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The EPR spectrum of the • CH2COO- radical in a single crystal host displays nonadiabatic motional 
effects. A phenomenological theory is suggested, based on the density matrix of the spin system, and a 
technique is described for rapid calculation of simulated spectra. 

INTRODUCTION 

Previous studies of radiation damage of Zn(C2Ha0 2)2 

• 2H20 have revealed the presence of two major radical 
species and one or more unidentified minor species.1- a 

One major species is CHa·, which is produced on ir­
radiation at low temperatures. As the temperature is 
raised, CHao reacts with the undamaged substrate to 
form ·CH2-C02-. The latter radical is rigid at low 
temperatures, but at higher temperatures rotation 
about the C-C bond occurs. As a result, the two 
protons become equivalent and the EPR spectrum col­
lapses from a quartet to a triplet. 

The hyperfine constants and the spectroscopic split­
ting factors have been measured at 133°K. We use the 
coordinate system and tensors given in Ref. 1. 

The rotational motion, which causes the inner pair 
of lines of a quartet to coalesce, has been analyzed1 •2 

using the modified Bloch equations4 to describe transfer 
of electron magnetization between the two inner lines. 
The rate equations 1'-1= 7.2SX 1011 exp( -5000jRT) 
and 1'-1=4.4X101Z exp(-S800jRT) are deduced in 
Refs. 1 and 2, respectively, from this analysis. 

It is not hard to show that the modified Bloch 
equations do not provide an accurate description of 
the effect of rotation on the spin system of • CH2-COZ-' 

One may show from the hyperfine data of Ref. 1 that, 
for most orientations of the static field, Ho, the hyper-

fine fields at the two nuclei differ both in magnitude 
and direction. As a result, the rotation cannot be viewed 
as merely changing the precessional frequency of the 
electron. The nuclei must be included in the dynamical 
equations describing the spin system. One result of a 
more accurate treatment, not predicted by the modi­
fied Bloch equations, is obvious immediately. The 
splitting of the outer lines must decrease as the rota­
tional rate becomes very large, in order that the hyper­
fine tensor in this limit approach the average of the 
two hyperfine tensors. Viewed differently, the two 
hyperfine fields must be averaged both in magnitude 
and in direction. 

We follow the notation of Ref. 5 to define hi (±) as 
the vector of effective magnetic field acting upon pro­
ton £ when the electron spin is (±). At X band the 
outer line splitting in the slow exchange limit is pro­
portional to 

1 hl(-) 1 + 1 h2 ( -) 1 - 1 h1( +)! - ! hz( +) I· 
At the rapid exchange limit, the outer line splitting is 
proportional to 

1 h1 ( - )+h2 ( -) 1 - 1 h1 ( + )+hz( +) I· 
One can expect a more accurate description of the 

motion to describe the dependence of the position of 
the outer lines and, perhaps, to modify the dependence 
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of the splitting of the inner lines on T. We present a 
more accurate analysis here and compare it with ex­
periment. 

THEORY 

Density matrix descriptions of motional effects in 
magnetic systems have been well developed for many 
years.6 These methods provide an exact, or nearly 
exact, treatment of a spin system subject to certain 
driving terms which are supposed to represent the 
motional effects. Since the driving terms are usually 
not derived from first principles, the description of the 
motion is generally phenomenological. 

The density matrix methods have not been applied 
much until lately because of computational difficulties. 
Recently, however, McGinnis and Gordon have shown 
how one may calculate the spectra of a wide variety 
of systems, for which the equations of motion may be 
cast into a certain form.7 

Several workers, most recently Binsch,8 have shown 
how to cast magnetic resonance problems into the 
appropriate form. In general, one utilizes the fact that 
the set of all second-rank tensors associated with a 
Hilbert space constitutes a linear vector space called 
Liouville space. The density matrix is, thus, a vector 
in Liouville space, as is the Hamiltonian. The idea of 
using Liouville space seems to have been first pro­
posed by Fano.9 The equation of motion of the density 
matrix in Liouville space proves to be in the appropri­
ate form to apply the method of Ref. 7. 

We have an electronic spin interacting with two nu­
clei. The equation of motion of the spin degrees of 
freedom is6 

TABLE 1. Shift in outer line splitting (A 1+A 2) in gauss for 
various field directions. Both experimental and calculated values 
are given. Direction cosines to the coordinate system of Ref. 1 
are given. 

Exptl Calc 
a* b c shift shift 

-1 0 0 2.2 1. 94 
0 0 1 0.2 0.87 
0 0 2.7 2.09 
0.500 0 0.866 4.5 5.15 
0.707 0 0.707 4.5 4.70 
0.866 0 0.500 2.6 2.93 
0.966 0 0.259 1.6 1.80 

-0.707 -0.354 0.612 4.6 4.21 
-0.707 0.354 0.612 1.9 1.85 
-0.500 -0.612 0.612 4.3 4.51 
-0.500 0.612 0.612 2.5 2.67 

0 -0.707 0.707 3.9 3.26 
0 0.707 0.707 5.7 6.55 

-0.569 -0.613 0.548 4.0 4.55 
-0.569 0.613 0.548 2.5 2.14 

where ~ is an 8X8 matrix. We choose the order of the 
basis functions labeling the rows and columns of (I, :re, 
etc., to be ala:Jll!.I, aI/3:Jll!.I, {31a2a.l, {3I/32a." ala2/3.z, aI/32/3el, 
etc. :re includes both the interaction with the static 
field and that with the rf field. The second term, which 
is discussed in Ref. 6, represents the motion. R is a 
matrix which describes the effect of the motion on the 
various basis functions. 

In our case R leaves the electronic degree of freedom 
alone, but, for instance, replaces aI/32 by (31a2. The life­
time of the system in one of its two sites is given by T. 

Our definition differs from that of Ref. 4 by a factor 
of 2. The third term is meant to be schematic only. 
n is a relaxation operator, the exact nature of which 
we define later. 

We separate the Hamiltonian into the static part, 
:reo, containing the Zeeman and hyperfine parts, and 

lC1=tg{3H18+exp( -iwt) 

and transform into a coordinate system rotating at 
frequency w. We choose the electronic Zeeman term 
diagonal, equal to g{3Hom.=wom •. Then 

v= -i[(:reo+ (u;- wo)8z ), ~J+T-l(R(lR- ~) 

+n(l-!ig{3H1[8+, (lJ. (2) 

Now, notice that R is diagonal in electron spin states. 
If we ignore matrix elements of the hyperfine inter­
action which are off-diagonal in electron spin variables, 
:reo is also diagonal in electron spin states. We, there­
fore, try to partition (I and see if we can solve only a 
part of the matrix. Write 

(I=(~+ + ~+ -), 
~-+ ~--

(3) 

where ~+ +, ~+ _, etc., are 4X4. R takes the form 

(~ ~) R= (4) 
0 

and :reo the form 

( :re"Hc.+Hw.-c)1 0 

lCo= 0 - :reH+:re. )- (5) 

-t(wo-w)l 

3CH is the hyperfine part of the Hamiltonian, and :ren 

the nuclear Zeeman term. The spectrum is obtained as 

I(w)= Re[Tr(~8+)J= Re[Tr(~+_)], (6) 
so we look for an equation of motion for ~+ _0 Substitu-
tion of Eqs. (3)-(5) into Eq. (2) yields 

f!+ -= -i[3CH, ~+ -J+-i[lCn , ~+ -J-i(wo-w)~+-

+T-l(Ro~+ ~o-~+ _)-T2-1~+_ 

-iig{3H1((I+ +- (1- -). (7) 
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FIG. 1. Simulated (solid line) and experimental (broken line) 
spectra taken with static field along the direction (0.866, 0, 
0.500). Spectrum a: -70°C, T=0.20XlO--6 sec; Spectrum b: 
-31°C, T=0.0334XlO-s sec; Spectrum c: 77°C, T=1.59X10-9 

sec. T2 for all simulated spectra is 0.048XlO-s sec, which cor­
responds to a Lorentzian peak-to-peak linewidth of 1.4 G. The 
experimental spectra have a peak-to-peak linewidth of about 2.9 G. 
T2-1 and T-1 are in angular frequency. 

The first bracket on the right-hand side is an anti­
commutator. The fifth term comes from the relaxation 
operator and assumes that all of !I+ _ decays away 
uniformly with a transverse relaxation time, T2• The 
last term may be simplified by using the high-temper­
ature approximation (6), which reduces it to 

-!i(g(3HI)(g(3Ho/kT) 1. 

Equation (7) may be written in Liouville space by 
writing !I+ _ as a vector, column wise. In other words, 
one constructs the column vector P.= {pu, P21, Pal, P41, 
Pl2, P22, "', P44}. Equation (7) takes the form 

dp./dt= -iHPv-Iou-il(wo-w)p.+Rp.. (8) 

H contains the first two terms of Eq. (7) and R the 
fourth and fifth terms. Io collects the constants in the 
rf term and u is the four-dimensional unit matrix 
written as a vector. 

The slow passage spectrum is obtained by setting 
dp./dt=O, or 

[-i(wo-w)1-iH+R]Pv-i1ou=O. (9) 

The obvious way to solve this inhomogeneous equation 
is inversion of the operator in the first term. This is 

very time consuming, though, because it must be done 
for many values of w. The technique of Ref. 7 avoids 
this problem. Rearrange the equation to 

( -iwol-iH+R)p.+iwlp.=ilou. 

The operator in the first term does not depend on w 
and'may be diagonalized once and for all. 

Suppose that 

T-I( -iwol-iH+R)T=A (10) 

and A is diagonal. Then 

A(T-I)p.+iwl(T-l)p.=iloT-1u, (11) 

p.(w)=iloT(A+iwl)-lT-lU. (12) 

Since T and A are fixed and the matrix to be inverted 
is diagonal, P.(w) may be evaluated very rapidly. 

RESULTS 

We have coded a routine to perform the calculation 
described by Eq. (12). The heart of such a routine is 
obviously the diagonalization routine. We have used 
McGinnis and Gordon's routine called ALLMAT, which 
they describe in Ref. 7. Coded for execution on a 
UNIVAC 1107, the calculation of one spectrum of 
1000 points takes about 4S sec. 
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FIG. 2. Calculated (broken line) and experimental (solid 
line) outer line separations in gauss vs temperature. Static field 
orientations are: a: (-0.5, -0.612,0.612); b: (-0.707, -0.354, 
0.612); c: (-1, 0, 0); d: (0.966, 0, 0.259); e: (0.866, 0, 0.500). 
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We give in Table I the shifts of outer line splitting 
(A 1+A 2) in gauss for various field orientations. The 
shifts are the differences between the splittings meas­
ured at temperatures at which the temperature de­
pendence is nearly level. We discuss below the particu­
lar difficulty at low temperature. Figure 1 contains a 
comparison of calculated line shape with experimental 
spectra at three temperatures, one to represent each 
extreme of rotation rate, and one at an intermediate 
rate. The simulated line shapes are best described as 
Lorentzian, whereas the experimental spectra are more 
Gaussian in nature. We have adjusted the linewidth 
in the simulated spectra to bring the line shapes into 
rough agreement. The outer line splitting depends upon 
temperature in a sigmoid fashion. We are able to 
obtain an Arrhenius rate equation r-1= S.28±O.13X 
1011 exp( -4.63±0.18 kcal/RT) based on outer line 
splitting. The error limits are based on standard devi­
ations obtained by least-squares fitting of fractional 
shift data from 11 orientations. A temperature was 
connected with the rotational time that gave the cor­
rect fraction of the total shifts of Table 1. The rate 
equation based on line separation data should be more 
accurate than one based on fitting the shapes of the 
broadened center lines, since such an analysis depends 
on the spectral linewidth in the absence of motion, 
and on a comparison of Lorentzian with Gaussian 
lines. A comparison of this kind interferes with obtain­
ing a good fit to the line shapes of the center lines in 
either our treatment or a modified Bloch equation 
treatment. 

We display in Fig. 2 a few determinations of outer 
line separation vs temperature. As one sees, there is, 
at some angles, a weak additional dependence of the 
splitting on temperature at lower temperatures. As a 
result it is hard to decide just what values of hyperfine 
components one should use in calculating motional 
effects. The tensors which we used, as reported in 
Ref. 1, were based on data taken at -140°C. This 

presumably accounts for the fact that our calculated 
separations tend, at some angles, to be in error by 
about the same amount at high and low temperatures. 
Our calculations do not reproduce the changes at low 
temperature. The changes may be misleading, that is, 
due to an overlapping line from another radical species, 
or may be authentic and due to small changes in ge­
ometry or crystal structure. We cannot, however, fit 
them to any particular distortion. 

We conclude that the temperature dependence of 
the EPR spectrum of . CH2COO- may be described 
satisfactorily by a simple hopping model, in which the 
correlation time has an Arrhenius-like temperature de­
pendence, if nonadiabatic effects in the motion of the 
spin system are included in the treatment. 
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