (26)

so, by similarity ẏ = V sin( ) (27)



Likewise, substituting canonical units for  and r yields:

 ̇ =
d 

dt
=

d 

d(TUt)
=

1

TU

d 

dt
=

1

TU
 ̇

 ̇ = TU  ̇ = (TU)r = r (28)

ṙ =
dr

dt
=

d(1/TU)r

d(TUt)
=

1

TU2

dr

dt
=

1

TU2
ṙ

ṙ = (TU2)ṙ = (TU2)
1

T
(Ku� r)

= (TU2)
1

TUT

✓
K

TU
u� r

TU

◆

=
1

T

�
Ku� r

�
(29)

Equations (26) through (29) confirm that our scaling has not
changed the underlying dynamics of the problem. However,
the expression for propagation loss (PL) in the detection rate
equation must be modified slightly when using canonical units.
Recall from (4) that propagation loss includes a spherical
spreading term, 20 log10 (k~! � ~x(t)k), and an acoustic absorp-
tion term a k~! � ~x(t)k. At each time t we have:

D = k~! � ~xk

D =
q
(!x � x)2 + (!y � y)2 + (!z � z)2

D =

q
(dx)

2
+ (dy)

2
+ (dz)

2

D =

q
(DUdx)2 + (DUdy)2 + (DUdz)2

D = DU

q
dx

2
+ dy

2
+ dz

2

D = DUD (30)

Since PL = 20 log10 (D) + a · D, we define PL using
canonical units as:

PL = 20 log10
�
DUD

�
+ a

�
DUD

�

PL = 20 log10 (DU) + 20 log10
�
D
�
+ a

�
D
�

(31)
where a = DUa

IV. SIMULATION RESULTS

A. Sonar Detection Model Testing

The sonar models developed in Section II were tested in
simulation to verify their performance. Fig. 5 shows a USV
with FLS as it moves along an open loop trajectory through
a square search area. The color at each location in the search
area designates PND(Tf ), the probability that the sonar failed
to detect a mine at that location before the end of the mission.
This is our measure of MCM risk. Assuming that we have
no prior information and that a possible mine location is
uniformly distributed within the search area, the maximum
PND(Tf ) value (dark red) is a function of search area size.
We note that in areas covered by the USV’s sonar along this
trajectory, PND(Tf ) approaches zero (blue), meaning there is
a high probability that the sonar would have detected a mine
in those areas.

Fig. 5. Simulated search with USV and forward looking sonar

Fig. 6. Simulated search with AUV and sidescan sonar

A similar trajectory is shown for an AUV with sidescan
sonar in Fig. 6. To accommodate the slower AUV and shorter
range sonar, the designated search area is much smaller than
the FLS search area in Fig. 5. While the corresponding max-
imum values for PND(Tf ) are higher in a given location, the
relative color scale along the vehicle’s trajectory indicates that
our sidescan detection model is consistent with actual sidescan
performance, e.g. it provides little to no coverage beneath the
vehicle and degraded performance when the vehicle is turning.

B. Time-Limited MCM Search

The remainder of this paper will focus on optimal motion
planning for mine detection by one or two USVs equipped
with forward looking sonar (FLS). Establishing ”benchmark”
problems based on computational optimal search can facilitate
comparisons between different vehicle types and sensor pay-
loads to assess the best team composition for a given mission.
For this problem, we wish to detect mines on a flat sea floor
in 20 meters of water within a 1.6 x 1.6 km2 search area. If
the USV bow-mounted FLS has FOM = 43.5 dB, we wish
to compute the optimal trajectories that minimize PND(Tf )
for fixed Tf = 1500 seconds.



Fig. 7. Time-limited search by one USV using a manual lawnmower pattern

Fig. 8. Optimal time-limited search by one USV

The fixed Tf constraint makes it extremely difficult to
manually program a lawnmower survey pattern with complete
coverage using only one USV. The pattern shown in Fig. 7
still leaves PND(Tf ) = 0.34. Potential solutions include de-
ploying a better sonar (with a higher FOM) and increasing the
lawnmower pattern’s row spacing, or adding additional team
members. Both solutions would likely increase the overall
system cost. Alternatively, we find that the optimal solution
to our single-USV benchmark problem (Fig. 8) achieves
PND(Tf ) = 0.16. This level of risk may be acceptable in
certain situations; if not, we can easily compute a motion
plan for two USVs (Fig. 9) that achieves PND(Tf ) = 0.03
in Tf = 1000 seconds, or 33% less time than the original
time allotted.

V. CONCLUSION

The key contribution of this paper is a physics-based sonar
detection rate model for mine countermeasures (MCM) that
can be used to compute the expected probability that search
vehicles fail to detect all mines in an area of interest. This
cost function represents our measure of risk associated with
MCM and is minimized over all vehicle trajectories that

Fig. 9. Optimal time-limited search by two USV

satisfy constraints imposed by the dynamic limitations of
the vehicles. A number of simple examples were presented
which suggest that our computational framework is suitable for
optimal motion planning applications with spatial and dynamic
constraints, as well as parameter uncertainty. The authors are
actively developing a mission planning tool for MCM based on
this computational framework, as well as working to expand
the class of problems that can solved using this approach.
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