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ABSTRACT 

Marine Corps Manpower Plans and Policy Division, Manpower & Reserve 

Affairs, is responsible for formulating Marine Corps force manpower plans. 

Accomplishing this mission requires extensive knowledge of the Human 

Resource Development Process (HRDP) for controlling future personnel attrition, 

retention, and accession quantities to ensure appropriate quantities of its various 

Military Occupational Specialties (MOS) and overall end strength are maintained. 

To assist their mission, an agent-based computer simulation model was 

developed in the Java computer language. This thesis investigates that 

simulation model, titled Manpower Simulation Model (MSM). This thesis provides 

documentation of MSM’s architecture and processes, tests the sensitivity of its 

inputs through the use of an experimental design, and validates MSM’s output 

measures by calculating the relative error for five successive forecast years for 

various HRDP categories. This thesis found that MSM’s structure and output 

measurement responses aligned with HRDP practices. With respect to validation, 

on average the HRDP categories losses and accessions underestimated by 17 

and 18 percent, respectively, while gains overestimated by 36 percent. The 

category promotions generally underestimated, but lessened in magnitude as 

grade increased. The category retention consistently overestimated for all 

grades. Lastly, the MSM showed biasness toward retaining Marines over 

backfilling vacancies through accessions. 
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I. INTRODUCTION 

A. BACKGROUND 

The Marine Corps is regarded as being the Nation’s premier expeditionary 

force in readiness. Before it can ever be deployed to conduct its various ranges 

of military operations, it must ensure it has the proper personnel in place to 

execute those missions. Annotated as the Human Resources Development 

Process (HRDP), the Marines and civilians at Manpower and Reserve Affairs 

(M&RA) wrestle with this convoluted and mission critical process to ensure the 

Marine Corps has the proper number of Marines proportionately allocated across 

its various Military Occupations Specialties (MOS). To add an additional layer of 

difficultly, M&RA must accomplish this mission for an organization that has an 

extreme flux in personnel change. 

Averaging from the past decade, each year there are approximately 

30,000 Marines that choose to enter and exit the Marine Corps (Spafford, 2016).  

Roughly 60% of Marines are on their first enlistment contract, 45% are below the 

paygrade of E-4, and 75% will not reenlist for a second contract (Spafford, 2016). 

Figure 1 shows this dramatic manpower drop of Enlisted Marines exiting the 

Marine Corps after their first enlistment contract. This significant drop is due to 

the general manpower structure of the Marine Corps, as well as its merit-based 

promotion selection that is in conjunction with the “up or out” manpower system. 

To ensure mission accomplishment within M&RA, it is crucial to understand 

these factors that drive manpower movements. The manpower process is 

expanded on in Section C or this chapter. 
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Figure 1.  Marine Corps Enlisted Force Fiscal Year (FY) 1990–2000. 
Source: Rostker (2013). 

Advances in technology have facilitated the ability to develop tools that 

yield enhanced manpower analysis. However, most of these decision making 

tools are still relatively isolated models that provide insightful information in a 

narrow spectrum of the HRDP (R. A. Garrick, personal communication, April 6, 

2016). Naturally, policy and procedures implemented within M&RA try to mitigate 

the unintended consequences and errors of assembling the various patches of 

information. To bridge this gap, the power of computer simulation was explored 

with the intent to integrate the numerous processes of HRDP into a single 

simulation model. 

The first documented computer modeling software that attempted to 

provide a HRDP whole-system oriented viewpoint was an Arena model. Created 

by Rockwell Automation, Arena is a simulation software that models business 

practices to assist that business in its “ability to analyze and make decisions on 

how to improve (their) process” (Rockwell Automation, 2016). Used at M&RA 

from roughly 2008 to 2011, this model was cumbersome, slow, and complex. 
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Ultimately, its inability to forecast numerous years into the future and 

undocumented source code methods led this software program to become 

untrusted, impractical, and unused to the point that its contracting license with 

Rockwell Automation was not renewed upon its licensing expiration (M. Ramirez, 

personal communication, April 4, 2016).  

In 2011, former Naval Postgraduate School Operations Research 

graduate Captain Ronald Garrick, USMC (ret), arrived at Manpower Studies and 

Analysis Branch, M&RA, thereupon noticing the technology capability gap and 

began developing what ultimately became the Manpower Simulation Model 

(MSM). 

The MSM is a Java language agent-based simulation program that aims 

to integrate the numerous processes of the HRDP under a single computer 

simulation model. Using the Marine Corps’ force structure as its virtual 

architecture and manpower shaping rules as its internal constraints, the program 

combines the deterministic aspects of the HRDP with a stochastic simulation 

capability that produces a multitude of output metrics. These output metrics aid 

the decision makers at M&RA to gain insightful forecasted metrics that range 

across numerous fiscal years, and breaks down into the dimensional analysis at 

the MOS skill and grade level. 

B. PURPOSE 

This thesis provides an overall evaluation of the MSM and its potential for 

future usage so that its output metrics can be used with trust and confidence in 

making manpower decisions by the leaders within M&RA. This was 

accomplished by inspecting and documenting the various internal structures and 

procedures within the MSM. A software-verification approach was taken to test 

the sensitivity of its input metrics through the use of an experimental design. 

Finally, a software-validation approach was used to evaluate the model’s 

accuracy against historical Marine Corps manpower data. 
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C. THE MANPOWER PROCESS 

To understand the underlying concepts of the MSM, and its goal of 

providing forecasted metrics, one first has to understand the enlisted HRDP. The 

intention of this section is to provide the reader with an overview of this process, 

rather than an in-depth detailed analysis, to serve as the basis for comparison to 

the MSM. This section will highlight the conjoined process for Officer and 

Enlisted personnel where appropriate. However, the scope of this thesis is purely 

focused on enlisted personnel, since that is the personnel parameter used within 

the MSM. 

Forecasting manpower quantities are derived from two critical 

components; the absolute manpower structure of the Marine Corps and the 

personnel movement that occurs within it. The first part of this section will focus 

on manpower structure. Comprising of approximately 240 MOSs that are spread 

throughout 9 Enlisted grades, the Marine Corps Enlisted Force averages around 

162,000 Marines at any given time (Manpower Plans and Policy Division, 2016). 

Determining what the force structure should be for a given fiscal year is a 

cumbersome process. The enlisted force is derived from manpower requirements 

or previous force structures. These requirements are determined from 

occupational field (occField) sponsors who are specialized and advocate for 

occFields to possess specific levels of experience, where experience can be 

synonymous with a Marine’s time in service, that are proportionality distributed 

across the Marine Corps in terms of both depth and breadth. The sponsor 

receives guidance from the Commandant of the Marine Corps in his strategic 

analysis of various documents such as the National Security Strategy and the 

National Defense Strategy, as well as from current Combatant Commanders who 

yield bottom-up refinement to previously established force structures (United 

States Marine Corps, 2009). The Deputy Commandant Combat Development 

and Integration (DC CD&I) ultimately approves the new requirements list, which 

appropriately becomes the documented Table of Organization (T/O). Figure 2 
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depicts this process, as described in Marine Corps Order (MCO) 5311.1D Total 

Force Structure Process. 

 

Figure 2.  The Marine Corps Total Force Structure Process. Adapted from 
United States Marine Corps (2009). 

The T/O is therefore the foundational document toward which the Marine 

Corps tries to build and sustain its force, which is accomplished by “buying billet 

seats.” Every purchased billet has political and budgetary constraints associated 

with it. The process of “buying billet seats” is synonymous with the fiscal year’s 

approved end strength as provided by the National Defense Authorization Act 

(U.S. Department of Defense, 1996). When differences between what the Marine 

Corps would like to have, the T/O, and what the Marine Corps is allowed to have, 

its approved end strength, the Manning and Staffing Precedence Order is taken 

into account. The Manning and Staffing Precedence Order is a MCO that 

identifies which units will receive priority in fulfilling billet vacancies, as directed 

by the Commandant of the Marine Corps (United States Marine Corps, 2012). 

The combination of these steps in addition to the original T/O produces the 

Authorized Strength Report (ASR). 

The ASR is the principal document that M&RA receives to complete the 

final components of the HRDP. However, before it can be used it has to be 

reconciled to be compliant with political and budgetary constraints. For budgetary 

constraints, the grade quantities are aggregated and summed with respect to that 

grade’s pay to ensure that monetary personnel limits are not exceeded. 
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Within Manpower Plans and Policy Division (MP), additional manning 

controls are implemented to account for the Marine Corps’ patients, prisoners, 

transients, and trainees (P2T2). Accounting for P2T2 against the ASR produces 

the Grade Adjusted Recapitulation (GAR). The manpower metrics specified in 

the GAR serve as the final manpower targets for a specific fiscal year. A 

snapshot of the GARs manpower metrics may be viewed in Appendix B. The 

GAR is the manpower structure document the MSM uses to build its virtual 

architecture from. 

Building off of the absolute structure, personnel movement becomes the 

second critical component to properly forecasting manpower requirements. This 

component is often illustrated in a graphic called the Enlisted Manpower 

Pyramid, shown in Figure 3. It includes external and internal personnel 

movement, which is classified into four categorical areas: accessions/gains, 

retentions/reenlistments, promotions, and losses. 

 

Figure 3.  Enlisted Manpower Pyramid. Adapted from Spafford (2016). 
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These four components yield insight into how Marines are moving through 

the manpower structure. These four components are further broken down to 

capture specific manpower movement. For accessions/gains, sub-categories 

include Marines returning from:  

 Medical Holds 

 End of Active Service (EAS) Holds 

 Deserter Status 

 Fulfilling Recruiter Billets 

 Cross Year Extensions 

 Non-Prior Service Accessions  

For retentions/reenlistments, this category is broken down into two sub-

categories: First Term Alignment Plan (FTAP) and the Subsequent Term 

Alignment Plan (STAP). These plans shape the inventory of the enlisted force by 

controlling the number of enlistments for the respective term force (United States 

Marine Corps, 2010). These plans are critical as they ensure the proper quantity 

of MOSs, with respect to grade distribution, are being retained within the Marine 

Corps. 

The component promotions does not have a specific sub-category, 

however it is proportionally controlled by the Enlisted Career Force Controls 

(ECFC). ECFC impacts two specific areas, first they impact the promotion zones 

control parameters. These controls ensure each Marine receives an opportunity 

to be promoted, as well as ensures a Marine has the proper experience to fulfill 

higher grade responsibilities. Secondly, the controls facilitate the process of only 

retaining the most qualified Marines by forcing Marines who fall below acceptable 

career progression standards out of the service. For example, if Marines are 

continuously being passed over for promotion it is assumed they do not possess 

the high-standard qualifications the Marine Corps is looking for and therefore 

should not continue to be retained within the force (United States Marine Corps, 

2010).  
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The component losses has multiple sub-categories, specifically 

categorizing Marines that:  

 Receive commission and become Officers, referred to as an 
enlisted to officer (E2O) transition 

 Drop out and separate from Boot Camp 

 Transition into the reserves 

 Reach service limitations 

 Retire 

 Execute general EAS 

 Death cases 

 Non-EAS cases 

Aggregating and associating the four manpower movement categories 

yields detailed rates for Marines moving among the manpower structure. 

Cognizance of these rates allow manpower planners to take today’s force, 

extrapolate the data, and forecast what they believe will be the future’s force. 

Projections are developed at the beginning of each fiscal year to estimate the 

amount of Marines moving within the manpower pyramid in order to anticipate 

the quantity of accessions needed to backfill future vacancies. These forecasts 

allow the Marine Corps to establish milestones that facilitate it to conclude a 

fiscal year exactly at the National Defense Authorization Act’s approved end 

strength. This is the manpower management game Manpower Plans and Policy 

Division is continuously playing, and its success is crucial to ensure the Marine 

Corps’ manpower readiness. 
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II. TECHNICAL REVIEW 

This chapter serves to supply the reader with the technical background 

knowledge that will facilitate the understanding of MSM’s construction. This is not 

an exhaustive background but rather focuses on the key components that give 

the MSM its greatest capabilities. Finally, this chapter will conclude with an 

overview of the scientific methodologies used for the evaluation of the MSM’s 

input and processes sensitivity. 

A. AGENT-BASED MODELING AND SIMULATION 

Prior to agent-based simulation modeling, computer models used 

mathematical formulas to compute statistics of interest (Railsback & Grimm, 

2012). As object oriented computer languages have impacted computer 

programming, its methodology has also impacted modeling and the ability to 

track objects, annotated as agents within simulation, through the system. 

“Agent-based modeling are thus models where individual agents are 

described as unique and autonomous entities that usually interact with each 

other and their environment locally” (Railsback & Grimm, 2012, p. 10). Agents 

are entities that can be constructed to have very specific behaviors. As entities, 

they are able to retain the statistics of their interaction with the system, which 

allows for enhanced data analysis. This includes analyzing how the agent is 

impacted by the rules and processes within the system (Railsback & Grimm, 

2012). 

This type of problem framing allows for three separate aspects to be 

examined: the agent as an individual, agents aggregated to form a group, and 

the system as a whole. These aspects facilitate the user’s ability to examine the 

model and the total throughput of an agent within a system, and more importantly 

gain a further understanding of the third, fourth, even tenth-order consequences 

associated with an environment policy decision (Railsback & Grimm, 2012). 
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B. STATES, EVENTS, AND EVENT GRAPH METHODOLOGY 

In modeling and simulation, understanding the throughput of the 

numerous processes and variables that are adjusted within the simulation can be 

a daunting task. To simplify these actions and understand the numerous 

calculations that occur, these processes can be broken down into a few graphic 

illustrations. For a majority of simulations, to include the MSM, the two 

predominant graphic illustrations are state variables and events.  

A state variable is a variable that “has a possibility of changing value at 

least once during any given simulation run” (Buss, 2011, p. 1-1). These items 

provide the user with a snapshot description of the system at any specific point in 

time. Over the course of a simulation, state variables are identified as being 

piecewise constants. This means that a state variable can only change its value 

instantaneously at a specified trigger point. These trigger points can be 

continuous time steps, which is the method of advancement for the MSM, or at 

previously specified non-continuous discrete times. This capability for a state to 

change, to transition to a new state, introduces the constraint called an event 

(Buss, 2011). 

An event is a particular action that occurs within a simulation, and its 

occurrence is the trigger for a state variable to change its value instantaneously. 

Events can be mapped to change a plethora of state variables in a singular 

instance, or as little as none. The key take away is that no state variable is 

allowed to change its value without being initiated to do so by the instance of an 

event (Buss, 2011). 

Various practices have been developed to illustrate these state variables 

and event interactions; one such practice used is the event graph. An event 

graph is an illustration that depicts states, the possible transitions that a state can 

execute, the state variables that are required to be updated with the execution of 

that event, and any constraints that are emplaced for the event to occur. The 

aggregation of these illustrations describes a particular process within the model; 
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and is captured by an event graph (Buss, 2011). Figure 4 is an event graph that 

depicts a specific process; in the case of this example a Multiple Server Queue 

process. The figure is annotated with numerous descriptions to identify the 

various components of an event graph. Dotted red arrows link these annotations 

to their respective event graph illustrations. 

 

Figure 4.  Multiple Server Queue Event Graph with Legend. 
Adapted from Buss (2011). 

Within an event graph, each event is represented by its annotated circle, 

called a node. Directly under the node, the states that are to be updated by the 

execution of that particular event are represented in equation form. Connecting 

nodes to each other is accomplished by a one-way arrow, commonly referred to 

as an edge. Because this edge implicates a transition that can only occur in one 

specific direction, this graph is a directed graph. Resting in the middle of the 

edges are the conditional statements that serve as requirements that constrain 

the next possible event from occurring. These conditions are represented in 

Boolean form; they are either true and allow the transition to occur or they are 

false and disallow it. Located at the beginning of each edge are any parameters 

and arguments that are passed to the next event to specify how it will be 
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executed. These parameters and arguments can serve as metric references that 

affect how certain state functions are executed, or they can serve as dimensional 

parameters that are used to reference specific states in the state transition 

formulas (Buss, 2011). 

Within the context of the MSM, event graphs become extremely useful in 

understanding its numerous processes executed. Specifically, they facilitate the 

ability to easily view the process’s logic, and compare it to actual Marine Corps 

practices. Chapter III documents the structure and main processes within the 

MSM. Specific MSM event graphs can be found there. 

C. RANDOM NUMBER GENERATORS 

The Marine Corps manpower throughput process, the HRDP, is 

fundamentally built off of the individual Marine. As such, while the HRDP is a 

discrete process it naturally must account for the human psychological factors 

that influence every Marine. The Marine Corp’s Doctrinal Publication 1, 

Warfighting, identifies human factors as the intangible dimension of warfare and 

is the root cause of “complexities, inconsistencies, and peculiarities” that shape 

war (MCDP-1, 1997). With respect to manpower, this is most notably their free 

will and the affordability to make decisions that affect their career. These human 

factors can influence a Marine’s decision to reenlist or execute an EAS 

discharge, continue within their MOS or lateral move into a new MOS, or in the 

rare case decide to desert the service. Human factors are also present at other 

key HRDP events. Take for example a promotion board, while the general intent 

is to promote the most qualified Marines, the promotion selection is always 

subject to the human factors of the board and their collaborative decision making 

process. One method to account for the selection and execution of non-

deterministic events is to incorporate randomness into a simulation model 

(Sanchez, 2007). 

Within the MSM, a Mersenne Twister random number generator is used to 

invoke instances of randomness during the HRDP. Once invoked, the randomly 
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generated number is compared to an event likelihood, which is referenced from a 

database, to determine if the event’s hypothesis is executed (Garrick, 2014). This 

usage of a random number generator gives the MSM its stochastic modeling 

feature. Stochastic, in terms of modeling and simulation, can be defined as when 

“the same set of simulation inputs may produce different outputs” (Sanchez & 

Wan, 2012, p. 2).  

The Mersenne Twister was invented in 1997 by Makoto Matsumoto and 

Takuji Nishimura. It employs 19937 12   iterative possibilities that spread across 623 

dimensions, when using a 32-bit computer operating system (Tia & Benkrid, 

2009). The Mersenne Twister is an incredibly effective random number generator 

and has become the most widely used random number generator in modeling 

and simulation (Tia & Benkrid, 2009). 

Stochastic Modeling provides additional analytic capabilities to the user. 

Unlike deterministic models that yield consistent point output measurements, a 

stochastic model will distribute those measurements over a range. This 

distribution allows for the mean and standard deviation of an output 

measurement to be calculated, which in turn can be derived into likelihood. 

However, in order to produce an effective distribution of output measurements 

the model must be repeated multiple times (Law & Kelton, 2000). Further 

information regarding the implementation and usage of random number 

generators within the MSM can be found in Chapter III. 

D. DESIGN OF EXPERIMENTS 

Design of Experiments (DOE) is a statistical approach in conducting 

experiments to yield information about the processes of a model and how its 

outputs respond to changes in the inputs. The information produced from these 

experiments can identify minimum and maximum thresholds for inputs, capture 

how inputs drive the model to produce its output measurements, as well as 

understand how policies, codified as processes within the model, affect the 

model’s output measurements (Sanchez & Wan, 2012). History has naturally 
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utilized DOE within the agriculture industry; seen countless times in the simple 

scenario of a farmer trying two different fertilizes on his crops to identify which 

produces the best crop yield. With the aid of computer simulation, DOE’s 

capabilities have expanded to examine and evaluate complex system models 

before they are ever implemented into the physical world (Sanchez & Wan, 

2012). 

Specific terminology and nomenclature are used to codify critical parts and 

processes of a DOE. The inputs of a system that are to be strategically altered 

per simulation trial are called factors. The number of values a factor can be 

simulated at, also referred as the discrete range of values for a specific factor, is 

annotated as levels. The interaction between the varying input factors and the 

model’s output measures is annotated as the model’s response surface. Lastly, a 

trial instance of the various factors set at specific levels is called a design point 

(Sanchez & Wan, 2012).  

Response surfaces can be expressed mathematically, which in turn can 

be shown as a graphical illustration. These expressions are called metamodels 

and link how the various input factors impact the model’s output measures. How 

input factors effect a model’s response surface can be measured by observing 

two different impact methods: those that show solely main effects and those that 

show main effects with additional quadratic effects (Sanchez & Wan, 2012). Main 

effects are regarded as factors that independently impact the models outputs. 

Specifically, these are the effects captured when a singular factor is altered. 

Quadratic effects reveal how factors impact themselves quadratically, as well as 

how factors interact with other factors in two-way interactions. Equations (1) and 

(2) show the formula representation for main-effects and quadratic-effects, 

respectively (Sanchez & Wan, 2012). 
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The final aspect to DOE is the design itself, which defines how the factors 

will be altered per design point for the entirety of the DOE experiment. By varying 

these factors in a strategic way the design can simulate the model over the range 

of possible inputs, called the sample space (Sanchez & Wan, 2012). 

Using DOE’s previous employment in agriculture to illustrate this idea of a 

design, let us create the case study to examine under what conditions will 

produce the greatest crop yield for a farmer. In this experiment, three factors are 

chosen to be varied; seed type, fertilizer type, and pesticide type. Each factor has 

two types of brands that will be used; these are the levels for those factors. 

Listing out every possible configuration yields eight design points for the DOE 

experiment. This type of design is called a full factorial design with three factors 

altered at two levels; it is annotated as 32 . Designs can be illustrated graphically 

or annotated in matrix form to identify the range of possibilities, the sample 

space, that the factors of a DOE can assume (Sanchez & Wan, 2012). Figure 5 

shows a 32  factorial design in matrix and graphical form. Graphical images are 

great for viewing the sample space and observing how the design points fill it. 

 

Figure 5.  32  Factorial design, graphically and in matrix form, with 
numbered design points. Source: Sanchez & Wan (2012). 
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Filling the sample space with design points introduces the fundamental 

obstacle that must be overcome with DOE designs. On one side of the problem, 

a user wants to obtain detailed information of how a model responds to its inputs. 

However, to obtain a perfect model synopsis a user would need an infinite 

number of design points, which the computational costs to calculate would be 

unfathomable. Conversely, to achieve a low computational cost model a user 

might be sacrificing the level of detail the model’s response surface yields. 

To illustrate this problem better, let’s use the children’s game capture the 

flag. In this game, there are two factors that can be used to evaluate how good a 

child is at playing the game; they are stealth and speed. If the factors are 

restricted to only two levels, the sample space is left fairly open and a child can 

only be categorized into extreme stealth-speed options. However, when 

additionally levels are examined per factor the experimental space is filled with 

more stealth-speed possibilities. This leaves the user with more possibilities to 

classify players, and therefore better identify the specific factor levels where the 

best players resides (Sanchez & Wan, 2012). This effect is illustrated in Figure 6. 

 

Figure 6.  22 and 211  Factorial Designs for Capture-the-Flag. Source: 
Sanchez & Wan (2012). 

As seen in Figure 6, being able to better fill the design’s experimental 

space with design points yields substantially more information about a system. 

This technique is called space-filling (Sanchez & Wan, 2012). However, while it 

provides detailed information of a model’s response surface it is extremely 
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computationally expensive to run through all of the specific calculations. 

Comparing Figure 6’s two DOE designs, the 22 factorial design requires four 

simulation runs where the 211  factorial design requires 121 simulation runs. One 

solution to lower computational costs while acquiring detailed information of a 

model is through the use of a Nearly Orthogonal Latin Hypercube (NOLH) 

design. A NOLH design accomplishes this by taking a fully filled sample space 

and strategically selecting design points to run computations on. 

Figure 7 depicts this methodical approach pioneered in NOLH designs. 

Specifically, while only a handful of specific design points were selected from the 

original 211  factorial design, the output measures provided by the response 

surfaces graph indicate the general areas of peak performance. Additionally, its 

11 computations are a full magnitude lower than the 121 computations required 

in a 211  factorial design. 

 

Figure 7.  NOLH Example. Source: Sanchez & Wan (2012). 

Understanding where design points are being placed within a 

experimental space is an important part of any DOE design, especially a NOLH. 

One method to show this layout is through the use of a scatterplot matrix 

(Sanchez & Wan, 2012). A scatterplot matrix is similar to the two-dimensional 

graphs shown in Figure 7, but expands off this to include numerous additional 

dimensions. Figure 8 shows Factorial and NOLH designs and their respective 

abilities to fill the design space. 
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Figure 8.  Space Filling Designs. Source: Sanchez & Wan (2012). 

In this thesis, DOE is used to gain insight on the effects of MSM’s inputs 

on its various output measurements, the response surfaces. This experiment 

used 24 factors which were varied at chosen levels to produce a 257 design 

point NOLH DOE design. A NOLH design was chosen due to the quantity of 

inputs that drive the MSM, and in real life the HRDP. A more detailed description 

of DOEs usage for evaluation and analysis is revealed in Chapter IV. In closing, 

using DOE as an evaluation tool allows a user to identify a model’s inputs cause-

effect relationship with the model’s outputs, and therefore facilitates the ability to 

derive how the processes in a model are interacting at an abstract level.  
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III. MSM SIMULATION MODEL 

The purpose of this chapter is to annotate the architecture and 

mechanisms that make up the MSM model. We first examine the MSM from a 

high-level approach, starting with the methodology used in constructing the MSM 

and giving an overview of how the program runs. We then move into examining 

the finer mechanisms that drive the MSM. This includes the various modeling 

controls that facilitate the execution of the program, the inputs that set 

parameters and establish data table look-ups, as well as dissecting MSM’s 

simulation processes to show the individual components that drive the model. 

Finally, we examine the outputs the MSM produces. 

A. DEVELOPMENT APPROACH 

The MSM is a computer simulation model, programmed in the Java 

language that uses the capabilities associated with agent-based simulation to 

capture various manpower metrics during its simulation. For the MSM, Marine 

Agents serve as the individual agent instances that navigation through the 

simulation. A bottom up development methodology was used when constructing 

the MSM. With this approach, the developer identified the numerous individual 

manpower processes of the HRDP, built them as Java classes with their own 

state properties and unique behavioral methods, and then aggregated these 

processes to establish the manpower throughput of the HRDP. 

B. PROGRAM EXECUTION OVERVIEW 

The processes that the MSM uses are aggregated in a specific order to 

accomplish key phases of the MSM program as it runs. At a high-level view, this 

aggregation is organized into five phases. These phases are annotated as the 

user input, database pull, system initialization, simulation, and data output 

processing. The progression of these phases, with the specific processes internal 

to them, is shown in Figure 9 as a flowchart where the rectangles represent 

phases, and the circle nodes inside them represent specific event processes. Out 
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of these phases, the Simulation Phase is the main phase that drives the 

simulation. This phase is responsible for simulating the careers of all the Marine 

Agents, which ultimately gets captured as MSM’s manpower output 

measurements.  

 

Figure 9.  MSM Program Flowchart. Adapted from Garrick (2014). 

The MSM is a time-step simulation where the metric for advancement is a 

one-year increment within the simulation phase. This means that all Marine 

Agents complete a singular process before being shuffled to the next process. As 

such, each Marine Agent is subject to losses, gains, promotions, lateral moves, 

and accessions once per fiscal year before the simulation increments by a fiscal 

year and repeats itself. This process progression can therefore be viewed as a 

waterfall structure; once one process is completed all Marine Agents move 

forward as a group to the next process. The inner components of these 

processes are documented as event graphs in Section E of this chapter. 
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C. MODELING CONTROLS 

Facilitating the execution of the MSM are the simulation controls that 

guide Marine Agents through their simulated careers. These controls include the 

network that Marine Agents use to advance in their careers, the rules and 

conditions that bound the Marine Agent to actual HRDP processes, and the 

usage of randomness to simulate non-deterministic decisions that occur within 

the HRDP. 

1. Structure 

The foundational control mechanism of the MSM is the state graph 

network. This network represents the actual manpower structure of the Marine 

Corps where each state is associated to a direct MOS-Grade pair. This 

architecture was specifically chosen as it mimics the GAR. As previously 

discussed in Chapter I, the GAR is a manpower document that sets target 

quantities for every MOS-Grade pair in order to account for the Marine Corps 

range of manpower specialties and grade-experience while conforming to that 

fiscal year’s end strength ceiling constraint. A snapshot of a GAR can be viewed 

in Appendix B. These MOS-Grade states are connected by a directed graph. 

This directed graph specifies which MOS-Grade state a Marine Agent can 

transition to as it simulates its career. Figure 10 illustrates a snapshot of this 

MOS-Grade state directed graph. Specifically, states are shown as circles and 

the specific MOS-Grade a particular state is representing is annotated in its 

center. Arrows link states to each other, with the arrows direction representing 

the transition direction a Marine Agent can make. When aggregated with all MOS 

and Grade combinations, these states and transitions make up the directed 

graph network for the MSM. With respect to constructing this network, the MSM 

uses a GAR file input to instantiate all the MOS-Grade states for a simulation, 

and a MOS data Excel spreadsheet input to establish the state to state transition 

possibilities. More information regarding these inputs is revealed in Section D of 

this chapter. 
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Figure 10.  MOS-Grade State Network Snapshot. 
Adapted from Garrick (2014). 

Figure 10 also shows the progression for MOSs from a recruit to a primary 

MOS. The four categories of MOS progression are: Recruit MOS, Basic MOS, 

Entry Level MOS, and Primary MOS. An important item to note is that the GAR 

input does not specify data for E1 and E2 grades, which means the MSM does 

not instantiate those Recruit MOS states. To circumvent this data interface the 

MSM translates the distribution of Basic MOSs into probabilities for the E3 grade 

sample space, and then randomly selects a MOS to assign a newly instantiated 

Marine Agent to. This meets the intent of the GAR as greater demand MOSs 

have a higher likelihood of being selected by the MSM’s random number 

generator. However, this initialization for E1 and E2 grades only occurs once 

when a simulation run is invoked. The remainder of MSM’s program execution 

uses the accessions process to properly simulate for these entry grades. More 

information about the MSM’s processes is discussed in Section E of this chapter. 
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Besides for providing the progression network that Marine Agents 

navigate through, all MOS-Grade states retain specific functionality within the 

MSM. First, they act like a container bin. All MOS-Grade states keep a tally of 

Marine Agents that occupy that state. Conditional rules within the MSM’s source 

code require space availability within a MOS-Grade state for a Marine Agent to 

transition into it. This ceiling is established within the MSM by the GAR input. 

Additionally, MOS-Grade states retain metadata for that state. This data 

eventually becomes the predominance of the output measurements produced by 

the MSM. Metadata that each MOS-Grade state retains includes:  

 Predecessor states that are connected to it. 

 Successive states that a particular state can direct to. 

 Loss and Gain type categories. 

 Quantity of losses and gains, per HRDP subcategories, captured in 
monthly increments. 

 Retention metrics; to include quantity of Marine Agents eligible for 
retention and quantity of Marine Agents actually retained. 

 Promotion metrics; to include quantity of Marine Agents eligible for 
promotion and quantity of Marine Agents actually promoted. 

2. Deterministic Processing 

Reinforcing the foundational control provided by the MOS-Grade state 

directed graph network are the deterministic processes that drive Marine Agents 

through the simulation. These processes are executed through rule-based 

decisions and are utilized when the outcome of a decision can be simplified into 

a binary option. Boolean conditions are leveraged within if-else statements, 

switch statements, for-loops or while-loops, and many other methods to navigate 

a particular process’s algorithm. This control approach is deterministic because 

an identical Marine Agent, under the same inputs and same parameters, will 

select the exact same edge transitions to navigate down the same career path 

every time. A few examples of binary rules the MSM uses to select edge 

transitions are: 
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 Has the Marine Agent received the maximum allotment of 
promotion Passovers? 

 Can the Marine Agent lateral move to a new MOS? 

 Is there availability within a particular MOS-grade state for a Marine 
Agent to transition into? 

3. Non-deterministic Processing 

Non-deterministic processing can be categorized as the process where 

given the exact same input conditions when repeating a process, a different 

output verdict can be selected (Sanchez, 2007). This is also the process that 

gives the MSM its stochastic modeling functionality. Within the MSM, this is seen 

in situations where identical Marine Agents, under the exact same conditions and 

inputs, will select different edge transitions to navigate down for their simulated 

career. In event graph terminology, this is the process of selecting a transition 

edge that will identify the specific next event that will be executed.  

Non-deterministic processing is used within the MSM to simulate 

decisions a Marine Agent would have to make; an example of such would be 

deciding to reenlist or transition out of active service at the expiration of their 

enlistment contract. Non-deterministic processing is also leveraged to select 

Marines at various boards within the HRDP; an example would be the final 

selection process of selecting Marines to be promoted from a sampling pool filled 

with qualified candidates. Non-deterministic processing is also used to 

incorporate non-idealistic random events that occur within the Marine Corps 

HRDP process; cases of deaths, deserters, or legal holds just to name a few.  

The execution of non-deterministic processing is carried out by employing 

the Mersenne Twister random number generator in two different methods. We 

will classify these two different methods as a percentage line selector and a 

Bernoulli Trial. The percentage line selector incorporates most the characteristics 

of a Markov Chain model, however for only one transition instance per 

invocation. 
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In a percentage line selector, the potential outcomes are categorized and 

bounded on a percentage line that ranges from 0 to 100 percent. The outcomes 

are weighted such that events that are more likely to occur will receive a larger 

range selection on the percentage line. This weighted value is determined by 

historical data that is input into the MSM and translated into a percentage rate 

value. All possible transition events are then positioned on this percentage line 

such that they are all mutually exclusive, they are fully married next to one 

another, and they are normalized to fit the entirety of the percentage line. Finally, 

the random number generator generates a random percentage that will map to a 

singular outcome. This outcome is the decision point for that event and maps to 

the edge transition that particular Marine Agent will navigate down. Figure 11 

illustrates this method. 

 
Loss subcategories are not drawn to scale, and their respective values were 
arbitrary created for this illustration. Intent of this illustration is to show how the 
loss subcategories marry up on a number line, that they sum to 100%, and that 
the Mersenne generates a random “pLoss” percentage used to execute one of 
the potential subcategories.  

Figure 11.  Loss Subcategories Viewed on Number Line. 
Adapted from Garrick (2014). 

The second non-deterministic processing method used is a Bernoulli trial. 

This method is used specifically within the MSM to simulate the occurrence of 

those non-idealistic events, as well as other unique success and failure cases. In 

this method, a look-up table is referenced to set a threshold that will serve to 

delineate a trail’s success or failure. This success or failure is then mapped to the 
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event decision. The Merseene Twister is again used to generate a random 

number that is translated to a percentage, and then referenced to the Bernoulli 

trial to select a course of action for that singular trail. 

D. MSM’S INPUTS 

The MSM requires numerous inputs in order to run its program. The 

insertion of these inputs occurs at two file/folder locations, where the data 

inserted at these locations are either directly translated to parameters within the 

simulation or are used to reference Marine Corps online manpower archive 

databases. Figure 12 illustrates these inputs in a tree structure. The nodes 

outlined in red illustrate which inputs are directly translated into MSM 

parameters. The nodes outlined in blue illustrate which inputs are used to 

reference online databases. The bullets within the tree show the itemized inputs. 

 

Figure 12.  MSM Inputs Shown in Tree Structure. 
Adapted from Garrick (2014). 
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1. Direct Inputs 

The first location that direct inputs are inserted into is the 

“\\MSM\input\gar_data” folder. Within this folder, the user will manually insert 

GAR files into the folder where each file yields information for a single fiscal year. 

These file names must be changed to follow a standard naming convention of 

“nnenl<FY>.gbl” and “nnenl<FY>.tre” for the GAR build reports and allocation of 

training reports, respectively, where “<FY>” is replaced with the two-digit fiscal 

year the document represents. There is no limit to the number of GAR files 

inserted into this folder, only that GAR file fiscal years need to match the range of 

years the MSM program will forecast through. However, if the user chooses to 

forecast into the future where no GAR file exists, the MSM will reuse its previous 

FY GAR input for the next simulated year. It is critical that these preparatory 

details are followed as the MSM’s source code is hard-coded to look exactly in 

that folder for exactly those file names. If the file names are in the wrong location 

or labeled incorrectly, the MSM program will not be able to pull the required data 

and construct its MOS-Grade state network, which will therefore crash the 

program. 

The other direct inputs are all inserted into the “siminputs” Excel file. This 

document is broken down into eight sheets, where each sheet is associated with 

a particular HRDP process its inputs will influence. The following sheets require 

values to be input by the user: 

 Main: includes simulation forecast y-years for k-repetitions 

 Career force controls 

 Pay data 

 Monthly boot camp shipment distributions 

 MOS data. This sheet is responsible for providing the series of 
rules that affect Marine Agents and how they transition to the 
various MOS-Grade states 

The Excel file “siminputs” also contains sheets where the user is afforded 

the option to insert non-mandatory inputs. These inputs allow the user to quickly 
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alter some of the simulation parameters to specifically target certain case 

scenarios. Section E of this chapter will go into much further detail, but at an 

overview level, some of the MSM’s Simulation Phase processes use algorithms 

that invoke the functionally to scale the results for a particular process. What this 

means is if the optional user data input is higher or lower than what the MSM is 

using as its baseline value, the MSM will increase or decrease its results, 

respectively. This scaling is also done proportionally to the percentage difference 

between the user input and the MSM’s baseline value. A perfect example of this 

functionality is if a user wanted to re-run a simulation but for a different targeted 

fiscal year end strength. The user could quickly insert that value into the optional 

spreadsheet and receive an ad hoc assessment without having to go through the 

lengthy process of completely rebuilding the GAR files. The sheets these optional 

inputs can be found in are: 

 Fiscal Year Targets 

 MOS Targets 

 MOS and Grade Targets 

Additional details regarding these inputs can be found in Appendix A. 

2. Reference Inputs 

The other type of input that facilitates the MSM’s functions is the reference 

input. These indirect inputs are the historical data the MSM pulls from an online 

Oracle database. Two types of data base pulls occur here: acquiring historical 

data of manpower pyramid transition rates, and inventory. These database pulls 

provide historical data that the MSM uses to compute its various probabilities of a 

Marine Agent executing a specific edge transition. The MSM facilitates the ability 

to pull from two different databases: Total Force Data Warehouse (TFDW) and 

Operational Data Store Enterprise (ODSE). TFDW and ODSE are very similar in 

the data they contain. The TFDW stores historical information at the one-month 

increment. Specific month’s data can be obtained by providing the specific 

sequence number mapped to that month. Conversely, the ODSE maintains real-
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time manpower metrics vice historical data, therefore providing the user an exact 

inventory of today’s force. The data pulled from these databases includes: 

 Loss data 

 Reenlistment data 

 Promotion data 

 Gains data 

 Recruit loss data 

The other type of database pull is the inventory pull. This pull obtains a 

real sight picture of the manpower layout within the Marine Corps at a specific 

point in time. This means each real historical Marine becomes represented as a 

Marine Agent in order to initiate the MSM. The attributes for each Marine pulled 

are: 

 Primary military occupational specialty (PMOS) 

 Gender 

 Years of service (YOS) 

 Time in grade (TIG) 

 Expiration of current contract (ECC) Year 

 ECC Month 

 Grade Selected For (if pending an approved promotion) 

E. SIMULATION PHASE 

As Figure 9 showed, there are five phases that make up the MSM 

program. The first three phases are responsible for establishing the MSM’s 

environment. This includes reading in user inputs, pulling reference data from 

online data repositories and storing that information within MSM local data tables, 

and then initializing the MSM MOS-Grade state graph network in terms of 

constructing the network and then populating it with the initial distribution of 

Marine Agents. Once these three phases conclude, the program is ready to enter 

the simulation phase. 
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The simulation phase is the main phase of the MSM as it is responsible for 

simulating the specific HRDP processes. This phase simulates for a user 

specified number of years. Specifically, after the last process within the phase 

has concluded, the MSM either will increment to the next fiscal year and repeat 

the simulation phase or, if all forecast years have been simulated, the MSM will 

increment to the data aggregation phase. When simulating a single-year 

iteration, the following manpower processes are executed in the following 

sequence: 

1. Losses/Retentions 

2. Gains 

3. Lateral move with simultaneous promotions 

4. Lateral moves 

5. Promotions 

6. Accessions 

After the sixth and final process, the program stores its calculated metrics 

and determines its next course of action. If there are still additional years left to 

forecast, the program iterates and continues simulating for the following year. If 

the MSM has concluded its final year forecast, the simulation resets all its values 

and will repeat for a user specified number of times. This repetition allows for the 

stochastic properties of the simulation to take effect. 

1. Losses Process 

This process of the simulation model handles the attrition aspect of the 

HRDP. Each Marine Agent within the simulation is pulled and run through a trial 

to determine whether that Marine Agent continues their simulated career or if 

they have been randomly selected to exit the Marine Corps. In the losses 

process event graph, there are two major decisive event-nodes that occur. The 

first examines the Marine Agents years of service (YOS) in a simple if-else 

statement. If the Marine Agent’s YOS exceeds the maximum time in service 

(maxTIS) constraint, as annotated by the user in their ECFC inputs, then the 
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Marine Agent has reached service limitations and is force to exit the Marine 

Corps. If cleared, the Marine Agent continues to the second decision node where 

they undergo a percentage line selector, non-deterministic trial, to determine if 

they will be categorized as one of the possible losses, or if they will continue their 

simulated careers. This trial references MSM’s data tables, which were 

constructed by the reference input-type, to look up historical loss percentages for 

the various loss categories. Data for each loss category is categorized by three 

parameters. The three parameters used are: 

 Grade 

 Inventory type: if the Marine Agent’s ECC is the current simulation 
year, they are annotated as “eas-0.” If the ECC is the following 
simulation year, they are annotated as “eas-1.” And if their ECC is 
beyond that, they are annotated as “neas.”  

 Retirement condition: if the Marine Agent is eligible for retirement, 
they are annotated as “re.” Otherwise, they are annotated as “nre.” 

The percentage is calculated by dividing a loss category by the total 

inventory. Whichever edge condition meets the generated percentage becomes 

the edge transition that is executed. Reference Figure 11 to see an illustration of 

the percentage line selector non-deterministic method. If the Marine Agent 

transitions to a lost event, they are removed from the MOS-Grade state graph 

network, which creates inventory vacancies for that specific MOS-Grade. This 

process is shown in Figure 12 as an event graph.  
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Figure 13.  Losses Event Graph. Adapted from Garrick (2014). 

Before this process ends, the model checks to see if the optional input 

retention quantity was entered by the user. If so, the program will check to see if 

its original calculation has exceeded this user input threshold. If a zone is under 

its user defined retention zone threshold, no further action will occur. If a zone is 

over its threshold, the program will randomly select a Marine Agent from the 

retention container, re-classify them as EAS, and remove them from the state-

graph. This itemized removal continues until the specified retention zone is under 

its maximum threshold.  

2. Gains Process 

The Gains Process simulates the real world scenarios when prior service 

Marines return back into the Marine Corps inventory and are counted toward the 
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Marine Corps’ overall end strength. As described in Chapter I, this can occur for 

a variety of reasons; such as returning from recruiting duty or returning from a 

medical hold. This process is executed by a Bernoulli, non-deterministic, trial. 

Specifically, every time a Marine Agent is tried in the losses process, the gains 

process is invoked and ran in parallel. One Bernoulli trial is run for each possible 

gain category (gainCat) per each process invoked. Look up tables, which were 

constructed by the MSM’s reference inputs, yield the trial success probabilities 

for each gainCat. Three parameters are used to determine the specific 

percentage to use for each trial: 

 gainCat 

 Grade 

 Base inventory for that grade 

The percentage is calculated by dividing the quantity of a particular 

gainCat for the identified grade by the base inventory for that grade. Figure 14 

displays the event graph for the Gains Process. 
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Figure 14.  Gains Event Graph. Adapted from Garrick (2014). 

If the Bernoulli trial was successful, the MSM will instantiate a new Marine 

Agent and insert them into the MOS-grade state network. To accomplish this, the 

MSM randomly generates all required Marine Agent attributes which include: 

 YOS 

 Time in grade (TIG) 

 ECC 

 PMOS 

 Grade 

 Month gained 

3. Lateral Move Promotions Process 

The Lateral Move Promotions Process is the third process invoked during 

the Simulation Phase. It combines the lateral move process, where a Marine 

Agent obtains a new MOS within the same grade, with the promotions process, 
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where a Marine Agent obtains a higher grade but within the same MOS. This can 

be summarized as a simultaneous horizontal and vertical move within the MOS-

Grade state graph network. This process is unique in that it only targets the small 

population of Marine Agents with MOSs that allow for career progression to new 

MOSs, lateral moves. This rule constraint is constructed from the direct input 

“FY<FY> MOS data,” which is an Excel sheet that resides within the “siminputs” 

Excel document.  

The lateral move promotions process was strategically placed to precede 

the regular lateral move and regular promotion processes due to the inventory 

quantity of Marine Agents they each contain. This means Marine Agents that 

have the potential for a new MOS are given the opportunity to fill vacant billet 

spots in other MOS-Grade states before Marine Agents with standard career 

progressions. If these processes were reversed there would be a much greater 

probability that all potential MOS-Grade states would be filled by standard career 

progression Marine Agents, leaving lateral move promotable Marine Agent 

candidates stagnant. 

The Lateral Move Promotions Process is also the first process where the 

procedural priority for processing Marine Agents is critical. This stems from the 

constraint that a state must possess billet vacancies in it to allow a Marine Agent 

to transition to it. To accommodate this, the MSM examines Marine Agents in 

reverse grade order; starting with the grade E9 and then working downwards. 

This allows Marine Agents to move into higher billet vacancies immediately, 

which therefore creates a billet vacancy in the MOS-Grade state they just left. 

This effect trickles downward to the lowest grade of Marine Agents. 

The algorithm for the lateral move promotions process contains five steps. 

Figure 15 shows this process in event graph form. In procedural order, the 

algorithm’s steps are annotated as: 

1. Select a MOS-Grade state for Marine Agents to lateral move and 
promote into. 
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2. Build a list of Marine Agents that are allowed to be laterally moved 
and promoted into the identified MOS-Grade state. 

3. Count the number billet vacancies within the targeted MOS-Grade 
state. This is accomplished by obtaining the delta between current 
occupancy and maximum allowed occupancy as dictated by the 
GAR input. 

4. Check if the optional input “End Strength” was entered by the user. 
If it was, the MSM will take the percentage difference between the 
GAR’s total strength and the user’s optional input End Strength, 
and apply that percentage to the MOS-Grade states to increase or 
decrease the total amount of billet vacancies respectively. If the 
user did not enact this option, the program will use the number of 
billet vacancies found in step 3. 

5. While billet vacancies and Marine Agents exist, randomly select a 
Marine Agent to execute the lateral move and promotion transition.  

 

Figure 15.  Lateral Move Promotion Event Graph. 
Adapted from Garrick (2014). 

4. Lateral Move Process 

The lateral move process follows the exact same methodology as the 

lateral move promotions process except for two critical areas. First, the process 

will only move Marine Agents horizontally to a new MOS; so the Marine Agent 

will maintain their same grade. Secondly, this process incorporates P2T2 

possibilities into its algorithm. Specifically, being selected by the board does not 

guarantee the Marine Agent will transition to their updated MOS-Grade state. 
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Instead, the algorithm simulates whether or not the Marine Agent will be placed 

back in the state-graph or if they will be placed into the P2T2 container for that 

fiscal year. This decision is made by referencing the length of the school, time to 

train MOS metric, the Marine Agent would have to attend to learn their new trade. 

If the school is longer than 365 days, one-year, the algorithm directly places the 

Marine Agent into the P2T2 container since they will be without a doubt still in 

school when that fiscal year ends. If the school length is shorter, the algorithm 

calculates the probability of being at that school at any particular point in the 

fiscal year where the probably is the duration of the school divided by 365 days. 

Once calculated, this percentage is passed to a Bernoulli, non-deterministic, trial 

where one trial is run. If the Bernoulli trial was successful, then the model will 

place the Marine Agent into the P2T2 container. Otherwise, they will return to the 

state-graph at their updated MOS-Grade state. Figure 16 shows this process as 

an event graph. 

 

Figure 16.  LatMove Event Graph. Adapted from Garrick (2014). 

5. Promotions Process 

This process compliments the previously stated lateral move promotions 

process in that it is the mutually exclusive counterpart to the lateral mover 

indicator. Specifically, this process focuses promoting Marine Agents who do not 
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possess MOSs that allow for lateral moves. Non-lateral move MOSs comprise of 

approximately 95% of the total MOS inventory (Spafford, 2016). Therefore, it is to 

no surprise that the algorithm steps and event graph, shown in Figure 17, are 

identical.  

 

Figure 17.  Promotions Event Graph. Adapted from Garrick (2014). 

6. Accessions Process 

The accessions process is the final process of the simulation phase and is 

predominately summarized as the overall backfill of all MOS-Grade state 

vacancies that have trickled their way down to the junior grade levels. The 

algorithm is conducted by executing the following steps. 

1. Set baseline accession targets per MOS: This is accomplished by 
aggregating the current inventory in the MOS-Grade state graph 
network for grades E1 through E3, categorizing by MOS. It then 
subtracts that MOS’s entry level aggregate from the GAR’s allowed 
quantity, which is the GAR column labeled “E3.” The initial 
aggregation of the MSM’s current entry level inventory is required 
due to the data interface constraint with the GAR; that is the GAR 
does not identify MOS quantities for grades E1 and E2.  

2. Distribute MOS targets to entry level grades:  By default, the MSM 
takes step 1’s deliverable and distributes them to the paygrades 
E1, E2, E3, within that MOS, by the constant ratio 75.84%, 24.15%, 
and 0.01%, respectively. However, if the user set the optional MOS 
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accession targets in the siminputs Excel document, the paygrade 
distribution will be applied to this quantity vice step 1’s deliverable.  

3. Set MOS-Grade male and female targets: The MSM takes step 2’s 
deliverable and then divides that quantity into male targets and 
female targets. By default, this distribution is calculated by the 
MSM’s reference input from the historical Marine Corps Oracle 
online databases. However, if the user sets the optional female 
accession targets in the siminputs Excel document, the 
male/female distribution will then be proportionately adjusted to 
match the user’s target. 

4. Instantiate a Marine Agent: For every male/female MOS-Grade 
target, the MSM will instantiate a new Marine Agent. While the sex, 
MOS, and grade are already determined, the MSM will use its 
percentage line non-deterministic selector to randomly determine 
the contract length of the Marine Agent and the Month in which that 
Marine Agent entered boot camp. Contract length probabilities are 
set by the required user input ‘FY<FY> MOS Data’ sheet in the 
Excel file “siminputs.” 

5. Test for boot camp loss, and insert into MOS-Grade state graph 
network: Each instantiated Marine Agent will be passed through a 
boot camp losses trail. This trial is very similar to the Losses 
process event graph. If a loss event is not selected, then Marine 
Agent is then inserted into their respective MOS-Grade state. 

F. MODEL OUTPUTS 

At the completion of the Simulation Phase, the program records the data 

associated with that particular repetition run. The program will then iterate and 

run the entire simulation over again, using the same inputs, to obtain new output 

metrics. This repetition allows for stochastic properties to take effect. Once all 

repetitions have run, the program computes a statistical analysis of the different 

runs. This is called the data aggregation process. Each metric within the process 

is analyzed by its: 

 Means 

 Standard Deviation 
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 Maximum 

 Minimum 

These output measures are aggregated at three different tiers, where 

each tier yields the same data but at different levels of fidelity. Tier I data is the 

most abstract data output, where the data obtained from all the MOS-Grades are 

aggregated into a fiscal year sum. Tier II still aggregates its data into fiscal year 

sums, however it incorporates three possible classifiers the data can be sorted 

into: MOS, Grade, or MOS and Grade. Tier III expands off of Tier II in that it 

keeps the same classifiers, but the data drills into the monthly level. Figure 18 

depicts this layered metric tier, and its respective scope of detailed information 

the Model’s user is wishing to obtain. For Chapter III’s Design of 

Experimentation, Tier I output data was utilized. For Chapter IV’s Validation, a 

combination of Tier I and Tier II, with categorization by grade, output data was 

utilized. More information regarding the output measures, and their respective 

definitions and metric scope, is listed in Appendix D. 

 

Figure 18.  Depiction of MSM’s Output Metrics, Aggregated at Different 
Levels. Adapted from Garrick (2014). 
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IV. DESIGN OF EXPERIMENTS EVALUATION 

This chapter describes the design, procedure, and experimental results 

used for conducting the design of experiments (DOE) evaluation. This evaluation 

provided two key metrics; it verified the input-to-output response correlation, and 

it identified the input significance priority. Correlation is the process of looking at 

two variables and determining if one influences the other. This influence can be 

either strong or weak and incorporates the direction, positive or negative, toward 

which the variables will react (Law & Kelton, 2000). This strength and direction 

relationship is often referred to as the correlation gradient (Law & Kelton, 2000). 

Within this DOE evaluation, gradient was the primary metric for measurement 

used as it allowed for cause-effect HRDP relationships to be easily identified and 

analyzed. 

The second evaluation metric was the input significance priority. Input 

significance priority is the nomenclature used to identify which terms were 

responsible for having the most impact on the produced metamodel. This is 

determined by computing the ratio between the parameter coefficient within a 

metamodel’s response surface equation and its standard error (“Estimates,” n.d., 

Sorted Estimates section). Terms with a higher level of significance identify which 

inputs are more sensitive in forecasting future data predictions. 

To compute statistics from the DOE experiment, we used the statistical 

software suite JMP Pro 12. An overview of the functionality utilized is described 

in Section B of this Chapter. 

A. CONSTRAINTS AND DESIGN 

This section describes the constraints that were presented in subjecting 

the MSM to a DOE. It highlights the decisions made to comply with these 

constraints, to include what the final DOE design entailed.  
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1. Factor Selection 

DOE is naturally limited by the number of factors it can take in and create 

a design from. This limitation stems from the computational costs required in 

conducting an experiment with a large set of factors while simultaneously 

maintaining the experiment’s orthogonality. The largest NOLH that exists today 

allows for up to 29 factors, which produces a 257-design point design (Cioppa & 

Lucas, 2007). A Nearly Orthogonal Balanced design is a different type of DOE 

design that does allow for more factors to be used (Vieira Jr. et al, 2012). 

However, this design incorporates a mix of discrete and continuous factors that 

did not interface well with the MSM and therefore was discarded. 

Condensing MSM’s numerous inputs to map to 29 DOE factors proved 

challenging. This problem stemmed from MSM’s multi-dimensional look up tables 

that are constructed from its reference input Oracle database pulls. Take for 

example the loss rate inputs for just the loss subcomponent EAS. This 

subcomponent takes the parameters of MOS, Grade, and Retirement Eligibility to 

look up the specific EAS rate within those dimensions. Just those EAS loss rates 

yield 4320 inputs; 240 MOS x 9 Grades x 2 Retirement Options = 4320 inputs. 

Extrapolating this multi-dimensionality across the other HRDP process categories 

unquestionably exceeds a NOLH factor threshold. To circumvent this constraint, 

we implemented the use of abstraction within our DOE. 

With the abstraction methodology, we targeted the specific subcomponent 

of a HRDP process as a single DOE factor vice assigning a factor to every input 

in its multi-dimensional table. With this approach, the DOE factor acted as a 

coefficient that adjusted the subcomponent it was representing. Because this 

subcomponent was uniformly adjusted every time a value was returned from the 

look up tables, the orthogonality of the experiment was maintained.  

Table 1 illustrates the application of this abstraction methodology. 

Specifically, the table provides a snapshot of the “Continue Rate” category, which 

is a subcomponent of the losses HRDP process. As the table shows, its multi-
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dimensionality yields six inputs for just a single grade return. The original inputs 

are annotated in the column “Continue Rate” and serve as the baseline. The 

column “NOLH Factor” reflects what that DOE factor is set at for that particular 

design point. Acting as a coefficient, the “NOLH Factor” is multiplied with the 

baseline to produce the adjusted input; labeled “Function Rate.” This adjusted 

rate is what is returned to the function, allowing that HRDP process’s algorithm to 

continue its execution in alignment with the DOE design point. 

Table 1.   Snapshot of Factor Adjust Rates. 
Adapted from Garrick (2014). 
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Loss rates are pulled from the Marine Corps online Oracle database and stored 
locally within the MSM program for the simulation. Local data tables contain three 
dimensions: grade, retirement condition, and inventory condition. Retirement 
condition uses the codes “re” and “nre” to identify the parameters of being 
retirement eligible and not retirement eligible, respectively. Inventory conditions 
use the codes “eas-0,” “eas-1,” and “neas” to identify a Marine EASing within the 
current fiscal year, EASing during the next fiscal year, and EASing beyond two 
years out, respectively. 

After condensing MSM’s inputs, a total of 24 factors were chosen to adjust 

the various inputs of the MSM. These factors are annotated in Table 2. The 

factors labeled “Loss_” or “Gain_” were factors that received the abstraction 

method. All other factors were direct replacements of MSM inputs. The columns 

“Low Value” and “High Value” indicate the lower and upper bounds design points 

could range within. The column “Decimals” indicates the number of decimal 

placeholders a design point’s precision was set to. 
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Table 2.   DOE Factors and Their Ranges. Adapted from Garrick (2014). 

Factor Name Factor Description 
Low 
Value

High 
Value Decimals

TISmin 

Minimum Time-In-Service (TISmin) required for a 
Marine Agent to be promoted to the superior 
targeted grade. -2 3 0

TISmax 
Maximum Time-In-Service (TISmax) allowed for a 
Marine Agent to remain within its current grade. -4 4 0

TIGMin 

Minimum Time-In-Grade (TIGmin) required for a 
Marine Agent to be promoted to the superior 
targeted grade. -1 3 0

PromTgt 

Promotion target (PromTgt) is the desired 
cumulative years of service to achieve a targeted 
grade. -2 4 1

VIZmin 

Variable In-Zone (VIZ) minimum is when mean 
promotion time for targeted grade is within limits, 
this standard selection opportunity is used. -0.1 0.05 3

VizStd 

Variable In-Zone (VIZ) standard is when mean 
promotion time for targeted grade is too slow, 
using VIZ minimum opportunity allows Marine 
Agents to compete earlier in their career, speeding 
up average promotion timing. -0.05 0.05 3

VIZmax 

Variable In-Zone (VIZ) maximum is when mean 
promotion time for targeted grade is too fast, using 
VIZ maximum opportunity reduces the number in 
zone, delaying opportunity to compete for junior  
Marines thereby slowing the average time in 
service for promoted Marines. -0.05 0.1 3

PassO 

Passover (PassO) specifies the maximum number 
of passovers a Marine Agent may have to remain 
within its current grade. -2 2 0

ReThsh 

Reenlistment threshold (ReThsh), if passover limit 
is reached, Marine agents may not reenlist beyond 
this threshold. -2 2 0

Loss_Boot 
The loss rate at which Marine Agents exit the 
Marine Corps during bootcamp. 0.6 1.1 3

Loss_Retired 
The loss rate at which Marine Agents exit the 
Marine Corps due to retiring. 0.6 1.1 3

Loss_NEAS 
The loss rate at which Marine Agents exit the 
Marine Corps with a Non-EAS separation code. 0.6 1.1 3

Loss_Death 
The loss rate at which Marine Agents exit the 
Marine Corps due to death. 0.6 1.1 3

Loss_e2o 

The rate at which Enlisted Marine Agents receive 
an enlisted to officer (e2o) commission, and 
therefore leave the enlisted manpower structure. 0.6 1.1 3

Loss_Other 

The loss rate at which Marine Agents exit the 
Marine Corps due to other means not documented 
with a specific separation code. 0.6 1.1 3

Loss_EAS 

The loss rate at which Marine Agents exit the 
Marine Corps due to the end of their enlisted 
contract called End of Active Service (EAS). 0.6 1.1 3

Loss_Reup The rate at which Marine Agents reenlist. 0.6 1.1 3
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Factor Name Factor Description 
Low 
Value

High 
Value Decimals

Gain_EAD 
The rate at which Marine Agents return from their 
extended active duty (EAD) recruiting tour. 0.6 1.1 3

Gain_Desert 
Marine Agents that return after having become a 
deserter. 0.6 1.1 3

Gain_Other 
Marine Agents that return to service for other 
means not captured. 0.6 1.1 3

Gain_OCC 
The rate at which Marine Agents return to service 
with a OCC gain code. 0.6 1.1 3

Gain_Cont 
The rate at which Marine Agents return to service 
with a Continuous gain code. 0.6 1.1 3

Gain_Rever 
The rate at which Marine Agents return to service 
with a Reversion gain code. 0.6 1.1 3

Gain_Broken 
The rate at which Marine Agents return from 
medical holds. 0.6 1.1 3

  

After solidifying the DOE factors, the actual DOE design was constructed. 

We used the Naval Postgraduate School SEED center’s open source document, 

titled “NOLHdesigns_v6.xls, to construct our NOLH design of 24 factors and 

257 design points (Sanchez, 2011). This open source document uses MACROs 

and hidden formulas within its template to automatically compute design point 

values for the design. The full design can be found in Appendix E.  

To examine the design’s orthogonality, we constructed a correlations plot 

by using JMP’s multivariate methods functionality. The correlations plot illustrates 

how each NOLH factor relates to other factors. If the design was completely 

orthogonal, each comparison would have a value of zero. However, because the 

NOLH is a nearly orthogonal design, some relationships do exist. From the 24-

factors selected as inputs, the top three correlations were: 

 0.0876 (TISmin with TIGmin) 

 0.0451 (TIGmin with GainOther) 

 0.0369 (Passovers with LossOther) 

The full correlations plot of the NOLH design can be found in Appendix D. 
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2. Response Surface Selection 

The MSM produces 71 different output metric categories. In theory, a 

response surface could be calculated for each MSM output metric, but that level 

of fidelity exceeded the scope of this thesis. Therefore, we used an aggregation 

methodology to analyze a HRDP process as a whole vice drilling into the 

individual subcomponents’ response surfaces. This aggregated approach was 

applied to three HRDP process: 

 Losses 

 Gains 

 Retention Zones A-SR 

Other output metrics yielded data that was already holistic to a HRDP 

process and did not require aggregation. The four response surfaces that were 

measured with this approach were: 

 Promotions 

 LatMoves 

 End Strength 

 Patients, Prisoners, Transients, and Trainees (P2T2) 

After selecting which output metrics we would compute response surfaces 

for, we then had to select what dimensionality of the output data sets we would 

analyze. As described in Chapter III, MSM’s outputs allow the user to view 

forecasted manpower data either at an aggregated, holistic Marine Corps, level 

or it can drill down into the MOS-Grade level. Additionally, these data values can 

be viewed at monthly intervals or at an aggregated fiscal year level. To meet the 

intent of this thesis, we choose the data set that was holistic to the Marine Corps 

and at the fiscal year interval. 

Additionally, because the MSM allows a user to specify how many 

forecast years it will simulate to and for how many repetitions, we had to isolate 

these parameters too. Ultimately, we decided the fourth forecast year’s data 
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output would be analyzed because that is generally the first opportunity when 

enlistment contracts end. As for repetitions, to yield an appropriate distribution of 

MSM’s stochastic capability, it was decided that each NOLH design point would 

be replicated 30 times. The average value from the replicated data sets was then 

used for evaluation.  

3. Modeling Loss Constraints 

As described in Chapter three, the losses process uses the percentage 

line non-deterministic method to select which loss event a Marine Agent will 

execute. Figure 19 illustrates this type of method. The method is predicated on 

the fact that the rates of all loss events are normalized onto the percentage line 

such that they always aggregate to a full 100% value. As a reminder, eight loss 

events and one continue simulation event make up the list of possible transition 

events a Marine Agent can execute: 

 Bootcamp Loss Event 

 Retirement Loss Event 

 NEAS Loss Event 

 Death Loss Event 

 Enlisted to Officer Commission Loss Event 

 Other Separations Code Loss Event 

 EAS Loss Event 

 Reenlistment Loss Event 

 Continue Simulated Career Event 

Normalization is ensured due to the structure of the supporting data tables 

and how the computations source code was written in the algorithm. Specially, 

the data look-up tables organize its data such that the losses table contains only 

the data used for computing the loss events. This ensures all loss events are 

mutually exclusive, and the entire loss-data sampling space will be used for 

processing one Marine Agent. This inherent setup becomes problematic for the 
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DOE experiment because the DOE Factors will adjust the rates of the loss 

events independently, and therefore, may yield DOE design points where the 

aggregation of loss events exceeds, or falls short of, the intended 100% value.  

 
Loss subcategories are not drawn to scale, and their respective values were 
arbitrary created for this illustration. Intent of this illustration is to show how the 
loss subcategories marry up on a number line, that they sum to 100%, and that 
the Mersenne Twister generates a random “pLoss” percentage used to execute 
one of the potential subcategories.  

Figure 19.  Percentage Line Non-deterministic Method. 
Adapted from Garrick (2014). 

After analyzing the constraint, three courses of actions presented 

themselves for how to proceed. The first option was to exclude the Losses 

Process from the NOLH design, and therefore not evaluate the process. This 

option was discarded because the loss function is one of the most important 

functions of the model. This is because the model tries to maximize its force 

structure by adding Marine Agents into the MOS-Grade state graph network but 

is limited by the constraint that there must be available vacancies in a MOS-

Grade state for a Marine Agent to move into it. Therefore, if Marine Agents do not 

vacate a MOS-grade state the model becomes stagnant.  

Option two was to include all possible transition events, allowing the 

NOLH design to adjust them independently, and then normalize them prior to 

running the execution statement block so they always summed to the full 100% 

value. This option was discarded as it greatly decreased the orthogonality 

between the factors.  
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The third option was to focus on the eight subcomponents that comprise 

the loss category, adjust each of them independently as the NOLH design 

dictates, and then use the ninth subcomponent “Continue” to absorb any 

remaining difference in the number line so that the statement block still sums to 

100%. While the “Continue” subcomponent would no longer remain independent, 

the objective of the experiment would still be achieved because all the 

subcomponents that capture loss would still be varied independently, and 

therefore their inputs would be independently captured in loss’s response 

surface. To ensure a “Continue” absorbing event had available space to exist on 

the percentage line, the DOE loss factors were bounded from 60% to 110% of 

their original baseline values. While this factor range focused on lower rate 

values, orthogonality of the experiment was retained with this option, and 

therefore still yielded accurate metamodels for this experiment. This was the 

option chosen to comply with the loss process’s constraints. 

4. Scaling Constraints 

As discussed in Chapter III, the MSM possesses the capability for a user 

to insert optional inputs. These optional inputs allow a user to build a specific 

case study to be simulated, or simply allows for ad hoc simulation adjustments. 

However, these optional inputs invoke scaling algorithms that sit on top of the 

Simulation Phase’s processes. When these scaling algorithms are invoked, 

orthogonality of the DOE is not maintained since the values are being adjusted 

independently of the DOE’s design points (Sanchez & Wan, 2012). Therefore, 

this DOE refrained from entering any values into the optional inputs. 

B. PROCEDURES 

1. Experiment 

This experiment required two efforts to be executed. The first effort was to 

establish the baseline MSM inputs. This would be the baseline that the DOE 

factor’s design points would adjust from. We set up the MSM to simulate four 

years, for 30 repetitions. For the reference inputs, we used the end of fiscal year 
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2013 data to initialize the MSM. The initial forecast year was therefore 2014. As 

previously annotated in Section A, no option inputs were inserted in order to 

refrain from invoking the scaling algorithms of the MSM. Table three illustrates 

the inputs inserted into the “Distributions” sheet of the input file “siminputs.” 

Figure 20 illustrates the baseline Enlisted Career Force Controls (ECFC) used. 

Lastly, the “siminputs” Excel sheets “Base Pay” and “MOS Data” used the 

configuration data approved for fiscal year 2014, respectively. 

Table 3.   New Recruit Shipping Distribution DOE Inputs 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

6.71% 7.93% 7.01% 7.01% 5.37% 7.87% 6.20% 4.16% 13.15% 12.08% 10.75% 11.76% 

 

Figure 20.  Enlisted Career Force Controls. Adapted from Garrick (2014). 

The second experimental effort was the DOE experiment itself. To 

execute the DOE, we created an additional Java main class. The purpose of this 

test-main class was to control the DOE experiment while ingesting the next 

design point’s inputs, running the MSM program for that design point, and then 

extracting the associated forecasted data. The general algorithm used by the 

test-main’s source code was as follows: 

1. Extract NOLH design point inputs. 

2. Update MSM’s input document “siminputs” with the respective 
design point values. 
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3. Invoke the main MSM program to run the simulation with the 
updated inputs. 

4. Extract and record the output results. 

5. Repeat with the next design point’s inputs. 

2. Analysis 

To compute statistics from the DOE experiment, we used the statistical 

software suite JMP Pro 12. Specifically, the software provides a function called 

Fit-Model. With this function, the user selects the dependent and independent 

variables to run the JMP function. The dependent variable was the response 

surface of the particular metamodel being evaluated. The independent variables 

were the DOE input factors used in the experiment. JMP software uses the term 

“role variable” to identify the response surface and “model effects” to specify the 

relationship of how the independent input factors will be analyzed. Recalling from 

Chapter II, a NOLH design allows for main effects, two-way interactions, and 

quadratic effects to be examined. Within the JMP software, the DOE factors were 

used to construct the “model effects” by importing them as two groups, which 

produced a total of 324 DOE terms to be analyzed: 

 Polynomial to 2nd Degree construction was used to view the main 
effects and quadratic effects terms for all the DOE design factors. 

 Factorial to 2nd Degree construction was used to view all the two-
way interaction terms of the model’s effects. 

Initially, JMP’s stepwise regression was run to determine which input 

factors were selected as having a significant impact on the response surface of 

the metamodel. To accomplish this, JMP uses a Bayesian information criterion 

(BIC) for identifying significant terms. The mathematical formula used to compute 

BIC is shown in Equation (3), where k is the number of estimated parameters in 

the model and n is the number of observations in the data set (“Likelihood, AICc, 

and BIC,” n.d.). This initial computation of significant terms reduced the number 

of terms to be analyzed by approximately 90%. 

  2log ln( )BIC Likelihood k n    (3) 
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With the updated significant terms selected, JMP’s Fit-Model was run a 

second time using a Standard Least Squares regression. This final regression 

produced seven statistical reports that enabled the analysis of each metamodel: 

 Effect Summary: This report yields the “LogWorth values for the 
effects in the model” (“Effect Summary Report,” n.d.). The 
mathematical formula to compute LogWorth is shown in Equation 
(4), where p  is the term’s p-value. 

  10log ( )LogWorth p   (4) 

 Actual by Predicted Plot: This plot visually shows the reader how 
well the produced metamodel fits the input data. In the case of our 
DOE experiment, the input data are design points of the NOLH. 
The actual versus predicted values are a comparison of what the 
model actual yielded during its stochastic computations compared 
to what the metamodel’s response surface equation calculated.  

 Summary of Fit. This statistical report provides numerous values 
which yield a statistical overview of the model. For this evaluation 
the adjusted R-Square value was used to normalize and compare 
the metamodels against one another because each model could 
have different numbers of identified significant terms. This number 
ranges from 0 to 1, where the closer the value is to 1 the better the 
model’s fit is to the data. Its specific formula is shown in Equation 
(5); where MS  is the means square from the model’s source Error, 
the source of the sum of squares is the corrected total (C. Total), 
and DF  is the degrees of freedom from the model’s corrected total 
(“Regression Reports,” n.d., Summary of Fit section). 

 _ 1
/

MS
Rsquare Adj

SumOfSquares DF
   (5) 

 Analysis of Variance. This report yields model calculated values, 
such as the mean square for the metamodels error used in 
Equation (5). 

 Parameter Estimates. This report shows the estimates for all terms 
post BIC selection. These estimates represent the coefficients used 
in the response surface equation. This report also includes the 
Intercept estimate, which is referring to the intercept coefficient for 
the response surface equation. 

 Sorted Parameter Estimates. This report shows the parameter 
estimates for each term, where each term is sorted in a decreasing 
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order of significance. Significance is determined by the absolute 
value of the calculated “t Ratio,” which is the ratio of the estimate 
when compared to its standard error (“Estimates,” n.d., Sorted 
Estimates section).  

 Prediction Profiler. This report yields a visual that allows the user to 
gauge the sensitivity of the metamodel’s terms, that is the response 
surface’s gradient. As a quick reference, profiles that have a more 
horizontal orientation have little impact on the metamodel’s output 
measurements as the term changes. Conversely, profiles that have 
a more vertical orientation are considered to be sensitive because a 
change in its value can cause a significant change in the 
metamodels output measurements.   

Lastly, all the significant terms from all the metamodels were aggregated 

and analyzed to determine which terms had an overall significant impact on the 

MSM. 

C. ANALYSIS 

This experiment was computationally intensive. Each design point took an 

average of 16 minutes to run, utilizing an Intel Core i7 processor with a 16 GB 

RAM. Extrapolating that timeline over 257 design points, this experiment took 

approximately 2.85 days to complete. 

1. Losses Metamodel 

The first metamodel evaluated was Losses. The response surface metric 

was constructed by aggregating all the loss metrics output by the MSM. 

Specifically, this included the loss categories with Non-EAS and EAS separation 

codes. Each separation code has the following sub-categories: NEAS, deaths, 

E2O, retired, EAS, bootcamp, and other. Reference Appendix C for more 

information regarding MSM’s output metrics. 

Figure 21 shows the seven JMP statistical reports for this metamodel. This 

model had an excellent fit, indicated by its 0.98778 adjusted R-Square value. 

This is visually reinforced with the “Actual by Predicted Plot,” where the model’s 

response surface equation predicted a forecast that was within 1.3% of the actual 

simulated output measurements. 
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For our first metric, correlation, the metamodel yielded very promising 

information. A visual of this correlation is shown in the Prediction Profiler report; 

where it plots the profile for the six factors that yielded the greatest effects. From 

initial inspection, the six factors all had gradients that coincide with the Marine 

Corps’ HRDP process. The two greatest factors were loss due to end of active 

service (EAS) and reenlisting (Reup). For EAS, the profile shows that as the rate 

of EAS increases, so does the quantity of Marine Corps total losses for a fiscal 

year, which is as expected. The profile also indicates an exponential relationship. 

Specifically, lower EAS loss rates have a greater sensitivity in predicting overall 

loss quantities. 

Conversely, the Reup’s loss rate had a linear relationship in the negative 

gradient direction. This directly aligns with the HRDP because if more Marines 

are staying in the Corps for a subsequent term enlistment then there are less 

Marine Agents that could exit the Corps. The other rates of non-EAS and 

bootcamp losses yielded gradients that had the correct slope and magnitude, 

both of which had less of an impact on the over loss quantity. 

A factor that had an unanticipated significance in the Losses metamodel 

was the minimum time in grade (TIGmin) factor. As Figure 21 shows, this factor 

had both main effects and quadratic effects on the models response surface. The 

Prediction Profile for TIGmin reports that as the TIGmin increases there is an 

exponential negative gradient impact on the losses response surface. This may 

be an unanticipated affect that counters the rule constraints associated with the 

enlisted career force controls (ECFC). Specifically, a Marine Agent can not be 

forced to exit the Marine Corps due to being passed over for promotion too many 

times if they are never eligible for a promotion in the first place. 

The second evaluation metric, input significance priority, is observed in the 

Sorted Parameter Estimates report. This report captured 15 terms that varied 

from main effects, quadratic effects, and two-way interactions. The column 

labeled “t ratio” was the measurement metric used to evaluate input significance. 
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Table 3, located at the end of this section, aggregates and compares the terms 

from all response surfaces. 

 

Figure 21.  Losses Model Regression Analysis 
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Figure 21 Continued.  Losses Model Regression Analysis 
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2. Gains Metamodel 

The second metamodel evaluated was gains. The response surface 

metric was constructed by aggregating all the gain metrics output by the MSM. 

Specifically, this included the gain sub-categories: EAD, Occ, Rever, Cont, 

Broken, Deserter, and other. Reference Appendix C for more information 

regarding MSM’s output metrics. 

Figure 22 shows the seven JMP statistical reports for this metamodel. This 

model had an excellent fit, indicated by its 0.95829 adjusted R-Square value. 

This is visually reinforced with the “Actual by Predicted Plot,” where the model’s 

response surface equation predicted a forecast that was within 4.2% of the actual 

simulated output measurements. 

For our first metric, the metamodel yielded excellent correlation with 

respect to the gain factors. Four out of the seven gain factors were identified as 

being significant. Additionally, the four selected gain factors all had positive 

gradients, which coincides with the HRDP. Conversely, for factors of losses were 

determined to be significant, where two had positive gradients and two had 

negative gradients. We viewed this as being positive, because even though they 

were determined to be significant their gradient directions offset each other. 

Therefore there aggregated effect had little to no impact on the metamodel. Two 

factors that were a surprised to have been identified as significant were TISmin 

and TIGmin.  

An important item to reiterate is that the Gains process is separate from 

the Accessions process. Where the later deals predominately with new recruits 

entering the Marine Corps, the Gains process focuses on Marines with prior 

service that re-enter the Marine Corps’ manpower accountability. 
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Figure 22.  Gains Model Regression Analysis 
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Figure 22 Continued.  Gains Model Regression Analysis 
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3. Promotions Metamodel 

Figure 23 depicts Promotions metamodel. For the response surface, we 

used the direct output metric promotions in (PromIn). The Actual by Predicted 

Plot report showed signs of banding within the data set. Banding is a term that 

refers to output measures that do not have a continuous distribution. Instead, the 

data groups together in clusters. This implies the model hosted an aspect of 

discrete outcomes. To capture these discrete bands, we used JMP’s functionality 

to create a partition tree on the data set. As anticipated, the first split identified 

the factor TIGmin as having a discrete impact on the model. A split categorized 

the factor into leaves <3 and 3, and was responsible for explaining 52% of the 

original variance in the model. 

With the Partition Tree’s leaves established, a standard least squares 

regression was re-run, this time incorporating the leaves into its regression. The 

recalculated regression showed a much better model fit using the hybrid 

regression. The adjusted R-Square value increased from 81% to 94%, justifying 

that this was the correct model to explain the Promotions response surface. 

Focusing on the Prediction Profile report, this model showed a lot of 

expected behaviors. For the loss rates of retirement, NEAS, and EAS, all three 

had positive gradients. This fact supports the billet availability HRDP constraint in 

that availability must exist in order for a Marine to be promoted into a higher 

grade. These loss rates confirm that as the loss rate increases, that is more 

Marines are exiting the Corps, the more billets become available for junior 

Marines to promote into. Additionally, the factor TISmin yielded a profile that 

supported the HRDP. Specifically, if the ECFC constraints require a greater 

TISmin for a particular billet, that ECFC is therefore decreasing the pool of 

possible candidates that could be considered for promotion. 
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Figure 23.  Promotions Model Regression Analysis 
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Figure 23 Continued.  Promotions Model Regression Analysis 

4. LatMoves Metamodel 

Figure 24 depicts lateral moves (LatMoves) metamodel. For the response 

surface, we used the direct output metric lateral moves in (LMIn). The LatMoves 

model returned the second best Summary of Fit report characteristics when 

compared to the other metamodels. Specifically, it calculated an impressive 

adjusted RSquare value of 99%, meaning an almost exact fit between the 

metamodel and the existing data.  

With respect to correlation and gradients, the LatMoves metamodel 

closely mimicked the Promotions metamodel. This makes sense because while 

promotions analysis is concerned with the vertical accession through the MOS-
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Grade state graph network, LatMoves is concerned with the horizontal 

transitions. In both cases, vacancies must exist to facilitate the need for a Marine 

to LatMove into that identified MOS.  

With respect to term significance, loss rates once again dominated the 

metamodel. This again reinforces the fact that the MSM is built around the billet 

vacancy constraint; that vacancies must exist in order to allow Marine Agents to 

move around within the MOS-Grade state graph network.  

 

Figure 24.  LatMoves Model Regression Analysis 
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Figure 24 Continued.  LatMoves Model Regression Analysis 
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5. End Strength Metamodel 

Figure 25 depicts the End Strength metamodel. For the response surface, 

we used the direct output metric “End”; refer to Appendix C to view all MSM 

outputs. The End Strength model yielded the worst Summary of Fit report 

characteristics. However, this was expected. Let us first explain the reports 

produced by JMP and then we will justify why it was expected.  

From the initial standard least squares regression, banding was identified 

which suggested a factor was exhibiting discrete impact properties. This was 

confirmed with a Partition Tree. Specifically, the factor TIGmin was again 

identified in having the same categorical impacts of <3 and 3 leaf values. 

Applying a singular split explained 86% of the variance within the model. 

With the Partition Tree’s leaves established, a standard least squares 

regression was re-run, this time incorporating the leaves into its regression. The 

recalculated regression showed a much better model fit using the hybrid 

regression. The Adjusted RSquared value increased from 72% to 92%, justifying 

that this was the correct metamodel to explain the End Strength response 

surface. 

 

Figure 25.  End Strength Model Regression Analysis 
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Figure 25 Continued.  End Strength Model Regression Analysis 
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As previously stated, the model’s poor fit characteristics were expected. 

This is due to the constraint applied by the MSM that vacancies must exist to get 

Marine Agents to move within the model. However, the overall quantity of 

vacancies is capped by the input GAR force structure. For this experiment, the 

same GAR structure progression was used for every DOE design point. This 

ensured that every design point simulation run had a fourth-year GAR end 

strength input value of 154,836 personnel. 

Figure 26 shows the End Strength output measurement’s distribution. 

Specifically it shows a histogram of End Strength values for each of the 

256 design points, as well as a statistical summary for that histogram. The 

produced histogram visually shows that an overwhelmingly majority of the 256 

design points yielded End Strength calculations that were tightly coupled next to 

the GAR’s fourth forecasted year. Secondly, the Summary Statistics report 

shows the statistical mean calculated from this distribution, and the respective 

95% confidence interval that is tightly coupled around the mean.  

To summarize, these facts prove that the MSM was built to align with 

future GARs. Therefore, GARs are without a doubt the most crucial and 

significant input for the simulation. It also yields warning that the data output 

metrics are directly dependent on the GAR. Meaning the manpower forecasts 

produced from adjusting any of the any internal constraints, like ECFCs, are only 

accurate for the specific GAR it ran its simulation off of. 
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Figure 26.  DOE End Strength Distribution Analysis 

6. P2T2 Metamodel 

Figure 27 depicts the Patients, Prisoners, Transients, and Trainees (P2T2) 

metamodel. For the response surface, we used the direct output metric “P2T2”; 

refer to Appendix C to view all MSM outputs. Immediate signs with the P2T2 

model suggested that discrete factors were having an impact on its response, so 

a partition tree was used to identify the data bandings that were occurring. Once 

again TIGmin was identified as having a discrete impact on the model. A split 

categorized the factor into leaves <3 and 3, and was responsible for explaining 

86% of the original variance in the model.  

With the Partition Tree’s leaves established, a standard least squares 

regression was re-run, this time incorporating the leaves into its regression. The 

recalculated regression showed a much better model fit using the hybrid 

regression. The adjusted RSquare value increased from 74% to 95%, justifying 

that this was the correct metamodel to explain the Gains response surface. 

It was originally anticipated that the input significance priority would have 

been more equally distributed across a larger variety of factor terms. As 

explained in Chapter III, the P2T2 is calculated from the instantiation of a Marine 

Agent being selected for a LatMove. Therefore, if the quantity of LatMoves 

increases, so should the quantity of P2T2. Some of this does show through in 

Figure 27 with respect to the positive correlation value for EAS and the negative 
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correlation value with Reenlistment (Reup). Specifically, as these two factor 

terms increase in positive and negative values, respectively, more vacancies 

would open up in MOS-Grade states which therefore would give more Marines 

the opportunity to LatMove into a new MOS. 

 

Figure 27.  P2T2 Model Regression Analysis 
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Figure 27 Continued.  P2T2 Model Regression Analysis 

7. Retention Metamodel 

Figure 28 depicts Retention metamodel. The response surface metric was 

constructed by aggregating all the “In-Year,” “Out-of-Year,” and “Not Accounted 
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for” subcategories of MSM’s retention metrics. Reference Appendix C for more 

information regarding MSM’s output metrics. 

The Retention model returned the best Summary of Fit characteristics of 

any metamodel. Specifically, it boasted an impressive adjusted RSquare value of 

99.9%. Additionally, the significant factor terms had correlation signs that aligned 

with the HRDP process. Specifically, the EAS loss rate had a predominate effect 

on the response surface of the model, which is expected because if Marines 

reach their EAS and leave the Marine Corps there will be a dramatic drop in the 

candidate population that could reenlist. 

 

Figure 28.  Reenlistment Model Regression Analysis 
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Figure 28 Continued.  Reenlistment Model Regression Analysis 
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8. Accessions Metamodel 

Figure 29 depicts Accessions metamodel. For the response surface, we 

used the direct output metric non-prior service (NPS) accessions. Immediate 

signs with the Accessions metamodel suggested that discrete factors were 

having an impact on its response, so a partition tree was used to identify the data 

bandings that were occurring. Once again TIGmin was identified as having a 

discrete impact on the model. A split categorized the factor into leaves <3 and 

3, and was responsible for explaining 85% of the original variance in the model.  

With the Partition Tree’s leaves established, a standard least squares 

regression was re-run, this time incorporating the leaves into its regression. The 

recalculated regression showed a much better model fit using the hybrid 

regression. The adjusted RSquare value increased from 75% to 95%, justifying 

that this was the correct metamodel to explain the Gains response surface.  

 

Figure 29.  Accessions Model Regression Analysis 
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Figure 29 Continued.  Accessions Model Regression Analysis 
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Figure 29 Continued.  Accessions Model Regression Analysis 

9. Effect Significance 

The purpose of this section was to analyze the significant terms calculated 

by each metamodel. The metric for measuring this was the calculated “t Ratio,” 

which is viewed in the Sorted Parameter Estimates report. “t Ratio” is the ratio of 

the estimate when compared to its standard error (“Estimates,” n.d., Sorted 

Estimates section). The final product of this analysis was Table 4. 

While it can be positive or negative in order to identify the term’s gradient 

direction, our analysis chose to focus on overall effect significance vice gradient. 

To accomplish this, we took the absolute value of each term’s value, aggregated 

and averaged that term, where blank cells received a value of zero, and then 

sorted the terms in descending order. Blank cells in Table 4 represent instances 
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where that term was not identified as being significant for that particular 

metamodel. Main effects factors are bolded for easy viewing. 

Table 4.   Aggregated Effects and their Priority of Significance 

Input Losses Gains Promotions LatMoves 
End 

Strength 
P2T2 

Re- 
Enlist 

Accessions 
Absolute 

Value Avg
t Ratio 

L.EAS 122.89 10.46 36.77 133.39 -7.87 12.66 -485.7 15.53 103.16 

L.Reup -58.36 -3.9 -17.1 -84.48   -9.32 -78.82 -10.62 32.83 

L.NEAS 28.18 3.05 5.29 34.84 -1.85 2.8 -72.44 4.78 19.15 

TIGmin -22.52 18.83     -0.64 -0.78 -12.96 -0.81 7.07 

L.EAS*L.EAS -14.4   -3.45     -3.42 30.3 -3.47 6.88 

L.Ret     4.98 28.37     -16.41   6.22 

G.Occ   44.55   -4.71         6.16 

TISmin -3.9 12.79 -9.16   -4.41 -7.21   -7.21 5.59 

TIGmin*TIGmin -18.58 9.46   2.93     -10.56   5.19 

G.Dstr   40.84             5.11 

TISmin*TISmin -3.69 7.01 -7.83   -5.75 -7.52   -7.49 4.91 

TIGmin*L.EAS -2.74     4.71 -7.49 -5.26 -6.99 -4.37 3.95 

TISmin*L.EAS -4.41 0.68 -4.56   -6.38 -7.74   -7.64 3.93 

L.EAS*L.Reup -3.46   -1.45 -9.99     13.55   3.56 

L.NEAS*L.EAS -7.71           20.42   3.52 

G.Oth   27.28             3.41 

TIGmin*L.NEAS -5.19     3.81 -3.16 -2.74 -6.05 -2.72 2.96 

G.EAD   10.04       2.65   2.65 1.92 

L.Reup*L.Reup       4.34     6.16   1.31 

L.e2o       10.29         1.29 

L.Boot 8.31 -0.5             1.10 

Tismin*TIGmin   -7.57             0.95 

TIGmin*L.Ret       6.45         0.81 

Tismin*PrmTgt           2.92   3.12 0.76 

PrmTgt*G.EAD           -2.94   -3.09 0.75 

L.Ret*L.EAS             4.96   0.62 

PrmTgt           1.96   2.18 0.52 

TIGmin*G.Dstr   4.05             0.51 

L.Other             -4.02   0.50 

L.Ret*G.Dstr       3.46         0.43 

L.Ret*L.Reup       -2.9         0.36 

L.Death             -2.22   0.28 

L.NEAS*L.Reup   1.37           0.57 0.24 

L.Boot*G.EAD   -1.74             0.22 

L.e2o*G.Occ       1.07         0.13 

G.Dstr*G.Occ   0.91             0.11 

L.Ret*L.NEAS     -0.83           0.10 

TIGmin*G.Oth   -0.19             0.02 

TISmin*L.Boot 0.12               0.02 
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10. Database Pull Inputs 

During the course of this experiment, a pattern emerged with respect to 

the database pulls from Total Force Data Warehouse (TFDW), invoked by 

MSM’s source code, and how they were utilized as inputs for the MSM. While we 

were writing and debugging our test-main Java class, the class that would run 

the DOE experiment, it was observed that the TFDW data pull “Reenlistments” 

had zero effect on any of the output measurements. Examining this further, it was 

determined that while MSM pulls “Reenlistments” data from TFDW and stores it 

as an object within the MSM, the MSM never again references or invokes this 

data. While the level of significance for the other three database pulls was not 

examined nor determined, due to how this experiment was setup and run, the 

after-action knowledge gained for this insignificant impact was worth annotating 

in the analysis of the DOE experiment 
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V. MSM VALIDATION 

This chapter examines the accuracy of the model with respect to its ability 

to forecast into the future. To complete this evaluation, historical data from the 

past 12 fiscal years was obtained. This data served two key requirements in 

order to complete the validation study. First, a specific fiscal year’s data served 

as the various inputs that are required to initialize the MSM. As discussed in 

Chapter III, this required extracting a specific fiscal year’s GAR force structure, 

initial inventory, all the reference inputs that specify the manpower pyramid 

transition rates, and ECFCs.  

Secondly, the data was used to compare MSM’s output measurements 

against the Marine Corps’ historic manpower quantities. This comparison was 

made at each fiscal year iteration within the MSM. It was decided to have each 

simulation forecast out to five years per simulation run as the majority of enlisted 

contracts conclude by the five-year mark, and therefore would get one complete 

cycle of Marine Agents through the program (Garrick, 2014). As Figure 30 

shows, each simulation run was iterated such that the previous run’s first 

forecasted year became the MSM’s inputs. 

The metric for measurement during this validation was the computed 

relative error for the various categories of each forecasted year. Equation (6) 

depicts the formula for calculating this error were X  serves as the measured 

mean for a particular category, and   is its actual historical value (Law & Kelton, 

2000). 

 
 X 





   (6) 

Using relative error allowed for the formula to naturally normalize a data 

set to its respective fiscal year target. This was crucial as the numerous 

manpower historic quantities naturally fluctuate year to year. The equation also 

standardized the calculations; negative calculations indicated the MSM 
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underestimated that metric while positive calculations indicated the MSM 

overestimated. 

 

Figure 30.  Scope of Validation 

It was decided to seed the Mersenne Twister’s Random number 

Generator with the sequence 224. Seeding the random number generator 

ensures that each simulation will follow the exact same random number 

progression. This action removes any dependence on the random number 

generator, and therefore enabled us to compare MSM’s forecasted years per 

simulation run amongst each other. To ensure an appropriate distribution of 

output results, 30 repetitions were conducted per each simulation run. 
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A. UNCONTROLLABLE FACTORS 

It is critical to understand that this validation experiment measured how 

the MSM deviates from historical manpower progressions. However, the derived 

accuracy of this validation experiment is based off of the assumption that the 

historical manpower progression is constant, and therefore is controllable. This 

unfortunately does not marry up ideally with Marine Corps’ history. It should 

come to no surprise that numerous uncontrollable factors have occurred 

throughout out the range of the fiscal years that were selected for this validation. 

Events such as Operating Iraqi Freedom (OIF), Operating Enduring Freedom 

(OEF), sequestration, drawing down the Department of Defense’s manpower 

force structure, as well as natural changes in command and leadership all 

influence the direction the Marine Corps intends to go and the manpower 

required to accomplish it. This is being stated because the MSM’s ability to 

accurately forecast is dependent on the future inventory structure GARs that 

serve as its inputs, as well as the transition rates it uses for estimating Marine 

Agent movement. Therefore, while it is reasonable to assume that each 

successive forecasted year is anticipated to experience larger relative error, 

external real-life events have impacted the Marine Corps to alter its previously 

planned manpower force structure. 

B. SOURCE CODE CONSTRAINTS 

During the course of the validation experiment, we identified that the 

retention zones that are hard coded into the MSM’s source code do not align 

exactly with current Marine Corps policy. Specifically, MSM defines these zones 

as: 

 Zone A: less than 5 years of service 

 Zone B: less than 9 years of service. 

 Zone C: less than 13 years of service. 

 Zone D: less than 17 years of service. 

 Senior Enlisted Zone: greater than or equal to 20 years of service. 
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Current Marine Corps policy defines these zones as: 

 Zone A: less than 6 years of service 

 Zone B: less than 11 years of service. 

 Zone C: less than 15 years of service. 

 Zone D: less than 19 years of service. 

 Senior Enlisted Zone: greater than or equal to 19 years of service. 

Because we were unable to determine if these were tuning parameters 

that were set by the developer to manually adjust the MSM in hopes of producing 

more accurate results, we decided to leave these as is in order to effectively 

evaluate the MSM program that is currently being used by M&RA. 

C. RESULTS 

Maintaining consistency with Chapter IV’s Design of Experiment, the 

following categories were examined: aggregated losses, aggregated gains, 

promotions to the effect of drilling down into promoting-to grade data fields, end 

strength, and retention to the effect of drilling down into retention zone data 

fields. To normalize how each validation result was graphed, common 

procedures were enacted. Each simulation run was labeled by the first year it 

forecasted. For example if the user loaded 2005’s inventory and transition rate 

data into the MSM, with 2006’s GAR inventory structure and Enlisted Career 

Force Controls, fiscal year 2006 would be the first forecasted year and therefore 

would also be the label name for that particular simulation run. When plotting 

each categories relative error results, it was decided to arrange the data such 

that numerical forecasted years served as the independent variable on the y-axis 

and the relative errors served as the dependent variable on the x-axis. This data 

arrangement facilitated the ability to overlay the simulation runs in order to 

determine common patterns of progression within the MSM.  

Figure 31 through Figure 51 are the relative error graphs for each 

validation category. To reduce the clutter of the graphs, as well as focus on time 
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periods that are less centered on OIF and OEF, the graphs show only simulation 

runs stating at fiscal year 2009 and beyond. The full relative error results can be 

viewed in matrix form within Appendix G. 

 

Points were calculated with Equation 6. X  was the sum of the outputs Neas.n 
and Neas.e for the targeted year.  was the quantity of Marines pulled from 
TFDW with the separation code NEAS for the targeted year. 

Figure 31.  NEAS Losses Relative Error 
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Points were calculated with Equation 6. X  was the sum of the outputs Retired.n 
and Retired.e for the targeted year.  was the quantity of Marines pulled from 
TFDW with the separation code Retired for the targeted year. 

Figure 32.  Retired Losses Relative Error 

 

Points were calculated with Equation 6. X  was the sum of the outputs Other.n 
and Other.e for the targeted year.  was the quantity of Marines pulled from 
TFDW with the separation code Other for the targeted year. 

Figure 33.  Other Losses Relative Error 
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Points were calculated with Equation 6. X  was the sum of the outputs Eas.n 
and Eas.e for the targeted year.  was the quantity of Marines pulled from TFDW 
with the separation code EAS for the targeted year. 

Figure 34.  EAS Losses Relative Error 

 

Points were calculated with Equation 6. X  was the sum of the outputs Ead.g, 
Occ.g, Rev.g, Cont.g, Broke.g, Des.g, and Other.g for the targeted year.  was 
the quantity of Marines pulled from TFDW with the same gain codes for that year. 

Figure 35.  Aggregated Gains Relative Error 
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Points were calculated with Equation 6. X  was the output NPS.g for the 
targeted year.  was the quantity of Marines pulled from TFDW for total 
accessions for the targeted year. 

Figure 36.  Accession Gains Relative Error 

 

Points were calculated with Equation 6. X  was the tier II output PromIn for the 
targeted year at the respective grade.  was the quantity of Marines promoted to 
E-2 for targeted year, pulled from TFDW. 

Figure 37.  Promotions to E-2 Relative Error 
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Points were calculated with Equation 6. X  was the tier II output PromIn for the 
targeted year at the respective grade.  was the quantity of Marines promoted to 
E-3 for targeted year, pulled from TFDW. 

Figure 38.  Promotions to E-3 Relative Error 

 

Points were calculated with Equation 6. X  was the tier II output PromIn for the 
targeted year at the respective grade.  was the quantity of Marines promoted to 
E-4 for targeted year, pulled from TFDW. 

Figure 39.  Promotions to E-4 Relative Error 
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Points were calculated with Equation 6. X  was the tier II output PromIn for the 
targeted year at the respective grade.  was the quantity of Marines promoted to 
E-5 for targeted year, pulled from TFDW. 

Figure 40.  Promotions to E-5 Relative Error 

 

Points were calculated with Equation 6. X  was the tier II output PromIn for the 
targeted year at the respective grade.  was the quantity of Marines promoted to 
E-6 for targeted year, pulled from TFDW. 

Figure 41.  Promotions to E-6 Relative Error 
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Points were calculated with Equation 6. X  was the tier II output PromIn for the 
targeted year at the respective grade.  was the quantity of Marines promoted to 
E-7 for targeted year, pulled from TFDW. 

Figure 42.  Promotions to E-7 Relative Error 

 

Points were calculated with Equation 6. X  was the tier II output PromIn for the 
targeted year at the respective grade.  was the quantity of Marines promoted to 
E-8 for targeted year, pulled from TFDW. 

Figure 43.  Promotions to E-8 Relative Error 
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Points were calculated with Equation 6. X  was the tier II output PromIn for the 
targeted year at the respective grade.  was the quantity of Marines promoted to 
E-9 for targeted year, pulled from TFDW. 

Figure 44.  Promotions to E-9 Relative Error 

 

Points were calculated with Equation 6. X  was output End for the targeted year. 
 was the total quantity of Marines within TFDW for targeted year. 

Figure 45.  End Strength Relative Error 
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Points were calculated with Equation 6. X  was the sum of the outputs A.i, A.naf, 
and A.o.  was the quantity of Marines retained within Zone-A, pulled from 
TFDW for the targeted year. 

Figure 46.  Retention Zone-A Relative Error 

 

Points were calculated with Equation 6. X  was the sum of the outputs B.i, B.naf, 
and B.o.  was the quantity of Marines retained within Zone-B, pulled from 
TFDW for the targeted year. 

Figure 47.  Retention Zone-B Relative Error 
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Points were calculated with Equation 6. X  was the sum of the outputs C.i, 
C.naf, and C.o.  was the quantity of Marines retained within Zone-C, pulled from 
TFDW for the targeted year. 

Figure 48.  Retention Zone-C Relative Error 

 

Points were calculated with Equation 6. X  was the sum of the outputs D.i, 
D.naf, and D.o.  was the quantity of Marines retained within Zone-D, pulled from 
TFDW for the targeted year. 

Figure 49.  Retention Zone-D Relative Error 
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Points were calculated with Equation 6. X  was the sum of the outputs E.i, E.naf, 
and E.o.  was the quantity of Marines retained within Zone-E, pulled from 
TFDW for the targeted year. 

Figure 50.  Retention Zone-E Relative Error 

 

Points were calculated with Equation 6. X  was the sum of the outputs SR.i, 
SR.naf, and SR.o.  was the quantity of Marines retained within Zone-SR, pulled 
from TFDW for the targeted year. 

Figure 51.  Retention Zone-Senior-Enlisted Relative Error 
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D. VALIDATION ANALYSIS 

On average, the simulation runs that began with 2009 and 2010 typically 

had the worst relative errors for each category This consistency through the 

model suggests that an external, uncontrolled factor, affected manpower data 

and therefore affected the MSM’s validation. Losses and Gains showed similar 

relative error characteristics. Surprisingly, both these graphs produced groupings 

of minimal error that clustered in the second to forth forecasted year range, with 

the larger errors occurring immediately in simulation and then toward the end. 

With regard to promotion, the MSM performed well when forecasting promotions 

to the Staff Non-Commissioned Officer (SNCO) ranks. Promotions to Non-

Commissioned Officer (NCO) ranks were consistently underestimated. 

Interestingly though, this was reciprocated in the retention zone graphs as most 

of the graphs consistently overestimated the quantity of Marines that would 

reenlist. End Strength overwhelmingly returned the lowest relative error out of all 

the categories evaluated. This once again reinforced that the MSM’s most 

important input is the GAR inventory structure it simulates to. 

The most interesting observation was the correlation between reenlistment 

gains and accessions. All previous investigation identified the MSM to implement 

a simple supply and demand philosophy; once a billet becomes vacant then the 

MSM will exhaust all opportunities to move a Marine Agent into the spot by either 

a lateral move, a promotion, or a lateral move and a promotion simultaneously. 

What was interesting to discover is that the MSM is biased in choosing Marine 

Agents to reenlist vice instantiating Marine Agents through the recruit and 

accessions process. This is seen in the Results Section in that all reenlistment 

zones constantly overestimated targeted values, while the accessions process 

continuously underestimated its target values. 
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VI. CONCLUSION 

A. EVALUATION 

This thesis had three main objectives to accomplish. The first was to 

provide a document that explains the architecture and processes of the MSM. 

The second was to examine how the inputs drive the model, and compare to the 

HRDP. And lastly, we had the objective to evaluate the accuracy of the model by 

a validation approach. 

The MSM is a large complex program. It totals just over 60 Java classes 

for its source code, as well as requires eight libraries to function. This program 

has numerous details that an analysist could spend days, if not weeks, diving into 

and investigating. With respect to the objectives of this thesis, we reached 

several important conclusions. 

 The MSM is a simple supply and demand process. 

While numerous stochastic processes and deterministic algorithms are 

included within the MSM to forecast manpower metrics, these all abide by the 

single rule that a billet vacancy must exist for a Marine Agent to move into it. 

Likewise, if billet vacancies do exist, the MSM will exhaust every inventory option 

to fill any empty MOS-Grade billets. 

 The GAR input is the most important input that drives the MSM and 
its manpower forecasts. 

With the MSM a supply and demand process, the most important input 

that all algorithms are run against is the GAR structure. The GAR sets targeted 

billet quantities for each MOS per grade. While the MSM uses stochastic 

processes and deterministic algorithms to simulate the movement of Marine 

Agents within the Marine Corps, the MSM will always try to fill any vacant billet 

seat in order to achieve an inventory that maximizes every available billet seat 

specified by the GAR. Therefore, the MSM could be viewed more as a tool that 

evaluates future GAR drafts. 
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 The MSM offers many options that allow a user to fine tune 
particular parameters for a simulation run. 

At its foundation, the MSM possesses all the necessary capabilities to run 

simulations and provide forecasted manpower metrics. Specifically, it uses 

historical data pulled from its reference inputs to set the likelihood that manpower 

events occur, and guides the simulation to fully populating the GAR structure. 

Sitting programmatically on top of that, the MSM provides numerous fields within 

its “siminputs” Excel input file that allows the user to fine tune simulation 

parameters. It is recommended to only use these tuning parameters when small 

deviations to input files or ad hoc case scenarios need to be simulated. 

Examples of situations range from adjusting the percentages of male and female 

Marines per allotted end strength to adjusting overall allowable end strength. 

Outside of ad hoc case scenarios, the primary effort should be given to adjusting 

the input GAR structure and selecting archival database reference input 

sequences that closely align with the manpower goals toward which M&RA is 

looking to forecast. 

 The MSM was constructed with a bottom-up methodology that 
captures key processes within the HRDP.  

The power of the model rests in its ability to integrate the numerous 

processes of HRDP into a single simulation model and simulate down into the 

details at the Marine MOS-Grade level. Reinforcing this capability is the plethora 

of data attributes which provide the user with output measurements that can be 

viewed at different Tier levels depending on the level of detail the user wants to 

drill into. The Tier I level provides a simple aggregation of the entire Marine 

Corps for a single forecasted year, Tier II breaks that down further into providing 

MOS-Grade details for a single forecasted year, and lastly Tier III breaks the data 

down even further to provide MOS-Grade details by monthly intervals. 

 The MSM uses a modular architecture structure. 

Each process of the HRDP was constructed as its own Java class, and is 

only invoked when that HRDP is required to be executed. This greatly increases 
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the feasibility of editing the MSM because the editor just needs to ensure the 

parameter(s) being passed to and returned from the invoked Java class remain 

aligned. All other edits can be made within a process with little dependencies on 

the remainder of the MSM. Besides easiness in editing, modularity can also 

facilitate specific policies to be simulated and analyzed. For example, if M&RA 

wanted to update policies on how promotion boards are run, the Promotions Java 

class could easily be edited to reflect a drafted policy, which would ultimately 

produce simulation output metrics that would show HRDP whole effects to a 

single policy change. 

 The MSM is a time-step model with the base time increment set at 
one fiscal year. 

The model simulates the HRDP by employing a waterfall technique for all 

the processes, where a bulk ingest queuing methodology is utilized. Here, the 

entire inventory of Marine Agents line up and execute an itemized process, only 

to move onto the next HRDP process after the last Marine Agent finishes the 

previous one. Additionally, each Marine Agent only has one chance at executing 

a certain event within a process, and then that Marine Agent will have to wait a 

full fiscal year simulation cycle to be afforded another chance. 

 MSM employs rudimentary behavior modeling techniques (artificial 
intelligence). 

For Marine Agents navigating their careers within the MOS-Grade state 

graph network, basic deterministic rules dictate the paths that Marine Agents will 

navigate. They are simply either allowed to do something or they are not; a 

binary decision. The only behavior modeling capability that is given to Marine 

Agents is in the form of statistical probability in a Markov Chain application. For 

the two types of non-deterministic processes used, a Mersenne Twister random 

number generator picks the event a Marine Agent will execute, for that respective 

HRDP process, based on the probabilities of the respective events. 

Overall, the MSM is an exceptionally powerful tool that correctly employs 

the numerous processes of the HRDP. While the level of accuracy of its output 
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measures varies depending on which output measurement is being examined, 

overall it provides tangible data points that prior to this model could have only 

been talked about in theory. For that, it is recommended for continued use and 

incorporating into plans for future improvements. 

B. RECOMMENDATIONS 

While the MSM is a power simulation tool, we identified various areas 

were continued work and research could be applied.  

 Continued Validation 

While this thesis examined the MSM’s input sensitivity with respect to 

eight metamodels and validated the MSM against 21 manpower categories, 

plenty of opportunities exist to dive deeper into the output measures and validate 

their results. For example the eight metamodels focused primarily at the whole 

Marine Corps’ aggregated level, whereas the validation also drilled down into the 

Grade metric. This thesis did not continue examining down into the MOS-Grade 

levels, Tiers II and III of the output measures. Additionally, none of the finance 

capabilities of the MSM were examined in this thesis. 

 MSM Parameter Tuning 

The validation results, illustrated in Chapter V, reveal general patterns to 

MSM’s output metrics accuracy with regard to which year in the future it is 

forecasting for. This implies that parameters could be weighted, and therefore 

tuned, in order to drive that output metric closer to a zero percentage relative 

error. 

 Intelligent behavior 

As previously stated, the Marine Agents follow simple decision rules and 

the simulated selection boards are likewise simple. There are a wide range of 

aspects and areas that could be amended with additional behavior 

characteristics that would render the model a more accurate depiction of real-life 

Marine Corps manpower decisions. For example, a reenlistment bonus behavior 
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could be constructed that improves the likelihood of a Marine Agent to reenlist 

based upon the size of the incentive. 

 Add geographical code and/or Unit Identification Code attributes to 
Marine Agents 

Just as the Marine Corps’ Table of Organization allocates billets to units, 

the MSM could add the additional Unit Identification Code (UIC) attribute to each 

Marine Agent in order to track additional metrics. Specifically, the geographical 

area could be mapped to these codes, and therefore a Permanent Change of 

Station Java class could be constructed that forecasts the financial surge 

associated with Marines moving to new commands in new geographical areas. 

Likewise, a UIC attribute could be added to each Marine Agent. This attribute 

could be used to simulate staffing goals for units as well as more accurately map 

the career progression of a Marine Agent traversing the MOS-Grade state graph 

network. 

 Introduce a Graphic User Interface (GUI) 

Numerous steps exist for setting up and running the MSM. From loading 

all the inputs to setting user defined parameters within the “siminputs” input file, 

these steps require an intricate level of knowledge about the MSM in order to be 

done correctly. Converting the user interaction with the MSM into a GUI would 

better facilitate the process for the user to accurately set up and run the model. 

 MSM output data type 

The current version of the MSM writes its data outputs to a text-type 

document. A few modifications to the outputs Java class could transcribe these 

documents into Excel files, such as comma separated files. Additionally, 

modifications to the Java class could automatically produce specifically sought 

after visual graphics. 

 Remove MSM’s retentions over accessions bias 

A negative aspect of the MSM is that it overestimates Marine Agents that 

choose to reenlist. This has consequences that trickle down through the MOS-

Grade state graph network and directly affects the accessions forecasts. 
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Specifically, because the MSM employs a supply and demand methodology in 

exhausting all opportunities to retain a Marine Agent, any Marine Agents retained 

are ultimately occupying billets that make it more difficult for lower grade Marine 

Agents to promote upwards. This impacts the inventory for each MOS-Grade, 

which ultimately restricts the quantity of accessions the MSM can instantiate to 

backfill billet vacancies that have trickled their way down to the entry level MOS-

Grades. 
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APPENDIX A.  MSM MODEL INPUTS 

Table 5.   Main Sheet Inputs 

Parameter Description 

TFDW User Name User name if pulling from online database 

TFDW Password Password if pulling from online database 

ODSE User Name User name if pulling from online database 

ODSE Password Password if pulling from online database 

Scenario Name Optional scenario name for simulation run 

Number of Years Number of years to forecast 
Number of 
Simulations Number of repetitions to run the stochastic simulation 

Inventory Sequence number from which to pull inventory data 
Initial Forecasted 
Year The first year that will be forecasted 

Losses 
If blank program pulls local file. 
Enter comma separated list to pull those years from TFDW/ODSE. 

Reenlistments 
If blank program pulls local file. 
Enter comma separated list to pull those years from TFDW/ODSE. 

Gains 
If blank program pulls local file. 
Enter comma separated list to pull those years from TFDW/ODSE. 

Promotions 
If blank program pulls local file. 
Enter comma separated list to pull those years from TFDW/ODSE. 

Report Options 

Establishes how the program will aggregate its results. 
- Year 
- Year and MOS 
- Year and Grade 
- Year, MOS, and Grade 
- Year and Month 
- Year, Month, and Grade 
- Year, Month, MOS, and Grade 

 

Table 6.   Career Force Controls 

Parameter Description 

Grade 
Grade (E1-E9). Each subsequent parameter is broken down and 
evaluated per grade. 

Promotion Targets Promotion targets for subject grade 

Minimum TIS Controls eligibility for promotion 

Maximum TIS Controls eligibility for promotion and retention 

Minimum TIG Controls eligibility from promotion 
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Table 6 Continued.  Career Force Controls 
 

Parameter Description 
Variable In-Zone 
Selection 
Opportunity Controls zone size, selection rate, and passover rate. 

Maximum # 
of Passovers Controls whether Marine may continue service 

Limit Type if exceed 
maximum passovers 

Indicates type of control to place if passover 
limit is reached 

TIS Limit if exceed 
maximum passovers 

TIS limit adjustment for those 
who've been passed over 

 

Table 7.   MOS Data 

Parameter Description 

PMOS Digit indicator of primary MOS 

Gender Gender indicator, used on MOS restrictions 

Is BMOS Indicates a basic/school training MOS 
Time to Train 
(Non LM) 

Number of days spent in training 
pipeline 

Time to Train 
(LM) 

Number of days spent in training 
when lat moving to this MOS 

Lat Move Only Indicates if this MOS is a 'Lat Move Only' MOS 

Title Name of MOS 

Converting MOSs List of MOSs that are obsolete predecessors of PMOS 

Alias List of MOSs that PMOS has been known as in the past 

Comparable MOSs List of MOSs that can be used in place of subject MOS 

Feeds From List of MOSs that feed into the subject MOS 

Feeds To List of MOSs that the subject MOS feeds into 

Min Grade Minimum grade for subject MOS 

Max Grade Maximum grade for subject MOS 

TOE (4) 4-Year contract 

TOE (5) 5-Year contract 

TOE (6) 6-Year contract 
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APPENDIX B.  GAR INPUT 

The GAR is a user-provided input to the MSM program. Its data is 

responsible for building the MOS-Grade state graph network of the model, which 

serves as the manpower structure that the Marine Agents navigate through 

during the simulation of their career. The below image is a snapshot of this input: 

 

 

Figure 52.  Snapshot of GAR Input. 
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APPENDIX C.  OUTPUT METRICS 

Table 8.   MSM Output Metrics 

Category Metric Definition 

S
um

m
ar

y 
of

 D
at

a 
A

ttr
ib

ut
es

 In
pu

t 
in

to
 M

S
M

 A-Bil Pulled from the GAR input,  these are primary, direct billets without allocation of overhead, b-billets, training, etc.  The "naive" requirement. 

B-Bil Pulled from the GAR input,  these are B-Billets allocated to structure. 

P2T2.gar Pulled from the GAR input,  these are "Overhead" allocated for patients, prisoners, trainees, and transients. 

Gar.u 
This is unadjusted "raw" GAR requirement which doesn't account for allocation of those in boot camp or MOS school. Its formula is: 
Gar.u = A-Bil + B-Bil + P2T2.gar 

Train.Boot Proportional allocation to account for Marines in Boot Camp. 

Train.Mos Proportional allocation to account for Marine in MOS School 

Gar.a 
GAR adjusted for Boot Camp and MOS School allocation. This is the calculation used to build the MOS-Grade state graph network. Its 
formula is: 
 Gar.a = Gar.u + Train.Boot + Train.Mos 

Start Starting inventory pulled from TFDW data.  Always based on FY Start (1 Oct) 

FemStart Starting female inventory 

Lo
ss

 C
at

eg
or

y 
F

or
ec

as
ts

 
C

od
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ed
 w

ith
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N
o
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E

A
S

" 
S
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n 
C

o
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Neas.n Quantity of Marine Agents selected to exit the Marine Corps with a Non-EAS separation code. 

Deaths.n Quantity of Marine Agents selected to exit the Marine Corps due to death. 

E2O.n Quantity of Marine Agents selected to receive an enlisted to officer (e2o) commission, and therefore leave the enlisted manpower structure. 

Retired.n Quantity of Marine Agents selected to exit the Marine Corps due to retiring. 

Other.n Quantity of Marine Agents selected to exit the Marine Corps due to other means not documented with a specific separation code. 

Eas.n Quantity of Marine Agents selected to exit the Marine Corps due to the end of their enlisted contract called End of Active Service (EAS). 

Boot.n Quantity of Marine Agents selected to exit the Marine Corps during bootcamp. 
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Table 8 Continued.  MSM Output Metrics 
 

Category Metric Definition 

Lo
ss

 C
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C
o
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Neas.e Quantity of Marine Agents selected to exit the Marine Corps with a Non-EAS separation code. 

Deaths.e Quantity of Marine Agents selected to exit the Marine Corps due to death. 

E2O.e Quantity of Marine Agents selected to receive an enlisted to officer (e2o) commission, and therefore leave the enlisted manpower structure. 

Retired.e Quantity of Marine Agents selected to exit the Marine Corps due to retiring. 

Other.e Quantity of Marine Agents selected to exit the Marine Corps due to other means not documented with a specific separation code. 

Eas.e Quantity of Marine Agents selected to exit the Marine Corps due to the end of their enlisted contract called End of Active Service (EAS). 

Boot.e Quantity of Marine Agents selected to exit the Marine Corps during bootcamp. 

G
ai

n 
C

at
eg

or
y 

F
or

ec
as

ts
 Ead.g Quantity of Marine Agents selected that return from their extended active duty (EAD) recruiting tour. 

Occ.g Quantity of Marine Agents selected that return after having become a deserter. 

Rev.g Quantity of Marine Agents selected that return to service with a Rever gain code. 

Cont.g Quantity of Marine Agents selected that return to service with a Cont gain code. 

Brok.g Quantity of Marine Agents selected that return from medical holds. 

Des.g Quantity of Marine Agents selected that return after having become a deserter. 

Other.g Quantity of Marine Agents selected that return to service for other means not captured. 

A
cc

e
ss

io
n

 
F

or
ec

a
st

s 

NPS.g Non-prior service accessions. This field is calculated based on vacancies required to fill requirements or is supplied by the user. 

NPSFem.g Same as NPS.g, but for females.  There is no required female recruiting, so this is an estimate based on data. 

G
en

e
ra

l M
an

po
w

er
 M

et
ric

s 

PromIn Quantity of Marine Agents promoted into category (depending on tier level, could be aggregrate FY, by MOS-Grade, by month…ect). 

PromOut Quantity of Marine Agents promoted out of a categoy (depending on tier level, could be aggregrate FY, by MOS-Grade, by month…ect). 

LMIn Quantity of Marine Agents lateral moved into category (depending on tier level, could be aggregrate FY, by MOS-Grade, by month…ect). 

LMOut Quantity of Marine Agents lateral moved out of a categoy (depending on tier level, could be aggregrate FY, by MOS-Grade, by month…ect). 

End Quantity of Marine Agents in the inventory at the end of the time iteration (could be either by FY or by month) 

FemEnd Quantity of female Marine Agents in the inventory at the end of the time iteration (could be either by FY or by month) 

P2T2 Quantity of Marine Agents for the aggregated time period (could be either by FY or by month, depends on which output tier viewed). 

BasePay Estimated Base Pay for inventory based on pay tables 

CompPay Estimated Composite pay based on by-grade composite planning factors. 
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Table 8 Continued.  MSM Output Metrics 

 

Category Metric Definition 

M
S

M
 R

et
en

tio
n 

M
et

ric
s 

EligA Quantity of Marine Agents eligible for retention in zone A. 

EligB Quantity of Marine Agents eligible for retention in zone B. 

EligC Quantity of Marine Agents eligible for retention in zone C. 

EligD Quantity of Marine Agents eligible for retention in zone D. 

EligE Quantity of Marine Agents eligible for retention in zone E. 

EligSR Quantity of Marine Agents eligible for retention in zone SR. 

A.i Quantity of Zone A Marine Agents who reenlisted "In-Year.” 

B.i Quantity of Zone B Marine Agents who reenlisted "In-Year.” 

C.i Quantity of Zone C Marine Agents who reenlisted "In-Year.” 

D.i Quantity of Zone D Marine Agents who reenlisted "In-Year.” 

E.i Quantity of Zone E Marine Agents who reenlisted "In-Year.” 

SR.i Quantity of Zone SR Marine Agents who reenlisted "In-Year.” 

A.naf Marine Agents that reenlisted into zone A that were "Not Accounted For" (see end note). 

B.naf Marine Agents that reenlisted into zone B that were "Not Accounted For" (see end note). 

C.naf Marine Agents that reenlisted into zone C that were "Not Accounted For" (see end note). 

D.naf Marine Agents that reenlisted into zone D that were "Not Accounted For" (see end note). 

E.naf Marine Agents that reenlisted into zone E that were "Not Accounted For" (see end note). 

SR.naf Marine Agents that reenlisted into zone SR that were "Not Accounted For" (see end note). 

A.o Quantity of Zone A Marine Agents who reenlisted "Out-of-Year" (i.e. EAS in 2017 but Marine Agent reenlisted in 2016). 

B.o Quantity of Zone B Marine Agents who reenlisted "Out-of-Year" (i.e. EAS in 2017 but Marine Agent reenlisted in 2016). 

C.o Quantity of Zone C Marine Agents who reenlisted "Out-of-Year" (i.e. EAS in 2017 but Marine Agent reenlisted in 2016). 

D.o Quantity of Zone D Marine Agents who reenlisted "Out-of-Year" (i.e. EAS in 2017 but Marine Agent reenlisted in 2016). 

E.o Quantity of Zone E Marine Agents who reenlisted "Out-of-Year" (i.e. EAS in 2017 but Marine Agent reenlisted in 2016). 

SR.o Quantity of Zone SR Marine Agents who reenlisted "Out-of-Year" (i.e. EAS in 2017 but Marine Agent reenlisted in 2016). 



 108

 
Table 8 Continued.  MSM Output Metrics 

 

Category Metric Definition 

O
th

er
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M
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Passovers Number of times Marine Agents are passed over for promotion, aggregated. 

PromZoneElig Number of Marine Agents eligible for promotion and placed in zone, aggregated. 

PromElig Number of Marine Agents eligible for promotion, irrespective of whether or not they were placed in zone. 

sumTTP The aggregated sum of Time to Promotion. 

sumTIG The aggregated sum of Time in Grade. 

sumYOS The aggregated sum of Years of Service. 

The .”naf” category is an artifact of archival bad data. Prior to the construction of the MSM, it was identified by M&RA that there 
was a leakage within the retention accountability system due to various HRDP processes and how they interfaced together. 
Specifically, there were Marines who were reenlisting that were not being accounted for by either the “in-year” or “out-of-year” 
retention categories. To account for this group of Marines who were actually reenlisting but not being properly accounted for, the 
developer built the “not-accounted-for” retention category within the MSM (R. A. Garrick, personal communication, April 6, 2016). 

 



 109

APPENDIX D.  DESIGN ORTHOGONALITY 

Table 9.   Design Orthogonality of NOLH DOE 

 

Within the table, the top three correlations (the three worst orthogonalities) are highlighted in yellow. 
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APPENDIX E.  NOLH DESIGN 

Table 10.   NOLH Design 
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Table 10 Continued. NOLH Design 
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Table 10 Continued. NOLH Design 
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Table 10 Continued. NOLH Design 

 
 
 
 
 
 
 



 115

Table 10 Continued. NOLH Design 
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Table 10 Continued. NOLH Design 
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Table 10 Continued. NOLH Design 
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Table 10 Continued. NOLH Design 
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Table 10 Continued. NOLH Design 
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APPENDIX F.  MSM CLASS ORGANIZATION 

 

Figure 53.  MSM Class Organization. Adapted from Garrick (2014). 
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APPENDIX G.  VALIDATION RESULT TABLES 

Table 11.   NEAS Losses Relative Error 

1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -54% -49% -45% -43% -47% 
2005 -53% -47% -43% -39% -47% 
2006 -59% -56% -51% -51% -51% 
2007 -52% -49% -48% -41% -44% 
2008 -53% -54% -46% -42% -47% 
2009 -51% -46% -40% -40% -46% 
2010 -43% -35% -32% -35% -44% 
2011 -38% -35% -34% -35% -49% 
2012 -33% -33% -31% -43% 
2013 -33% -32% -41% 
2014 -33% -44% 

Table 12.   Retired Losses Relative Error 

1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -25% -39% -23% -43% -20% 
2005 -18% -29% -13% -39% -32% 
2006 -17% -22% -10% -49% -20% 
2007 -10% -22% -26% -40% -30% 
2008 -22% -50% -25% -41% -49% 
2009 -16% -11% -11% -53% -31% 
2010 18% -8% -26% -29% -58% 
2011 -6% -44% -20% -60% -79% 
2012 -22% -26% -47% -81% 
2013 -5% -48% -71% 
2014 -33% -72% 

Table 13.   Other Losses Relative Error 

1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -29% -11% -19% -12% 16% 
2005 -8% -20% 1% 47% 20% 
2006 -40% -23% 28% 8% 20% 
2007 -6% 74% 82% 112% 123% 
2008 -22% 18% 49% 97% 73% 
2009 -21% -6% 27% 25% 68% 
2010 3% 36% 62% 116% 62% 
2011 7% 11% 74% 43% 5% 
2012 -5% 31% 23% -9% 
2013 6% -3% -21% 
2014 6% -23% 
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Table 14.   EAS Losses Relative Error 

1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -6% -3% 7% 11% -49% 
2005 -4% -2% 14% 29% -53% 
2006 -7% 4% 32% 24% -55% 
2007 -2% 19% 23% 11% -58% 
2008 -8% -6% -5% -5% -57% 
2009 -15% -19% -9% -10% -50% 
2010 -16% -12% -4% -6% -56% 
2011 -10% -10% -1% -17% -28% 
2012 -4% -3% -10% 1% 
2013 -6% -18% 2% 
2014 -22% -12% 

Table 15.   Aggregated Gains Relative Error 

1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 2% -41% -34% -42% -38% 
2005 -8% -40% -46% -38% -26% 
2006 1% -52% -38% -19% 49% 
2007 -28% -52% -25% 46% 63% 
2008 13% -10% 84% 120% 243% 
2009 16% 34% 77% 197% 253% 
2010 66% 41% 153% 209% 237% 
2011 14% 39% 87% 107% 43% 
2012 46% 59% 80% 29% 
2013 16% 29% -10% 
2014 19% -23% 

Table 16.   Accession Gains Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -100% -28% 14% -4% -29% 
2005 -100% -5% -1% 10% -7% 
2006 -100% -20% 8% 36% -32% 
2007 -100% 0% 37% 18% -10% 
2008 -100% 4% 2% 29% -16% 
2009 -100% -17% 27% 24% -64% 
2010 -100% 26% 35% -24% -49% 
2011 -50% 30% -18% -5% -33% 
2012 -5% -21% 3% -9% 
2013 -19% -6% -7% 
2014 -24% -19% 
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Table 17.   Promotions to E-2 Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -40% -68% -20% -5% -30% 
2005 -44% -60% -11% -12% -19% 
2006 -42% -62% -17% -1% -2% 
2007 -43% -55% -4% 21% -2% 
2008 -44% -63% -3% 9% -1% 
2009 -41% -64% 1% 19% -26% 
2010 -44% -41% 21% -4% -37% 
2011 -21% -15% -2% -14% -18% 
2012 3% -18% -10% 1%   
2013 -5% -11% -1%     
2014 -6% -16%       

Table 18.   Promotions to E-3 Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -11% -69% -42% -4% -13% 
2005 -10% -69% -28% -8% -12% 
2006 -10% -67% -32% -8% 1% 
2007 -10% -67% -24% 5% 12% 
2008 -10% -70% -33% -1% 2% 
2009 -10% -68% -31% 5% 3% 
2010 -13% -64% -10% 12% -29% 
2011 -5% -37% -2% -21% -19% 
2012 -1% -10% -26% -9%   
2013 -1% -21% -12%     
2014 -4% -20%       

Table 19.   Promotions to E-4 Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -61% -46% -18% -27% -20% 
2005 -67% -20% -24% 21% -38% 
2006 -62% -33% 16% 7% -50% 
2007 -66% 9% 4% -6% -41% 
2008 -67% -25% -36% -24% -73% 
2009 -60% -40% -28% -48% -55% 
2010 -63% -24% -42% -34% -53% 
2011 -40% -35% -24% -29% -41% 
2012 -41% -16% -19% -18%   
2013 -23% -20% -11%     
2014 -25% -22%       
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Table 20.   Promotions to E-5 Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -94% -65% -42% -51% -15% 
2005 -93% -51% -44% -7% -9% 
2006 -88% -58% -6% -3% -23% 
2007 -89% -20% 1% -9% -5% 
2008 -82% -39% -49% -24% -68% 
2009 -68% -50% -16% -59% -44% 
2010 -84% -27% -57% -42% -70% 
2011 -49% -50% -20% -51% -59% 
2012 -69% -25% -42% -49%   
2013 -31% -37% -30%     
2014 -31% -39%       

Table 21.   Promotions to E-6 Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -96% -54% -43% -36% -2% 
2005 -93% -56% -18% -3% -5% 
2006 -77% -32% 10% -4% -40% 
2007 -73% -4% 6% -42% 0% 
2008 -44% -11% -45% -8% -49% 
2009 -29% -43% 3% -52% -9% 
2010 -44% 4% -32% 1% -74% 
2011 -29% -41% 17% -65% -47% 
2012 -43% 14% -48% -40%   
2013 19% -50% -21%     
2014 -8% -19%       

Table 22.   Promotions to E-7 Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -91% -66% -43% -37% 21% 
2005 -88% -65% -11% 12% -19% 
2006 -79% -39% 31% -30% -39% 
2007 -78% 7% -13% -48% 11% 
2008 -50% -31% -42% -1% -41% 
2009 -40% -30% 24% -43% -16% 
2010 -40% 30% -10% -6% -55% 
2011 -24% -34% 0% -59% -42% 
2012 -31% -6% -30% -42%   
2013 11% -35% -17%     
2014 -23% -30%       
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Table 23.   Promotions to E-8 Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -94% -96% -40% -57% 67% 
2005 -96% -69% -35% 45% 6% 
2006 -90% -61% 68% -16% -27% 
2007 -90% 36% 22% -44% 20% 
2008 -42% -16% -32% -4% -32% 
2009 -25% -10% 42% -29% -6% 
2010 -9% 48% 8% 0% -20% 
2011 -5% -26% 4% -27% -30% 
2012 -15% -2% 9% -37%   
2013 16% 4% 5%     
2014 -26% -23%       

Table 24.   Promotions to E-9 Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -93% -97% -42% -47% 125% 
2005 -96% -74% -29% 101% 11% 
2006 -92% -72% 134% -21% 13% 
2007 -93% 74% 16% -21% 33% 
2008 -18% -29% -1% -9% -10% 
2009 -6% 53% 45% -6% 21% 
2010 24% 38% 27% 3% 1% 
2011 7% -15% 18% -26% -5% 
2012 5% 37% 23% -22%   
2013 62% 5% 15%     
2014 -19% -6%       

Table 25.   End Strength Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 -15% -20% -18% -19% -19% 
2005 -17% -18% -19% -19% -15% 
2006 -16% -19% -19% -15% -12% 
2007 -19% -19% -15% -12% -6% 
2008 -17% -15% -12% -6% 0% 
2009 -13% -12% -6% 0% -2% 
2010 -12% -6% 0% -2% 0% 
2011 -6% 0% -2% 0% 0% 
2012 0% -2% 0% 0%   
2013 -2% 0% 0%     
2014 0% 0%       
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Table 26.   Retention Zone-A Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 3% -6% -6% -49% -90% 
2005 -1% -4% -51% -40% -84% 
2006 8% -48% -39% -28% -80% 
2007 -42% -36% -32% -23% -68% 
2008 4% -3% 3% 38% -43% 
2009 11% 11% 84% 28% -53% 
2010 -2% 53% 24% -7% -41% 
2011 55% 19% -1% 11% 11% 
2012 -2% -18% -2% 8%   
2013 -10% 6% 15%     
2014 21% 33%       

Table 27.   Retention Zone-B Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 5% 4% 31% -3% 10% 
2005 -4% -10% -8% 13% 11% 
2006 -8% -29% 23% 38% 57% 
2007 -29% -9% 46% 83% 36% 
2008 9% 34% 117% 100% 97% 
2009 18% 91% 121% 137% 168% 
2010 59% 77% 131% 160% 128% 
2011 37% 74% 136% 117% 80% 
2012 41% 94% 113% 78%   
2013 55% 69% 83%     
2014 44% 51%       

Table 28.   Retention Zone-C Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 19% 34% 43% -3% 9% 
2005 22% 27% 1% 19% 31% 
2006 17% -4% 35% 58% 50% 
2007 -12% 20% 69% 69% 22% 
2008 16% 63% 95% 64% 35% 
2009 28% 72% 60% 41% 55% 
2010 36% 44% 42% 67% 110% 
2011 10% 16% 57% 86% 64% 
2012 -5% 48% 114% 86%   
2013 36% 123% 97%     
2014 92% 89%       
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Table 29.   Retention Zone-D Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 4% 18% 42% -11% 29% 
2005 8% 33% -4% 33% 77% 
2006 18% -7% 51% 98% 18% 
2007 -17% 45% 116% 24% 34% 
2008 31% 107% 43% 51% 31% 
2009 65% 38% 55% 34% 18% 
2010 12% 48% 37% 25% 75% 
2011 24% 28% 38% 75% 75% 
2012 8% 29% 96% 93%   
2013 12% 85% 123%     
2014 51% 101%       

Table 30.   Retention Zone-E Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 153% 183% 195% 75% 187% 
2005 178% 188% 101% 214% 233% 
2006 186% 116% 295% 309% 138% 
2007 116% 300% 390% 184% 154% 
2008 366% 451% 303% 209% 200% 
2009 452% 303% 225% 209% 192% 
2010 268% 243% 227% 213% 261% 
2011 240% 244% 299% 313% 256% 
2012 227% 287% 417% 312%   
2013 269% 407% 423%     
2014 370% 415%       

Table 31.   Retention Zone-Senior Enlisted Relative Error 

  1yr-Forecast 2yr-Forecast 3yr-Forecast 4yr-Forecast 5yr-Forecast 
2004 133% 112% 127% -1% 398% 
2005 121% 90% 22% 173% 116% 
2006 106% 22% 302% 31% 43% 
2007 26% 300% 92% -4% 83% 
2008 392% 161% 89% 98% 101% 
2009 82% 52% 67% 12% 53% 
2010 45% 58% 36% 15% 44% 
2011 114% 91% 108% 60% 87% 
2012 86% 105% 108% 46%   
2013 76% 101% 79%     
2014 128% 124%       
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