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This paper investigates the application of the inverse dynamics in the virtual domain
method to Euler angles, quaternions, and modified Rodrigues parameters for rapid
optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact
of the virtual domain and attitude representation is numerically investigated for both
minimum time and minimum energy problems. Owing to the nature of the inverse
dynamics method, it yields sub-optimal solutions for minimum time problems. Further-
more, the virtual domain improves the optimality of the solution, but at the cost of more
computational time. The attitude representation also affects solution quality and compu-
tational speed. For minimum energy problems, the optimal solution can be obtained
without the virtual domain with any considered attitude representation.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The reorientation of a spacecraft is a common task in
most space missions. For instance, slew maneuvers are
required for targeting imaging equipment and sensors,
orienting antenna towards Earth or reorienting the space-
craft for solar power absorption. However, in particular
applications the spacecraft is required to reorient while
minimizing a certain mission parameter, such as maneuver
duration or fuel expenditure.

Rapid retargeting maneuvers, also called time-optimal
reorientation maneuvers, are required by Earth imaging
satellite in order to increase mission effectiveness. Rapid
retargeting capability increases the image collection capacity
during a given observation window, which is a key aspect
for commercial applications or climate and natural disaster
monitoring [1]. Moreover, pointing the entire spacecraft
rather than sweep the imaging system improves the resolu-
tion of the image [2]. Military space missions may also
ll rights reserved.

ra).
require agile reorientation capabilities. For instance, the
TacSat-3 was developed to demonstrate responsive delivery
of information to operational military users [3]. The key
feature required by the satellite was the capability to rapidly
change its attitude due to the limited operational window
for mission acquisition, tasking and information delivery.
Finally, agile attitude maneuvers are also required by track-
ing satellites for pointing moving ground targets [2].

Current onboard control systems execute the maneuver
by steering about a spacecraft eigenaxis since it represents
the shortest angular path between two orientations. How-
ever, Karpenko et al. demonstrated with the TRACE spacecraft
that this procedure is not time-optimal, and onboard control
systems which optimize the maneuver are required [4].

The optimal reorientation of a spacecraft has been studied
theoretically for both minimum time and minimum energy
problems [5–7]. In particular, Bilimoria and Wie investigated
the time optimal rest to rest reorientation of a symmetric
spacecraft, showing that bang–bang control is optimal and the
resulting motion has a significant nutational component [6].

Recently, the problem has been investigated numerically
using two different direct optimization approaches: pseudos-
pectral methods and inverse dynamics. Pseudospectral
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methods are based on the numerical integration of the
differential equations of motion and provide accurate solutions,
but may converge slowly [8,9]. On the contrary, in inverse
dynamics the trajectory is approximated by analytical functions.
In most cases the solution is sub-optimal, but computational
speed is high due to the reduced number of variable para-
meters. Therefore, the inverse dynamics approach is suitable
for onboard applications. Louembert et al. first applied the
inverse dynamics method to the optimal spacecraft reorienta-
tion problem using B-Splines to represent the modified Rodri-
gues parameters [10]. Recently, Boyarko et al. proposed a rapid
attitude trajectory generation method based on the inverse
dynamics in the virtual domain (IDVD) [11]. Here the quater-
nion components are approximated by polynomials defined in
an abstract argument (virtual domain). Finally, Yakimenko
applied IDVD to Euler angles [12]. However, no performance
evaluation of the IDVD method has been conducted.

The objective of the present paper is to investigate the
performance of the inverse dynamics method for rapid
optimal spacecraft attitude trajectory generation by eval-
uating the effects of the attitude representation and usage
of virtual domain on solution quality and computational
speed of the algorithm. To evaluate the impact of the
virtual domain, the attitude trajectory is approximated in
both time and virtual domains using analogous polyno-
mial functions. To evaluate the impact of the attitude
representation, the IDVD method is applied, both in time
and virtual domains, to Euler angles, quaternions, and
modified Rodrigues parameters (MRP). An ideal scenario
taken from Bilimoria and Wie is analyzed for both mini-
mum time and minimum energy problems. Additional
scenarios generated with Monte Carlo simulation are
investigated for the minimum time problem.

The present paper is organized as follows: the first
section describes the optimal spacecraft reorientation pro-
blem and introduces the inverse dynamics optimization
approach, including IDVD. The application of IDVD to the
Euler angles, quaternion and MRP is then described. Numer-
ical experiments and conclusions are reported in the last
sections of the paper.

2. Problem formulation and optimization approach

This section introduces the optimal spacecraft reorien-
tation problem and the IDVD method for solving optimal
control problems. The spacecraft is assumed rigid body.

2.1. Rotational motion of the spacecraft and optimization
problem formulation

The dynamics of the rotational motion of a spacecraft is
governed by Euler's equations, which in scalar form with
the angular velocity ω¼[ωx, ωy, ωz]T and the inertial
tensor I¼diag([Ixx, Iyy, Izz]) referenced to the body-fixed
principal axes can be expressed as [13]

_ωx ¼ ðIyy � IzzÞωzωy þTx

Ixx

_ωy ¼ ðIzz � IxxÞωzωx þTy

Iyy

_ωz ¼ ðIxx � IyyÞωyωx þTz

Izz

8>>><
>>>:

ð1Þ
In Eq. (1) T¼[Tx, Ty, Tz]T represents the component of the
bounded external torque vector referenced to the body frame.

The kinematics of the rotational motion of a spacecraft
can be described using different attitude representations
[14]. In terms of quaternion q¼[q1,q2,q3,q4]T, the kinematic
differential equation is given by

_q1
_q2
_q3
_q4

2
66664

3
77775¼ 1

2

0 ωz �ωy ωx

�ωz 0 ωx ωy

ωy �ωx 0 ωz

�ωx �ωy �ωz 0

2
66664

3
77775

q1
q2
q3
q4

2
66664

3
77775¼ 1

2
q � Ω;

ð2Þ
where Ω¼[ωx, ωy, ωz,0]T and the symbol � denotes the
(Hamiltonian) product between quaternions [14]. In terms
of Euler angles θ¼[θ1, θ2, θ3]T of the rotational sequence
1–2–3, the kinematic differential equation is

_θ1
_θ2
_θ3

2
64

3
75¼ 1

cos θ2

cos θ3 � sin θ3 0
sin θ3 cos θ2 cos θ3 cos θ2 0

� cos θ3 sin θ2 sin θ3 sin θ2 1

2
64

3
75

ωx

ωy

ωz

2
64

3
75:
ð3Þ

Finally, using the MRP σ¼[σ1, σ2, σ3]T, the kinematics of
the rotational motion can be described by the following
equation

_σ1

_σ2

_σ3

2
64

3
75¼ 1

4

1þσ2
1�σ2

2�σ2
3 2ðσ1σ2�σ3Þ 2ðσ1σ3þσ2Þ

2ðσ1σ2þσ3Þ 1�σ2
1þσ2

2�σ2
3 2ðσ2σ3�σ1Þ

2ðσ1σ3�σ2Þ 2ðσ2σ3þσ1Þ 1�σ2
1�σ2

2þσ2
3

2
64

3
75

ωx

ωy

ωz

2
64

3
75

¼ 1
4
BðσÞω: ð4Þ

The optimal spacecraft reorientation problem consists
of minimizing a (given) cost function J by finding the
optimal control vector T, subjected to the control con-
straints TminrTrTmax, that brings the system described
by Eq. (1) and Eqs. (2)–(4) from an initial state of angular
velocity ω0 and attitude q0, θ0 or σ0 to a final state of
angular velocity ωF and attitude qF, θF or σF. The cost
function J is defined as

J ¼
Z tF

t0
dt ð5Þ

for minimum time maneuvers and

J ¼ 1
2

Z tF

t0
ðT2

x þT2
yþT2

z Þ dt ð6Þ

for minimum quadratic control (or energy) expenditure.

2.2. The inverse dynamics and inverse dynamics in the
virtual domain methods

In the inverse dynamics approach for rapid trajectory
generation the optimal control problem is converted into
an equivalent nonlinear programming problem by describ-
ing the trajectory components with a set of polynomial
functions defined in the time domain. The cost is then
minimized through the optimization of the polynomial
coefficients.

The inverse dynamics in the virtual domain method
(IDVD) follows the inverse dynamics approach by defining
the polynomials for trajectory representation in a virtual
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domain τ [15]. This permits to decouple space and time
optimization and, consequently, a given trajectory can be
followed using the different velocity profiles. By inverting the
dynamics, the system state variables and controls can be
expressed as function of the trajectory z, defined in the
virtual domain, and a finite number of its derivatives. For the
considered spacecraft reorientation problem it results in

ωðτÞ ¼ f 1ðz; z0Þ; TðτÞ ¼ f 2ðz; z0Þ ð7Þ
Virtual domain and time domain are related to each other by
[15]

tðτF Þ ¼
Z τF

0

dτ
λðτÞ; ð8Þ

Where

λðτÞ ¼ dτ
dt

ð9Þ

is the so called speed factor, which is also expressed by a
polynomial in the virtual domain. The inversion of the
dynamics through Eq. (7) and the numerical integration of
the cost function J reduce the problem into an equivalent
nonlinear programming problem, whose variable parameters
are the polynomial coefficients.

In the particular case of λ(τ)¼1, the time variable t is
identical to the abstract argument τ and the problem is
defined in the time domain. Therefore, the IDVD is reduced
to the basic inverse dynamics method.

3. Inverse dynamics with Euler angles

This section describes the inverse dynamics method
applied to the Euler angles of the rotational sequence 1–2–3.

3.1. Inverse dynamics in the virtual domain

In computer graphics and animation smooth curves are
represented by parametric functions such as Splines or
Bezier curves for their capability to approximate complex
shapes through curve fitting and computational efficiency
[16–18].

Given a set of control points p0,p1,p2,…,pn in R, the
Bezier curve p(τ) which interpolates these points is
defined as [16]

pðτÞ ¼ ∑
n

i ¼ 0
piβi;nðτÞ; ð10Þ

where βi,n(τ) is the nth order Bernstein polynomials

βi;nðτÞ ¼
n

i

� �
ð1�τÞn� iτi ð11Þ

acting as basis form of p(τ) and τA[0; 1] the virtual
argument. This formulation yields to the following proper-
ties at the endpoints, which are employed by IDVD to
define the trajectory with the Bezier curve [11,17]:
1)
 p(0)¼p0 and p(1)¼pn;

2)
 dp(0)/dτ¼n(p1�p0) and dp(1)/dτ¼n(pn�pn�1).
Following this approach, each Euler angle is repre-
sented in the virtual domain τA[0; 1] by a Bezier curve
as follows:

θjðτÞ ¼ ∑
n

i ¼ 0
aj;iβi;nðτÞ; j¼ 1;2;3 ð12Þ

where aj,i are the polynomial coefficients acting as control
points and βi,n(τ) the Bernstein base as in Eq. (11). The map
between the time domain and the virtual domain is
defined by the speed factor λ(τ), which is expressed
through a polynomial of order m [11].

λðτÞ ¼ ∑
m

i ¼ 0
biτi: ð13Þ

The corresponding points in the time domain are
calculated with Eq. (8). As a result of this mapping, the
time derivatives of the angles, expressed as function of τ,
are obtained from the virtual derivatives according to

_θjðτÞ ¼
dθjðτÞ
dτ

dτ
dt

¼ dθjðτÞ
dτ

λ; j¼ 1;2;3 ð14Þ

€θjðτÞ ¼
d _θjðτÞ
dτ

dτ
dt

¼ d2θjðτÞ
dτ2

λ2þdθjðτÞ
dτ

dλ
dτ
λ; j¼ 1;2;3 ð15Þ

By imposing attitude, angular velocity and acceleration
at the endpoints, the polynomial coefficients aj,i can be
defined in such a way that these boundary conditions are
automatically satisfied. By exploiting the properties of the
Bezier curve at the endpoints, it results

aj;0 ¼ θ0j

aj;1 ¼
_θ0j

nλð0Þþaj;0

aj;2 ¼ 1
2

n

2

� ��1
€θ0j � _θ0jλ

'ð0Þ
λ2ð0Þ þ2aj;1�aj;0

8>>>>><
>>>>>:

j¼ 1;2;3 ð16Þ

for the initial conditions and

aj;n ¼ θFj

aj;n�1 ¼ � _θFj

nλð1Þþaj;n

aj;n�2 ¼ 1
2

n

n�2

� ��1
€θFj � _θFjλ

'ð1Þ
λ2ð1Þ þ2aj;n�1�aj;n

8>>>>><
>>>>>:

j¼ 1;2;3

ð17Þ
for the final conditions. In the previous expressions λ0 is
the virtual derivative of the speed factor, while θ0j and θFj
denote the jth Euler angle evaluated at the initial and final
time respectively. The time derivatives of the angles are
obtained with Eq. (3) and its time derivative, calculated at
the endpoints. As a consequence, the degree n of the
Bezier curves is related to the total number NB of boundary
conditions according to [19]

nZNBþ1: ð18Þ
In this way, at least one polynomial coefficient for each
angle is left as variable parameter for the optimization,
allowing flexibility of the shape of the trajectory.

At this point it is important to note that the singularity
in Eq. (3) limits the application of the proposed algorithm:
the trajectories having θ2¼790 deg as final attitude
cannot be represented by the parametric curve since the
coefficients aj,n-1 and aj,n-2 defined in Eq. (17) cannot be
determined.
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The expressions of angular velocity and controls can be
obtained from the angles by inverting the dynamics. Inversion
of Eq. (3) provides the angular velocity ω

ωx ¼ cos θ2 cos θ3
_θ1þ sin θ3

_θ2

ωy ¼ � cos θ2 sin θ3
_θ1þ cos θ3

_θ2

ωz ¼ sin θ2
_θ1þ _θ3

8>><
>>: ; ð19Þ

where the time derivatives of the angles are calculated using
Eq. (14). The angular accelerations are obtained from the time
derivative of Eq. (19) along with Eq. (15). Finally, the inversion
of Eq. (1) provides the control torques

Tx ¼ Ixx _ωxþðIzz� IyyÞωzωy

Ty ¼ Iyy _ωyþðIxx� IzzÞωzωx

Tz ¼ Izz _ωzþðIyy� IxxÞωxωy

8><
>: : ð20Þ

Note that the obtained expressions of angular velocities and
torques are functions of the virtual argument τ and the
polynomial coefficients.

The proposed procedure allows to transform the cost J
of the optimization problem into a (nonlinear) function J
(aj,i,bi) of the polynomial coefficients: Eq. (5) is integrated
numerically after substitution of Eqs. (9) and (13) for the
minimum time problem, while Eq. (6) is integrated after
substitution of the expression of the controls for the
minimum energy problem.

The optimal control problem is consequently converted
into the following equivalent nonlinear programming
problem: Minimize the function J(aj,i,bi) subjected to the
constraints

TminrTðτiÞrTmax

tðτiÞZ0
tð1ÞrtF max;

8><
>: ð21Þ

and the variables of the problem being the polynomial
coefficients aj,i and bi. The constraints are evaluated at
several nodes τi of the virtual domain. The higher this
number, the more accurate the enforcement of the bounds,
but at the cost of more computational time. The second
constraint in Eq. (21) imposes Eq. (8) to map the points of
the virtual domain into positive points of the time domain.
The third condition is applied to Eq. (8) and limits the
maximum maneuver duration to tFmax.

3.2. Inverse dynamics in the time domain

In the particular case of λ(τ)¼1, the time variable t is
identical to the abstract argument τ and the problem is
defined in the time domain. Thus, IDVD is reduced to the
basic inverse dynamics method. The Euler angles can be
represented in the time domain by Eq. (12) after imposing
τ¼t/tF, with tF final maneuver time and variable of the
problem. However, preliminary analysis showed that high-
order polynomials are computationally more efficient than
modified Eq. (12). Therefore, in this paper the Euler angles
are expressed in the time domain tA[0; tF] by nth order
polynomials

θjðtÞ ¼ ∑
n

i ¼ 0
aj;iti j¼ 1;2;3: ð22Þ
The time derivatives of the angles are given by the
successive polynomial derivatives

_θjðtÞ ¼ ∑
n

i ¼ 0
iaj;iti�1; €θjðtÞ ¼ ∑

n

i ¼ 0
iði�1Þaj;iti�2 j¼ 1;2;3:

ð23Þ
The boundary conditions are respected using the following
expressions for the coefficients:

aj;0 ¼ θ0j

aj;1 ¼ _θ0j

aj;2 ¼
€θ0j
2

8>>><
>>>:

; j¼ 1;2;3 ð24Þ

aj;n ¼
θFj � ∑

n�1

i ¼ 0
aj;it

i
F

tnF

aj;n�1 ¼
_θFj � ∑

n�2

i ¼ 0
iaj;it

i�1
F �naj;nt

i�1
F

ðn�1Þtn� 2
F

aj;n�2 ¼
€θFj � ∑

n�3

i ¼ 0
iði�1Þaj;iti�2

F � ∑
n

i ¼ n�1
iði�1Þaj;iti�2

F

ðn�2Þðn�3Þtn� 4
F

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

; j¼ 1;2;3

ð25Þ
The previous relationships are obtained by imposing the
boundary conditions θ0, _θ0, €θ0 and θF, _θF , €θF to Eqs. (22)
and (23). Therefore the order n of the polynomial in Eq.
(22) must satisfy

nZNB: ð26Þ
The expressions of angular velocity and controls are

obtained from the angles and their derivatives with Eqs.
(19) and (20) respectively. Using a numerical integration
method, the cost function J is transformed into a (non-
linear) function J(aj,i,bi,tF) of the polynomials coefficients
and final maneuver time.

The optimal control problem is therefore converted
into the following equivalent nonlinear programming
problem: minimize the function J(aj,i,bi,tF) subject to the
constraints

TminrTðtiÞrTmax

0rtFrtF max;

(
ð27Þ

with the final time tF and the polynomial coefficients aj,i
and bi being the variables of the problem.

4. Inverse dynamics with quaternions

The IDVD method applied to quaternions as proposed
by Boyarko et al. is outlined in the first paragraph of this
section [11]. From this formulation the particular case of
IDVD in time domain is then derived.

4.1. Inverse dynamics in the virtual domain

Following the parameterization approach employed for
the Euler angles, the attitude trajectory in terms of quater-
nions can be represented by a set of control points and basis
functions. However, the parameterization must ensure the
nonlinear unit norm condition along the trajectory and
therefore Eq. (12) cannot be employed directly. For this
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reason, the parametric curve proposed by Kim et al. and
successively applied by Boyarko et al. was chosen [11,16].

Given two unit quaternions q1 and q2, the quaternion
curve γ(τ) which connects q1 and q2 can be defined as

γðτÞ ¼ q1 � expðωnβðτÞÞ; ð28Þ
where β(τ) is the basis function of the curve, τA[0; 1] the
virtual argument and

ωn ¼ logðq�1
1 � q2Þ ð29Þ

a vector defined in R3 whose norm is the Euler's rotation
angle defined by the quaternion q1

�1�q2 and direction the
Euler's axis. The exponential and natural logarithmic maps
are applied according to the following definition:

q¼ expðωnÞ ¼
sin ωnð Þ ωn

jωnj cos jωnjð Þ
h iT

jωnja0

0 0 0 1
� �T jωnj ¼ 0

8>><
>>: ;

ð30Þ

ωn ¼ logðqÞ ¼
arccosðq4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þq22 þq23

p
 !

q1 q2 q3
h iT ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q21þq22þq23
q

a0

0 0 0
� �T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q21þq22þq23
q

¼ 0

8>>>><
>>>>:

ð31Þ
Note that |exp(ωn)|¼18ωn and therefore Eq. (28) auto-
matically satisfies the unit norm constraint.

Therefore, the quaternion trajectory curve q(τ) can be
represented by a set of parametric curves connecting a
sequence of control points ~q i according to [16]

qðτÞ ¼ q0 � ∏
n

i ¼ 1
expðωn

i
~β i;nðτÞÞ; ð32Þ

where

~β i;nðτÞ ¼ ∑
n

j ¼ i

n

j

 !
1�τð Þn� jτj ð33Þ

and

ωn

i ¼ logð ~q�1
i�1 � ~qiÞ: ð34Þ

In Eq. (32) the symbol Π denotes the sequential quater-
nion product and the control points satisfy the following
conditions at endpoints:

~q0 ¼ q0; ~qn ¼ qF :

The speed factor λ(τ) is defined with a polynomial as in
Eq. (13). The virtual derivatives of Eq. (32) are calculated
using the chain rule and their expressions can be found in
[11]. The time derivatives of the quaternion vector are
calculated from its virtual derivatives using Eqs. (14) and
(15) after substituting the jth angle θj (and its derivatives)
with the quaternion vector q.

To allow the correct optimization using this approach,
all the control points ~q i and the vectors ωn must be
defined using the boundary conditions of the problem
[11]. Consequently, the parameters to be optimized consist
of the additional boundary conditions introduced to define
all the ~q i and ωi

n
along with the polynomial coefficients of

λ(τ). The total number NB of boundary conditions required
to define all the parameters is therefore

NB ¼ nþ1: ð35Þ
In this paper, the quaternion history is represented

with a fifth-order Bezier function (and therefore a product
of five exponential functions). Consequently, six boundary
conditions are required to define all the control points and
vectors ωi

n
. These conditions are initial and final attitude,

angular velocity and angular acceleration.
By exploiting the properties of the fifth-order Bezier

polynomial and imposing the boundary conditions, the
vectorial terms ωi

n
are defined through

Ωn

i ¼ ωn

ix ωn

iy ωn

iz 0
h iT

with the following expressions:

Ωn

1 ¼
q� 1
0 � _q0

5

Ωn

2 ¼
q� 1
0 � €q0 �2

5
2

� �
�5ð5�1Þ

� �
Ωn

1 �52Ωn

1 �Ωn

1

2
5
2

� �

8>>>>>><
>>>>>>:

; ð36Þ

Ωn

5 ¼
q� 1
F � _qF

5

Ωn

4 ¼
€q� 1
4 � €qF �52qF �Ωn

5 �Ωn

5 �2
5

5�2

� �
qF �Ωn

5

� �
�q� 1

F � ~q4

2
5

5�2

� �
�5ð5�1Þ

� �

8>>>>>><
>>>>>>:

:

ð37Þ
Note that Eqs. (36) and (37) are written in general form
and can be applied to any order n of the Bezier polynomial
by substituting 5 with n. All the control points ~q i and the
coefficient Ω3

n
are then calculated using Eq. (34). The

expressions of angular velocity and accelerations are
obtained with the inversion of Eq. (2) and its derivative

Ω¼ 2q�1 � _q; _Ω¼ 2q�1 � €qþ1
2
Ω � Ω: ð38Þ

The expressions of the torques are obtained with Eq. (20).
By numerically integrating the cost function J, the

optimal control problem is converted into an equivalent
nonlinear programming problem, whose variables are the
additional boundary conditions introduced to define all
the parameter of Eq. (32) along with the polynomial
coefficients of Eq. (13).

4.2. Inverse dynamics in the time domain

By imposing λ(τ)¼1, the problem is formulated in the
time domain tA[0; tF], where tF is set as variable parameter
of the problem. Consequently, Eq. (32) is modified as

qðtÞ ¼ q0 � ∏
n

i ¼ 1
expðωn

i
~β i;nðtÞÞ; ð39Þ

with

~β i;nðtÞ ¼ ∑
n

j ¼ i

n

j

 !
1� t

tF

� �n� j t
tF

� �j

: ð40Þ

Note that the unit norm constraint and the property of the
Bezier polynomial at endpoints are still preserved. The
transformation of the problem into the equivalent nonlinear
programming problem is analogous to IDVD with virtual
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domain. Due to Eqs. (39) and (40), the (general) expressions
of the coefficientsωi

n
for a fifth-order Bezier curve are given

by
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ð42Þ

5. Inverse dynamics with modified Rodrigues parameters

The IDVD method is applied to the MRP similarly to the
Euler angles. Each MRP is represented in the virtual
domain τA[0; 1] with an nth order Bezier curve:

σjðτÞ ¼ ∑
n

i ¼ 0
aj;iβi;nðτÞ j¼ 1;2;3: ð43Þ

The speed factor λ(τ) is defined with Eq. (13). The
boundary conditions are imposed with Eqs. (16) and (17)
after substituting the jth angle θj (and its derivatives) with
the jth MRP σj. The required initial and final time deriva-
tives of the MRP are obtained with Eq. (4) and its
derivative calculated at the endpoints.

By inverting the kinematic Eq. (4) and differentiating
the obtained expression, results in the following compact
expression of the angular velocity and acceleration [14]:

ω¼ 4
1

1þjσj2� �2BðσÞT _σ; ð44Þ

_ω¼ 1

1þjσj2� �2BðσÞT 4 €σ� _BðσÞω
h i

: ð45Þ

The time derivatives of the MRP are obtained from the
virtual derivatives with Eqs. (14) and (15) by substituting
the angle θj (and its derivatives) with σj. The control
torques are obtained with Eq. (20).

Similarly to IDVD with Euler angles, the optimal control
problem is consequently converted into an equivalent
nonlinear programming problem, with constraints given
by Eq. (21). The application of the method in the time
domain is analogous to the case with the Euler angles.

6. Numerical experiments

The numerical results of comparison among the IDVD
algorithms for rapid optimal spacecraft reorientation are
presented in this section.

Several test scenarios have been considered in non-
dimensional form as in Bilimoria and Wie [6]. The duration
of each maneuver is limited in the interval [2 10] s. All the
scenarios addressed in this paper are rest to rest, but IDVD
can be extended to any angular velocity at endpoints [11].

The proposed algorithms have been implemented in
MatLab on a Windows 7 laptop computer with an Intel
2.27 GHz i5 M430 processor and 4 Gb of RAM. The non-
linear programming problem generated by IDVD is solved
using the Sequential Quadratic Solver method (SQP) of
MatLab fmincon [20]. A total number of 50 nodes is
considered for imposing the constraints of the optimiza-
tion problem. The IDVD applied to virtual domain employs
the Gauss–Legendre Quadrature method with 4 points to
integrate Eq. (8). Reference solutions are computed with
the Gauss Pseudospectral Optimization Software GPOPS
[21]. The obtained controls are propagated with MatLab
ODE 45 using Eqs. (1) and (2) and a time step of 0.01 s. The
errors in magnitude of final angular velocity and attitude
after propagation of the controls are denoted withΔω and
Δθ respectively.

The performance of the IDVD method are evaluated in
terms of effects of the virtual domain, attitude representa-
tion and order of polynomials on solution quality and
computational speed required by the algorithm to con-
verge to an optimal solution. In particular, effects of the
virtual domain are evaluated by solving a single optimiza-
tion problem in the virtual domain and in the time domain
separately, using an analogous polynomial to represent the
attitude trajectory.

To compare the results of the considered algorithms in
terms of solution optimality, the difference in percentage
ΔJ is defined as follows:

ΔJ ¼ 100
jJIDVD� JGPOPSj

JGPOPS
; ð46Þ

where JIDVD is the optimal cost function computed by IDVD
and JGPOPS the optimal cost computed with GPOPS taken as
reference solution.

The overall performance of IDVD is determined in
terms of computational time CPUt required by the algo-
rithm to converge and solution quality ΔJ according to the
following performance index:

MI¼ KJΔJþKCPUCPUt; ð47Þ
where KJ and KCPU are weighting coefficients for solution
quality and computational time respectively. Since ΔJ and
CPUt have the same order of magnitude, the weights are
defined in the range [0; 1]. Different combinations of
weighting values are considered to analyze the perfor-
mance of IDVD. Note that the best possible performance of
the algorithm is obtained whenΔJ and CPUt are both close
to zero. Therefore, the lower the performance index, the
better the overall performance.

6.1. Minimum time maneuver: 180 deg reorientation of a
symmetric spacecraft

The maneuver addressed in this section is a minimum
time 180 deg reorientation about the z-axis of a symmetric
spacecraft with the following conditions [6]:

I ¼ diagð 1;1;1½ �Þ
�1rTr1
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ω0 ¼ 0;0;0½ � θ0 ¼ 0;0;0½ �deg q0 ¼ 0;0;0;1½ � σ0 ¼ 0;0;0½ �

ωF ¼ 0;0;0½ � θF ¼ 0;0;180½ �deg qF ¼ 0;0;1;0½ � σF ¼ 0;0;1½ � :
ð48Þ

Initial guesses for the controls at endpoints are taken to
be equal to one, which is the maximum torque. Accord-
ingly, the guesses on the polynomial coefficients related to
angular accelerations are given with Eqs. (16), (17), (24),
(25), (36), (37), (41), (42); initial guess on the optimal
maneuver time is 2 s, which is the minimum allowable
maneuver time. The first guess for b1 is the inverse of the
guess of the maneuver time, while initial guesses for all
the other polynomial coefficients are zero as in Ref. [11].

Table 1 summarizes the results of the optimizations.
The GPOPS method computes the optimal solution found
by Bilimoria and Wie with all the considered attitude
representations. The optimal controls have a bang–bang
nature (see Fig. 1) and the consequent rotation has a
significant nutational component, evident from the large
values of the angle θ1 and θ2 represented in Fig. 2.

The solutions obtained with IDVD are sub-optimal, for
every attitude parameter, polynomial order and domain
considered, and the resulting optimal controls have always
a smooth time history instead of bang–bang, as shown in
Fig. 1. This is due to the nature of the method: the controls
are calculated as combination of the trajectory compo-
nents and their derivatives through the inversion of the
dynamics (see Eqs. (19), (20), (38), (44), (45)). Since the
trajectory is represented with polynomials, the controls
result nonlinear continuous function defined in the virtual
argument or time. Notably, the controls obtained with this
approach are always continuous since the trajectory com-
ponents must be represented at least with class C2 func-
tions (see the conditions in Eqs. (18) and (26)). Therefore, a
bang–bang shape of the controls cannot be achieved and
only sub-optimal solutions can be obtained. Better solu-
tions can be computed by increasing the order of the
polynomials for trajectory representation, but at the cost
of higher computational time.

The definition of the trajectory in the virtual domain
improves the sub-optimal solution with respect to the
same polynomial formulation in the time domain, for
Table 1
Optimization of a minimum time rest to rest 180 deg reorientation of a symmet
obtained with the marked methods are represented in Figs. 1 and 2 respectivel

Attitude Method J (s)

Modified Rodrigues Parameters GPOPS 3.2431
IDVD 5th – time 3.8153
IDVD 5th – virtual 3.4351
IDVD 7th – time 3.4853
IDVD 7th – virtual 3.3179

Euler angles GPOPSn 3.2431
IDVD 5th – time 3.6871
IDVD 5th – virtual 3.4443
IDVD 7th – timen 3.5277
IDVD 7th – virtualn 3.3302

Quaternion GPOPS 3.2431
IDVD 5th – time 3.5418
IDVD 5th – virtual 3.3971
every attitude representation and polynomial order con-
sidered. In fact, the speed factor introduces additional
variables to the problem, which allow optimization of
the velocity profile along the trajectory (see also Eqs.
(14) and (15)). Fig. 1 graphically represents the effect of
the virtual domain on the control time histories. The
introduction of the speed factor modifies the shape of
the controls, which result closer to the bang–bang optimal
shape. The other effect of the virtual domain is the
increment of computational time required by the solver
due to the additional variable parameters, additional
constraints (see Eq. (21)) and integration of Eq. (8) at
every iteration of the SQP algorithm. The effect of the
parameterization in the virtual domain can be observed
also in Fig. 2: the attitude trajectory computed with IDVD
in virtual domain is closer to the solution of GPOPS.

The attitude parameter affects the computational time
and solution quality. The IDVD applied to quaternions
requires more time to converge than the analogous IDVD
applied to MRP and Euler angles due to the usage of the
exponential and logarithmic. Moreover, the solutions
obtained with quaternions are closer to the reference
optimal solution provided by GPOPS than MRP and Euler
angles represented by fifth-order polynomials. The overall
best optimal solution is obtained with the seventh-order
IDVD applied to the MRP in the virtual domain. The
ric spacecraft using IDVD and GPOPS. Controls and trajectories which are
y.

ΔJ (%) CPUt (s) Δω (deg/s) Δθ (deg)

– 68.7 1.8e�1 6.9e�3
17.6 0.3 2.7e�1 3.7e�3
5.9 2.2 2.5e�1 1.7e�3
7.5 0.7 1.6e�1 2.0e�3
2.3 7.7 1.9e�1 2.5e�2
– 93.2 1.8e�1 6.9e�3
13.7 0.3 1.6e�1 3.4e�3
6.2 1.6 5.6e�1 1.3e�1
8.8 1.1 1.2e�1 2.8e�3
2.7 7.1 2.8e�1 6.1e�2
– 100.3 1.8e�1 6.9e�3
9.2 2.0 9.7e�2 2.3e�3
4.7 7.8 2.4e�2 1.8e�3
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polynomial order influences the solution quality and
computational time required by the solver. Higher poly-
nomial orders provide better optimal solution, but at the
cost of more computational time due the higher number of
variable parameters.

Fig. 3 summarizes the performance of IDVD based on
the performance index MI, for different combinations of
weighting coefficients. Notably, in Fig. 3(a) the perfor-
mance bars are ordered according to the weights KJ¼0
and KCPU¼1. In this case, the performance criteria is the
computational speed required by IDVD to converge to a
sub-optimal solution. The figure shows that higher com-
putational speed is achieved when IDVD is applied to fifth-
order polynomials (lowest order considered) in the time
domain. The reason of this behavior is that by increasing
the order of polynomials representing the trajectory, more
variables are introduced in the optimization problem and
the SQP solver requires more time to converge. Further-
more, the definition of the parametric curves in the virtual
domain introduces additional variables, being the poly-
nomial coefficients for the speed factor (see Eq. (13)),
which further increment the computational time. The
lowest values of MI are obtained with seventh-order IDVD
applied to the virtual domain.

Fig. 3(b) shows the performance of IDVD ordered accord-
ing to the weights KJ¼0.5 and KCPU¼0.5. In this case, the
performance criteria is the computational speed and the
optimality of the solution equally balanced. The best perfor-
mance is obtained with fifth-order IDVD applied to MRP and
Euler angles defined in the virtual domain. The low poly-
nomial order ensures high computational speed, while the
usage of the virtual domain improves the optimality of the
solution. Lowest performance is obtained with fifth-order
IDVD applied to Euler angles and MRP in the time domain,
due to the low optimality of the solution.

Fig. 3(c) shows the performance of IDVD ordered accord-
ing to the weights KJ¼1 and KCPU¼0. In this case, the
performance criteria is the optimality of the solution. The
best performance is obtained with high-order polynomials
defined in the virtual domain, due to the high number of
variables to be optimized.
6.2. Minimum time maneuver: Monte Carlo analysis for
inertia and maneuver

Additional test scenarios have been generated by vary-
ing inertia, control bounds and reorientation angles using
the Monte Carlo method, as summarized in Table 2. The
symbol xA,B denotes a random value of the parameter x in
the range [A,B]. The generated scenarios have been ana-
lyzed using IDVD as in the previous section.

The first guesses on the controls at endpoints are taken
as the endpoints controls computed by GPOPS. The first
guesses for the maneuver time of Scenario 1, Scenario 2
and Scenario 3 are 6 s, 1 s and 1 s respectively.

Tables 3 and 4 summarize the performance of IDVD. The
symbol σx denotes the standard deviation of the data x, while
Conv indicates the converge percentage. Similarly to the analysis
of the minimum time 180 deg reorientation of a symmetric
spacecraft of the previous section, the virtual domain improves
the solution quality, but at the cost of more computational time,
for any polynomial order and attitude parameter considered.
Moreover, all the solutions obtained with IDVD are sub-optimal,
since the optimal bang–bang nature of the controls cannot be
achieved due to the nature of the method.

The virtual domain also affects the convergence percen-
tage. In the case of IDVD applied to time domain, all the
algorithms converge to a sub-optimal solution (100% of
convergence percentage). In the case of IDVD applied to
virtual domain, the convergence percentage is always below
100%. The reason is that the polynomial coefficients of λ(τ)
are not related to any state variable or physical behavior of
the spacecraft and therefore the guesses of these parameters
may not be accurate enough to ensure convergence of the
optimization solver. Lowest convergence rates are observed
with seventh-order IDVD applied to virtual domain, due to
the higher number of variable parameters, which require an
accurate first guess to ensure convergence of the solver.

The attitude representation affects the solution quality
and computational time. As in the ideal 180 deg reorienta-
tion scenario, the average optimal cost closest to the one
computed from GPOPS is obtained with a seventh-order
IDVD applied to MRP in the virtual domain.
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performance index (see Eq. (47)), for several weighting coefficients. The performance index is indicated above each bar.

Table 2
Reference scenarios generated with the Monte Carlo method.

Scenario Inertia Tmax θF (deg) Number of cases

1 diag([I1,10, I1,10, I1,10]) [1,1,1] [0,0,180] 500
2 diag([1,1,1]) [T1,10, T1,10, T1,10] [0,0,180] 500
3 diag([1,1,1]) [1,1,1] [θ-180,180, θ-180,180, θ-180,180] 1000
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All the tested methods present large standard deviation
for ΔJ. In fact, fmincon is a local optimization solver and
therefore an inaccurate first guess on the variable of the
problem may cause convergence to a solution not even
close to the one obtained with GPOPS. The first guess
effects also the computational time to obtain a solution,
since a bad first guess increases the number of iterations
required by the optimization solver to converge.

Fig. 4 shows the performance of IDVD based on the
performance index MI, for different combinations of weight-
ing coefficients. Similarly to the minimum time 180 deg
reorientation, IDVD applied to time domain presents the
best performance when the criterion is the computational
speed (Fig. 4(a), KJ¼0 and KCPU¼1). As observed, this
behavior is due to the lower number of variables to be
optimized than IDVD applied to virtual domain, which
results in fewer iterations of the solver to converge.

Fig. 4(b) shows the performance of IDVD ordered when
the performance criteria is the computational speed and the
optimality of the solution is equally balanced (KJ¼0.5 and
KCPU¼0.5). The best performance is obtained with seventh-
order IDVD applied to MRP in time domain, due to the



Table 3
Performance of IDVD in case of pseudorandom reorientation test scenarios.

Attitude Method Conv. (%) ΔJ (%) σΔJ (%) CPUt (s) σCPUt (s)

Modified Rodrigues Parameters IDVD 5th – time 100 19.0 21.8 0.4 0.2
IDVD 5th – virtual 99.9 8.7 15.1 3.1 1.5
IDVD 7th – time 100 10.0 16.2 1.7 1.1
IDVD 7th–virtual 97.4 6.4 13.8 15.0 5.5

Euler angles IDVD 5th – time 100 27.2 31.2 0.4 0.7
IDVD 5th – virtual 98.1 18.7 26.7 4.0 15.6
IDVD 7th – time 100 20.7 27.8 1.9 1.8
IDVD 7th – virtual 95.7 14.9 22.6 15.6 21.2

Quaternions IDVD 5th – time 100 14.7 17.2 2.8 1.5
IDVD 5th – virtual 99.7 12.0 20.1 13.3 8.2

Table 4
Final errors on angular velocity and attitude after propagation of the controls obtained from IDVD in case of pseudorandom reorientation test scenarios.

Attitude Method Δω (deg/s) σΔω (deg/s) Δθ (deg) σΔθ(deg)

Modified Rodrigues Parameters IDVD 5th – time 1.4e�2 1.7e�2 2.5e�1 3.6e�1
IDVD 5th – virtual 9.9e�2 2.7e�2 1.2e�1 2.2e�1
IDVD 7th – time 9.4e�3 1.1e�2 2.5e�1 3.6e�1
IDVD 7th – virtual 1.5e�1 2.9e�1 2.3e�1 4.9e�1

Euler angles IDVD 5th – time 1.0e�2 1.3e�2 2.2e�1 3.5e�1
IDVD 5th – virtual 3.7e�1 7.2e�1 1.9e�1 3.7e�1
IDVD 7th – time 1.0e�2 1.1e�2 2.4e�1 3.5e�1
IDVD 7th – virtual 8.2e�1 1.6 3.7e�1 7.4e�1

Quaternion IDVD 5th – time 1.1e�2 1.1e�2 2.2e�1 3.4e�1
IDVD 5th – virtual 3.2e�1 3.2e�1 9.0e�2 2.7e�1
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solution quality and the high computational speed. Further-
more, IDVD applied to virtual domain does not present
favorable performance as in Fig. 3(b) due to the high
computational time required to converge in some scenarios.

Fig. 4(c) shows the performance of IDVD ordered accord-
ing to the weights KJ¼1 and KCPU¼0. In this case, the
performance criteria is the optimality of the solution. The
best performance is obtained with seventh-order and fifth-
order IDVD applied MRP in virtual domain. However, IDVD
applied to virtual domain does not always offer better
performance than IDVD in time domain due to the sensitiv-
ity to the first guess (compare Fig. 4(c) with Fig. 3(b)). As
already observed, the first guess on the polynomial coeffi-
cients of λ(τ) is not straightforward and an inaccurate guess
may cause convergence to a non-optimal solution.

6.3. Minimum energy maneuver: 180 deg reorientation of a
symmetric spacecraft

The ideal 180 deg reorientation about the z-axis of a
symmetric spacecraft is analyzed for the minimum energy
problem. The endpoint conditions are defined in Eq. (48).

The first guesses for the dimensionless initial and final
controls are [0 0 0.25] and [0 0 �0.25] respectively.
Accordingly, the guesses on the polynomial coefficients
related to angular accelerations are calculated with Eqs.
(16), (17), (24), (25), -(36), (37), (41), (42). The guess on the
maneuver duration is 10 s. The trapezoidal rule is employed
to integrate the cost function in Eq. (6) using 100 equally
spaced nodes in the virtual and time domains. To ensure
convergence of the optimization algorithm, the speed factor
is represented by a third-order polynomial.
As summarized in Table 5, the IDVD method closely
matches the optimal solution computed by GPOPS in both
time and virtual domains and for any considered attitude
representation, with a maximum difference percentile of
ΔJ¼0.22% obtained with MRP parameterized in time
domain. In fact, the optimal controls which minimize the
maneuver energy do not saturate and their continuous
shapes can be represented by polynomial functions. This
behavior is showed in Fig. 5, where the controls obtained
with GPOPS and IDVD applied to the Euler angles in time and
virtual domains are represented. As a consequence, the usage
of the virtual domain is not necessary since it increases the
computational time without improving the solution quality.
However, the virtual domain slightly improves the solution
quality in the case of IDVD applied to MRP.

Fig. 5 also provides significant information about the
maneuver: only the torque about the z-axis of the space-
craft is actuated and the consequent energy-optimal
maneuver is an eigenaxis rotation about the same axis.

Fig. 6 summarizes the performance of IDVD based on
the performance index MI, for different combinations of
weighting coefficients. Independently of the choice of the
weights, the IDVD method applied to the time domain
presents the best performance, since the optimal solution
can be achieved without the virtual domain. The presence
of the virtual domain increases the computational time
only and therefore the performances are lower.

7. Conclusions

The application of the inverse dynamics approach to
rapid optimal attitude trajectory generation for spacecraft
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Table 5
Optimization of a minimum energy rest to rest 180 deg reorientation of a symmetric spacecraft using IDVD and GPOPS. Controls obtained with the marked
methods are represented in Fig. 5.

Attitude Method J CPUt (s) Δω (deg/s) Δθ (deg) ΔJ (%)

Quaternion GPOPSn 5.922e�2 198.8 2.8e�4 2.9e�4 0
Modified Rodrigues parameters IDVD 5th – time 5.935e�2 1.0 5.3e�6 8.0e�5 0.22

IDVD 5th – virtual 5.923e�2 5.8 3.3e�4 2.9e�4 0.02
Euler angles IDVD 5th – timen 5.923e�2 0.7 4.9e�11 1.8e�4 0.02

IDVD 5th – virtualn 5.923e�2 1.7 4.4e�6 3.8e�4 0.02
Quaternion IDVD 5th – time 5.923e�2 1.1 3.3e�12 1.8e�4 0.02

IDVD 5th – virtual 5.923e�2 16.8 1.9e�5 3.3e�4 0.02
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reorientation maneuvers is investigated. The method is
applied to the modified Rodrigues parameters, Euler angles
and quaternions with different polynomial orders defined in
the time domain and in the virtual domain.

In the case of minimum time maneuvers, the optimal
bang-bang shape of the controls cannot be achieved with
IDVD due to the nature of the method and only sub-optimal
solutions are computed. The definition of the attitude
trajectory in the virtual domain improves the solution quality
with respect to the analogous formulation in the time domain
since the speed factor increases the flexibility of the velocity
along the trajectory. However, the computational time is
increased due to the higher number of variables and con-
straints. The attitude representation also influences the com-
putational time and solution quality: quaternions require
high computational time due to the logarithmic and
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exponential maps; modified Rodrigues parameters and Euler
angles are faster since no constraints on the attitude history
must be respected.

The choice of the trajectory parameterization for mini-
mum time maneuvers depends on the requested perfor-
mance. Looking for a quick computation of a sub-optimal
solution, IDVD applied to time domain represents the most
reasonable choice, since the limited number of variable
parameters ensure rapid convergence to a solution, but at
the cost of low optimality. Looking for the optimality of the
solution, high-order polynomials defined in the virtual
domain provide solutions closer to the ones obtained with
a Gauss Pseudospectral method, but require accurate first
guess to ensure 100% convergence. If the performance
criteria take into account both convergence speed and
optimality of the solution, then high order IDVD used in
the time domain or low-order IDVD used in the virtual
domain should be considered and applied to the modified
Rodrigues parameters.

In the case of the considered minimum energy man-
euver, IDVD applied to the time domain computes the
optimal solution found by the pseudospectral method
GPOPS, since the optimal controls do not saturate and
can be represented with continuous functions of the time.

The inverse dynamics approach is applicable as sub-
optimal guidance for spacecraft reorientation maneuvers.
The modified Rodrigues parameters may represent the
most suitable parameter due to the absence of singularities
in typical reorientation ranges and the favorable compro-
mise between computational speed and solution quality.
Notably, high order polynomials in time domain or low-
order polynomials in virtual domain should be considered
for attitude representation in case of minimum time
maneuvers; low order polynomials in time domain should
be considered when the optimal controls do not saturate,
for example in minimum energy maneuvers.
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