
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

2003

Requirements-document-based prototyping of

CARA software

Luqi

Springer-Verlag

Int J Softw Tools Technol Transfer (2004) 5: 370–390

http://hdl.handle.net/10945/51488

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/81223263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Int J Softw Tools Technol Transfer (2004) 5: 370–390 / Digital Object Identifier (DOI) 10.1007/s10009-003-0116-7

Requirements-document-basedprototypingof CARA1

software

Luqi1, Z. Guan1, V. Berzins1, L. Zhang1, D. Floodeen1, V. Coskun2, J. Puett1, M. Brown1

1Software Engineering Automation Center, Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943, USA
e-mail: {luqi,zguan,berzins,lzhang,dlfloode,jfpuett,mlbrown}@nps.navy.mil
2Turkish Naval Academy, Istanbul, Turkey
e-mail: vedatcoskun@dho.edu.tr

Published online: 19 December 2003 – Springer-Verlag 2003

Abstract. Computer-aided prototyping evaluates and
refines software requirements by defining requirements
specifications, designing underlying compositional archi-
tecture, doing restricted real-time scheduling, and con-
structing a prototype by using reusable executable soft-
ware components. This paper presents a case study of
the Computer Assisted Resuscitation Algorithm (CARA)
software for a casualty intravenous fluid infusion pump
and explores the effectiveness of performing rapid pro-
totyping with parallel conceptualization to expose re-
quirements issues. Using a suite of prototyping tools,
five different design model alternatives are generated
based on the analysis of customer requirements docu-
ments. Further comparison is conducted with specific
focus on a sample of comparative criteria: simplicity of
design, safety aspects, requirements coverage, and en-
abling architecture. The case study demonstrates the
usefulness of comparative rapid prototyping for reveal-
ing the omissions and discrepancies in the requirements
document. The study also illustrates the efficiency of
creating/modifying parallel models and reason for their
complexity by using the tool suite. Additional enhance-
ments for the prototyping suite are highlighted.

Keywords: Rapid prototyping – Specification – Soft-
ware tools – Requirements analysis – Parallel design

1 Introduction

This paper demonstrates how computer-aided prototyp-
ing from multiple viewpoints can clarify requirements for
safety-critical embedded systems. The case study pre-
sented in this paper compares five different designs for the
control software of a sophisticated medical device. All five

1 Computer Assisted Resuscitation Algorithm

designs were constructed from the same set of customer-
supplied requirements documentation. We found that
parallel redundancy in the prototyping and requirements
analysis processes improved the quality of the results:
different teams found different requirements defects and
later cross comparisons identified defects that were not
found by the individual teams.
The requirements for the Life Support for Trauma and

Transport (LSTAT) system were given by a requirements
definition document written using natural language ex-
pression [29–31]. This is a real system, and the require-
ments documents were written by domain experts who
were independent of the prototyping teams. The purpose
of the LSTAT stretcher is to sustain trauma patients in
transit to a medical facility until they can receive emer-
gency medical treatment. The LSTAT includes multiple
blood pressure sensors and an intravenous (IV) infusion
pump. The embedded Computer Assisted Resuscitation
Algorithm (CARA) software automates the delivery of IV
fluids to the trauma patient as needed by controlling the
infusion pump based on the patient’s blood pressure read-
ings [1]. The algorithm calculates the drive voltage for
the infusion pump. This determines the volume and rate
of IV fluid administered. Proper operation of the CARA
software should enable safe transport of critically injured
patients without the need for continuous monitoring by
medical professionals.
The situation and context of using CARA is complex

and varied in terms of the level of the patient’s blood
pressure and the patient’s different body effects after re-
ceiving IV fluid. The drive voltage used to control the IV
fluid pump needs to be calculated dynamically. The re-
quirements document gives detailed descriptions of the
real-time constraints for the application process of the
rescue strategies, which are crucial for satisfying CARA’s
inherent safety requirements. A delay in delivery or an
improper amount of IV fluid to the patient can result in
serious injury or loss of life.

https://www.researchgate.net/publication/220643549_Formal_Specifications_and_Analysis_of_the_Computer_Assisted_Resuscitation_Algorithm_CARA_Infusion_Pump_Control_System?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==

Luqi et al.: Requirements-document-based prototyping of CARA software 371

CARA software is not only a control system but also
an information system. It interacts with outside sensors
and records all procedure data into a database for future
reference. Also, to help the physician track the resusci-
tation process, CARA displays patient vital signs and
system status information on a monitor. This requires
seamless connections between the outside data monitor-
ing, the inside software decision process, and the system
hardware controlling the IV pump. To ensure that the
CARA software satisfies its safety criteria, several specific
requirements must be met:

(1) The monitoring and sampling of a patient’s blood
pressure should be accomplished in the required time
to prevent losing data necessary for proper IV fluid
control.

(2) The CARA software must choose between automatic
or manual control of the infusion pump as determined
by changes in a patient’s blood pressure value and
alert the physician to allow for timely execution of
appropriate rescue efforts.

(3) The CARA software must be able to rapidly adjust
the infusion pump’s control values to maximize res-
cue effectiveness.

The design and implementation of the CARA soft-
ware should fully consider the logical relationship be-
tween the control software, the peripheral hardware,
the external inputs from the physician, and the ever-
changing condition of the patient. Prototyping, as an
economic way to build scale models and prototype ver-
sions of most systems, has proven an efficient and ef-
fective methodology for evaluation of proposed sys-
tems when acceptance by the customer or feasibility
of development is in doubt [5, 12, 18, 27]. Computer-
aided prototyping can build a scaled-down version of
the software system and ensure that the requirements
are satisfied before extensive effort is put into detailed
implementation [9, 10, 14, 28].
Since the user requirements document describes the

needs and boundaries of the software product and serves
as a contractual agreement between the client and the
developer, the completeness and accuracy of the user re-
quirements document are essential for the success of the
developed software. Early detection and correction of the
faults in the user requirements document are the keys
to keeping development costs down and building correct,
reliable, and safe software. Past research shows that per-
forming the operation in parallel can increase the design
or inspection efficiency and improve the quality of the
final product. Dual development uses two independent
teams throughout the development, thereby improving
the quality of the product at the end of each develop-
ment step [25]. N-version programming uses the com-
bined efforts of N independent designs and implementa-
tions to produce fault-tolerant code [2]. N-Fold inspection
uses N independent teams with a single central “modera-

tor” to inspect the user requirements for improving their
reliability [11, 24, 26].
We used the Computer-Aided Prototyping System for

Personal Computer (CAPS-PC) tool suite [7, 8] to proto-
type the CARA software. These tools are the result of our
latest research on prototyping languages, real-time sys-
tems modeling and analysis, automatic code generation
techniques, and rapid prototyping environments [20, 22].
The CAPS-PC tool suite helps create, modify, and main-
tain the requirements specification and architecture de-
scription documentation based on knowledge mapped
from informal natural language descriptions. By building
prototypes, we can check the reliability of the software at-
tributes and monitor the characteristics of the software
according to changes in the context environment. We can
also explore the characteristics of high confidence embed-
ded systems during the efforts of building and detailing
the prototype models. We tested our tools and new user
interface and explored the degree to which our design
notations and models express the range of issues typical
of high confidence embedded systems. A particular focus
was to identify issues difficult to express in our current
models and representations.
In prototyping the CARA software based on the re-

quirements document, we explored five design alterna-
tives by professional prototyping teams and analyzed
the effectiveness of parallel conceptualization efforts to
expose potential requirements issues. The teams used
individual assumptions and interpretations of the re-
quirements documents in the design alternatives. The
effort demonstrated the effectiveness and efficiency of
comparison and discussion of these different designs and
viewpoints to find and fix faults in the requirements
document.

2 Language and tools for analyzing, modeling,
and prototyping complex systems

Department of Defense software systems fall somewhere
within a continuous spectrum between pure information
systems and pure control systems. All of these systems
support the warfighter in one way or another, whether
they are domestic warehouse inventory tracking systems
or the embedded software in a smart projectile on the bat-
tlefield. These systems can be distributed, heterogeneous,
and network-based, consisting of a set of components
running on different platforms and working together via
multiple communication links and protocols. These sys-
tems have many safety- and security-critical aspects and
an associated need for high confidence [3, 22]. Hence we
must develop models and languages to capture these re-
quirements and attributes. We built upon our experience
with specification and prototyping languages and refined
the Prototype System Description Language (PSDL) for
modeling and prototyping complex systems [13, 19, 22].
This section briefly summarizes our notations for high

https://www.researchgate.net/publication/3903220_Rapid_prototyping_of_computer_systems_experiences_and_lessons?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903230_Universal_object-oriented_modeling_for_rapid_prototyping_of_embedded_electronic_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/228983775_Design_for_Independent_Composition_and_Evaluation_of_High-Confidence_Embedded_Software_Systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220403791_An_Experimental_Study_of_Fault_Detection_In_User_Requirements_Documents?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220427083_N-Fold_Inspection_A_Requirements_Analysis_Technique?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220376222_Specifications_in_software_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3187562_Compositional_Semantics_of_a_Real-Time_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3186979_A_Prototyping_Language_for_Real-time_Software?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226101191_The_performance_of_the_N-fold_requirement_inspection_method?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226554888_Forward_Importance_of_software_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3965873_Rapid_prototyping_of_transition_management_code_for_reconfigurable_control_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3854846_Combining_Virtual_Benchmarking_with_Rapid_System_Prototyping_For_Real-Time_Embedded_Multiprocessor_Signal_Processing_System_Codesign?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220794907_A_Methodology_for_Architecture-Oriented_Rapid_Prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3188553_The_N-Version_Approach_to_Fault-Tolerant_Software?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/282288320_An_introduction_to_Rapid_System_Prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==

372 Luqi et al.: Requirements-document-based prototyping of CARA software

confidence embedded systems, which we used for the
CARA prototyping effort.
Formally, the external view computational model ζ′

can be represented as follows:

ζ′ = (G,H),

where G is a functional emergent property vector that
represents the functional requirements of an embed-
ded system and H denotes a nonfunctional emergent
property vector that reveals the nonfunctional require-
ments related to the high confidence of an embedded
system [22]. By mapping nonfunctional and functional
emergent properties presented in an external view of
a model into local constraints, the internal view compu-
tational model can be derived. It is formally described as
a 6-tuple:

ζ = (S,E,C,D, F1, F2)

where:

S = {si|i ∈ [1, n]}, si is the component system, and
n is the number of component systems;
E = {ejk|j, k ∈ [1, n]}, ejk is the set of interactions
from component system sj to component system sk;
C = {ci|i ∈ [1, n]}, c

p
i is the p-th constraint for si;

D = {djk|j, k ∈ [1, n]}, d
q
jk is the q-th constraint for

ejk;
C = F1(G,H); D = F2(G,H), F1 and F2 are two
maps that map emergent properties into local con-
straint sets on component systems and local con-
straint sets on interactions between component sys-
tems, respectively.

The main differences between the current and previ-
ous versions of PSDL are that constraints can be asso-
ciated with interactions as well as with subsystems and
that the open syntax for expressing an unbounded set
of properties of the structural elements of the model has
been given additional standard interpretations for ex-
pressing additional kinds of constraints.

Fig. 1. The PSDL model for CARA system requirements

2.1 Basic computation graph model

Pictorially, we can represent each si as a vertex of a com-
putation graph and each eij as a set of directed edges from
si to sj in the graph [13, 16, 17, 19]. For example, the sys-
tem shown in Fig. 1 corresponds to a system with

S = {monitor_bp,bp_corroboration,pump_control}

and

E = {{last_cuff_value, bp_source, bp_ready},

{corrob_ok}, {control_mode}}.

The component monitor_bp can be associated with
the set of constraints {Maximum Execution Time = 100 ms,
PERIOD = 500 ms}, and the edge last_cuff_value is as-
sociated with the constraints {LATENCY = 500 ms}. The
trigger condition of the component bp_corrobration is
BY SOME bp_ready. That component generates output
control_mode to the pump_control only under the con-
dition corrob_ok = true.
To support the automated generation of glue and

wrapper code, PSDL provides the capability to capture
the attributes of target network systems. For example,
Fig. 2 shows a PSDL model of a target network connect-
ing three host machines.

2.2 Hierarchical computation graph model

The hierarchical graph model extends the basic computa-
tion graph model to support abstraction. A vertex si in
a hierarchical computation graphmay in turn be modeled
in more detail as a subsystem ζ = (S,E,C,D, F1, F2),
resulting in a hierarchical structure of nested computa-
tion graphs. For example, the monitor_bp vertex in Fig. 1
may be modeled as the graph shown in Fig. 3. Note that
the children vertices (monitor_cuff, monitor_pulse,
monitor_a_line, and compare_bp) inherit the con-
straints associated with the parent vertex (monitor_bp).

https://www.researchgate.net/publication/3499698_Handling_timing_constraints_in_rapid_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3187562_Compositional_Semantics_of_a_Real-Time_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3186979_A_Prototyping_Language_for_Real-time_Software?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220687318_Real-Time_Constraints_in_a_Rapid_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==

Luqi et al.: Requirements-document-based prototyping of CARA software 373

Fig. 2. The PSDL model for system network hardware

Fig. 3. Decomposition for the monitor_bp vertex

One can always represent a given static hierarchical com-
putation graph by an equivalent basic static graph; how-
ever, care must be taken to ensure that such transform-
ation does not introduce inconsistencies into the resultant
constraints.

3 Tools for rapid automated prototyping of
complex systems (CAPS-PC)

CAPS-PC is the result of our latest effort in a series of re-
search on prototyping languages, real-time systems mod-
eling and analysis, automatic code generation techniques,
and rapid prototyping environments [7, 8, 20–23]. These
tools provide a PC-based computer-aided environment to
support the modeling, analysis, and prototyping of sys-
tems under development. The interface of the CAPS-PC
is shown in Fig. 4.
The tool suite provides a systemmodel editor for users

to create and modify their system models defined by the
PSDL prototyping language [19, 22], a translator to check
the syntax/semantics of the system model and to gen-

erate glue and wrapper codes to realize the design for
the target system architecture, and a scheduler to ana-
lyze the timing constraints and to generate code to real-
ize these constraints in the target architecture [17]. The
tool interface also provides menus for users to manage
their projects and compile source code into an executable
prototype [7, 8].
The knowledge mapping from informal natural lan-

guage narration to formal language specification may re-
sult in some misunderstanding and incompleteness of the
requirements documents. The graphical interface of the
tool suite provides the user a simplified way of explicitly
defining the model attributes to meet the requirements
specifications.
The hierarchical design of models helps to organize the

requirements specification in a way that can be tracked
throughout the system’s development according to ab-
straction level and responsible functionality. The clear
and precise diagrams accompanying the documentation
make it easy for a designer to check the consistency with
the text. Each operator defined in the diagram refers to
the requirement item number in narrative documents,

https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220376222_Specifications_in_software_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/4020477_Comparative_rapid_prototyping_A_case_study?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3186979_A_Prototyping_Language_for_Real-time_Software?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220687318_Real-Time_Constraints_in_a_Rapid_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==

374 Luqi et al.: Requirements-document-based prototyping of CARA software

Fig. 4. Interface of the CAPS-PC environment

which makes it easy to find cross references in the whole
design model.
Several supporting documents can be built by the de-

signers or generated automatically by using CAPS-PC.
As the central chain of development documentation,
these documents drive the specification, design, imple-
mentation, and even testing of the system development.
The consistency maintained by the tool suite between
these documents provides a solid baseline throughout the
development effort. The documentation generation func-
tion of the tool suite makes it easy for the customer, user,
and sponsor to understand, handle, and review the sys-
tem during development.
First, the specification of requirements can be gen-

erated with completeness and consistency checking, ac-
cording to the system functionalities and constraints. The
graphical design process maintains the syntax of the re-
quirements specification, and a further translation pro-
cess ensures the semantic consistency of the specification
document.
Second, the narrative description of a designed model

in natural language can be generated based on the defin-
ition of model functionalities and constraints, which
tell the customers and users what the system will and

will not do. For example, for CARA’s periodic blood
pressure corroboration, the model can generate the fol-
lowing narration: “if VALID_BP is CUFF_BP, and if
MEAN_BP > 90, the CUFF_BP will get data from
CUFF_MONITOR every 10 minutes”.
Third, by using technical terminology to describe the

system’s structure, data and function can be generated
based on the model specification. Information about in-
put, such as where data come from and how they are for-
matted; output, such as where data are sent and how they
are formatted; general functional characteristics, such as
periodic execution or sporadic execution; performance
constraints, such as minimum execution time; and spe-
cific fault-handling approaches can be generated and de-
scribed in the design documentation.
Fourth, during the generation of prototype code, the

tool suite can generate partial implementation documen-
tation based on the specification structure. The name,
type, and purpose of major data structures and variables,
simple description of logic flow, expected input, and pos-
sible output can be derived from the information defined
in the model.
Furthermore, CAPS-PC canmaintain the version con-

trol documentation for requirements specifications and

Luqi et al.: Requirements-document-based prototyping of CARA software 375

model design. If any changes are made to the require-
ments during the remaining phases of development, the
changes can be tracked from the requirements document
through the design process and all the way to the test
procedures.
When we were designing the CARA software, the doc-

umentation generated or maintained by our tools greatly
enhanced the effectiveness of the design procedure and
the communication between the model designer, user,
and reviewer. The specification documents were used by
the tool suite to interlink the individual tools. The struc-
tured narrative descriptions of system design models are
used for detailed discussions or for system reviews.
The use of our tool suite to prototype the CARA soft-

ware based on its requirements documents showed that
the development process and the communication between
customer and the software developer can be improved by
the integration of software development documentation
and the enhanced information representation. Further re-
search on key issues in software development driven by
documentation, such as specification-basedmodel consol-
idation, would make the development process even more
efficient.

4 Parallel designs of the infusion pump control
software

To find defects in the requirements, we formed five de-
sign teams and used PSDL and CAPS-PC to analyze the
requirements of the Infusion Pump Computer Assisted

Fig. 5. Top level design of model 1

Resuscitation Algorithm (CARA) software. The require-
ments for the CARA system total ten pages, with almost
70 main points listed. The descriptions of the require-
ments were listed logically based on the timing sequence
of the infusion pump. For each of the points, the docu-
ment gives a detailed description of event occurrence con-
ditions and subsequent event effects. All of these require-
ments were depicted structurally and detailed in natural
language.
In summary, the main objectives of the CARA soft-

ware include:

(1) monitoring patients’ blood pressure,
(2) controlling a high-output infusion pump for patient
resuscitation,

(3) providing feedback on patient status to the physician,
(4) recording all information monitored by the system,
(5) activating an alarm for emergency situations.

All the requirements can be catalogued as two types –
functional requirements and quality requirements. Func-
tional requirements describe the expected action based on
the satisfaction of identified conditions. The requirements
documents also give some multicase descriptions for the
conditional actions. Quality requirements describe the
system properties constraints that will be satisfied during
the execution of the action. The constraints include both
control and timing constraints, some of which are safety
constraints on the operation of the infusion pump. Con-
trol constraints tell the designer the required conditions
or possibility of action occurrence. Timing constraints re-

376 Luqi et al.: Requirements-document-based prototyping of CARA software

strict the time of the described event. These requirements
can be treated also as case style descriptions.
To fully understand, analyze, and verify the require-

ments definition document, which contains a record of the
requirements in the customer’s terms, we set up five 2- to
3-person teams to prototype the CARA system accord-
ing to their own interpretation of the requirements. The
whole group held weekly meetings, highlighting and an-
swering several questions during the intensive discussions
among the five teams. The following subsections present
the five design models for the LSTAT/CARA system.
All five design teams separated the CARA control

subsystem from the physical data hardware sensors sub-
system in their models. In each design, the control model
can be decomposed into a blood pressure data compon-
ent and an infusion pump control component. Some de-
signs, such as models 3 and 4, specified the time con-
straints in more detail than others. Some designs, such
as models 1 and 2, built extra quality assurance mod-
ules with detailed consideration of safety issues of the
CARA system. Models 3 and 5 separated the control sub-
system from the information subsystem. This allowed the
designers to focus on issues specific to each subsystem.
Models 4 and 5 incorporated several infrastructure tests
to verify the completeness of the CARA requirements and
the fault tolerance of the CARA system. They demon-

Fig. 6. Management module of model 1

strate the behavior of the system under simulated failure
conditions.
We explored the effectiveness of parallel conceptual-

ization efforts to expose potential requirements issues.
Since the initial requirements document is inconsistent
and inherently incomplete, each team made its own as-
sumptions concerning requirement functions and system
performance, which were embodied into their design
models. The use of multiple independent teams to per-
form the inspection of the requirements revealed more
requirements faults. Our parallel prototyping process
demonstrated the effectiveness and efficiency of com-
parison and discussion of different designs and view-
points in finding and fixing faults in the requirements
specifications.

4.1 Design model 1

In its most abstract form, model 1 consists of just three
main components: The LSTAT stretcher is assumed to
provide the majority of patient-related information (e.g.,
blood pressures), the infusion pump is the main item for
control, and the CARA software system is the system
driving the infusion pump based on data received from
the LSTAT, as indicated in Fig. 5.

Luqi et al.: Requirements-document-based prototyping of CARA software 377

This design model presents the most comprehensive
consideration of the safety issues and deals directly with
the potential confusion in control modes between man-
ual control and autocontrol and the potential confusion in
acquiring blood pressure sensor data.
The manual_mode_interlock operator in the decom-

position of the Management_module shown in Fig. 6
is responsible for returning the system to a manual
mode in case of any component failure. Feeding the
manual_mode_interlock is a processor watchdog imple-
mented on a separate processor. The Watchdog will sense
any failure of the main processor and alert the operator
via the display.
Figure 7 shows the pump_control module, which is

the major safety critical module in the design. It is re-
sponsible for resolving an accurate blood pressure reading
from the various input sources and determining the cor-
rect input to the pump when the system is in autocontrol
mode. This process collects and resolves three types of
blood pressure data: cuff, arterial line, and pulse wave.
Once resolved, the correct blood pressure is used to calcu-
late the pump drive voltage. To overcome the possibility
of data confusion and ensure continuous voltage calcula-
tion, the team chose triple modular redundancy (TMR)
to design the pump control module. The requirements

Fig. 7. The pump_control module of model 1

document did not specifically call for this safety architec-
ture; however, the safety-critical nature of the CARA re-
quires some form of redundancy to ensure that the proper
commands are sent to the pump. The TMR architecture
uses three concurrent modules performing similar func-
tions and producing similar output but using different
internal algorithms in their calculations. Such architec-
ture is designed to address potential software faults. If im-
plemented on separate hardware, the architecture could
address some hardware faults as well.

4.2 Design model 2

Considering the different sources of blood pressure in-
formation, the top level design of model 2 includes the
CARA, pump, LSTAT, patient, and pressure_gauge, as
shown in Fig. 8. The pressure_gauge module in Fig. 9
consists of three atomic operators, each responsible for
monitoring one of the three blood pressure sources. For
each blood pressure source, the gauge_impulse signal
is sent back to equipment that is attached to the pa-
tient to trigger additional data collection. The model
embodies control of the blood pressure cuff inflation as
inflate_control. Once the pressure_gauge module
gets the signal from CARA, it starts the process of in-

378 Luqi et al.: Requirements-document-based prototyping of CARA software

Fig. 8. Top level design of model 2

Fig. 9. The Pressure_Gauge module of model 2

flating the cuff to obtain the patient’s blood pressure, as
shown in Figs. 8 and 9.
The CARA module is the central part of the entire

system. It can be subdivided into a monitor module,
a control algorithm module, a display and alarm pro-
cess module, and a log module. The monitor module
monitors the signal from the pump and LSTAT to pro-
vide the CARA with pump, LSTAT, and blood pressure
information.
The control algorithm module is the main part of

CARA. It is responsible for calculating the flow rate and
the cumulative volume of the pump according to the sig-
nal of Back_EMF (electromotive force) and providing the
voltage to control the pump flow rate. The algorithm also

performs several other functions on the monitored sig-
nals. The detailed process is included in the two lower
layers. The display and alarm process module design in
Fig. 10 can process an alarm and display a corresponding
message based on the input data stream. Separating the
information display and log record helps generate a well-
structured rescue history and an easily retrievable data
repository.

4.3 Design model 3

In model 3, the CARA software is split into two main sub-
systems, which work together with the LSTAT_patient
and Pump, as shown in Fig. 11. CARA is not only an em-
bedded control system but also an information system.
These two essential characteristics result in the separa-
tion and encapsulation of blood pressure rescue control
and information communication. The CARA_algorithm
operator encapsulates most of the operational control
and computation of blood pressure data and pump
drive voltage. The CARA_interaction operator is re-
sponsible for information display control, alarm signal
management, resuscitation file recording, and operator
override handling. This isolation of information subsys-
tem and control subsystem provides a good underly-
ing condition for the designer to focus on different is-
sues for different subsystems. Designing and prototyping
the CARA_algorithm requires attention to source data
control and time constraints definition. Comparatively
more effort is spent on information display, completeness
checking, and the interface design for the information rep-
resentation subsystem.
When calculating the infusion pump drive voltage, se-

lection of an appropriate source of blood pressure data
for corroboration is one of the most important aspects
of the CARA design. Instead of using three redundancy

Luqi et al.: Requirements-document-based prototyping of CARA software 379

Fig. 10. Display and Alarm Process module of model 2

Fig. 11. Top level design of model 3

modules to calculate the data, this design model em-
ploys two preprocess modules to validate and rank the
priority of the blood pressure. The first preprocess mod-
ule acts as the valve for evaluation of the original blood
pressure and ensuring that the valid source of blood pres-
sure data is released for further computation. The sec-

ond selects the highest priority blood pressure by con-
sidering continuity, validity, and stability of the source
data, as shown in Fig. 13. This preprioritization of blood
pressure data ensures the validation of the calculated
pump drive voltage by controlling the validation of the
source data.

380 Luqi et al.: Requirements-document-based prototyping of CARA software

Fig. 12. The CARA_Algorithm module of model 3

Fig. 13. The bp_corroborate module of model 3

Luqi et al.: Requirements-document-based prototyping of CARA software 381

4.4 Design model 4

One of the major differences between this design and
the others discussed in this paper is the inclusion of
a test_instrumentation module in the top layer, as
shown in Fig. 14. The test_instrumentation module
provides a GUI (graphical user interface) for the user to
control the status of the pump, patient, and LSTAT sim-
ulations during prototype execution.
The purpose of including test_instrumentation is

to account for the possible failure of subcomponents.
This infrastructure provides an additional verification ca-
pability based on prototype execution to demonstrate
the behavior of the system under conditions where some
of the subcomponents fail. The test_instrumentation
module artificially induces failures for test purposes. For
example, it can generate the exception status of LSTAT
to test the emergency alarms of the CARA manage_alarm
module. The test_instrumentation module is used
during the prototyping period only. After finishing the
prototype model and verifying the safety constraints,
this module will be isolated from the generated evolu-
tionary prototype. During actual system operation, the
real source data collected from LSTAT, pump, and blood
pressure will be used to feed the control signal to the
CARA system.

Fig. 15. CARA module of model 4

Fig. 14. Top level design of model 4

Central to model 4 is the CARA module, which is
decomposed into the six submodules shown in Fig. 15.
The monitor_bp and monitor_pump modules monitor
and validate blood pressures from the LSTAT and moni-

382 Luqi et al.: Requirements-document-based prototyping of CARA software

Fig. 16. The Monitor_bp module of model 4

tor signals from the infusion pump, respectively. Outputs
from these modules feed the control_pumpmodule to de-
termine the infusion pump drive voltage. They also feed
data to the manage_alarm and log_n_display_msg to
alert the user as needed. The manage_user_input mod-
ule processes inputs from the users and sends out the
resultant events for further processing.
Figure 16 shows the internal composition of the

monitor_bp module, which monitors the three differ-
ent blood pressure sources (cuff, arterial line, and pulse
wave). This module tracks the blood pressures when the
CARA control software is in manual mode and performs
blood pressure corroboration when the CARA control
software is in the autocontrol mode. It also alerts the
user to any disruption in the blood pressure sources and
signals the control_pump module to switch the CARA
control software from autocontrol mode back to manual
mode if necessary.
Much like the monitor_bp module, the functions of

the monitor_pump module in Fig. 17 are implemented
by five submodules: monitor_plugin, monitor_occ,
monitor_air, monitor_impedence, and monitor_emf.

Outputs from these modules are used by the decide_
next_state module to determine if the system is stable
enough to switch into autocontrol mode or if the system is
so unstable that it has to switch back to or remain in man-
ual mode. The control_pump module is then signaled to
act accordingly.

4.5 Design model 5

This model consists of several cohesive subsystems that
are created based on a separation of concerns. The top
layer of the model consists of the CARA software and four
external subsystems: simulated patient, LSTAT, pump,
and alarm, as shown in Fig. 18.
Figure 19 shows the internal composition of the

CARA software, which consists of six submodules: BP_monitor,
Safety_monitor, Pump_monitor, Pump_

controller, Logger, and Display. The Pump_control-
ler module includes a Manual_pump_controller and
a Software_pump_controller, as shown in Fig. 20.
This model explores in more detail than do the other

designs the requirements related to returning to the man-

Luqi et al.: Requirements-document-based prototyping of CARA software 383

Fig. 17. The Monitor_pump module of model 4

Fig. 18. Top level design of model 5

Fig. 19. CARA module of model 5

384 Luqi et al.: Requirements-document-based prototyping of CARA software

Fig. 20. The Pump_controller module of model 5

ual control mode when the safety of the automatic control
is compromised. This design identifies the need for addi-
tional external interaction when unsafe conditions arise.
When the patient’s well-being is in jeopardy, alarms will
alert human operators. The simulated patient tests the
effectiveness of proposed pump control policies. Combin-
ing this design with the test instrumentation structure
of model 4 would more effectively check the transitions
between automatic control and manual control and back
again, particularly with respect to safety issues and pos-
sible missing requirements.

5 Features of the designmodels

Using a suite of prototyping tools, five teams generated
alternative design models based on the analysis of cus-
tomer requirements documents. Because the experiments
were conducted by five different teams independently,
the five models had different features. The different fea-
tures can be divided into four main categories: require-
ments coverage, simplicity of design, enabling architec-
ture, and safety aspects. Analyzing features of the five
models helped us uncover the defects of the requirements
from different perspectives.

5.1 Requirements coverage

All of the models cover most of the stated requirements
in the broad sense, but they vary in detail when it comes
to capturing the logic of the procedures stated in the re-
quirements. All of the models identify the major functions
of the CARA software and group them into different mod-
ules. With the exception of model 5, each model covers
∼ 90% of the high-level requirements and at least half of
the detailed ones.

5.2 Simplicity of design

Model 1 maintains its elegance and simplicity as we follow
the decomposition to the lower levels of granularity. The
whole architecture is easily followed and understood. The
segregation of the identified safety-critical functions from
non-safety-critical functions greatly enhances the safety
of the design. Models 2, 3, and 4 suffer from varying de-
grees of complexity at the lower levels of granularity.
Models 3 and 5 also attempt to segregate the safety-

critical functions from the non-safety-critical ones in their
design, but both need more work to complete the design.
Model 2 attempts to divide the detailed activities of the
control algorithms into six concurrent processes but fails
to capture the event/response relationship among these
processes. Model 4 gives the most detailed design. It at-
tempts to reduce the complexity of the graph through
the use of triggering conditions and timer operators.
For example, the pump_control module models a state
machine consisting of three states {auto_off_state,
auto_ready_state, and auto_on_state}. Depending
on the value of the control_mode state stream, one
of the three processes in the pump_control module
will be active at all times. Human input will trigger
the get_initial_cuff_bp operator to request that the
monitor_bpmodule corroborate the different blood pres-
sure sources. The other four operators will remain idle
whil waiting for the results from the monitor_bp mod-
ule. When triggered by the arrival of the results, these
four operators will decide whether it is safe to switch
into auto_control_state and change the value of the
control_mode state stream accordingly.
Simplicity of design, in general, can be accomplished

with sparse diagrams. Again, model 1 gives the simplest
design. While all designs limit the number of operators
in all levels to at most seven operators, they all suffer
from varying degrees of data stream overcrowding. One

Luqi et al.: Requirements-document-based prototyping of CARA software 385

way to solve this problem is to move the functions and
form weaker coupling modules. For example, model 4
can greatly simplify the top layer of the CARA software
shown in Fig. 15 if it follows model 1’s design and places
the monitor_bp module inside the control_pump mod-
ule. Another way to reduce the number of data streams is
through the use of composite streams. For example, com-
bining all alarm signals into a common stream and let-
ting the alarm manager differentiate the different signal
sources and priorities and then process them accordingly
significantly simplifies the alarm data stream design.

5.3 Understandability of the model architecture

Understandability of the model architecture was a com-
mon goal of all the designs. The design teams attempted
to accomplish this goal via decomposition based on sepa-
ration of concerns. This approach resulted in very similar,
but nevertheless different, top level designs. The top level
designs reflect two different assumptions of the intended
prototype. Models 1 and 3, as indicated by Figs. 5 and 11,
model the prototypes as open systems, where the pump
and the LSTAT modules represent interfaces to the ac-
tual hardware. Models 2, 4, and 5, as displayed by Figs. 8,
14, and 18, model the prototypes as closed systems. These
designs include a simulated patient to model the effect of
the IV infusion on the patient’s blood pressure. In add-
ition, model 4 includes a test_instrumentationmodule
to facilitate runtime testing.
In an effort to decompose the CARA system, each

design team identified the following functions of the
CARA software – monitoring pump, monitoring blood
pressure, controlling pump, logging and displaying mes-
sages, and managing user input. However, the five design
teams varied in how they presented these functions in
the hierarchical decompositions. Model 1 provides the
simplest design. It groups these major functions into
three modules – pump_control_module (for monitor-
ing blood pressure and controlling pump), io_module
(for displaying messages and managing user input), and
management_module (for monitoring pump and logging
messages). Model 2 groups all monitoring functions, such
as monitoring pump and monitoring blood pressure, into
a single monitor module and buries the user input man-
agement in the control_algmodule. On the other hand,
model 3, as shown in Fig. 12, separates the message dis-
play and user input management from the CARA control
software and places them in a CARA_interactionmodule
in the top level of the prototype. Models 4 and 5, as shown
in Figs. 15 and 19 respectively, have very similar designs.
They both lay out all six functions explicitly in the top
layer of the CARA software.

5.4 Safety aspects of the design

CARA is a software system that provides closed-loop
control to a high-output infusion pump [6, 15]. It is im-

portant to quantitatively define the safety issues in its
requirements documents. However, the design require-
ments, even with the additional questions and answers
document [30] provided, are very incomplete, especially
in the system safety aspect. The requirements documents
do not provide any performance requirements – they pro-
vide primarily design requirements. In particular, the re-
quirements documents do not identify or prioritize the
functions, especially from a safety perspective. As a re-
sult, some models, such as models 2 and 4, do not dif-
ferentiate between safety-critical and non-safety-critical
functions.
The segregation of the identified safety-critical func-

tions from non-safety-critical functions greatly enhances
the design of models 1 and 5. In addition to those
specified in the requirements documents, model 1 in-
cludes two additional safety features in the design.
First, it implements triple modular redundancy (TMR)
within the principal safety-critical module, the pump_
control module in Fig. 7. This TMR architecture relies
on three different algorithms for calculating the infu-
sion rate when in autocontrol mode and a single voting
mechanism to determine which rate to pass to the pump.
Second, it implements a processor watchdog function on
a separate processor to alert the operator in cases of main
processor failure, as shown in Fig. 5. The redundant archi-
tecture on the blood pressure corroboration promises to
substantially reduce the potential for a faulty monitor to
drive the infusion pump.
Model 2 provides for ready identification of safety-

related functions and data; however, the design does
not segregate either from the non-safety-related functions
and data. Therefore, the safety assessment and verifica-
tion of this design is more difficult than the assessment of
model 1 or 5.
The complexity of model 3 makes it the hardest to

assess from a safety perspective. Most of the objects in
the design have safety-related functions or information.
Therefore, the design will require analysis and testing of
a majority of the software. The preprocess modules of
model 3 are safety critical in that they provide all of the
safety-critical information used to control CARA.
The test_instrumentationmodule incorporated in

model 4 provides a valuable tool for verifying safety-
related functions in the design. In the current implemen-
tation, the design incorporates limited testing of safety-
critical signals and functions; however, the design could
expand to address additional safety-critical aspects. Like
model 2, the complexity of the software and the lack of
segregation of safety-related processing from non-safety-
related processing make safety assessment and verifica-
tion difficult.
The safety_monitor module in model 5 uses a differ-

ent system architecture to achieve the necessary level of
risk mitigation in the design. The use of this architecture
can reduce the overall effort required to perform safety
assessment; however, it requires that the safety_monitor

386 Luqi et al.: Requirements-document-based prototyping of CARA software

module be robust and highly reliable from a safety per-
spective and that it be capable of terminating other func-
tions in the design when it detects unsafe conditions. Its
design will require identification of all safety-related func-
tions and data and potential failure modes that could
pose a risk to the patient.

6 Elicitation and evaluation
of the requirements document

6.1 Requirements inspection and evaluation

In our prototyping experiments, we tried to analyze
the user requirements document and find the omis-
sions, inconsistencies, ambiguities, and contradictions.
Similar to the N-Fold inspection method, which uses
N independent teams to conduct the requirements in-
spection [11, 24, 26], we utilized five independent teams
to design the prototype for the CARA system and ex-
plored the effectiveness of parallel conceptualization ef-
forts to expose potential requirements issues. The com-
parison and combination of the prototyping feedback
revealed many omissions and discrepancies in the re-
quirements documents. Most of them emerged during
discussions of the different design models. Because of
the inherent incompleteness and incorrectness of the re-
quirements document, each group had its own assump-
tions about requirement functions, which they incor-
porated into their design models. For example, when
considering how the Back_EMF affects the pump rate,
requirements 11 and 12 state that the Back_EMF com-
putation applies to the manual mode of the infusion
pump. Some design models, such as models 3 and 4,
asked whether the same computation logic applied to
the automatic control mode or whether Back_EMF would
affect pump rate in auto mode. The requirements docu-
ments do not answer these questions. Our discussions
of design models and reunderstanding of requirements
documents helped find and fix faults in the requirements
documents.
In addition to the previously noted lack of perform-

ance requirements, the following list of omissions and dis-
crepancies in the requirements documents resulted from
our evaluation of the CARA system.

(1) Requirement 6 should explain how continuous “con-
tinuously” is: What is the maximum response time
(MRT) for the system to detect and handle a discon-
tinuity event?

(2) Similarly, there is no statement on how frequently
the occlusion lines need to be monitored to satisfy
requirement 7.

(3) Neither the Back_EMF units nor the algorithm for
converting Back_EMF to pump rate is given in re-
quirement 10.

(4) Do requirements 11 and 12 concerning Back_EMF
computation apply only to the manual control

mode or to both the manual and automatic control
modes? Is Back_EMF irrelevant in automatic mode?

(5) In requirement 16, the term “impedance” is not de-
fined. Some designers understood the term imped-
ance as an electronics term instead of a fluid me-
chanics term. That type of confusion could result
in an implementation that could lead to hazardous
conditions for the patient under resuscitation.

(6) It is unclear from the requirements document what
policies to use for control of the cuff blood pressure.
Is it always under CARA’s control, or is a hardware
module in charge of taking the cuff blood pressure
periodically? If the cuff is under CARA’s control,
then how long will it take to inflate the cuff to get
a new blood pressure reading, and how long does
CARA have to wait before it can inflate the cuff and
take the next blood pressure reading?

(7) Requirement 20.8 does not define the maximum re-
sponse time to perform the corroboration after the
arrival of a higher priority blood pressure reading.

(8) While requirement 44 calls for the CARA software
to check the validity of the cuff pressure, the require-
ments document does not provide any information
regarding the valid range of blood pressures from
different sources.

(9) There is no requirement related to what happens
when fluid gets low. Shouldn’t some kind of alarm go
off? How does the pump sense low fluid level?

(10) There is no requirement for redundancy, with the
exception of redundancy implied by blood pressure
measurements. We modeled a TMR (triple modular
redundancy) architecture in the CARA algorithm in
model 1.

(11) A key insight from the requirements analysis is
that the feedback available from the system enables
many capabilities in CARA that were not included
in the requirements. Specifically, the various forms
of feedback would allow CARA to perform diagnos-
tics of various components attached to the system
on a real-time basis. While such capabilities may
not be part of the intent of CARA, they would sub-
stantially improve its safety and functionality. An
example is the Back_EMF from the infusion pump.
The requirements simply state that CARA should
monitor the Back_EMF to determine the flow rate.
Coupled with the measurements of the impedance
(resistance to flow of the infused solution), CARA
can calculate the amount of fluid provided a pa-
tient as a function of flow rate and time. How-
ever, the Back_EMF provides additional information.
A low value indicates that there is little resistance
to pumping the fluid, which may indicate that the
IV line is not inserted (i.e., pumping free) or there is
no IV fluid. Conversely, a high Back_EMFwith a con-
stant impedance may indicate occlusion before the
occlusion signal occurs, or it may indicate a failing
pump.

https://www.researchgate.net/publication/220403791_An_Experimental_Study_of_Fault_Detection_In_User_Requirements_Documents?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220427083_N-Fold_Inspection_A_Requirements_Analysis_Technique?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226101191_The_performance_of_the_N-fold_requirement_inspection_method?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==

Luqi et al.: Requirements-document-based prototyping of CARA software 387

6.2 Integration of the five design alternatives

Not only did the five parallel prototyping efforts reveal
the defects of the requirements document, but the in-
tegration of the five design alternatives helped to find
emergent supplements for the requirements and provide
a more complete design model. The five design teams
identified different requirements discrepancies. For ex-
ample, one of the most important discrepancies was the
lack of reference to safety constraints. The requirements
documents also do not discuss exception handling mech-
anisms, which required the designers to make assump-
tions to complete the system design. Models 1, 4, and 5
characterize these assumptions.
The difference in design focus among the five teams

results in a better coverage of the functionalities of the
requirements document. The final postdesign discussion
with the whole group unanimously concluded that a com-
paratively more complete, effective, and efficient design
model of the CARA system would result if we:

(1) fully considered the separation of the CARA control
module and the physical data source modules,

(2) explicitly specified the time constraints (as done in
models 3 and 4),

Fig. 21. Model for a cuff blood pressure monitor policy

(3) built an extra quality assurancemodule with detailed
consideration of the safety issues associated with the
CARA system (as done in models 1 and 2),

(4) built in prototype testing infrastructure to verify the
completeness and consistency of the CARA require-
ments documents (as done in models 4 and 5).

Also, the group suggested that, following a prototyping
effort such as ours, the requirements documentation be
refined to include explicit system constraints identified
and defined by this type of effort.

7 Evaluation of PSDL and CAPS-PC

This experiment shows that PSDL can effectively model
complex embedded software. PSDL’s triggering guards
and execution guards provide a convenient means for
users to specify state machines explicitly without being
concerned with target code. The timer feature is useful
in modeling complicated timing policies. For example,
Fig. 21 shows a simple model with two operators and four
timers for the policy that
“When the cuff pressure is being used for control:

if the mean blood pressure is 60 or below, cuff pres-
sures will be taken once per minute;

388 Luqi et al.: Requirements-document-based prototyping of CARA software

if the mean blood pressure is (60–70], cuff pressures
will be taken once every 2min;
if the mean blood pressure is (70–90], cuff pressures
will be taken once every 5min;
if the mean blood pressure is above 90, cuff pressures
will be taken once every 10min.”

The sporadic operator established_cuff_bp is trig-
gered each time it receives a new cuff blood pressure
reading and starts the appropriate timer for the next
cuff reading event. The get_next_cuff operator, on the
other hand, polls the timers once every 30 s and issues
the init_cor command to the monitor_bp module in
model 4 if any of the active timers reaches its preset trig-
ger conditions.
Since the above design implements the policy via

PSDL directly, users can accommodate policy changes
easily without the need to modify any source code. More-
over, since a cuff reading event may also be generated
by other conditions like the loss of a beat-to-beat blood
pressure source detected by the monitor_bp module in
model 4, the above design avoids any conflict with such
events since it will reset its timers automatically when-
ever it receives a new cuff blood pressure reading.
CAPS-PC provides the essential facilities for users

to create and modify the models. It is easy to reason
about complexity using CAPS-PC. When a level is de-
termined to be too complex, it is easy to decompose.

Fig. 22. Graphical user interface of the executable prototype for model 4

Also, when there are many data streams from one op-
erator to another, it is easy to simplify, often by using
user-defined types for the stream. By trying to fully repre-
sent each requirement in the model, it became clear which
requirements were fully/consistently specified and which
were not.
The tool provides an effective means of performing re-

quirements consistency and understandability checking.
It also provides some degree of computer-aided inconsis-
tency checking and data entry propagation at the user
interface level and a semantic check via the translator.
Figure 22 shows a simple GUI of an executable proto-
type for model 4 that has 20 composite operators and 89
atomic operators. The executable prototype consists of
14.7K lines of source code, 8.5 K of which are generated
by the translator and the scheduler of CAPS-PC.
The prototype effort also revealed the need for fu-

ture enhancements to CAPS-PC. Future enhancements
include abstraction for data streams, visual queues for
the declaration and use of timers, multiple views for re-
quirements traces, and better facilities for constructing
user-defined types.

8 Conclusions and future work

In the field of software engineering, requirements analysis
is one of the most important stages in software develop-

Luqi et al.: Requirements-document-based prototyping of CARA software 389

ment. It plays an essential role in achieving a reliable,
robust, safe, and cost-effective software product. A defect
found during requirements engineering costs two orders
of magnitude less to fix than the same defect found after
delivery [4]. Catching faults at the beginning of the de-
velopment process can prevent high development cost,
delays in product delivery, and loss of reputation. The
CARA, as a safety-critical software system, especially re-
quires a complete and correct requirements document for
subsequent system development.

8.1 Parallel prototyping

Our parallel prototyping experiments based on the ini-
tial requirements document of the CARA system demon-
strated that conceptual prototyping conducted by multi-
ple teams can significantly help in revealing omissions and
ambiguities in the requirements document. Each team
designed its model independently with its individual eval-
uation focus, which made its design expose requirements
problems not exposed by the other models. The undu-
plicated requirements problems exposed by each design
model resulted in the high quality of the integrated proto-
type model. We also found that dividing concerns among
teammembers and developing simple overlappingmodels
independently by focusing on different issues was help-
ful in keeping us from getting lost in a complex prob-
lem. We believe this was largely due to the fact that
focusing on a coherent but proper subset of the require-
ments using an informal slicing technique reduced the
amount of relevant detail to a level that a single per-
son could understand. This made it much easier for peo-
ple to identify missing issues and to find the associated
implications. We conjecture that the diversity of back-
grounds and interests of the different teams helped to
form natural focus areas and made the process even
more effective.
In addition, the information exchanged between teams

through meetings held at each stage led to the cross
examination and evaluation of the reasonability of the
findings and the feasibility of the design. Later cross com-
parisons helped expose issues that one person missed and
another found in a different context. By explicitly ask-
ing whether an issue raised in one context was relevant
to the others, we found errors of omission, such as the
need for a test instrumentation interface to fully explore
the issues of concern in model 5, as discussed in Sect. 4.5.
Parallel independent efforts helped to expose ambiguities
in natural language requirements and tacit assumptions
of the domain experts that wrote the requirements. For
example, some teams interpreted “impedance” in the
document as “electrical impedance” and others as “fluid
impedance”. Both concepts are relevant to the applica-
tion domain and both interpretations were plausible to
software developers who were not experts on the LSTAT
system. Cross comparison identified the ambiguity.

We also found that the process of developing a high-
level architecture triggered many requirements questions
and that parallel work by a team of analysts was effect-
ive in identifying them. A high-level prototyping language
and tool support was needed to avoid getting bogged
down in low-level details of the code and to enable the
analysts to focus on requirements issues. A constructive
model helped us find missing parts of the requirements
and unanswered questions that had to be resolved before
a system could be built. As the complexity of the embed-
ded systems we develop increases, this process and the
application of this and similar tools will prove extremely
valuable in developing reliable, safe, and robust software.

8.2 Future work

In the future, we will further explore the efficiency and
coverage of requirements inspection by using multiple
specifications and joint inspection methods to conduct
the prototype design. As mentioned earlier in this article,
our 5 teams were able to uncover more than 12 differ-
ent discrepancies in the requirements documentation, ei-
ther as ambiguous requirements or as requirements omit-
ted altogether. Some discrepancies were found by several
teams, but others were found by only one. This raises the
question of how many teams would be optimal for such
a development effort. Obviously too many teams would
be cumbersome to manage and the return on investment
of the additional teams would be questionable. But in our
case study, had we used fewer teams, some discrepancies
may have been missed. The question of what the most ef-
fective mix of teams is for a given project deserves further
attention. It could be useful to explore the use of multiple
specifications to conduct the design and assess the impact
of that approach on the refinement of requirements docu-
mentation.
We plan to refine our languages, models, and tools

to respond to specific deficiencies identified in the ini-
tial CARA prototyping effort and to use the improved
tools to establish a measurable basis for high confidence
embedded systems. Future work on CARA will include
completion of the prototype to the point where measure-
ments can be made and exploration of ways in which such
measurements can be related to the degree of confidence
users can put on systems. We also plan to fix deficien-
cies in the models and tools that were exposed by this
exercise. For example, we found that we needed to de-
compose data streams into finer generic data streams to
keep complex architecture understandable.We also found
that safety concerns required expressing new kinds of con-
straints. For instance, particular logical processes should
be hosted on independent hardware to remove common
causes for coincident failures (common mode failures).

Acknowledgements.We would like to thank the FDA for providing
the case study and the requirements description and the ARO for
their support. We would also like to thank the teams at Univer-
sity of Pennsylvania, SUNY at Stony Brook, Stanford University,

https://www.researchgate.net/publication/237033996_Industrial_Software_Metrics_Top_10_List?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==

390 Luqi et al.: Requirements-document-based prototyping of CARA software

Software Engineering Automation Center at Naval Postgraduate
School, and the rest of our research team. Special thanks to D. His-
lop, P. Jones, S. Smolka, R. Cleaveland, I. Lee, H. Sipma, P. Iyer,
M. Shing, W. Ray, L. Qiao, X. Liang, and N. Chaki.

References

1. Alur R, Arney D, Gunter E, Lee I, Nam W, Zhou J (2002)
Formal specifications and analysis of the computer assisted re-
suscitation algorithm (CARA) infusion pump control system.
In: Proceedings of Integrated Design and Process Technology
(IDPT), Pasadena, CA, 23–28 June 2002

2. Avizienis A (1985) The N-version approach to fault-tolerant
software. IEEE Trans Softw Eng 11(12):1491–1501

3. Bastani FB, I-Yen L, Linn J, Rao K, Winter VL (2001)
Design for independent composition and evaluation of high-
confidence embedded software systems. In: Proceedings of the
Monterey workshop on engineering automation for software
intensive system, Monterey, CA, 18–20 June 2001, pp 198–207

4. Boehm B (1987) Industrial software metrics top 10 list. IEEE
Softw 4(5):84–85

5. Bernstein L (1996) Forward: importance of software prototyp-
ing. J Sys Integ (Special Issue on Computer Aided Prototyp-
ing) 6(1):9–14

6. Eugene SW (2002) CARA infusion pump project. SUNY at
Stony Brook. Available at:
http://bsd7.starkhome.cs.sunysb.edu/ ∼cara/

7. Guan Z, Luqi (2003) A software prototyping framework and
methods for supporting human’s software development activ-
ities. In: Proceedings of the workshop on bridging the gaps
between software engineering and human computer interac-
tion. International conference on software engineering, Port-
land, OR, May 2003, pp 114–121

8. Guan Z, Luqi et al (2002) Computer aided prototyping for
dependable interactive system development In: Proceedings
of the 5th Asia-Pacific conference on computer human in-
teraction, Beijing, China, 1–4 November 2002. Science Press,
China, pp 480–490

9. Guler M, Kejriwal N, Wills L, Clements S, Heck B, Vachtse-
vanos G (2002) Rapid prototyping of transition management
code for reconfigurable control systems. In: Proceedings of the
13th IEEE international workshop on rapid system prototyp-
ing, Darmstadt, Germany, July 2002, pp 76–83

10. Janka RS, Wills LM (2000) Combining virtual benchmarking
with rapid system prototyping for real-time embedded multi-
processor signal processing system codesign. In: Proceedings
of the 11th international workshop on rapid system proto-
typing – shortening the path from specification to prototype,
Paris, 21–23 June 2000, pp 20–25

11. Kantorowitz E, Guttman A, Arzi L (1997) The performance
of the N-Fold requirement inspection method. Require Eng J
2(3):152–164

12. Kordon F, Luqi (2002) An introduction to rapid system proto-
typing. IEEE Trans Softw Eng 28(9):817–821

13. Kraemer B, Luqi, Berzins V (1993) Compositional semantics
of a real-time prototyping language. IEEE Trans Softw Eng
19(5):453–477

14. Kuhl M, Spitzer B, Muller-Glaser KD, Dambacher U (2001)
Universal object-oriented modeling for rapid prototyping of
embedded electronic systems. In: Proceedings of the 12th in-
ternational workshop on rapid system prototyping, Monterey,
CA, 25–27 June 2001, pp 149–154

15. Lee, I (2003) Advanced tool integration for embedded system
assurance (HASTEN). University of Pennsyl-
vania. Available at: http://www-2.cs.cmu.edu/∼weigand/aro/
presentations/upenn_lee_1.pdf

16. Luqi (1989) Handling timing constraints in rapid prototyping.
In: Proceedings of the 22nd annual Hawaii international con-
ference on system sciences. Kailua-Kona, HI, January 1989,
pp 417–424

17. Luqi (1993) Real-time constraints in a rapid prototyping lan-
guage. Comput Lang 18:77–103

18. Luqi (1996) System engineering and computer-aided prototyp-
ing. J Sys Integ (Special Issuse on Computer Aided Prototyp-
ing) 6(1):15–17

19. Luqi, Berzins V, Yeh R (1988) A prototyping language for real
time software. IEEE Trans Softw Eng 14(10):1409–1423

20. Luqi, Chang C, Zhu H (1998) Specifications in software proto-
typing. J Sys Softw 42(2):150–177

21. Luqi, Berzins V, Shing M, Puett J, Guan Z, et al (2002) In-
fusion pump. Technical Report No. NPS-SW-02-004, Naval
Postgraduate School, Monterey, CA, September 2002

22. Luqi, Qiao Y, Zhang L (2002) Computational model for high-
confidence embedded system development. In: Proceedings of
the Monterey workshop on radical innovations of software and
systems engineering in the future, Venice, Italy, October 2002,
pp 7–11

23. Luqi, Shing M, Berzins V, Puett J, Guan Z, et al (2003) Com-
parative rapid prototyping: a case study. In: Proceedings of
the 13th international workshop on rapid system prototyping,
San Diego, 9–11 June 2003, pp 210–217

24. Martin J, Tsai WT (1990) N-Fold inspection: a requirements
analysis technique. Commun ACM 33(2):225–232

25. Ramamoorthy CV et al (1981) Application of a methodology
for the development and validation of reliable process control
software. IEEE Trans Softw Eng 7(6):537–555

26. Schneider GM, Martin J, Tsai WT (1992) An experimental
study of fault detection in user requirements documents. ACM
Trans Softw Eng Methodol 1(2):188–204

27. Siewiorek DP, Smailagic A, Salber D (2001) Rapid prototyp-
ing of computer systems: experiences and lessons. In: Pro-
ceedings of the 12th international workshop on rapid system
prototyping, Monterey, CA, 25–27 June 2001, pp 2–8

28. Spitzer B, Kuhl M, Muller-Glaser K (2001) A methodology for
architecture-oriented rapid prototyping. In: Proceedings of the
12th IEEE international workshop on rapid system prototyp-
ing, Monterey, CA, 25–27 June 2001, pp 200–205

29. WRAIR Department of Resuscitative Medicine (2001) Nar-
rative description of the CARA software. Proprietary Docu-
ment, WRAIR, Silver Spring, MD, January 2001

30. WRAIR Department of Resuscitative Medicine (2001) CARA
pump control software questions, version 6.1. Proprietary
Document, WRAIR, Silver Spring, MD, January 2001

31. WRAIR Department of Resuscitative Medicine (2001 CARA
tagged requirements, increment 3, version 1.2. Proprietary
Document, WRAIR, Silver Spring, MD, March 2001

The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.

https://www.researchgate.net/publication/3903220_Rapid_prototyping_of_computer_systems_experiences_and_lessons?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903220_Rapid_prototyping_of_computer_systems_experiences_and_lessons?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903220_Rapid_prototyping_of_computer_systems_experiences_and_lessons?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903220_Rapid_prototyping_of_computer_systems_experiences_and_lessons?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903230_Universal_object-oriented_modeling_for_rapid_prototyping_of_embedded_electronic_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903230_Universal_object-oriented_modeling_for_rapid_prototyping_of_embedded_electronic_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903230_Universal_object-oriented_modeling_for_rapid_prototyping_of_embedded_electronic_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903230_Universal_object-oriented_modeling_for_rapid_prototyping_of_embedded_electronic_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3903230_Universal_object-oriented_modeling_for_rapid_prototyping_of_embedded_electronic_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/228983775_Design_for_Independent_Composition_and_Evaluation_of_High-Confidence_Embedded_Software_Systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/228983775_Design_for_Independent_Composition_and_Evaluation_of_High-Confidence_Embedded_Software_Systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/228983775_Design_for_Independent_Composition_and_Evaluation_of_High-Confidence_Embedded_Software_Systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/228983775_Design_for_Independent_Composition_and_Evaluation_of_High-Confidence_Embedded_Software_Systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/228983775_Design_for_Independent_Composition_and_Evaluation_of_High-Confidence_Embedded_Software_Systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220403791_An_Experimental_Study_of_Fault_Detection_In_User_Requirements_Documents?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220403791_An_Experimental_Study_of_Fault_Detection_In_User_Requirements_Documents?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220403791_An_Experimental_Study_of_Fault_Detection_In_User_Requirements_Documents?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/237033996_Industrial_Software_Metrics_Top_10_List?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/237033996_Industrial_Software_Metrics_Top_10_List?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/221554452_A_Software_Prototyping_Framework_and_Methods_for_Supporting_Human's_Software_Development_Activities?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220427083_N-Fold_Inspection_A_Requirements_Analysis_Technique?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220427083_N-Fold_Inspection_A_Requirements_Analysis_Technique?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3499698_Handling_timing_constraints_in_rapid_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220376222_Specifications_in_software_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220376222_Specifications_in_software_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/4020477_Comparative_rapid_prototyping_A_case_study?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/4020477_Comparative_rapid_prototyping_A_case_study?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/4020477_Comparative_rapid_prototyping_A_case_study?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/4020477_Comparative_rapid_prototyping_A_case_study?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3187562_Compositional_Semantics_of_a_Real-Time_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3187562_Compositional_Semantics_of_a_Real-Time_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3187562_Compositional_Semantics_of_a_Real-Time_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3186979_A_Prototyping_Language_for_Real-time_Software?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3186979_A_Prototyping_Language_for_Real-time_Software?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226101191_The_performance_of_the_N-fold_requirement_inspection_method?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226101191_The_performance_of_the_N-fold_requirement_inspection_method?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226101191_The_performance_of_the_N-fold_requirement_inspection_method?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/239006385_Computational_model_for_high-confidence_embedded_system_development?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220643549_Formal_Specifications_and_Analysis_of_the_Computer_Assisted_Resuscitation_Algorithm_CARA_Infusion_Pump_Control_System?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220643549_Formal_Specifications_and_Analysis_of_the_Computer_Assisted_Resuscitation_Algorithm_CARA_Infusion_Pump_Control_System?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220643549_Formal_Specifications_and_Analysis_of_the_Computer_Assisted_Resuscitation_Algorithm_CARA_Infusion_Pump_Control_System?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226554888_Forward_Importance_of_software_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226554888_Forward_Importance_of_software_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/226554888_Forward_Importance_of_software_prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3965873_Rapid_prototyping_of_transition_management_code_for_reconfigurable_control_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3965873_Rapid_prototyping_of_transition_management_code_for_reconfigurable_control_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3965873_Rapid_prototyping_of_transition_management_code_for_reconfigurable_control_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3965873_Rapid_prototyping_of_transition_management_code_for_reconfigurable_control_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3965873_Rapid_prototyping_of_transition_management_code_for_reconfigurable_control_systems?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220687318_Real-Time_Constraints_in_a_Rapid_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220687318_Real-Time_Constraints_in_a_Rapid_Prototyping_Language?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3854846_Combining_Virtual_Benchmarking_with_Rapid_System_Prototyping_For_Real-Time_Embedded_Multiprocessor_Signal_Processing_System_Codesign?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3854846_Combining_Virtual_Benchmarking_with_Rapid_System_Prototyping_For_Real-Time_Embedded_Multiprocessor_Signal_Processing_System_Codesign?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3854846_Combining_Virtual_Benchmarking_with_Rapid_System_Prototyping_For_Real-Time_Embedded_Multiprocessor_Signal_Processing_System_Codesign?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3854846_Combining_Virtual_Benchmarking_with_Rapid_System_Prototyping_For_Real-Time_Embedded_Multiprocessor_Signal_Processing_System_Codesign?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3854846_Combining_Virtual_Benchmarking_with_Rapid_System_Prototyping_For_Real-Time_Embedded_Multiprocessor_Signal_Processing_System_Codesign?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3854846_Combining_Virtual_Benchmarking_with_Rapid_System_Prototyping_For_Real-Time_Embedded_Multiprocessor_Signal_Processing_System_Codesign?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220794907_A_Methodology_for_Architecture-Oriented_Rapid_Prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220794907_A_Methodology_for_Architecture-Oriented_Rapid_Prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220794907_A_Methodology_for_Architecture-Oriented_Rapid_Prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/220794907_A_Methodology_for_Architecture-Oriented_Rapid_Prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3188553_The_N-Version_Approach_to_Fault-Tolerant_Software?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/3188553_The_N-Version_Approach_to_Fault-Tolerant_Software?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/282288320_An_introduction_to_Rapid_System_Prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==
https://www.researchgate.net/publication/282288320_An_introduction_to_Rapid_System_Prototyping?el=1_x_8&enrichId=rgreq-7bfe485d4bb43291be10070bca658c28-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIwNjU5MDtBUzoxNTQ1NzQ0ODA0ODIzMDRAMTQxMzg2NDgzNjg4NQ==

