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(Received May 23, 1951) 

From Maxwell's equations, an expression for the complex power associated with a wire circuit is formu­
lated and broken into a complex input power and a complex power into the external fields associated with 
the circuit, the latter including the radiated power. From these powers, the internal and external im­
pedances of the circuit are obtained such that the current is not required to be everywhere in time phase 
within the circuit. This concept is extended to coupled circuits, bringing out some of the relations between 
some conventional methods for obtaining the driving point impedance of antenna arrays. The theory does 
not require the current distributions to be postulated, but in practical applications such a postulate becomes 
necessary unless the solution is obtained by a method such as the integral equation method. The resulting 
circuitry may readily be reduced to that for lumped elements. A more critical study of the impedance for­
mulas is given in the appendix, based upon the reciprocity theorem which is derived therein. 

THE CIRCIDT COMPLEX POWER 

CONSIDER a circuit formed by a wire of radius a 
containing a slice between positions b and c (Fig. 

1). Positions d and e may or may not coincide. The 
steady-state form of Maxwell's equations, along with 
Ohm's law, are postulated within and exterior to the 

for unity relative permeability and dielectric constants, 
defining the opera tor deltil by 

wire, that is, 
V·fl=O, V ·E=p/ E, 

vxfl = ;;+ jwJg, 
VXE=-jwµfl, 

i:=uE. 

(1) 

The solutions for E and fl are given in terms of the 
retarded vector potential A, with 

A= ~f,ie(r21)dV, r21 = lt\-r2I, e(r21)=e- ik•21/ r2i, (2) 
4ir v 

being a solution of 

Thus, since 

µ 0= 411"(10-7) henries/meter, 
Eo= 1/ 3611"(10-9) farads/meter, 
710= (µo / Eo)!= 12011" ohms, 
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FIG. 1. Open or closed wire circuit. 

* Professor of Electronics. 
t Recently moved to Monterey, California. 

(3) 

0[ ]=[V(V · )+k2][ ], 

E and fl are given by 

fl=VXA, 

- 1 - - 1]0 -
E= -V(V ·A)- jwµoA= - 0 A. 

jwEo jk 

(4) 

Now, denoting the complex conjugate by the super­
script *, 

:iE· i:*dV=~f I d2dV= WA,, (5) 
2 v 2u 

in which V is the volume of the wire and WA• is the 
time average power loss within the wire. Since 

i:*= vxfl*+ jwJg* 
and 

v. (Exfl*) =fl*· vxE-E. vxfl*, 

substitution into (5) yields 

~f,E · i*dV = ~i[jwE IE I 2+ E · VXfl*]dV 
2 v 2 v 

= ~f,[jwE IE IL jwµ I fl I 2]dv-~f EX fl*· dS, 
2 v 2 8 

or 

where I U EI and I Un I are the peak energies stored in 
the electric and magnetic fields within the wire, re­
spectively, and P is the complex Poynting vector. 
Hence, 

1'429 
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and 
jw[I U HI- I U El ]=Im f f>·dS. 

s 
Thus, by writing 

P=Po+P,, 

(7) 

the resultant field E may be broken into two components 

E=Eo+E., 
such that 

(8) 

and 

_:fE,·L*dV=jw[I UHi-i UEIJ+f P,·dS (9) 
2 v s 

= jw[ I UH 1-1 U EI J+ W, 

with Wo ~eing the complex power input to the wire 
and with W, being the complex power into the external 
fields associated with the circuit. The time average 
power radiated from the circuit is given by Re[W,]. 
In other words, Eo becomes the applied field, or that 

) 
FIG. 2. Unit length volume of wire with vector directions. 

component of E originating outside the wire. which is 
required for maintaining 

I U HI- I U El = constant, 

as required for a steady-state condition, and E, becomes 
the induced field, or the component of E which arises 
from the currents and charges within and on the wire 
itself. The induced field is given by 

- 7/0 - - 1 i E,=-OA, A=- ie(r21)dV, 
jk 4ir v 

(10) 

where V is the volume of the wire itself, whereas Eo 
may or may not be given by a simila1 expression. For 
example, if the applied field arises from another circuit 
within the neighborhood, Eo will be given by a vector 
potential integrated over the volume of that circuit. 
But in this case, due to the interaction of the circuits, 
Eo also will be a function of the current in the given 
circuit. However, here it will be postulated that E0 

is supplied by a slice generator inserted between ter­
minals band c such that if 

then 

i= iof(P) for b5.P5.c, 
t= to for c5. P5. b, 

1f _ lf, -- Eo·L*dV=- - Eo·i.o*dV', 
2 If 2 v• 

(11) 

with V' being the volume of the slice and with P being 
a position within the circuit. 

If the applied voltage Vo is defined as 

f 
b 1 

Vo= - E0 ·dr=4>11=c/J0 !f>= . sz.:..J, (12) 
c )WE 

then - lf, _ lf, - I Wo=- Eo·L*dV= -- Eo·i.o*dV 
2 v 2 v• 

or the complex power input becomes 

Wo=!Volo*, Io= f 'io·dS, (13) 
s 

it being tacitly assumed that Eo is cross-sectionally 
constant within the slice generator. 

Thus, the input impedance becomes 

Zo= 2Tf'o/ I Io l2 = Vo/ Io. (14) 

But from (8) and (10), 

- lf, _ lf, _ Wo=- E·'i*dV- - E;·L*dV 
2 v 2 v 

(15) 

THE INTERNAL IMPEDANCE 

Now the complex power input density Tl' o1 per unit 
length at each position on the circuit where i.~O, re­
quired to overcome the ohmic loss and to supply the 
reactive power due to the current through a cross 
section at that position, may be found by postulating 
the current and fields to extend one meter axially con­
stant, with no retardation, within a right circular 
cylinder of radius a, and with a direction a, equivalent 
to that of the wire at such a position, integrating over 
this volume and dividing by one meter of length.. Since 
(Fig. 2) 

dV = rd<Pdr(1) =dS', 
dS=ardl(l) = a.ad<P, 

over the unit length volume, from (8) and (9), 

W01 =: f Eo·L*dV= - f f>.as+f P,·dS 
2Jv JS S 

=:f.t!Jx.H*·dS+ Wri, 
2 s 

2 .. 

= }E.af H•a*ad4>, 
0 
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or since - lf -Wr1=jw[IUE1l-IUH1I]-- E;·"i.*dS' ,,,,. O, 
2 8 ' 

Wo1 = !E.a(27raH lf>a *). (16) 

But since S' is the cross-sectional surface, 1 

(17) 

and hence if the internal impedance per unit length of 
wire is defined as 

substitution of (17) and (18) into (16) yields 

Wo1=!Z;! I.l 2. 

(18) 

(19) 

To find I., first form the wave equations within 
the unit volume from (1), replacing E by (1/ u)"i., that 
is, write 

V'X I.= - jwµuf! 

Then, since V' · "i.= 0 through this volume, 

-VXVX"i.=V2"i.= jwµul., 

(20) 

or assuming the current is symmetrically distributed 
in azimuth, 

d2i. 1 di. - +- - -jwµui.=0. 
dr2 r dr 

(21) 

The solution of (21) in terms of the Bessel functions 
for an imaginary argument is 

Io[j!(v'2/o)r] 
i~= Lza , 

I 0[jl(v'2/ o)a] 

1 
a=--. 

(7rfµu)i 
(22) 

Integrating over a cross section for I., 

27raoi.a Ber' (v2"a/ o)+ j Bei' (v2"a/ o) 
I.=-j-- . (23) 

\12" Ber(v2"a/o)+ j Bei(v2"a/o) 
Hence, 

i.a \12"R, Ber(v'2a/o)+ j Bei(v'1a/o) 
Z;=-=j- , (24) 

ul. 27ra Ber'(v'2a/ o)+ j Bei'(v'2a/o) 

with 
1 

R,= - = (7rfµ / u)i. 
uo 

and at very low frequencies, 

Z,= (1/ 7ra2u)+ jl5k. (26) 

THE INPUT IMPEDANCE 

Returning to (15), since the current has been postu­
lated continuous through the slice generator of negli­
gible thickness, by writing 

i·dr=Iof(P)dl, 

substitution from (19) yields 

Wo = !Zd iol 2fdlf(P)l 2dt+/07r f, OA·"i.*dV, (27) 
• k v 

with A given by the integration of the retarded current 
over the volume of the wire with the exception of the 
cross section included in the element i.*dV. 

Now write, 

in which the subscripts are introduced for distinguishing 
between the operations to be carried out at two dif­
ferent positions along the wire. 

Furthermore, write 

"i.2dV2= i~S~r2= ("i.2·dS2)dr2, 
"i.1dV 1 = i1dS1dr1 = ("i.1 · dS1)df'i. 

(29) 

But df'1 and d'i'2 also should actually be integrated 
cross sectionally along with "i.1 and "i.2. However, if 
ka«l, they may be assumed essentially independent 
of their radial positions. Nevertheless, the question 
arises as to where their radial positions should be chosen. 
Choosing both positions along the same path is equiva­
lent to postulating an infinitely thin wire and yields an 
infinite reactance. The conventional choice assumes 
one path along the axis and the other along the surface 
of the wire. If this is done, since 1.2 is a function of posi­
tion two whereas the differentiations required by the 
operator 0 1 are to be performed at position one, 

L OA·"i.*dV 

=~ii (i2"i.2·dS2) 

(30) 

. At high frequencies, 

Z;= R./ 27ra(1 + j), 
By selecting dr1 along the axis of the wire with dr2 

(25) along the inner periphery, substitution from (30) into 
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e 

0 

Fm. 3. Two indirectly coupled circuits. 

(27) yields 

W12=!Z;jiol 2f 4

1/(P) l2dl+ j~5 IIol 2 

X .f.d f 4f(P2)f(P1)*01[e(r21)df2}dfi, (31) 

from which it is possible to write an input impedance. 
However, if the path selections were reversed, the ex­
pression for the complex power would become 

W21=!Z;j Iol 2f 4

1/(P) j 2dl+ j 
1
: I Iol 2 

X f 4f 4

f(P1)f(P2)*02[e(r12)df1}df2. (32) 

It may be demonstrated that,1 

0 1[e(r21)dr2] · df1=02[e(r12)di'1] ·dr2, (33) 

which is the reciprocity theorem for the electromotive 
force and a current moment. Hence, it becomes ap­
parent that unless the current distribution function 
becomes real, the two different selections seemingly 
yield different e'<J)ressions for the complex power. To 
remove this seemingly paradoxical result, the final form 
for the complex power will be taken as the arithmetic 
mean of the powers for the two different choices. That is, 

(34) 

or if f m is the spatial root-mean-square current dis­
tribution and l is the length of the circuit, it follows 
from (14), (33), and (34), that since 

![f(P1)/(P2)*+ /(P2)/(P1)*] 
= Re[f (P 1) f (P 2)*] = Re[f (P 2) f (P1)*] , (35) 

then 

Zo=lZ;fm2+ /
0f 4f 4

Re[f(P1)*f(P2)] 
k • • 

X 01[e(r21)df2] · di'1• (36) 

COUPLED CIRCUITS 

For two indirectly coupled circuits, such as for two 
open wire antennas (Fig. 3), the field applied to circuit 

1 J. G. Chaney, "On the generalized circuit theory as applied to 
antennas and radiating lines," U. S. Naval Postgraduate School, 
Research Paper No. 1 (March, 1951). 

one now consists of that applied from the slice generator 
plus that supplied from the currents and charges in 
circuit two. In other words, the resultant field E1 

becomes 
(37) 

with 

with 
_ 7/o _ _ i i 1e(r12) 

E21=-02A21, A21= --dV1. 
jk V1 4,r 

(40) 

Letting W1 and W2 represent the complex powers 
of circuits one and two, respectively, and using the 
additional subscripts three and four, respectively, for 
indicating the order of path selections within the in-
dividual circuits, · 

W13= !Zi1lif1m2I Ioil 2 

+/:IIod 2f f fi(P1)*fi(P3) 

15 
X 0 1[e(r31)df3}d1'1+ j - (Io1*Io2) 

k Xii fi(P1)*/2(P2) 0 i[e(r21)df2}dr1, (41) 

W24 = !Zi2l2/2m21Io2I2 

+ /
5 

II02l 2 ,{ff2(P2)*f2(P4) 
k Yi 4 

15 
X O £e(r42)df4}dr2+ j - (Ioi/02*) 

k Xii f2(P2)*f1(P1) 0 2[e(r12)dr1}dr2. (42) 

Multiplying (41) by 2/ Io1* and (42) by 2/ I 02*, a pair 
of mesh equations is obtained as follows: 

Io{ Z;1ld1m2+ /kO ii f1(P1)*fi(Pa) 

X 0 1[e(ra1)dra}dr1]+Io{/k
0 ii f1(P1)*/2(P2) 

X01[e(r21)dr2}dr1]= Vo1 (43) 

Io{/: f i fi(P1)/2(P2)*0 2[e(r12)df1] · df2] 

+Io{ Z;2l2f2m2+ /kO if f2(P2)*f2(P4) 

X O£e(r.2)dr.}dr1]= Vo2 (44) 
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or 
Io1Zia+Io:iZ12'= Vo1 
Io1Z21'+Io2Z24= Vo2. 

(45) 

Again, inspection reveals that the self impedances 
are a function of the path selections and that the 
mutual impedances are asymmetric in the subscripts. 
But the reciprocity theorem2 requires that 

Z21=Z12. 

In other words, the two current distribution functions 
are not mutually independent. Hence, the final forms 
of the equations again will be taken as the arithmetic 
means of the equations formed by the different orders 
of path selections, along with the interchanging of 
Z21' and Z12' in one set. Thus, 

or 

Io1HZu+Zu)+Io2HZ12'+Z21')= Vo1, 
IorHZ21'+Z12')+Io2!CZ24+Z42)= Vo2, 

Io1Zu+Io2Z12= Vo1, 
Io1Z21+Io:iZ22= Vo2, 

(46) 

(47) 

The circuit equations already formulated hold for any 
frequency provided the radius is small in comparison 
with the circuit length and provided ka«1, and also, 
provided the circuit is within an isotropic medium and 
due cognizance is taken of the values of µ and e, the 
latter having been taken above for free space. However, 
it is suggested that in cases where proximity effect 
should be considered, the actual path should be re­
placed by the centroidal current path. This would be 
equivalent to changing the radius of the wire, or in the 
mutual case, to slightly changing the spacing of the 
wires. 

LUMPED ELEMENTS 

If the current fails to vanish at the ends of a wire, 
Zo in (36) contains a transfer capacitative reactance, 
which may be illustrated by postulating 

f(P)=1, e<P<d 
f(P)=O , d<P<e 
I e-ik•u f ,,., i. 

(49) 

2 A. G. Clavier, Proc. Inst. Radio Engrs. 38, 1, 69 (1950). 

Thus 

. f df d dt2·df1 + JWµo --. (50) 
• • 47rr21 

and since Neumann's formula appears within the last 
term, 

where 

1 (1 1 1 1) 
= -- ----- +- +jwL 

jweo4rr Tdd rd• r,d r,. 

=~(-1 (~-2-)]+jwL 
JW 4rreo a r de 

2 
=-+jwL, 

jwC 

1 1 (1 1 ) - =-- ---
c 4rrEo a Tdo 

(51) 

(52) 

is the elastance of a spherical capacitor having an inner 
radius equivalent to the radius of the wire, and an 
outer radius equivalent to the distance between the 
ends of the wire. Two such capacitors appear in series 
since the integration passes twice around the circuit 
(Fig. 4). 

If the circuit includes lumped elements, or con­
centrated R, L, and C, then Rand L will appear merely 
by choosing the proper values of u and µ over the re­
sistor and inductor, respectively. However, due to the 
presence of the capacitor, the peak energy stored within 
the internal electric field of the circuit now exceeds 
that stored within the electric field contained within 
the wire itself. But the expressions for the complete 
power W implies that all the energy of the electric 
field within the circuit itself must be within the wire. 
Hence, the reactive power of the capacitor must be 
subtracted from W0• Thus, if V' now represents the 
volume within the capacitor, W0 must contain the 
additional term -jw(e/ 2)fv f E j2dV'. For example, for 
a capacitor formed by two parallel plates of area S 
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~= 
FIG. 4. Equivalent end capacitor. 

and separated a distance s, inserted between terminals 
d and e, 

- - I 1" 2 J."'El J"wESI V.1 2 

- - E·EdV = -"fJwCI V. I 
2 V• 2s 

1 (jwCV.)( - jwCV.*) 

2 jc.iC 

in which 

1 [/ol(d)][Io*l(e)*J 

2 jwC 

1Io l2 

=- 11.12
, (53) 

2jc.iC 

C=SE/ s, le = l(d)= l(e). 

Since the current has been postulated continuous 
through both the generator and the capacitor, if the 
axial dimensions of the resistor and the capacitor are 
excluded from l, the input impedance Zo becomes 

11.12 

Zo= R ll rl 2+ - +lZ;fm2 
jc.iC 

+/0 
,{ ,{ ReU(P1)*l(P2)]0 1[eh1)dr2}dri, (54) kh ~ 

withjc.iL for the inductor given by the integration of the 
last term over that portion of the circuit forming the 
inductor. Thus, for a circuit having l(P) = 1 and I kr21 I 
«1, Z0 reduces to 

with 

iidf1·df2 
L=µ ---. 

2 41T1'12 

It becomes apparent that antenna circuits may be 
thought of in the same manner as low frequency lumped 
network circuits. Of course, in practice, the impedance 
formulas will require an a priori assumption of current 
distributions, which is sufficient for many engineering 
purposes, but not too accurate for certain broad band 
types of antennas. This method of finding the driving 
point impedance of an antenna array when postulating 
sinusoidal currents in open wire antennas is commonly 
referred to as the Carter circuit method.3 

a P. S. Carter, Proc. Inst. Radio Engrs. 20, 1004 (1932). 

OTHER CONVENTIONAL METHODS 

It is quite interesting to note how some of the more 
conventional methods for finding antenna impedances 
and radiation resistances appear from the original for­
mulation of the complex power expressions. 

Suppose the antenna is well constructed so that the 
internal impedance is negligible with respect to the 
radiation or intrinsic impedance. Then, from (15), 

~f,Eo· i*dV = -~f,.E,. i*dV, 
2 v 2 v 

(56) 

or from (13) and (14), this is frequently written 

1 J-Zo= - -- E;· i*dV 
IIo l2 

1 1- -
= - IIo l2 E,·l*dl. (57) 

Upon substituting from (10), this becomes the con­
ventional method of taking the self impedance as the 
mutual impedance between the axis and an element on 
the surface, or if the paths are both chosen along the 
axis, it becomes the induced emf method for finding the 
radiation resistance R, as 

[ 
1 ff jr,o - - ] R,= Re -- -0 A· l*dl2 . 

I Iol 2 k 

Also, since within the wire, 

'i?Xfi*,,,. 't*, 

R,= - Re[-
1
-f..E, · 'ilXfi*dV] 

Jlol 2 r 

=-
1
-Re[f.v · (EXH*)dv] 

I Iol 2 v 

(58) 

(59) 

= -
1
- Re[f.E,xii*·ds], (60) 

IIo!2 s 

which is the Poynting vector method for finding the 
radiation resistance. 

Another interesting concept following from Z;""O 
and the resulting equation, 

E=Eo+E;=O, 

is that the Poynting vector integration over the surface 
of the wire vanishes; that is, the power flow into the 
wire balances the power flow outward through the 
surface of the wire. But from (8), (9), and (56), 

f Po·dS'= f P ,· dS, Js, Js (61) 
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with S' being the surface enclosing the gap and with 
S being the surface enclosing the wire. Hence, it is 
frequently concluded that the radiation from an an­
tenna actually occurs at the gap. 

Also, there is no conflict between the integral equa­
tion method for finding the driving point impedance of 
an antenna array and the circuit concept consid~red 
herein. For, consider the complex power density as 
given in (27) with the last term again taken as in (57) . 
In other words, now let W01 be the total power density 
per unit length with fs·E ,·i*dS' replaced by E;·l*, 
that is, 

W01=fZ; II I2- fE;· l*. (62) 

tegral equation method, thus relating the integral equa­
tion concept to the more cortventional circuit concept. 

APPENDIX 

Let f 2 i be the radius vector from a point P2 to another distinct 
point P 1 within a three-dimensional space, and let f(r21) be a 
function twice differentiable, then Chaney's identity may be 
stated,1 

iii · Vi[ V1 ·i/t(r2i)d2]=d2· V2[V2·1/t(ru)da], (65) 

where di and d 2 are any two unit vectors at points Pi and P2, 
respectively, where Lhe subscripts on the vector operators indicate 
the points al which the differentiations occur, and where 

t 12= - t 21, r2i = I t 2i I. 
From (65) , it immediately follows that 

Integration along the wire with the current constant 
through the in.finitely thin slice yields j:;/02f.(P2)0 a[e(r.i)df2}dr1 

lib =
1
.::/02f.(P2) 02[e(r12)dti}dt2, (66) 

Wo1= - (ZJ-E;)·l*dl, 
2 • where I 02/2(P 2) is the current at P 2, where 

or lib lid - - Eolo*·dt= .:... (ZJ-E;)·l*dl. 
2 G 2 e 

(63) 

Then, since the right member includes the slice, the 
expression z;l-E; may be assumed to vanish along 
the wire with a discontinuity in the scalar potential of 
i/>b-1/>c existing at the gap. This, for a straight cylindrical 
antenna, yields the following differential equation in 
the vector potential A, 

(64) 

which is the equation usually obtained in the integral 
equation method by matching the external field to the 
internal field at the surface of the wire.4 

By the integral equation method for finding the 
driving point impedance, an a priori current distribu­
tion is not postulated, and the mutual impedance of 
two antennas otherwise unaltered varies within the 
presence of other antennas. This variation in the mutual 
impedance also theoretically occurs in the Carter cir­
cuit method, for the current distribution functions are 
not assumed independent and the mutual impedances 
are subjected to the reciprocity theorem. However, in 
numerical applications using the circuit method, the 
current distribution is postulated a priori, which causes 
the mutual impedances to remain unaltered within the 
presence of other antennas. This approximation usually 
is sufficiently accurate for multiple arrays to more than 
offset the increased difficulty and approximations en­
countered in the integral equation method of deter­
mining the solution. 

However, the theoretical circuit equations developed 
herein hold true even if the exact current distributions 
are first determined by some method such as the in-

4 R. King and C. W. Harrison, Jr., Proc. Inst. Radio Engrs. 31, 
10, 548 (1943). 

and where 
o =[ycv. H'J, k = 271' /x. 

The left member of (66) gives the emf acting within a circuit 
element at P 1 due to a current moment at P2, and the right mem­
ber gives the emf acting within a circuit element at P2 due to the 
removal of the current moment from P2 to Pa. Hence, Eq. (66) is 
an analytic statement of the reciprocity theorem. 

Also, from (66) , 

f ~~ lo2f.(P 2) O 1[e(r2i )df2} dta 

i 30 
= -~j/o./2(P2) 0 2[e(rddt1}dt 2. (67) 

J 

The left member of (67) gives the resultant emf at P1 due to all 
the current in circuit two and the right member gives the total 
emf that would act around circuit two if each current moment of 
two were at Pa. 

From (67), 

.15loi*Io2 ,[ ,[ • 1--k-Ji j. f1(Pa) f2(P2) 01[e(r21)dt2}dti 

= /51~*Io•J J fa(Pa)*f.(P2) 02[e(r2a)dfa}df2. (68) 

Now, the left member of (68) gives the additional complex 
power which must be supplied by the generator of circuit one be­
cause of the presence of circuit two, provided the current in one 
is maintained the same as it was before circuit two was moved 
into place. However, this is physically impossible because the cur­
rent distribution in one is actually altered by the presence of cir­
cuit two. The right member of (68) gives the complex power re­
sulting from considering each current element of two removed to 
each point of one and finding the emf around two corresponding to 
each position of 011e, and then assuming this emf is acting at the 
corresponding point in 011e. In short, the right member transforms 
circuit two into circuit one. 

A reversal of the order of the above integration yields, 

.15loilo2* ,{f. * 1--k-Ji 
2 

f1(P1)f2(P2) 02[e(r12)dt1}dt2 

.15lotlo2* ,{ ,{ =1--k-fi j. fi(P1)f.CP2)*0i[e(r12)df2}df1. (69) 
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Fm. 5. Curvilinear rectangles. 

Thus, from (68) and (69), each generator sees its own circuit 
plus the other circuit transformed into its own circuit. Indeed, it 
might be stated that it is this transformation which causes the 
current distributions to alter in such a manner as to bring about 
an equality of the two mutual impedances. 

Now consider the applied voltage to exist only in circuit two 
at position Pa2. The voltage at a point P 01 is given by the negative 
left member of (67). If the circuit element at P oi is replaced by 
the applied voltage V 2, as far as the circuits are concerned, this 
is equivalent to interchanging the emf in the elements of P 01 and 
P o2. Hence, from (66), the current at Po2 becomes the same as 
the current that formerly existed at Poi. Thus, one obtains the 
system of equations, 

Io1Zu+Io2Z12 =0 
lo1Z21 +Io2Z22 -1'2=0 
Io1Z12 +Io1'Zu- l'2=0 

(70) 

/01Z22 +Io1'Z21 =0 

for which a necessary and sufficient condition for their having a 
solution is that2 Z 12 =Z21. 

The equality of Z 12 and Z 21 requires that 

ff f1 (P1)*f2(P2) 01[e(r21)dt2}dt1 

=ff f1(P1)f2(P2)*0{e(r12)dt1}df2. (71) 

In terms of arc lengths, by letting 

dt1 =df!1, dt2=dii2, lit ·ii2=cos[ll(s1, s2) ], 
e(r12) = g(s1, s2) = g(s2, s1) = e(r21), 

Eq. (71) may be written as 

f.
11f. 1

/ 1 (s1) *f2(s2) [~+k2 cosll] g(s2, s1)ds1ds2, 
D D OS10S2 

= f.''f.
11

f1(s1)f2(s2)*[~+k2 cos11]g(s1, s2)ds1ds2, (72) 
D OS20S1 

which may be interpreted as integrations over curvilinear rec­
tangles (Fig. 5). Since 

f1(s1)f2(s2)* = [f1(s1)*f2(s2) ]* 

(.1,1) 

0 

Frc. 6. Curvilinear square. 

and 

[ ,,-:
2 

+k2 cost1]g(s2, s1) = [-a2 
+k2 cos11]g(s2, s1), 

vS1vS2 OS20S1 

it follows that the current distribution functions must be such that 

f. ''J.'' [ a2 ] fi{s1)*f2(s2) --+k2 cosll g(s2, s1 )ds2ds1 
0 0 os1os2 

= f.''f.
1

'Re[f1 (s1) *f2(s2)][0~:;2 +k2 cos11]g(s1, s2)ds1ds2. (73) 

The retention of only the real part of the product current func­
tions in (36) may similarly be justified. Here, the functional forms 
are the same. Letting 

f(s1)*f(s2)=1t(s1, s2)+jv(s1, s2), 

the integral of (31) may be written 

A = f d f d f (P 1) * f (P 2) 0 1[e(r21)dt2} dt1 

= f. 1f. 1
f (s1)* f(s2) [ -a

2 
+k2 cosll] g(s1, s2)ds2ds1 

0 0 OS10S2 
or 

A =(L
1
+ L)[u(si, s.)+ jv(s1, s2)] 

x [ -a
2 

+k2 cos11]g(s1, s2)ds2ds1, (74) 
OS10S2 

where S 1 is the surface below the diagonal of the curvilinear 
square and S2 is the surface above the diagonal (Fig. 6). 

Integrating simultaneously over positions symmetric with re­
spect to the diagonal and considering 

f(s2)*f(s1) =11(s1, s2)-jv(si, s2), 

A= 2 r 1t(s1, s2) [ -a
2 

+k2 cos11]g(s1, S2)ds2ds1 J81 os1os2 

= f "f "Re[f (P 1) * f (P 2)] O 1[ e(r21)dt2] · dt1. (7 5) 
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