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Reliability Analysis of Phased Missions

J. D. Esary and H. Ziehms

Abstract. In a phased mission the relevant system configuration
(block diagram or fault tree) changes during consecutive time periods
(phases). Many systems are required to perform phased missions. A
classic example is a space vehicle.

A reliability analysis for a phased mission encounters complexi-
ties not present with just one phase, but can be transformed into an
analysis of a synthetic single phase case. The trunsformation has a
potential for direct application, or can be used to study various com-
putational algorithms and approximations.

l. Introduction. We consider a system which consists of several

components. The components perform independently of each other, and
each of them may be in one of two states, fumctioning or failed. It is
assumed that no component can be repaired or replaced. Thus each com-
ponent functions continuously in time until failure occurs, after which
it remains failed. Esary and Marshall ([1964] say that a device which
displays this kind of behavior has a life.

The system performs a mission which can be divided into consecu-
tive time periods, or phases. During each phase it has to accomplish a

specified task. Thus the system configuration (a subset of the compo-

Department of Operations Research and Administrative Sciences, Naval
Postgraduate School, Monterey, California 93940. This research was par-
tially supported by the Office of Naval Research (NR 042-300) and the
Stratcgic Systems Project Office (TA 19422).
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nents anditﬁéir fﬁhctional organization which can be represented, for
instance, by a block diagram or fault tree) changes from phase to phase.
As is the case with individual components, o;ly two states of the sys-
tem are recognized, functioning or failed.

A classic example of a phased mission is the voyage of a space ve-
hicle, but many other systems are required to perform phased missions.
To illustrate the ideas and methods of this paper we will often consid-
er the following hypothetical situation.

Example 1.1. A fire départment has three vehicles;

- a multipurpose fire engine (M),
- a tanker (T),
- a light fire truck (L).

The firefighting equipment of a small chemical factory located nearby
consists of;

~ a sprinkler system (S),
- a hydrant (H),
- a special apparatus for fighting chemical fires (F).

The plant safety engineer wonders whether the combined hardware re-
sources of the fire department and the factory are sufficient to fight
a fire in the factory. He consults the fire chief, and together they
conclude:

(1) During the initial stage of a fire either the multipurpose
engine, which carries a small water supply, or the light truck, provid-
ed the sprinkler system works, suffices to evacuate the building.

(2)‘ To contain the fire the factory's special apparatus is needed,
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together with some Aauxiliary capability from the multipurpose engine or
the light truck. Water can be supplied to the special apparatus and
the department’'s units by the hydrant, or if it is out of order, by the
tanker through pumps in the multipurpose engine.

(3) After the fire has been contained it can be controlled either
by the special apparatus or the multipurpose engine. Again, water can
be supplied by the hydrant or by the tanker together with the multipur-
pose engine.

The system has six components and has to perform a three-phased
mission. (]

Given the survival characteristics of the components, the relevant
system configuration in each phase, and the duration of the phases, the
problem is to find the probability that the system will function
throughout the mission, i.e. the mission reliability for the system.

The reliability analysis of a phased mission encounters some com-
plexities which are not present when only one phase is considered. It
is not exact to do a standard analysis of each phase separately, and
then multiply the resulting phase reliabilities together; even if the
age of the components at the beginning of each phase is taken into
account. The implicit assumption involved, that each component is
functioning at the beginning of each phase, is not necessarily true.
The following example illustrates this point.

Example 1.2. A system with two independent components, Cl and

C is designed for a two-phased mission. In order for the system to

2:
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perform the required tasks at least one component has to function
through phase 1 and both components have to function through phase 2.

The block diagram for this system is

¢
. ¢, ¢,
Co
phase | phase 2
for k=1,2, let ﬂkl denote the probability that component ck
functions through phase 1, and ﬂkz denote the conditional probability

that component C functions through phase 2, given that it has func-

k
tioned thrqugh phase 1. The system reliability for phase 1 is

T, =0+ and the system reliability for phase 2, given

e B R R L
that both components have functioned through phase 1, is ﬂz = "12“22'

Multiplying these together would lead to the mission reliability

)

T=qa7n, = (

12 = My + Ty = ") Mo st

This is greater than the correct mission reliability, which is

P=MM2"1"22

since mission success is achieved if, and only if, both components
function through both phases. 0

The multi-phase case is potentially different from the single-
phase case in another respect. With just one phase, if each component

has a life and the system configuration is coherent (represertahle by a

4




block diagram or fault tree using AND and OR gates), then the system
has a life (Esary and Marshall [1964]). 1In the multi-phase case this
is not necessarily true. Even if all components have lives and all
phase configurations are coherent, the system may not have a life. How
this can happen is shown in the next example.

Example 1.2. A two-component system is designed for a two-phase

mission with the phase configurations represented by the block diagram

15—

phase | phase 2
if ﬂkj, ¥k =1,2, j=1,2, are defined as in Example 1.2, then there
is a probability (1 - "11)"21“22 that the system fails in phase 1,

but functions again in phase 2. 1In this sense the system does not have
a life. 0

The possible resu:iection of a system in a later phase does not
present a problem in the reliability analysis of phased missions.
Since failure of the system in even one phase prevents mission success,
it will always be assumed that the life of the system ends at the time
of its first failure. By contrast, the possible resurrection of a com-
ponent would pose a much more serious problem, and is ruled out by the
assumption that all components have lives.

The reliability analysis of phased missions has received attention

in the basic papers of Rubin [1964] and Weisberg and Schmidt [1566].

=
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These authors introduced a method of "cut cancellation" which can be
advantageously used to simplify the sequence of phase configurations
prior to beginning reliability calculations. More recently, a similar
approach is described in the United States Navy reliability manual
NAVORD OF 29304 Revision A [1973], based on the work of C. Persels.

The purpose of this paper is to exhibit a transformation which
reduces any multi-phase mission to an equivalent, synthetic, single-
phase system. Existing algorithms can then be applied to compute mis-
sion reliability. However, a concomitant apparent increate in the
number of components may aggravate capacity problems. The transforma-
tion can also be used to study refined computaticnal algorithms, and to
derive bounds on missicn reliability. Simple instances of its app.ica-
tion are included.

2. Mathematical formulation of 'the phased mission problem. The

system under consideration is assumed to have n components, labeled

Cl""'cn' Each component Ck has a life and hence its time to fail-

ure, or life length, is a well defined, nonnegative random variable TK

The assumption that the components perform independently of each other
formally means that 'rl,...,Tn are independent.
For each component Ck and all times t 2 0, let Xk(t) be a

Beinoulli random variable defined by

1 if component C functions at time t, i.e.

; k
x (&)= 1 T E

0 otherwise.

e il
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The random vari dble Xk(t) is called a performance state indicator
variable, and the stochastic process {xk(t), t 2 0} is the perform-
ance process of the component Ck' The sample paths of the latter have
the properties that:

a) X (t) =0 ® (s) =0, s>t¢t.
(2.1) K g
b) ,Xk(t) =1 & xk(s) =1, 0L£sxt¢t.

Thus a sample path of a performance process is non-increasing and con-

tinuous from the right, 2~z indicated in Figure 2.1.

X (t)=1|
K

x t)=0
K

0 -
Tu t-->

F'igure 2.1. Performance process sample path, component C

k
For each t 2 0, let X(t) = (xl(t),...,xn(t)) be the perform-
ance state indicator vector of the set. of components. Then the sto-
chastic process {X(t), t 2 0} is called the joint performance process
of the components.
The use of performance processes to represent component failure
times is compatible with the use of structure functions to represent

system configurations within phases.
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The system configuration in each of the phases can be de.cribed
by a block diagram or a fault tree for conceptual purposes, or vy a
structure function for mathematical analysis. A structure function is
a binary function ¢ of binary variables XpreoerX, which relatgs the
performance state of the system to the performance states of its ccmpo-
nents; with ¢(§) = ¢(xl,...,xn) =1 if the system functions, and
¢(x) = O otherwise, where X = 1 if component Ck functions, and
x, = 0 otherwise.

It is assumed that each phase configuration of a system is coher-
ent, i.e. can be represented by a block diagram or fault tree using AND

and OR gates. If a configuration is coherent, then its structure func-

tion ¢ has the properties:

a) ¢(x) 2 ¢(y) whenever Xy 2 Yy k=1,...,n.
(2-2) b) ¢(9~) L] ¢(0,..-,0) = 0.

c) 61 =4¢(1,...,1) =1.

M
I THe P
JF T
M| T M M{
H

phose | phase 2 phase 3

Figure 2.2. Block diagram for the mission
of Example 1.1,

e ety i



To illustrafe, i block diagram for the mission described in Exam-

ple 1.1 is shown in Fiqure 2.2, and a fault tree in Fiqure 2.3.

mission
follure
A,
o
S
P ~J
svacuation control
fails falls
no Fescue no no no
equipment water delivery water

i
3 @™ @

containment
fails
t
| 1
no primary no auxiliary no water
dalivery dellvery

®

Figqure 2.3. Fault tree for the mission
of Example 1.1,
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The strucﬁure functions for the system of Examnle l.l1 are;

for phase 1, ¢1 = X, v X Xt

for phase 2, ¢2 - xp(xH(xM \ xL) xMxT),
for phase 3, ¢3 = XpXy v xM(x'r v xH).

The symbol VvV is the arithmetic OR operator, i.e.

1l if x1-1 or x2

0 if xl-o and xz-o,

or for computational purposes, X, v X, =X +X, - XX,

-1’

xlvxz-

-1-(1-x1)(1-x).

2
The phase structure functions can be combined with the component
performance processes to achieve a concise mathematical formulation of
the phased mission problem.
The mission is assumed to be divided into m phases, and to start
at time t=0. For j=1,...,m, the time at which phase Jj ends,

and, except for j = m, the next phase begins is denoted by t The

j°
structure function appropriate for phase j is denoted by ¢j' The
event that the system functions during phase lj can be expressed as
{¢j (x(t j)) = 1}, and the event that the system functions throughout
the mission by {4, (X(t))) = 1,...,¢ (X(t)) = 1}. The mission relia-
bility for the system is the 'robability that this event occurs. Since

¢j (.’f.(tj))' j=1...,m are Bernoulli random variables, this proba-

bility may be expressed compactly as
2.3) =p[TT." 6. (xte)) =13 = eTT." o, (x(t,
( p=plT[ 50, ¢50e) = 1) = BT 0) 6. (x(e,0),

10
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where E dcnotes expectation.

The fact reflected in (2.3), that the sequential operation of
phase configurations resembles to some extent the serial operation of
subsystems, is important in transforming the phased mission problem.

3. Transformation of a multi-phase mission into a single-phase

mission. Complexities in the reliability analysis of phased missions
arise because a component's performance in each phase depends on its
performance in previous phases. The dependence, however, is of a spe-
cial type. A component functions in phase j if, and only if, it has
previously functiored in phase 1, and in phase 2,..., and in phase j-1,
and then functions in phase j. This sequence of requirements suggests
that the performance of a component in phase j can be reoresented by
a series-like structure whose elements represent its performance in
phases 1,...,J.

To be more specific, suppose that component C, 1is replaced by

k

phase j by a system of components C .,...,C performing independ-

kl

ently and in series. In block diagram format, the block

kj'

is replaced in phase j by

) I O oy

In fault tree format, the input event c

X (failure of component Ck)

is replaced in phase j by

11
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Let U 1’ eee, U be independent performance state indicator vari-

k kj
ables for the components ckl""' X3§° with

P( =]l] = P[xk(tl) = 1]

Y1

= wki

(3.1)
= 1) = PIxX (t) = 1[x (t, ) =11, i=2,....3.

Then P[xk(tj) = 1] = P{ = 1}, and so

U1 Ua+ * Uy
st
Kelty) = UpyUpqpe e Upyr

where =>" means "is stochastically equal to" or, liess formally,

has
the same distribution as.” Thus the original component and the substi-
tuted system have, as of the end of phase j, the same reliability.
The preceding observations suggest that a transformation of the
phased mission problem can be accomplished by:
(a) Replacing, in the configuration for phase j, component C

k

K1’ ,ij

perform independently with the probabilities of functioning

by a series system in which the components C

given in (3.1).
(b) Considering the transformed phase configurations to be sub-

systems which operate in series.

The resulting new system, which has (at most) nxm independent compo-

12
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nents, is the equivalent system.

As will be shown later, the ordinary

reliability of the equivalent system is the same as the reliability of

the original system for its phased mission.

As an illustration, the block diagram for the equivalent system

arising out of Ixample 1.1 is shown in Figure 3.1 (cf. the block dia-

gram for the phased mission shown in Figure 2.2).

MM
—1s, L, I—EF 2 -
- —e—{F HR A
transtormed transformed
configuration | configuration 2

F3 H; HH2[HH 3
i ANA
M3
HlﬂHZ H |
transformed

configuration 3

Figure 3.1. Equivalent system for the
mission of Example 1.1.

13
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In the equivalent system the m phase configurations which oper-
ated in sequence become m subsystems which operate in series. How-
ever, these subsystems usually have components in common (cf. Figure
3.1), and do not function independently. Thus the product of the sub-
system reliabilities is in general not equal to the system reliability,
as is illustrated by the following extension of Example 1.2.

Example 3.1. For the mission described in Example 1.2, the equiv-

alent system has the block diagram

cll
- - C" CIZ CZI 22
€21
subsystem | subsystem 2

Letting ﬂkj, k=1,2, j=1,2, be as defined in Example 1.2, and
pkl = “kl' pk2 = "kl“kZ' k =1,2, the subsystem reliabilities are
Py " M1t T T ™y TPt Py T PP’

P = Ty ¥l " 55 = Py ofoa

Their product p = plp2 is, except in trivial cases, less than the
- 3 111 = = i
true system .;eliability p 17111!121:21"22 p12022 which can be found

by reducing th: block diagram to its simplest form

" 2" 2l 22

14
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The true reliability for the equivalent system does agree with the ]

PPN

reliability for the phased mission given in Example 1.2. 0

The transformed version of the phase 3j configuration functions , 1

if the event {¢j (gu)g(z)...u(j)) = 1} occurs, where
g = w0 0, ana g™ - oo 1&"”'Uniun!.)' The equiv-
alent system functions if the eveni: {¢1(g_(1)) = ¢ (U(l) (2)) = L % rere

ceey 0 (Uu) (2)...2(‘“)) = 1} occurs. The reliability of the equiva-

lent system is

. gDy o) .
P12 ¢4 Lyt =1
(3.2)

(1) (2)

L

- zﬂ'ml 4L

It remains to establish that the reiiability of the equivalent
system agrees with the mission reliability for the original system, i.e.

that p as given by (3.2) agrees with p as given by (2.3). This is

done by the following theorem and subsequent remarks.
Theorem 3.1. Let xl....,xm be a non-increasing sequence of
Bernoulli random variables, i.e. X, 2 X_ 2 ... 2X . Let U,,...,U
1 2 m 1l m

be independent Bernoulli random variables with
P[uL =1) = P[x1 = 1],

P{U, =1) =P[X, = 1|X. . =1}, j=2,...,m
(U = 1) = P % =11, 3

3

st
Then xl,...,xm = UI'UIUZ'”"UI 2...U .

Proof. It is only necessary to show for each non-increasing

15



1 « 0 or 1' j-l,...,m. that

bi:nary sequence x, 2 *2 2 ... 2 X X

3

p[xl = xl""'xm = xm] -P[ul = x ,UU. = X_,...,U

17919, 2 o -xm].

1U2 m

=0, ¢«oep x_= 0,

=0 ) m

For the sequence X,

P[xl - 0,...,Xm = 0] = P[Xl = 0] = P[Ul = 0]

- P[Ul CJ O'Uluz L) 0,...,U102...Um = 0]-

'1[ o e o) X -ll

=1 ) m

For the sequence x,

) p[xl-l,...,xm-ll -p[xm- 1|x =1]...

m-1
.o PIX, = LX) = 11P(x, = 1)

= P[Um = 1]...?[02 = llP[Ul = 1]

- P[Ul = 1,0102 = 1,...,0102...Um = 1],

For any other sequence x, =1, j = 1,...,2, x, =0, j = 2+1,...,m,

3 j

P(X, =1,...,X, =1

1 L 'x!.+1 = 0,...,)(‘n = 0]

= P(X = 0,....X, » =0[|X, = 1,...,X =1]

i+l 1

XP[X,‘ = 1,...,x1 = 1]
= p[ =o|xl=11p[x9_=1,...,x = 1]

Xg+1 1

= P[U = 0]P[Uz =1,...,U0, = 1]

L+l 1

-P[Ul=l,...,U = 1 0]

L 'U£+1 =

=1,...

= P[Ul = 1,U102 = 1....,0102...01

""01"'Uzuz+1 = o,...,uluz...qm =0].0

16
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Prom (2.-1) the 'sequence of variables xk(tl) NG .Xk(t-) . which in-

dicate the performance of component C. at the end of each phase, is

k

non-increasing. Thus for Ukl""'ukn constructed according to (3.1),

st
xk(tl) ,Xk(tz) roos ,xk(tm) = Ukl'uklukz' oo 'Ukluk2' . 'Ukm'
Then, since component failure times, and consequently component per-

formance processes, are independent,

(1)0(2). U(m)

~ o~

st (1) (1) (2)
l(tl) '£(t2)'...'£(tm) e 2 02 2

,.0-12

Since the event "success in the phased mission" occurs if
’j (Lt_(tj)) =1, j=1,...,m and the event "functioning of the equiv-

alent system”™ occurs if ¢j (gu)gu)...g(j)

) =1, j =1,...,m, then
these two events are stochastically equivalent. Thus p as given by
(2.3) agrees with p as given by (3.2).

4. Sample applications of the transformation. The transformation

described in Section 3 provides, in principle, a way to adapt existing
programs for computing the reliability of single-phase systems to the
computation of mission reliabilities for phased missions. The neces-
sary inputs are the phase configurations and, phase by phase, the con-
ditional probabilities that the components survive the phase, given

that they have survived the previous phases, i.e. the component condi-

tional phase reliabilities

ey = PIX(E) =11,

= PIx, (t)) = llxk(tj_l) =1), 3=2,....m,

(4.1)

3

17




k=1l,...,n. From (3.1) the conditional phase reliabilities are the

reliabilities of the components in the equivalent system. The program
could be adapted to accomplish steps (a) and (b) of the transformation
internally, and then to find the reliability of the egquivalent system.

Direct implementation of the transformation could be frustrated by
a large number of components in the equivalent system, and in any case
m.ay not be the most efficient approach. However, the transformaticn
may also be used to study refined computational algorithms, and bounds
on mission reliaoility.

For instance, it is possible to study the tempting procedure of
esti'mating nission reliability by computing the reliability of each
phase configuration separately, and then multiplying the results to-
gether. There are at least two choices of component reliabilities to
use in doing this; the -onditional phase reliabilities given in (4.1),

or the component (unconditional) reliabilities through each phase

= ( = i =
(4.2) Py = PIX () =1] = TT1==1 ki’ 3= Leeeoom
k=1,...,n. The first choice leads to estimating mission reliability

by

(4.3) "= TTj g Py g S)

and the second choice to estimating mission reliability by

(4.4) = N r—
p j= th(P (Y j)

‘where in both cases hj’ j=1,...,m, are the reliability functions

18



for the piase configurations. The reliability function of a system

with structure function ¢ is defined by
h(pl'.-oppn) = P[Q(Xl,...,xn) = 1] = E¢(Xl,...,xn),

where xl,...,xn are independent Bernoulli random variables with
P[xk = 1] = pk, k=1,...,n.

The following remark shows that (4.3) gives an optimistic result
(cf. Example 1.2) and that (4.4) gives a conservative result (cf. Exam-
ple 3.1).

Remark 4.1. For w as given by (4.3), p as given by (4.4), and
P as given by (2.3) or (3.2), p&p& w.

Proof. The coherent phase configurations have non-decreasing

(1) (n)

structure functions from (2.2), and u ...y are independent by

construction. Thus

BTT,% ¢,@Mg@ . g <2 T o, w?)

) (3)

so that p & v from (3.2) and (4.3).
The proof that p & p uses standard properties of associated
random variables (Barlow and Proschan (1975]), Chapter 2, or Esary,

Proschan, and Walkup (1967]). Since U ., k=1,...,n, j=1,...,m,

kj
are independent, and thus associated, and ¢j' j=1,...,m, are non-
decreasing, then ¢j (2(1)2(2)...2(3)), j=1,...,m, are associated.

Therefore the inequality

19
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T2, o, (1) ‘”...u"’) <2l iju) REINNE TR

~ ~

holds, so that p & p from (4.4) and (3.2). 0

The transformation can provide a simple rationale for the cut can-
cellation technique of Rubin, Weisberg, and Schmidt. Conversely, cut
cancellation can result in an advantageous simplification of the earli-
er configurations of a phased mission, prior to any implementation of
the transformation.

For instance, the sequence of phase configurations in Example 1.2

turned out ot have the mission reliability p = p12p22' The sequence
of phase configqurations
c —
1 92
phase | phase 2

has the same mission reliability. In Example 1.2 the onlv minimal cut
set in phase 1, {Cl,Cz}, contains the phase 2 minimal cut sets, {Cl}
and {Cz}. Thus {Cl,cz} can be "cancelled" in its phase, leaving a
configuration which can never fail.

The minimal cut sets of a (coherent) phase configuration are the
minimal (in the sense of set inclusion) combinations of components
which by all failing cause the configuration to fail. The configura-
tion can be viewed as a series combination of subconfigurations, each
of which consists of the components in a minimal cut set acting in par-

allel (Barlow and Proschan [1975], Chapter 1, or Birnbaum, Esary, and
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Saunders (1961)).
The rule for cut cancellation is:
A minimal cut set in a phase can be cancelled, i.e.
omitted from the list of minimal cut sets for tijat
phase, if it contains a minimal cut set of a later phase.
A slightly more typical illustration of how cut cancellation
works is given in the following example.

Example 4.1. A mission has the phase configurations

C |
o= F = -
C3 3
phaee | phase 2
The minimal cut sets are: in phase 1 {Cl} {C2,C3}

in phase 2 {Cz} {Cl,Ca}
The phase 1 cut {CZ'C3} contains the phase 2 cut {Cz}, and so can
be cancelled in phase 1. No cancellation results from the fact that
the phase 2 cut {Cl,c3} contains the phase 1 cut {Cl}.

After cancellation the sequence of phase configurations reduces to

S

2 —

phase| phase 2
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It is easy to verify that both secquences lead to the same mission
reliability by comparing their equivalent systems. [J

The use of cut cancellation is justified bv the following remark.

Remark 4.2. Cut cancellation does not affect mission reliability.

Proof. A formal proof of the remark could be given without invok-
ing the transformaticn, but its use provides a way to visualize why the
remark is true, and further, why cut cancellation is not a symmetric
procedure.

Simply note that a minimal cut set of the phase j configuration,
consisting of the components, say Cl""'cz’ corresponds to a paral-

lel and series array

i Cof—-nmmmm- —1G
Carf— C22}— -=--- ---- ©2j
Cil— Sob—--------- Coi

in the equivalent system. This array acts in a series with the similar
arrays corresponding to the other minimal cut sets, whatever their
phase of origin. Then it is apparent that a minimal cut set, which
crntains a minimal cut set from a later phase, can be cancelled with no
eifect. 0

As a final illustration of the cut cancellation technique we can
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consider its effect on the mission described in Example 1.1. The

minimal cut sets for this mission are, before cancellation:

in phase 1 {mM,L} {M,S}
in phase 2 {fF} {u,Mm} {H,T} {M,L}
in phase 3 {F,M} {H,M} {a,T}

The minimal cut sets wfter cancellation are:

in phase 1 {M,s}
in phase 2 {F} {M,L}
in phase 3 {r.M} (u,Mx} {H,T}

A block diagram for the simplified sequence of phase configurations is

shown in Figure 4.1.

sl | L !
[} F :
|}
M in l M E
phase | phase 2

Figure 4.1. Phase configurations for the mission
of Example 1.1 after cut cancellation.

After cancellation, the transformation could be applied to obtain
an equivalent system simpler than the one shown in Figure 3.1. Relia-

bility computations would be simplified accordingly.
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