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ABSTRACT
Drives found during investigations often have useful information in the form of email addresses,
which can be acquired by search in the raw drive data independent of the file system.  Using these
data, we can build a picture of the social networks in which a drive owner participated, even
perhaps better than investigating their online profiles maintained by social-networking services,
because drives contain much data that users have not approved for public display.  However,
many addresses found on drives are not forensically interesting, such as sales and support links.
We developed a program to filter these out using a Naïve Bayes classifier and eliminated 73.3% of
the addresses from a representative corpus.  We show that the byte-offset proximity of the
remaining addresses found on a drive, their word similarity, and their number of co-occurrences
over a corpus are good measures of association of addresses, and we built graphs using this data of
the interconnections both between addresses and between drives.  Results provided several new
insights into our test data.

Keywords: digital forensics, electronic mail, email, addresses, users, filtering, networks,
visualization

INTRODUCTION
Finding social networks is important in
investigating organized crime and terrorism.
Social networks can be learned from
connections recorded by social-networking
services and discussion-forum Web pages.
However, this is public information, and is
often of limited value in a criminal
investigation in which subjects conceal key
information about their contacts.
Furthermore, license agreements often prohibit
automated analysis of such data without
permission, and much user data may not be
accessible without the cooperation of the

service or page owner.  A better source could
be the contacts users store on their computers
and devices in the form of electronic-mail
(email) addresses, telephone numbers, street
addresses, and personal names.  Some may be
information of which users are not aware
because it was stored by software or left in
unallocated space after deletions.

This work focuses on email-address data.
Such data can indicate personal connections by
the nearby placement of pairs of addresses on a
drive, similarity of words in address pairs
suggesting aliases, or repeated association of
address pairs on a set of drives.  We may thus
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be able to infer networks of contacts of varying
connection strengths from the data on one
drive alone.  We can then use several methods
to build visualizations of the networks to make
them easier to understand.  A key obstacle is
that many addresses on a drive are
uninteresting because businesses and
organizations put contact addresses into their
Web pages and software, so we must first
exclude these.  Note that seeking addresses on
drives has advantages over inspecting the
records of a mail server because it can find
older addresses removed from a server or
potential contacts never used to send mail.

LITERATURE REVIEW
Most work on visualizing social networks has
focused on social-networking sites where links
between people are made explicit through a
variety of friend and contact links (Holzer,
Malin, and Sweeney, 2005; Zhou et al, 2006;
Polakis et al, 2010).  They can also be
extracted from text by nearby mentions of
names of people (Laclavik et al, 2012), though
nearness may be coincidental.  So far there has
been little attention to the mining of addresses
from drives, their classification, or their
connection to social networks.  There has been
work on the classification of email messages
from their message headers (Lee, Shishibori,
and Ando, 2007), but headers provide
significantly richer contextual information than
lists of email addresses found scattered over a
drive.

TEST SETUP
This work primarily used the Real Data
Corpus (Garfinkel et al, 2009), a collection of
currently 2401 drives from 36 countries after
excluding 961 empty or unreadable drives.
These drives were purchased as used
equipment and represent a range of business,
government, and home users.  We ran the
Bulk Extractor tool (Bulk Extractor, 2013) to

extract all email addresses, their offsets on the
drive, and their preceding and following
characters.  Email addresses consist of a
username of up to 64 characters, a “@”, and a
set of domain and subdomain names delimited
by periods.  Bulk Extractor bypasses the file
system and searches the raw drive bytes for
patterns appearing to be email addresses, so it
can find addresses in deleted files and slack
space.  On our corpus, this resulted in
292,347,920 addresses having an average of
28.4 characters per address, of which there
were 17,544,550 distinct addresses.  The
number of files on these drives was 61,365,153,
so addresses were relatively infrequent, though
they were more common for mobile devices.

Sample output of Bulk Extractor:
65484431478 ttfaculty@cs.nps.navy.mil
vy.mil>\x0A> To: "'ttfaculty@cs

69257847997 info@valicert.com
0\x1E\x06\x09*\x86H\x86\xF7\x0D\x01\
x09\x01\x16\x11info@valicert.com\x00\x0
0\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00

Bulk Extractor’s email-address scanner
seeks domain/subdomain lists containing at
least one period and punctuating delimiters in
front and behind the address.  Currently, Bulk
Extractor handles common compressed formats
but cannot recognize non-ASCII addresses.
Recent standards for international email in the
IETF’s RFC 6530 allow the full Unicode
character set in both usernames and domains
(Klensin and Ko, 2012) so that must be
considered in the future.  Most of our corpus
predates the standard.

This work primarily used an “email
stoplist” provided by the U.S. National
Institute of Standards and Technology (NIST)
by running Bulk Extractor on a portion of
their software collection.  Email addresses
found inside software are likely software
contact information and unlikely to be
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interesting, but this is not guaranteed because
software developers may have inadvertently
left personal addresses, or deliberately put
them in to enable unauthorized data leakage.
We supplemented this list with three other
sources: known “blackhole” addresses used for
forwarding spam
(gist.github.adamloving/4401361, 482 items),
known scam email addresses
(www.sistersofspam.co.uk, 2030 items), and
addresses found by us using Bulk Extractor on
fresh installs of standard Windows and
Macintosh operating systems (332 items).
After eliminating duplicates, the stoplist had
496,301 addresses total.

We also created four important word lists
for use in interpreting the words within
addresses:

 809,858 words of the online dictionaries
used in (Rowe, Schwamm, and
Garfinkel 2013). The English word list
was 223,525 words from two dictionary
sources and included morphological
variants.  587,258 additional words
were from Croatian, Czech, Dutch,
Finnish, French, German, Greek,
Hungarian, Italian, Norwegian, Polish,
Portuguese, Romanian, Serbian,
Spanish, Swedish, and Turkish
dictionaries and transliterated to
ASCII.  We did not consider languages
like Arabic and Chinese whose
transliteration to ASCII was
problematic.  We converted words to
lower case, eliminated those that were
also personal names and generic
usernames, and eliminated non-English
one-letter and two-letter words since
they caused too many false matches to
code strings.  Unlike in our previous
work, we did not include abbreviations,
acronyms, and words found only inside
software.

 102,426 personal names including both
given names and surnames.  We
obtained international coverage by
using a variety of resources including
proposed baby names. Another
approximately 15,000 were found by
inspecting the training set and stop list.

 3,515 names of email and messaging
servers.  Some had words like “mail”
and “chat” in their domains, but others
required Web research to determine
their function.

 2,813 “generic usernames” representing
generic addresses such as business
contacts.   These we identified by
manually inspecting the training set
and stoplist. Table 1 gives examples.

Table 1
Example generic usernames
auctions backup beauty
callcenter conference download
editor feedback group
homepage ideas jobsindia
linux marketinfo nobody
outlet passwords registration
response save testing
tickets update yourmatches

ELIMINATING
UNINTERESTING

ADDRESSES
A first step is to remove addresses unlikely to
be interesting in a forensic investigation.  We
have clues in both the username and the
domain/subdomain names.  For instance,
johnsmith@friendlymail.co.uk uses two human
names in the username, and a domain name
that includes “mail” to suggest a mail server;
these clues suggest it is an interesting address.
On the other hand, direct-
sales@auction.treasures.com uses the frequent
generic term “sales” in the username, and the
domain is a “.com” without indication of a
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server; so mail to or from this address is
unlikely to be interesting, and the address
should be removed from further analysis.  Case
usually does not matter in addresses, so we
converted all to lower case after the case
analysis described in section 4.4.

Training/test sets
We obtained data for training and testing our
user-address identification by first taking a
random sample of 6638 of the 17 million
distinct addresses in our corpus, manually
inspecting them to assess whether they were
likely to be personal user addresses, and
labeling them accordingly.  Most were easy to
assess, but some required research on the Web
to determine the nature of their sites.  A few
cases in the random sample (about 50 or so)
about which we could not reach a clear
determination were excluded.  We needed to
exclude these because it is not ethical to just
try sending mail to an address, and many
addresses are no longer valid since our corpus
spans twenty years.  We supplemented this
random sample with a random sample of 1000
items from the NIST address stoplist, marking
them as nonusers.  This resulted in 7638
distinct addresses of which 3061 were labeled
as users and 4577 were labeled as nonusers.
We used this test for both training and testing,
choosing disjoint subsets from it.

Clues to interesting and
uninteresting addresses

The stoplist matched 27.5% of the addresses in
our corpus, and missed many obviously
nonuser addresses.  Thus it was important to
use evidence from multiple other clues for the
remaining addresses.  We compiled a set of
clues from a number of sources for testing:

 Whether the address was in our
combined stoplist.

 The number of drives on which the
address occurred in our corpus.

Addresses that occur on many drives
are likely to be contact addresses of
software vendors, which we consider
uninteresting.  (That reflects the
random-sample nature of our corpus; in
other corpora, addresses occurring on
many drives may well be interesting.)
Note that it is important to count the
number of drives rather than the
number of occurrences of the address
because addresses can occur repeatedly
on a drive when it is used for automatic
contact. Figure 1 shows the
distribution of the logarithm of the
number of drives on which an address
occurred, ignoring the approximately 14
million addresses that occur on only
one drive so the leftmost bar is for 2
drives.

 The occurrence of automatic-contact
patterns in the characters preceding the
address. Table 2 shows the patterns we
used, found by analysis of our training
sets.

 The number of times in succession the
address occurred on the drive without
intervening addresses; repeated
occurrences suggest automated logging.

Figure 1. Histogram of number of drives on which an
email address occurs in the full corpus, versus the
natural logarithm of the number of drives



Making Sense of Email Addresses on Drives JDFSL V11N2

© 2016 ADFSL Page 157

Figure 2 plots the fraction of user
addresses as a function of the natural
logarithm of successive occurrences, for
the addresses of the training set using
counts from our full corpus.  From this
we chose a threshold of 3.91 (50
occurrences) for a Boolean clue.

 The length in characters of the domains
and subdomains.

 The domain type.  The categories we
used were mail or messaging server, one
of {.com, .co, .biz, .coop}, one of {.edu,
.ac, .pro}, one of {.org, .gov, .govt, .gv,
.gouv, .gob, .mil, .int, .museum, .arpa},
one of {.net, .info, .aero}, and any
other domain.  Mail and messaging
servers were defined by occurrence of a
known server name in any of the words
delimited by periods following the “@”
or any inclusion of the string “mail.”
The other domain categories were
defined by the subdomain on the right
end after removing any two-letter
country codes.  This means that
“yahoo.com” was considered a server
but “legalsoftware.co.uk” was considered
a “.com.”

Table 2
Patterns we seek in immediately previous characters to
indicate automated-contact addresses.
“ for <” “> from:”
“>from: cab <” “return-path: <”
“internet:” “email=”
“mailto:” “fromid=”
“set sender to” “email address:”
“/Cookies/”

 The type of country in the domain
name (assuming U.S. if none).  The
categories we used were U.S., developed
world, developing world, and other.

 Whether a word in the domain-
subdomain list matched a word in the
username, e.g.
“bigcorp.sales@bigcorp.sphinx.ru.”

 The length in characters of the
username.

 Whether the first character of the
username was a digit.

 Whether the last character of the
username was a digit.

 The assessed likelihood of the username
being a human name once split as
necessary into recognizable
components, as will be explained in
section 4.4.

 The type of file, if any, in which the
email address occurred based on its
extension and directory.  This requires
running a different tool to calculate
offset ranges of files (we used the

Figure 2. Fraction of user addresses versus the natural
logarithm of the number of times they occurred in
succession in our training set
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Fiwalk tool in SleuthKit), and
matching address offsets to these
ranges.  Only 1673 of the 7638
addresses in our training set occurred
even once within a file, so we ignored
this clue in tests although it may help
on occasion.

Evidence combination
To combine clues in these experiments, we
used Naïve Bayes inference in the odds form:│ & &…&= ( | ) ( | ) … ( | ) ( )

Here U represents the identification as a
user address, represents the occurrence of
the ith clue, o means odds, and “|” means
“given.” Linear weighted sums such as with
artificial neural networks and support vectors
are a mathematically similar alternative
related logarithmically to the above formula.
Decision trees are not appropriate for this task
because few of the clues are binary, and case-
based reasoning is not appropriate because it
could require considerable computation time to
find the nearest match for this task which
includes many nonnumeric attributes.  We did
not use any weighting on the clues other than
that provided by the computed odds
themselves, an approach to weighting which
we have found sufficient in previous
experiments.

To smooth for clues with low counts, we
included the Laplacian addition constant :( | ) = ( ( | ) + ( ))/( (~ | ) + )

where ( ) means the count of X, and ~X
means not X.  In the experiments we will
discuss with 100 random runs with the same
random seed before each group of 100, we
calculated the F-score when varying the
constant as shown in Table 3.  (F-score is
defined as the reciprocal of 1 plus the ratio of
the total of false positives and false negatives

to twice the total of true positives.) So it
appeared that a constant of 1 was sufficient,
and we used that in the experiments described
below.  We could not use 0 because random
subsets might miss the clues.

Handling difficult clues
Several clues are numeric and we must map
the numbers to probabilities.  For example,
Figure 3 plots the fraction of user addresses in
the training set as a function of length of the
username (blue curve with larger input range)
and length of the domain and subdomains
(green), averaging each adjacent pair of
lengths.  The dip in the middle of the
username curve is interesting; to the left are
usernames that are short enough for users to
comfortably type themselves; to the right are
automated reporting addresses about users
sent by software, and in between are lengths
too long for users but too short for automated
reporting.  Note there are username lengths
right up to the SMTP-protocol maximum of 64
characters.  To model these data, we split the
username lengths into four ranges (at 8, 15,
and 30) and domain-name lengths into three
ranges (at 8 and 15).
Table 3
Results on varying the additive constant in the odds
calculation

Best F-score
1 0.94659
3 0.94587
10 0.94284
100 0.94086
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Recognizable words in the username are a
good clue as to the nature of an address.
Generic usernames are a strong negative clue
to user addresses, matches to personal names
are a strong positive clue, and matches to
other human-language words are somewhere in
between.  After some careful analysis
confirmed by subsequent results, we assigned -
6, +6, and -2 to these respectively.

If the whole username was not recognized
as a word, we tried segmenting it to find
recognizable pieces.  We segmented at any
punctuation mark, any transition from lower
to upper case, and any transition between
characters and digits.  We also segmented
username pieces not in our wordlists into two
or three pieces that we could recognize, e.g.
“joedonsmith” into “joe,” “don,” and “smith.”
To find such splits we started with even splits
and progressively considered more uneven
splits until we found something that we
recognized for all the parts, requiring pieces to
be at least three characters.  We also allowed
for one or two letters on the front or end, e.g.
“rksmith.”

When we could partition a username into
multiple pieces, we averaged the weights of

pieces of three characters or more and rounded
to the nearest integer.  This gave 13 possible
values ranging from -6 to +6.  If we did not
recognize a piece after trying all possible
splittings, we assigned it a weight of 0.  So for
example, the username “littlesuzyb_personal”
has “personal” for -2, then “littlesuzyb” contains
“little” for -2 and “suzyb” can be split into
“suzy” and “b” for +6 (“b” has no weight), for
an average of 2/3 which rounds to +1.

Results
We did cross-validation of clues by using a
randomly selected 80% of the training set for
training and 20% for testing. Table 4 and
Error! Reference source not found. show
the mean odds computed for each of the clues
in 100 runs, selecting a different training and
test set each time from the pool of 7638, plus a
standard deviation over the runs.  The best F-
score for separation of users from nonusers was
obtained at a threshold of 0.3916.  Prior odds
for these runs (the odds of a true user) were
0.8872 with a standard deviation of 0.0102. It
can be seen that the weights in the range -6 to
+6 on the username words are mostly
consistent with odds, which is why we chose
the weights that we did.  Ratings of +4 and
+5 were rare and gave inflated odds values.
Another test for clue redundancy is to remove
each clue in turn and see if it hurts
performance measured by the F-score. Table 6
shows the results.  Of these clues, the
successive-occurrences, first-digit, and number-
of-drives clues appear to be redundant.  We
excluded the latter from further analysis; kept
the first when it showed better in the full
corpus; and kept the third clue because the
rare occurrence of multiple drives for addresses
in the training set made this an unfair test.

Figure 3. Fraction of user addresses as function of
length of username (blue) and length of domains
(green) for our training set
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Table 4
Odds of a user address given various general and
domain clues based on the training set
Mean
odds

Standard
deviation

Description

0.001 0.00001 Address in stoplist
1.301 0.0158 Address not in stoplist
0.0688 0.0094 Software-suggesting

preceding characters
0.8910 0.0102 No software-suggesting

preceding characters
1.0669 0.0128 Occurs only on one

drive
0.4563 0.0228 Two drives
0.1518 0.0115 3-10 drives
0.0056 0.0002 >10 drives
0.9053 0.0113 Occurs 10 times or less

in succession
0.2348 0.0274 Occurs more than 10

times in succession
0.3741 0.0145 Domains length < 8
1.2228 0.0156 Domains length 8-15
0.3406 0.0105 Domains length > 15
5.0111 0.0948 Server name in

domains
0.0148 0.0013 .com domain
0.2586 0.0182 .edu domain
0.0085 0.0019 .org domain
0.3251 0.0268 .net domain
0.0293 0.0032 Other domain
0.0383 0.0087 Username word

matches domain words
0.8898 0.0103 Username word does

not match domain
words

1.0246 0.0141 U.S. domain
0.3844 0.0120 Developed non-U.S.

world domain
3.6160 0.1447 Developing world

domain
0.3756 0.0165 Rest of the world

domain

Table 5
Odds of a user address given various username clues
based on the training set
Mean
odds

Standard
deviation

Description

0.2453 0.0057 Username < 8
characters

1.3546 0.0209 Username 8-15
characters

0.8023 0.0263 Username 16-29
characters

3.5833 0.169 Username > 29
characters

0.8858 0.0354 First username
character is digit

0.8874 0.0110 First username
character is not a
digit

2.1489 0.0560 Last username
character is digit

0.6931 0.0088 Last username
character is not a
digit

0.0377 0.0053 Username weight -6
0.0744 0.0084 Username weight -5
0.2754 0.0316 Username weight -4
0.2171 0.0272 Username weight -3
0.6291 0.0235 Username weight -2
0.7464 0.0587 Username weight -1
0.6352 0.0167 Username weight 0
1.5080 0.1253 Username weight 1
1.4634 0.0530 Username weight 2
1.7459 0.0978 Username weight 3
5.6721 0.6841 Username weight 4
16.400 1.6673 Username weight 5
1.1881 0.0208 Username weight 6

Figure 4 shows the overall histogram of
address ratings for the corpus.  The blue curve
is our full corpus, and the green curve is for
our stoplist with counts multiplied by 5 for
easier comparison (with the stop-list match
clue omitted in calculating the rating). There
are peaks at both ends of the blue curve, so
most addresses appear unambiguous to the
rater.  Note that the stoplist had a few highly-
rated addresses like “john_smith@hotmail.com”
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which were uninteresting software contacts but
provide no obvious clue.  By setting the
threshold to 0.3916, the average of those for
the best F-scores on the training set, we
identified 78,029,211 address references as user-
related, 26.7% of the total.

Table 6
Effects on performance of removing each clue in turn in
analyzing the training set
Clue removed Best F-

score
None 0.9433
Address in stoplist 0.9244
Software-suggesting previous
characters

0.9430

Number of drives on which it
occurs

0.9436

Number of occurrences in
succession

0.9433

Length of domains in characters 0.9411
Domain type 0.7810
Type of country of origin 0.9335
Match between domain and
username

0.9416

Length of username in
characters

0.9330

Whether first character is digit 0.9433
Whether last character is digit 0.9334
Username weight 0.9287

Figure 5 plots precision versus recall for
our training set.  (Recall is the fraction of user
addresses above the threshold of all those
manually identified as user addresses; precision
is the fraction of user addresses above the
threshold of all those above the threshold.)  It
can be seen that many addresses are
unambiguously nonusers, but there were a
small number of difficult cases.  Thus the
precision, while generally greater than 0.95,
improves only gradually with increasing
threshold whereas recall improves quickly with
decreasing threshold.  This means that false
positives (nonusers identified as users) are
more difficult to eliminate than false negatives
(users identified as nonusers).  Fortunately,

false positives just add a little to the
subsequent workload, which is primarily
focused on studying users, whereas false
negatives represent potentially valuable
information lost to investigators.

The processing time on our corpus was
around 10,000 hours (a total across multiple
processors) to run Bulk Extractor on 63.6
terabytes of image data, and 4 hours for the
subsequent address analysis.

Figure 4. Distribution of ratings of user-relatedness on
our corpus (blue) and for our stop list (green), the
latter multiplied by 5)

Figure 5. Precision versus recall for our training set
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VISUALIZING EMAIL
NETWORKS

Once we have excluded uninteresting email
addresses, we can see more clearly the
connections between users.  Even though most
users of drives in our corpus employed mail
servers, we saw many email addresses on our
drives.

Measuring the dissimilarity
between addresses

A key idea that will help visualize connections
between email addresses is the notion of their
dissimilarity.  Using this, we can approximate
a metric space of all addresses where
dissimilarities are shown as distances, and then
seek clusters in it.

Several ways to measure dissimilarity were
explored in this work:

 Absolute value of the difference in
offsets in the storage in which the
addresses were found (McCarrin,
Green, and Gera, 2016), or , =| − | .  The difference in offsets
would seem to be a good measure of
dissimilarity since addresses found
nearby are likely to be within the same
line of the same file and thus related.

 Dissimilarity of the words in the two
addresses when they are split using the
methods of section 4.4. Address pairs
with shared domain/subdomain lists
are weakly associated. Address pairs
with shared username words are more
strongly associated since they suggest
aliases and human relatives.  Aliases
are increasingly common online as
people manage multiple mail services
(Gross and Churchill, 2007).  We
estimated word dissimilarity by a
weighted sum of the Jaccard metric
values on the username and domains

separately, as, = 60 , , , +20 ( , , , ) where , means the
words of the username part of address
i, , means the domains and
subdomains of address i, and j is 1
minus the number of words in the
intersection of the two word lists
divided by the number of words in the
union of the two word lists. We
excluded country codes and the final
subdomain from the domain word lists
since they are broad in their referents,
and we excluded integers and one and
two-character words from the username
wordlists. For example, between
“john.smith@groups.yahoo.com” and
“jrsmith@mail.yahoo.com” we computed
a dissimilarity of 60 1 −+ 20 1 − = 43.3 . The
weights 60 and 20 were picked to be
consistent with the offset differences,
and say that similarities in usernames
are three times more important than
similarities in domains.

 Dissimilarity based on lack of co-
occurrences over a set of drives.  We
used , = .( ) where is
the number of drives with the pair of
addresses i and j.  Again, this was
fitted to be consistent with the degrees
of association in the offset differences.
The rationale is that pairs that occur
together more than once on drives have
some common cause.  Note this formula
needs to be adjusted for differences in
the size of corpora.

 Whether two addresses were not within
the same file, as a better way of
scoping a relationship than using offset
difference alone.  We used the Fiwalk
tool as mentioned in section 4.2.  As
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noted, few addresses were within files,
which limits the applicability of this
measure.  Nonetheless, there were
correlations for certain kinds of files but
not others. This will be a subject of
future work.

 Whether two addresses were not in the
same message.  This idea has been used
to distinguish legitimate addresses from
spam addresses (Chirita, Diederich, and
Nejdl, 2005).

The first three methods are useful for our
corpus.  The fourth and fifth require additional
information not always easy to get.  Note that
only the first two of these dissimilarity
measures are metrics (distances) because the
last three can violate the triangle inequality( , ) ≤ ( , ) + ( , ) .  Nonetheless, we
can still get useful visualizations from the last
three.

Testing the dissimilarity
measures

An important question is how well these
dissimilarity measures represent the association
of two addresses.  This is a challenging
question for our corpus because we do not
know the people that used nearly all the
addresses.  Nonetheless, one simple indicator is
the correlation of the dissimilarity measures
with the ratings of user-relatedness obtained
by the methods of part 4, since similar ratings
suggest association. Figure 6 plots the
absolute value of the difference in our ratings
against the absolute value of the difference in
offsets for our full corpus; Figure 7 plots the
same against our measure for word
dissimilarity; and Figure 8 plots the same
against our measure of co-occurrence
dissimilarity.  Though the data is noisy, there
are correlations up to 25 on offset deviation,
up to 50 on word distance, and up to 25
(representing 7 co-occurrences) on co-
occurrence dissimilarity.  So it appears that

these three measures are useful measures of
association at low values and can be plausibly
treated as distances.

Based on these results, we formulated a
combined dissimilarity measure for addresses
on the same drive.  We did not include the co-
occurrence dissimilarity because we saw few
instances of co-occurrence in our corpus once
we eliminated nonuser addresses. But we
could use the offset difference and word
dissimilarity.  They should be combined so a

Figure 6. Ratings deviation versus offset deviation for
the full corpus

Figure 7. Ratings deviation versus word distance for
the full corpus
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low value on one overrides a high value on the
other since a low value usually has a reason.
That suggests a “consensus dissimilarity”
between address i and address j:= min( , , , )

where is offset dissimilarity and is
the word dissimilarity, provided either< 28 or < 50.

Figure 9 shows the distribution of the
combined dissimilarities we found between all
pairs of email addresses in our corpus.  To
limit computation, we only computed word
similarity for addresses within an offset of
1000.  Note the curve is concave upwards,
which suggests a relatively even spacing of
points in a metric hyperspace.  Before
calculating this, it was important to eliminate
duplicate successive addresses in the Bulk
Extractor output to prevent their
overweighting, since there are many of these
due to automated software contacts: The most

common such address, CPS-
requests@verisign.com, occurred 1.2 million
times total in successive entries due to the
frequency of certificate stores.

Experiments with familiar
data

To get a better understanding of the
effectiveness of our methods, we took drive
images of 11 drives of people at our school
where the drive owners agreed to explain their
connections.  We used dissimilarities computed
using the methods of the last section and then
placed addresses in a two-dimensional space in
a way most consistent with the dissimilarities.
Two-dimensional space was used for ease of
visualization.  Many algorithms can fit
coordinates to distances, and visualization does
not need an optimal solution.  We thus used
an attraction-repulsion method to find x and y
values that minimize:

⎣⎢⎢
⎡ ( − ) + ( − )

⎦⎥⎥
⎤

{ }
for the consensus dissimilarity values
described the last section, and with = 50.
We used a log ratio error rather than the least-
squares dissimilarity error so as to not unfairly
weight points with a big dissimilarity from
others (a weakness of much software for this
problem).  There are an infinite number of
equally optimal solutions to this minimization
differing in translation and rotation.

Figure 8. Ratings deviation versus sharing dissimilarity
(distance) for the full corpus
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We show here data from a drive of one of
the authors that had been used from 2007 to
2014 for routine academic activities and also
had files copied from previous machines going
back to 1998.  It was a Windows 7 machine
and had 1.22 million email addresses on it, of
which only 52,328 were unique.  Many
addresses were not user-related (76 of the 100

most common, for instance), so it was
important to exclude them to see explicit user
activity.

Figure 10 and Figure 11 show the results
of position optimization for a subset of
addresses on this drive, those of the first
author or addresses connected to the first
author by a fewer than 50.

Figure 9. Histogram of all calculated dissimilarities ≤ for pairs of addresses in our corpus
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Figure 10. Visualization on a sample drive of addresses of first author and directly-connected
other addresses

Figure 11. Visualization on a sample drive of addresses of first author and directly-connected
other addresses, after filtering to eliminate nonuser addresses
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Usernames have been replaced with
numbers to preserve privacy. Figure 10 shows
the graph found on the complete subset of
addresses (1646 in total), and Figure 11 shows
the graph after elimination of the nonuser
addresses from the subset (313 in total).
Nonuser elimination did help clarify the data,
and enables us to better distinguish the
authors’ aliases and close associates centered at
(10,10) from other members of the authors’
department to the right and above, and from
other contacts that are outliers below and
above.  The tendency to form circular arcs is
due to the limited amount of distance data
below the threshold for users other than the
author.  This processing took around 70 hours
on our full corpus.

VISUALIZING
SIMILARITIES

BETWEEN DRIVES
USING ADDRESSES

Besides graphing connections between
individual email addresses, it is useful to graph
connections between drives based on the count
of their shared email addresses.  Now the
nodes will be drives and the counts provide a
measure of drive-owner association since users
that share many addresses are likely to be
similar.  This should provide more reliability in
associating drive owners since the comparison
can draw on thousands or millions of data
points.  It can also provide an alternate way to
see hidden social networks not apparent from
explicit links.  We can do this for the full set of
addresses on drives to see shared software, or
we can eliminate nonuser addresses first using
the methods of section 4 to see just the
personal contacts.

Fitting drive distances
One simple approach to measuring drive
similarity based on shared email addresses is to

let be the number of addresses on each
drive, and be the number of addresses they
have in common.  Treat the set of addresses on
the drives as an independent random sample
from some large population of N.  Then for
drives i and j, counts and , and
intersection count , the independence
assumption implies that = , allowing
us to estimate a virtual = .  A simple
additional assumption we can use to estimate
dissimilarity is that points of the population of
addresses are evenly spaced in some region of
hyperspace.  Here we want to visualize the
dissimilarities in two dimensions, so assume
the points of the population are evenly spaced
within a circle or square. Then if we increase
the area of the circle or square by a factor of
K, the radius of the circle or the side of the
square increases by a factor of √ , and the
dissimilarities between random points in the
circle or square increase by the same factor.
Hence, the dissimilarity between two drives
can be estimated as = / .  This
does not become zero when the two sets are
identical, but overlaps between drive addresses
were quite small in our corpus so this case was
never approached.  This becomes infinite when= 0, and is unreliable when is small, so
distances need to be left undefined in those
cases.  Then we can use the same optimization
formula in section 5.3 for finding coordinates
from distances. Figure 12 shows results for
drive similarity using the filtered (user-related)
addresses where ≤ 10 ; we used the K-
Means algorithm with K=13 to assign drives to
clusters, and then colored the clusters.  The
differences between clusters were subtle from
inspection of their addresses, so we appear to
have discovered some new groupings in the
data.  This processing only took a few minutes
once we had the shared-address data
referenced in section 5.
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A social-network approach
An alternative visualization technique is to
calculate a containment score (Broder, 1997)
based on the size of the intersection of sets of
features divided by the number of features of
the smaller set, or = ( , ) where n is
the count of features on a drive.  We can then
create a topological view of the connections
between drives in which drives are represented
as nodes and the weight of the edges between
nodes denotes the value of the containment
score between the drives to which they
correspond. Figure 13 shows an example of
this method for the email address-based
connections on an example drive.

To display and manipulate the resulting
graphs we used the open-source graph analysis

and visualization tool Gephi
(http://gephi.org).  Visualization makes it
easier to identify clusters of related items; the
tool also provides a variety of filtering
strategies and layout algorithms.

To reduce noise, we focused on the core of
the networks (BORGATTI AND EVERETT,
2000). Generally, the k-core is defined as a
subgraph whose nodes have at least

connections to each other and fewer than
to any of the other nodes in the network. The
core is the non-empty k-core with the
maximum value of k.  It often identifies the
key players in a social network. Further
filtering by degree centrality highlights the
most connected nodes within the core.

Figure 12. Drive clustering (colors) using count of shared addresses, for distance≤
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Results of the social-network
approach

To establish a baseline picture of relationships
between drives, we calculated shared-address
counts between drives using addresses as
features and eliminating the addresses below
the 0.3916 probability. Table 7 shows the
distribution of sharing counts between drive
pairs.  The frequencies do not follow a Zipf’s
Law 1/k trend at higher counts but reflect
meaningful associations.

Table 7
Sharing counts of addresses between drives and their
frequencies of occurrence
Shared
count

Frequency Shared
count

Frequency

1 401201 2 27888
3 8089 4 4169
5 2130 6 1288
7 1270 8 1563
9 1955 10-14 2801
15-19 963 20-29 870
30-99 2167 100-999 667
1000-
9999

126 ≥10000 45

The graph of drive similarity based on
common email addresses has 3248 nodes and
447,292 edges.  Its degree distribution follows
the expected power law that we see in big data

Figure 13. The degree distribution for emails on a drive
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(see Figure 14).  It shows that while there are
some drives with high degree of 850, there are
over 90 drives of degree 0, meaning that they

have no shared email addresses with any other
drives.  However, the average degree is 260.96,
so there are enough correlations.

Screening the network of drives having at
least one address in common, by k-core with
k=298, we obtain a hairball of 1214 nodes and
226,180 edges, and at k=299 the whole core
vanishes. The 298-core is therefore the core of
the graph and identifies the most connected
subgraph (with each node having 298
connections or more to the other 1214 nodes in
the core).  The nodes in this set all have a
similar position in the network and a similar
relative ranking to the other nodes in the core.

However, further analyzing the 298-core of
the network, we identified three key drives
that all share email addresses with the leftover
43 drives as shown in Figure 15. Each of these
drives has at least 439 connections. Such a
complete bipartite graph is an unusual pattern
of correlation in real networks, since the three
drives do not have a high correlation to each
other, but a similar high correlation to the
other 43 drives.

Figure 14. The degree distribution of the drive image similarity network, where connections are shared email
addresses
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Figure 16 shows the neighborhood of the
highest 5 degree nodes in the core.  We
included a few other high degree nodes to see if
they showed an interesting pattern, which was
indeed observed for the top 9 nodes of the
core.

Degree centrality does not necessarily
equate to importance, and the more central

nodes in a network can be the most redundant
as has been observed here.  Nonetheless, these
topological visualizations can be helpful in
seeing a network in a different way, screening
data when there is too much, and analyzing
the important nodes.  This makes a useful
supplement to analysis based on individual
node properties.

Figure 15. The neighborhood of the highest three degrees in the core (with “communities” or key subgraphs
indicated by colors)
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CONCLUSION
Electronic mail addresses alone can provide
useful information in a forensic investigation
even without the associated mail.  Nonetheless,
many email addresses are uninteresting for
nearly all investigations, and we have shown
some simple methods that can exclude them
reliably.  We have shown this significantly
improves the ability to see connections
between email addresses on a diverse corpus,
and enables us to see new phenomena in the
connections between addresses and drives
viewed in two different ways.  Such
information can be combined with other kinds
of connection information found on a drive
such as telephone numbers, Internet addresses,

and personal names to get a good picture of
the social context of its user.
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Figure 16. The neighborhood of the highest five degrees in the core
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