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ABSTRACT 

U.S. statutory policy requires the armed services to continuously balance 

manpower inventory with congressionally authorized requirements. Inaccurate 

forecasts put the Navy’s budget at risk and degrade overall mission readiness. 

Navy policymakers must be able to rely on accurate inventory forecasts to 

develop necessary manpower plans that steer inventory to match planned 

authorizations. Strength planners, in turn, rely on forecasting models like the 

Officer Strategic Analysis Model (OSAM) in an attempt to accurately predict 

future inventory levels. 

This study utilizes applications of data farming to OSAM to simulate 

Unrestricted Line Officer (URL) inventory over a seven-year period. Additionally, 

the research utilizes applications of Design of Experiments (DOE) to project 

Surface Warfare Officer (SWO) inventory across a variety of assumptions, 

including a proposed Enhanced Probationary Officer Continuation and Re-

designation (EPOCR) policy. Analysis finds that current policy will reduce 

FY2016 URL inventory by 8% over a seven-year period, and over-execute SWO 

inventory authorizations by 40%. We find that EPOCR reduces operating 

strength deviation (OSD) in total SWO inventory strength by 12% by FY2022. 

Additionally, implementing a low accession plan and a high transfer plan is the 

most robust in correcting OSD. When implemented correctly, EPOCR has the 

potential to decrease OSD to modest levels with minimal risk of under-execution. 
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EXECUTIVE SUMMARY 

U.S. statute requires the services to balance their manpower inventory to 

congressionally authorized requirements. As a result, Navy strength planners, 

community managers, and policymakers plan and manage the Navy’s end-

strength, skill inventories, promotions, and accessions to meet the 

congressionally mandated end strength. To do so, they must continuously and 

accurately predict the Navy’s inventory strength by designator and paygrade 

throughout the fiscal year. Inaccurate prediction and resulting policies put the 

Navy’s budget at risk and degrade mission readiness.  

Strength planners rely on the accuracy of complex simulation models to 

correctly predict the Navy’s future inventory strength. Models help Navy 

leadership understand the potential impacts and risks inherent in current and 

planned policies to the force inventory structure.  

The Officer Strategic Analysis Model (OSAM) is an entity-based stochastic 

simulation model that allows for projection of annual future officer inventory and 

losses across communities by applying various historical trends and force-

shaping policy to current inventory. The current version of the model, as used by 

strength planners, however, is stripped of its stochastic capability, which limits 

assessing risk in the model’s results. Additionally, OSAM, as currently used by 

strength planners, simulates only one scenario at a time, making the simulation 

model ineffective for the large-scale implementation necessary for investigating 

effects of manpower policies. 

This thesis uses concepts of design of experiments (DOE), data farming, 

and a stochastic enhancement of OSAM to forecast Unrestricted Line (URL) 

officer inventory. Data farming is used to simulate 100 replications of a base-

case scenario that projects Navy Unrestricted Line (URL) officer inventory over a 

seven-year period. The base-case scenario assumes that current manpower 

policies and loss rates prevail over the projected period. We use the base case to 



 xviii

gain insight on the expected trend of URL inventory strength and the risks in 

future SWO inventory strength assuming the Navy continues with current 

manpower policy. We find that total operating inventory strength falls by an 

average of 8% over the seven-year period from 24,815 officers at the beginning 

of 2016, to 22,890 ± 13 officers at the end of 2023. The mean end strength 

results in the base case have extremely small standard deviation values, 

suggesting little value in OSAM’s stochastic enhancement. More importantly, 

base-case results show SWO inventory strength will over-execute OPA by more 

than 40% in grade O3 over the entire projected period. 

Additionally, the study uses concepts of data farming, design of 

experiments, and High-Performance Computing (HPC) to simulate surface 

warfare inventory using key factors and assumptions, including a proposed 

enhanced Probationary Officer Continuation and Retention (EPOCR) policy. We 

use historical loss rate categories, accession plans, transfer plans, and three 

user-added force-shaping plans corresponding to EPOCR losses. The current 

year promotion plan is used and an auto-promotion method that constrains 

inventory to the Defense Officer Personnel Management Act (DOPMA) 

guidelines is assumed. Using resources available at the Naval Postgraduate’s 

Simulation Experiment and Efficient Design (SEED) Center, a Nearly Orthogonal 

Latin Hypercube Design for three discrete factors corresponding to EPOCR 

losses is crossed with a Full-Factorial Design for three categorical factors 

corresponding to the historical plans. A “landscape” of output is farmed, 

collected, and analyzed for insight.  

We use graphical and statistical analysis, meta-modeling, and robust 

analysis to gain insight from the results. We find that implementing EPOCR 

significantly reduces grade O3 over-execution by FY2022, and levels the 

average operating strength in all grades to match OPA. Total operating inventory 

strength is reduced by 12% over the seven-year period, from 8,365 officers at the 

beginning of FY2016 to an average of 7,375 ± 739 officers at the end of FY2023. 

However, we also find EPOCR greatly elevates the risk of over-execution. To 



 xix

mitigate this risk, we use robust analysis and metamodeling to find robust 

policies that control OSD. We find that implementing a low accession plan and a 

high transfer plan is the most robust in correcting OSD. Finally, we find when 

implemented correctly, EPOCR has the potential to decrease OSD to modest 

levels with minimal risk to OSD. 

 



 xx

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xxi

ACKNOWLEDGMENTS 

This thesis owes its existence to the assistance and inspiration of  

several people. I would first like to express my sincere gratitude to my thesis 

advisor, Dr. Sam Buttery, whose door was always open whenever I hit a wall or 

had a question about my research or writing. He consistently allowed this paper 

to be my own work, but steered me in the right direction whenever he thought I 

needed it.  

I must express my profound gratitude to my second reader, Dr. Thomas 

Lucas, for introducing me to the topic and for his support along the way. Without 

his broad knowledge in the areas of simulation modeling and design of 

experiments this work could not have been completed.  

I also owe a debt of gratitude to the SEED center for the resources it 

provided that made this research a reality, I am grateful to Mr. Steve Upton, 

whose exceptional technical expertise produced the tools necessary to run my 

simulations, and to Mrs. Mary McDonald, for lending her intellectual insight and 

analytical prowess to my research. Mr. Upton and Mrs. McDonald’s tireless work 

and dedication to the SEED center’s efforts are truly key to its success in 

enhancing DOD research. 

I would also like to thank the teams at OPNAV N100 and N1Z4 for their 

hospitality during my thesis tour and for their continued support, with particular 

thanks to CDR Clark, LCDR Saluke, and Mr. Rinde. 

Last, but not least, I would like to thank my family for the support they 

provided me through my entire life. In particular, I must acknowledge my 

significant other and best friend, Vanessa, without whose love, encouragement, 

and unfailing support throughout my studies, none of this would have been 

possible, and to my son, Anthony, whose very existence inspired me through this 

work and everything I do. This accomplishment would not have been possible 

without them. Thank you. 



 xxii

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION 

A. PROBLEM STATEMENT 

During the last decade, operating inventory, the available number of 

officers within the Navy’s Unrestricted Line (URL) Community, has continually 

exceeded its authorized billets (BA), particularly within its junior pay grades. This 

phenomenon, termed by Navy inventory strength planners as Officer Over- 

Execution (OOE), has imposed large financial costs on the Navy’s budget 

(Parcell, 2015). Comparisons of operating inventory to officer programmed 

authorizations (OPA), the authorized end strength, for four URL communities are 

depicted in Figure 1. Over-execution is particularly profound within the Navy’s 

Surface Warfare Community (SWO). The SWO community, like most URL 

communities, has a closed-loop personnel system. This, coupled with historically 

low retention at the mid-level grades, has traditionally led to more SWO 

accessions than is authorized. However, the large number of accessions, 

“apparently” needed to sustain the low retention rate, has resulted in manpower 

operating inventory overages in the junior ranks (Huff, et al., 2015). A paygrade 

profile for the SWO community comparing operating inventory to authorizations 

from 2012 to 2015 is shown in Figure 2. Grades O1 and O2 have high historical 

overages, but even more startling is the over-execution in grade O3, which 

exceed 40% in FY2014 and FY2015. If left uncorrected, over-execution is likely 

to persist. However, naively fixing over-execution by lowering accessions 

introduces risks to mission readiness as required billets may go unfilled. Any 

sound solutions require accurately projecting and predicting future operating 

inventory based on the inherently unpredictable future behavior of personnel.  
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Figure 1. URL Profile Display of Operating Strength Inventory 
versus Authorized End Strength 
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Figure 2. SWO Paygrade Profile of Inventory Strength versus 
Authorizations 

As part of their long-range planning and programming tasks, officer 

strength planners at the Navy Strategic Resourcing Branch, N100, rely on 

powerful and complex manpower inventory models like the Officer Strategic 

Analysis Model (OSAM) to predict long-term trends in Officer Inventory. OSAM is 

an entity-based deterministic simulation model used to perform annual forecasts 

of officer inventory over the Future Years Defense Program (FYDP). Using 

OSAM for strength projection, however, is limited to single small-scale scenarios 

that provide limited insight to strength planners. Additionally, as a deterministic 

model with no variation in its results, OSAM does not provide any assessments 

on the risk associated with its results (Saluke, personal communication, April 26, 

2016). This thesis enhances OSAM’s utility by introducing randomness to the 
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model and by using proven simulation techniques to run thousands of OSAM 

scenarios.  

B. BACKGROUND 

The Navy’s manpower costs have historically constituted a large 

proportion of the Department of the Navy’s budget and this proportion is 

expected to grow over the next fiscal years. The military personnel budget for 

active naval personnel (MPN) was $29.35 billion in FY 2016. This constituted the 

second-largest appropriation of a total Navy budget of $155.40 billion. This 

amount funded manpower requirements of 54,333 officers and 268,524 enlisted 

personnel for a total end strength of 322,857 (Department of the Navy, 2016). 

Title 10 of the United States code mandates that services regulate their 

inventory to authorized end strength, the number of uniformed personnel set by 

congress allowed on the final day of each fiscal year. The Defense Officer 

Personnel Management Act further places numeric constraints on the distribution 

of active-duty officers in grades O4 through O6 for any authorized officer end 

strength. Additionally, authorized end strength must be balanced to budgetary 

fiscal constraints. This responsibility requires a concerted effort among policy 

makers, community managers, and strength planners to continuously plan, 

manage and monitor the Navy’s officer accessions, promotions, transfers, and 

skill inventories.  

Steering current operating inventory levels requires accurately projecting 

and predicting future inventory strength using current and future policy and other 

assumptions. The Office of the Chief of Naval Operations (OPNAV) Manpower, 

Personnel Training, & Education (MPT&E) Resource Management Division, 

Strategic Resourcing Branch, N100, is responsible for projecting current Navy 

officer inventory to end strength and developing, assessing, and recommending 

personnel strength management policies and force-shaping initiatives that will 

correct officer inventory strength to authorized end strength. Personnel policy 
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derived from inaccurate projections may lead to over-execution, in turn affecting 

the Navy budget and mission readiness.  

C. NAVY STRENGTH MANAGEMENT 

Strength management concerns aligning operating inventory strength to 

authorized end-strength through manpower management policies encompassing 

accessions, promotions, transfers, and force-shaping initiatives. This section 

describes terms relating to Navy strength management and applicable to this 

study.  

1. Manpower versus Manning 

Manpower, also referred to as “spaces,” drives the need for inventory. 

Manpower encompasses unconstrained minimum quantitative and qualitative 

positions needed to fulfill all Navy missions and functions. Navy resource 

managers derive manpower requirements by translating national defense 

strategies and force structure policy decisions into manpower needs. In general, 

requirements are written to minimum skill, pay grade, and quantity for each unit 

or Navy platform. However, budget constraints further obligate policymakers to 

decide on which missions and associated requirements to fund. The process 

ensures that sufficient funds have been set aside to pay for “spaces” when 

personnel are assigned to a “space.” The number of authorized requirements is 

referred to as end strength. Specifically, end strength is the number of uniformed 

personnel set by congress allowed on the last day of each fiscal year, and is the 

target to which strength planners strive to match inventory.  

Manning, also referred to as “faces” or operating inventory, is the specific 

inventory of personnel at an activity, unit, or platform in terms of numbers, 

grades, and occupational groups or skills. Each year, the Chief of Naval 

Operations, through the Department of Defense (DOD), must submit proposed 

end-strength to congress for approval and funding. Fiscal constraints on 

authorized end strength and how well the Navy manages accessions, 
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promotions, transfers, and to some extent, losses, directly affects the inventory 

that is allocated to funded requirements. 

2. Operating Strength Deviation 

Fiscal constraints, manpower management, and policy create differences 

between authorized end strength (spaces), and the operating inventory, the 

number of personnel available to fill authorizations (faces). The difference 

between the “spaces” and the “faces” is what this study refers to as operating 

strength deviation (OSD). Over-execution is deviation when operating inventory 

strength exceeds authorized end strength, the converse being under-execution. 

Strength planners have to be cognizant about operating strength deviation 

throughout the fiscal year. Deviation in end-strength exists in both enlisted and 

officer communities and is tracked by skill and grade. Once deviation has been 

identified, community managers implement strength management policies and 

force-shaping plans to guide future inventory levels, or strength, to authorized 

end strength. This thesis focuses on operating strength deviation within the 

officer Unrestricted Line (URL) community.   

3. Navy Strength Planning 

Navy strength planners are tasked with determining the effects that 

current and future accessions plans, promotion plans, and losses will have on the 

ability to balance personnel inventory to authorized end strength. Officer strength 

planners predict, plan and manage total gains and losses by skill and grade for 

each fiscal year to meet Officer Programmed Authorizations (OPA), the number 

of officers, by grade and designator, programmed to meet end strength. Strength 

planning is founded on predicting losses and gains, and generally follows the 

equation 

 , ( 1) ( 1) ( 1)p t p t p t p tStrength Strength Losses Gains     , (1.1) 
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where p and t are subscripts representing pay grade and time, respectively. 

Strength planning is a proactive approach that can identify future operating 

strength deviations and provide justification for policies that ensure matching 

future inventory strength to authorized end strength. Strength planning is, 

however, a delicate and complex task requiring strength planners to rely on 

complex personnel inventory strength projection models such as OSAM.  

4. Inventory Strength Modeling 

The use of inventory strength projection models for military purposes 

dates back to the conception of military operations research (Abrams, 1957). 

Navy Strength Planners and Manpower analysts use these models, to predict 

how current manpower inventory levels evolve over time. The models help in 

assessing the risks associated with current and planned manpower policies. The 

Department of Defense uses various inventory strength models employing varied 

inventory projection methods and techniques. These models generally follow the 

projection structure of Equation 1.1, but they differ in purpose and design. The 

following sub-section discusses some of the key modeling methods with relation 

to OSAM.  

a. Aggregate versus Disaggregate Models 

DOD aggregate models project inventory as an aggregate of inventory 

across all specialty skills (Schank et al., 1997). Disaggregate models, such as 

OSAM, further partition projections by individual inventory attributes like 

occupation or skill, years of commissioned service, and pay grade, thus providing 

more detail than aggregate models (Schank et al., 1997). This study uses OSAM 

to project URL inventory strength by designator, pay grade, and years of 

commissioned service. 
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b. Short-Term versus Long-term Models 

Short-term inventory strength models make monthly projections within a 

specified period in a given fiscal year. Long-term inventory strength models 

project inventory in annualized time steps, from the end of one fiscal year to 

another for periods longer than one year. OSAM is a long-term inventory strength 

model capable of producing annual inventory forecasts for periods beyond seven 

years (Schank et al., 1997). This study uses OSAM to project URL officer 

inventory from FY 2016 to FY 2023. 

c. Deterministic versus Stochastic Models 

A model is deterministic if the output of the model is wholly determined by 

the assumptions and input settings selected by the user. In a deterministic 

inventory model, each unique set of inputs will always produce the same 

inventory output, which makes it unnecessary to run the model more than once 

for a particular set of input values (Lucas, 2000). Stochastic models have 

randomness in their output results. OSAM uses pseudorandom processes in its 

modeling process to assign losses, promotions, accessions, and transfers, 

inherently making a stochastic model. Updates to the latest version of the model, 

however, removed the model's random characteristics, effectively making it 

deterministic (Mundy, 2014). Using OSAM deterministically, however, subjects 

results to the “flaw of averages,” where single number averages are fallaciously 

used to represent uncertainty (Savage, 2009). This study utilizes a modified 

version of OSAM that reinstates randomness. Chapter III of this thesis discusses 

this modification to OSAM. 

d. Static versus Dynamic Models 

A static inventory model does not depend on the time factor but rather 

describes the inventory at a specific set time and assumes an identical flow of 

inventory over time (Law & Kelton, 2000). Dynamic models such as OSAM 

project inventory from one period to another, making the time component integral 

to and explicit in the modeling process (Law & Kelton, 2000). This thesis uses 
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OSAM to study the evolvement of Unrestricted Line Officer inventory strength, 

including Surface Warfare Inventory, over a seven-year period.  

D. PROPOSED SOLUTIONS TO OVER-EXECUTION  

The prevalent over-execution within the unrestricted line community, and 

chiefly within the SWO community, has emerged in importance and focus to 

Navy leadership, particularly due to recent budget cuts. As such, Navy leadership 

tasked N100 for solutions. One such solution is lowering SWO accessions to a 

level that is just enough to cover authorizations within the junior ranks. However, 

naively fixing over-execution by lowering accessions introduces risks to mission 

readiness as future mid-level requirements may go unfilled, given the SWO 

community’s low retention rates.  

Another proposed solution is the Enhanced Probationary Officer 

Continuation and Re-designation (EPOCR) Board. EPOCR is a proposed force-

shaping initiative that extends retention and continuation board eligibility to SWO 

officers with four, five, and six years of commissioned service (P. Saluke, 

personal communication, April 26, 2016). The Navy uses continuation and 

retention boards to separate from service or transfer to other communities 

officers who no longer have viable progression career paths within their parent 

communities. The SWO community typically reserves probationary force-shaping 

policy to officers with less than four years of commissioned service. As proposed, 

the policy will refer to the EPOCR board up to 120 officers with four, five, or six 

years of commissioned service. This study investigates the impact of a low 

accession plan and the EPOCR policy on projected SWO inventory. 

E. PURPOSE AND OBJECTIVE 

The author’s efforts are focused on utilizing OSAM’s inventory projections 

capabilities to provide a quantitative approach to understanding the risk 

associated with different manpower policies to the future composition of URL 

inventory, including the Surface Warfare inventory. Specifically, the study 

projects FY 2016 URL inventory to 2023, assuming current manpower policy and 
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loss rates, and measures the deviation of operating inventory to planned 

authorizations by FY and designator. Additionally, the study assesses the 

implications of a low accession plan to SWO inventory. The EPOCR policy is 

also investigated to determine its impact on SWO future operating inventory. 

Stochastic enhancement to OSAM enables us to produce confidence intervals for 

projected inventory strength results. 

F. RESEARCH QUESTIONS 

The scope of this thesis is guided by the following research questions 

posed by N100. 

1. What is the expected short- and long-term trend in URL inventory 

strength assuming current policy and prevailing loss assumptions? 

OSAM’s dynamic application can produce inventory evolvement over a 

specified period. Stochastic enhancement of the model will allow construction of 

confidence intervals on inventory strength results.  

2. What are the long-term risks in inventory strength for the SWO 

community associated with current policy?  

OSAM’s disaggregate methodology allows us to focus analysis on an 

individual designator. Its long-term annualized projection allows us to track 

inventory strength trends for periods of great lengths. 

3. What is the impact of the Enhanced Probationary Officer 

Continuation and Re-Designation Board on SWO inventory strength? 

OSAM is flexible to the extent that one can model additional force-shaping 

plans using its force-shaping option. This thesis uses OSAM’s force-shaping 

option to model losses corresponding to officers referred to EPOCR. 

The insight gained from answering these research questions will identify 

risks in current manpower plans and provide justification for adopting sound 

policies and plans that will guide operating strength to authorized end strength. 

Analyzing the effects of various accession plans will also provide an 
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understanding of the effect of reducing SWO accessions to future operating 

inventory strength.   

G. METHODOLOGY AND SCOPE 

This thesis combines data farming and the efficiency of design of 

experiments (DOE) with a stochastic version of OSAM to obtain analyzable 

data from the model. Applications to support data farming and the stochastic 

version of the model are developed and provided by the Naval Postgraduate 

School (NPS) Simulations, Experiments, and Efficient Designs (SEED) Center, 

a research center within the school’s Operations Department that focuses 

on enhancing DOD Research via simulation design and analysis 

(https://harvest.nps.edu). First, the OSAM input factors that contribute the largest 

variation in the output of interest are identified from the model, and with guidance 

from N100 manpower analysts. With operating strength as the response variable 

of interest, loss rate categories, transfer plans, and accession plans are chosen 

as the explanatory variables. We introduce three additional force-shaping factors 

for SWO inventory with four, five, and six years of commissioned service (YCS), 

respectively, as a way to control future SWO operating inventory strength. The 

latter represents a proposed policy that increases the number of junior SWO 

officers referred for lateral transfer or re-designation via the Probationary Officer 

Continuation and Re-designation Board (Borozny, 2015). The number of factors 

and their corresponding levels dictate the type of design used for the experiment 

since complexity is limited by available computing power (Kleijnen et al., 2005). A 

stochastic modification of OSAM is adapted to utilize multi-cluster computing and 

further scripts are developed to consolidate the model’s output to desired 

specification. The model’s output is analyzed using advanced statistical 

techniques incorporating regression tree analysis, robust analysis, and 

metamodeling to explore the relationship between OSAM’s input factors and 

projected inventory strength. 
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H. BENEFITS OF RESEARCH 

OSAM’s utility as an inventory strength projection tool is largely untested, 

and its value largely underestimated. This research extends previous studies by 

Sibley (2012), Borozny (2015), and DeHollan (2015) by studying, validating, and 

improving upon OSAM’s utility as an inventory projection tool. Insights gained will 

enable manpower analysts to effectively use the model to accurately project 

officer inventory strength. The methods used in this research can subsequently 

identify the true effects of OSAM’s inputs on end strength results, and measure 

risks associated with current and planned manpower policies to future inventory 

strength profiles. Additionally, the study will gain insight into the implications of 

the proposed EPOCR policy to future SWO inventory.  

I. LITERATURE REVIEW 

Human resources are the most valuable, yet more complex, and often 

most expensive asset of most organizations. Due to the uncertainty of human 

behavior, organizations often resort to simulation models to emulate their 

manpower systems and predict the short- and long-term composition of their 

future personnel inventory strength. A large amount of research has been 

conducted to support the development or improvement of manpower models for 

inventory strength projection and optimization within the context of the military. 

Sibley (2012) offers an extensive summary of such research. Whereas numerous 

manpower models exist within and outside of military application, there is little 

research that applies the concepts of data farming and design of experiments to 

manpower models. In fact, Antony (et al. 2012) finds that little attention has been 

given to the application of DOE outside the manufacturing context. The literature 

reviewed in this section focuses on some of the few studies applying data 

farming and DOE to military manpower models.    

Blosch and Antony (1999) apply design of experiments to the Rating 

Supply Chain Model (RSCM) to study risk in the United Kingdom’s Navy 

manpower planning. Specifically, their study uses DOE to identify key variables 
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that cause gapping, referring to a job that is not filled by a competent and 

qualified person, while on sea rotation. RSCM is a stochastic queuing inventory 

model that represents the flow of inventory through manpower positions and their 

interrelations with events such as recruitment, promotion, and losses. The model 

takes as input nine covariates and outputs distributions on queue lengths and 

waiting times within the queuing process. The study designed an experiment to 

evaluate the effects of three variables, sea-shore ratio, length of sea-draft, and 

billet ratios, and their interactions using one of Taguchi’s orthogonal array 

designs. Results from the experiment allowed for analysis using analysis of 

variance (ANOVA) and other statistical techniques to determine the factors that 

influence gapping at sea. Although Blosch and Antony were conservative in the 

number of variables, their study revealed a promising application of DOE to 

manpower modeling within the military arena. 

Erdman (2010) applies the concepts of design of experiment to the U.S. 

Army’s Enlisted Specialty (ES) model. Erdman uses DOE to identify the variables 

with the greatest effect on minimizing the deviation between projected personnel 

inventory and authorized end strength. ES, like OSAM, is a dynamic inventory 

model that projects military inventory by grade and skill over a multi-year 

planning horizon. With 800,000 variables, ES adds an optimization application 

with 224,473 constraints to the inventory modeling process. Erdman evaluates 

52 objective function coefficients of the model that place the greatest weight on 

decision variables and he uses the Plackett-Burman (Plackett & Burman, 1946) 

approach to construct his experimental design (Erdman, 2010). The findings from 

his analysis for the Army’s G1 showed a possibility of a 14% reduction in 

deviation, or an average drop of 8,355 misalignments (Erdman 2010). 

Nelson (2010) uses DOE to evaluate the Navy’s Bureau of Personnel 

Metrics and Analytics Branch (BUPERS-34) Reenlistment model. The 

reenlistment model uses linear regression to forecast the expected reenlistment 

rate for the Navy’s prescribed three reenlistment zones, based on years of 

completed service, assuming current conditions. Nelson uses DOE to determine 
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the most influential variables in the model that predict the reenlistment rate for 

each zone. He uses a 3-factor, 2-level full factorial design for each zone and 

analyzes experimental results using multivariable regression and other statistical 

techniques. Nelson identifies a number of insignificant variables in the model and 

recommends alternative models that improve robustness and fit for each of the 

three enlistment zones (Nelson, 2010).   

The thesis research of Sibley (2012) provides the foundations on which 

this thesis is based, and is the earliest literature known to this author utilizing the 

concepts of data farming and DOE on OSAM. Sibley seeks to evaluate and 

improve the prediction capability of an earlier version of OSAM by examining the 

performance across the simulation model’s loss adjustment factors for the lateral 

transfer variable. With 90 factors of discrete levels, Sibley uses a randomized 

Latin Hypercube (LH) design and a Nearly Orthogonal Latin Hypercube design to 

vary lateral transfer rates and loss adjustment rates among the SWO and Human 

Resource (HR) officers for pay grades O1-O6. Data farming and DOE allowed for 

efficiently exploring a factor space that would otherwise have been 

computationally impossible to explore. Sibley’s work, the first application of data 

farming and DOE to OSAM, not only lays the groundwork for continuing work, but 

also provides proven analytical solutions to OSAM’s limitations adopted in the 

current version of the simulation model. 

DeHollan (2015) advances the work of Sibley (2010) by applying concepts 

of data farming and design of experiments to an updated version of OSAM, 

enhanced with randomness. DeHollan measures the stochastic variation in the 

enhanced model and determines the effects of an improving economy on the four 

largest designators of the URL community, specifically focusing on pay grades 

O3 through O6. His work differs from that of Sibley (2010) in that in addition to 

using data farming and DOE to validate OSAM’s behavior, he uses the model 

itself to analyze behavior and future composition of officer inventory based on a 

given real-world scenario. Since OSAM’s existing platform does not have the 

intrinsic capability to model economic factors, DeHollan simulates a three-year 
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period of an improving economy by introducing forced losses for three 

consecutive years. He uses a 257-design point NOLH design to vary 27 factors 

representing forced losses per pay grade per designator per year. He analyses 

the relationships among the factors from the results of his experiment using 

metamodeling and other statistical techniques. 

Borozny (2015), who did her thesis research on OSAM concurrently with 

that of DeHollan, uses data farming and DOE to project Navy Surface Warfare 

officer inventory over a six-year period. Using the same modified version of 

OSAM as DeHollan, Borozny studies the interactions among OSAM’s accession 

modeling methods; loss rates; and an aggregated force-shaping plan 

representing an EPOCR policy. Borozny finds that OSAM’s different loss rates 

cause little to no variation in the model’s end strength output, holding all else 

constant. Additionally, the loss rates resulted in counterintuitive results where 

higher loss rates increase end strength and vice versa. Borozny does not provide 

an analytical explanation for this surprising result, but this author suspects that 

varying accessions by accession methods, rather than by accession plans, over-

compensates for the losses in end strength inventory induced by the loss rates. 

The current thesis research differs from Borozny (2015) by varying the accession 

plans available in OSAM rather than the accession methods. Additionally, this 

study models EPOCR force-shaping transfers at a disaggregated level, 

representing each of the three affected YCS with independent factors.  

The works of DeHollan and Borozny provide the literature that serves as 

proof of concept for augmenting OSAM’s inventory strength projection 

capabilities with data farming and DOE to answer questions relating to officer 

manpower policies, force-shaping, and personnel strength planning.  

J. NAVY STRENGTH PLANNING MODELS 

Navy strength planners and policy makers use a variety of strength 

planning models, some of which are discussed briefly in the following sections. 
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1. Navy Officer Personnel Planning System Model 

N100 currently utilizes the Navy Officer Personnel Planning System 

(NOPPS) model for its officer strength planning and projection purposes. The 

model is used in conjunction with accession and promotion models to develop 

officer inventory management plans that will guide inventory to authorized end 

strength. NOPPS uses historical loss rates and average inventory to predict 

monthly inventory across the Future Years Defense Program (FYDP). The 

forecasting utility of NOPPS is, however, inadequate and limiting, forcing strength 

planners to calculate forecasts outside of the model (Frank, 1993).   

2. Navy Enlisted Strength Planning Model  

The Navy Enlisted Strength Planning (NESP) model, also utilized by 

N100, is an event-based deterministic tool used to forecast the Navy’s enlisted 

end strength (DeSousa, 2015). NESP determines enlisted losses for a given year 

by applying historical loss rates to the number of enlisted sailors eligible to leave 

the Navy within that year. Much like NOPPS, discussed earlier, NESP’s 

forecasting ability is also limited in that strength planners need to calculate loss 

rates externally (DeSousa, 2015).  

3. Officer Strategic Analysis Model 

The Officer Strategic Analysis Model (OSAM), utilized for this study, is the 

primary inventory strength projection model used by Navy strength planners to 

project long-term annualized projections of active officer inventory strength by 

pay grade, skill, and fiscal year. The model is described in Chapter III of this 

thesis. 

This chapter gives an overview of the problem that is the focus of this 

research, inventory over-execution within the URL community, and describes it 

within the context of inventory strength planning. The chapter poses the specific 

research questions and the quantitative methods by which these questions are 
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explored as well as the relevance of this research. The next chapter discusses 

OSAM, the inventory strength simulation model employed for this study. 
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II. OFFICER STRATEGIC ANALYSIS MODEL 

This chapter gives a basic overview of OSAM, including a general 

description, the model’s design, its development, and a general description of the 

model’s analytic approach and processing steps. DeHollan (2015) gives an in-

depth description of the model’s development and architecture. 

A. MODEL OVERVIEW 

The Officer Strategic Analysis Model (OSAM) is a dynamic entity-based 

long-term simulation model used to project annualized personnel inventory 

strength by skill and grade over a user-specified time period. The model is one of 

many decision tools available to Navy manpower analysts and the primary model 

used by Navy strength planners to project long-term annualized active officer 

inventory strength. OSAM simulates inventory, dynamically, in yearly time-steps, 

by applying historical loss rates, accession plans, transfer plans, promotion 

plans, and user-defined forced losses to the beginning of year (BOY) inventory. 

The model applies current Defense Officer Management Act (DOPMA), DOD, 

and Secretary of the Navy (SECNAV) policies and constraints to its yearly 

inventory strength projections.  

B. DEVELOPMENT 

OSAM was developed in 2007 to fill a Navy void of decision tools capable 

of projecting active officer inventory. The model was developed by LMI, a 

government-consulting group, specifically for the Navy’s N14 (Manpower, 

Personnel, Training, and Education Catalog, 2015). As of the date of this writing, 

OSAM has not completed the Verification, Validation, and Accreditation (VV&A) 

process required for all simulation models intended for DOD use. Nevertheless, it 

has undergone extensive upgrades from its original version and has not only 

contributed to effectively supporting planning and budgeting of long-term officer 

inventory strength but also made it possible to convert the model into one that is 

data farmable. The executable application of OSAM was originally built in 
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Microsoft Visual Fox Pro, a defunct database language available only on 

government computers, limiting OSAM’s usefulness (DeHollan, 2015). Another 

limitation of the original version was that the model’s input was decentralized to 

multiple file locations, requiring manual adjustment of each file to adjust scenario 

settings, a tedious process that was prone to error (Sibley, 2012). 

The latest software version is built in Microsoft Visual Basic (VBA) and 

houses its data files in Microsoft Access. The transition to VBA and Access 

circumvents government restrictions, expanding OSAM’s access and use by 

Navy strength planners and manpower analysts. The current version also 

consolidates OSAM’s input data to a single database, removing the need to 

individually edit each file when adjusting scenarios and pushing the models 

toward conforming to data farming standards.   

C. SOFTWARE ARCHITECTURE  

OSAM follows the general structure of a typical simulation model. The 

model’s architecture comprises an input component, a simulation module, and 

output component. The input component is a set of permanent source tables built 

and stored in MS Access files. When a simulation is executed, the input section 

links to the module comprising a user interface and simulation algorithms. The 

interface captures and transfers user input settings and parameters to the 

simulation module that drives the simulation algorithms. Each scenario’s inputs 

and parameters are stored in text files outside the confines of the model, allowing 

for easily accessing and rerunning or modifying scenarios. After each simulation, 

the model saves output data as two database tables. The first table is a multi-

year summary (MYS) report of forecasted inventory data pertaining to promotions 

selections, loss counts, transfers, and accessions. The second is a flow point 

table that includes detailed promotion data including the number of vacancies, 

promotions, and flow point estimates for each competitive category and control 

grade (O4, O5, and O6). A scenario Analysis Tool built in Excel is included as 
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part of OSAM’s software. A representation of OSAM’s interconnecting systems is 

shown in Figure 3. 

 

Figure 3. OSAM Database and Model Component Structure 

D. SIMULATION MODELING OVERVIEW 

OSAM’s simulation process is similar in design and structure to Equation 

1.1 displayed in Chapter I of this thesis, expressing the relationship between 

beginning inventory, losses, accessions, and the end strength. The analytical 

process begins with a beginning of year (BOY) inventory that accounts for each 

active duty officer brought forward from the previous fiscal year (FY), and 

represented by pay grade, designator, year of commissioning, and date of rank. 

The model subtracts inventory from BOY based on forecasted losses and user 

specified losses, and applies accessions and promotion algorithms to determine 

the end of year (EOY) inventory. For a multi-year forecast, EOY inventory for the 

previous year is the BOY inventory for the subsequent year. Since OSAM is a 

dynamic long-term disaggregate model, this process is repeated for each year for 

each designator and pay grade, for all years defined by the user. Figure 4 shows 

an overview of OSAM’s analytical process. 
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Figure 4. Overview of OSAM’s Simulation Process. 
Source: Mundy (2014).  

E. OSAM MODELING PROCESSES  

This section discusses how OSAM models losses, promotions, accessions 

transfers, and accessions to forecast officer inventory 

1. Losses 

Forecasting losses represents the most complex aspect of personnel 

inventory strength projection and is the first analytical task of OSAM’s modeling 

process. Navy officer strength planners categorize a loss as either natural or 

forced, depending on whether the loss was deliberately contrived through a 

force-shaping policy. OSAM categorizes losses in a similar way as Natural losses 

and Force-out losses and adds an option to define user-added losses.   

a. Natural Losses 

Officer natural losses, strictly speaking, comprise losses other than those 

due to force-shaping policies. These include officers who discontinue their 

service through voluntary retirement, resignation, and discharge. The natural 
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losses in OSAM are an aggregate of natural losses, losses due to other than 

force-shaping policy and behavioral losses. OSAM derives natural losses using 

historical loss rates predetermined by the Navy Officer Personnel Planning 

System (NOPPS) Forecasting Model (NFM). NFM estimates loss rates by FY, 

loss types, designator, paygrade, and years of commissioned service (YCS) 

group. OSAM models natural losses by multiplying the historical loss rates 

derived from NFM by the beginning of year (BOY) inventory as denoted as  

      , , ,Proj BOYLosses g d LossRate g d Inv g d 
 (2.1)  

where LossesProj (g,d) represents the projected number of losses in pay grade g 

for a specified designator d. LossRate represents the applied loss rate, and    

InvBOY is the inventory at the beginning of the projection year.  

b. Force-out Losses 

Forced or Force-out losses are driven by force-shaping plans which are 

policy decisions stipulated by law and Navy leadership to compel personnel to 

leave service. The primary force-shaping plan for Navy officers is higher-year 

tenure, which limits the number of years of commissioned service at any specific 

pay grade. Navy promotions occur within specified YCS groups, and the 

percentage of officers promoted within each group must fall within minimum and 

maximum percentages established by law (SECNAVINST, 2006). The flexibility 

to balance promotions with higher year tenure creates an effective force 

management tool for Navy policy makers and officer strength planners that can 

be used to shape the inventory composition of any officer community. OSAM 

accounts for forced losses by applying maximum YCS conditional constraints to 

each pay grade designator combination:  

    4  ,   3  ,RETIRE MAXg AND YCS YCS g d OR g AND YCS YCS g d           (2.2) 

where, for each officer, YCS represents years of commissioned service group, 

 is the maximum allowable YCS group for grade g and designator d, and  
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  represents the maximum allowable YCS group allowed prior to 

retirement (Mundy, 2014). 

c. User-Added Losses 

In addition to natural and forced-out losses, OSAM’s flexibility allows a 

user to add additional loss constraints by either adding or reducing losses by pay 

grade, designator, YCS, or FY, using the force-shaping utility. The model adds 

user-added loss constraints by adding or decreasing the number of losses after 

force-out and natural losses have been applied to BOY (Mundy, 2014). One can 

specify user-added loss constraints by FY, pay grade, YCS group, designator, 

and community. For instance, selecting to increase losses by 20 applies 20 

additional annual losses in each FY of a specified year range, and distributes the 

losses within the specified grades, YCS, and designators specified. OSAM 

applies the losses and additions stochastically using distributions proportional to 

inventory at the BOY of the specified FY. This thesis uses OSAM’s force-shaping 

utility to enforce user-added losses representing SWO officers referred to the 

EPOCR board.  

2. Promotions 

The second step in OSAM’s modeling process is determining and setting 

promotions. OSAM models promotions in two phases, representing control-grade 

and fully-qualified promotions.  

a. Control Grade Promotions 

Control-grade promotions apply to grades O4 to O6. Promotions to these 

grades is subject to stipulations in DOPMA, which provides limits on the 

authorized end strength and the minimum time in grade or flow-points in each of 

these grades. DOPMA also establishes promotion zones. Zones are correlated 

with an officer’s time in grade and officers eligible for promotions are categorized 

as either “in zone” or “above zone,” depending on whether they have already 

been considered for promotion. DON guidelines further regulate promotion 
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percentage rates to these grades (SECNAVINST, 2006). All naval officers 

compete for promotions with other officers of the same competitive category, 

regardless of their designator. Surface Warfare, Submarine Warfare, Naval 

Aviator, and Naval Flight Officers, the designators that are the focus of this study, 

belong to the Unrestricted Line (URL) competitive category. The designators 

compete against one another for available promotions by grade at each selection 

cycle.  

OSAM provides four methods for modeling promotions. The first models 

promotions based on a predetermined promotion plan. The second sets 

promotions according to predicted vacancies. The third method promotes to the 

number of vacancies or until flow-points reach minimum thresholds. The fourth, 

“Auto-Promote,” promotes to the number of vacancies while remaining within 

DOPMA/DOD/SECNAV guidelines. This thesis uses the FY2016 promotion plan 

to project FY2016 and FY2017 BOY inventory, and “Auto-Promote” to model 

subsequent years.  

b. Fully Qualified Promotions 

Fully qualified promotions refer to officer promotions to the grade of O2 

and O3. Nearly all eligible officers will promote to these grades. OSAM 

automatically promotes officers to these grades without the need for user input.  

3. Transfers 

The third modeling process applies transfer rates to inventory. A transfer 

refers to the reassignment of an officer from one designator to another. Naval 

officers may transfer by way of upward mobility from a training designator to a 

primary designator, or laterally through a lateral transfer or re-designation board. 

OSAM applies upward mobility transfers from a training to parent designator 

automatically without user input. The model applies lateral transfers based on a 

user-specified transfer plan. Additionally, the model constrains transfers to only 

grades O1-O6 and mimics historical transfer patterns by YCS and pay grade.   
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4. Accessions 

The last step of OSAM’s modeling process is applying accessions or gains 

to obtain the end of year (EOY) inventory. An accession refers to personnel entry 

into the Navy manpower system from the civilian sector. OSAM uses accession 

plans that are based on historical data of prior accession plans executed by the 

Navy. The plans specify the number of officer accessions by community and 

paygrade. Alternatively, users can choose either unconstrained or constrained 

accession methods to model accessions for each projected FY. The 

unconstrained method sets the number of accessions so that approved end 

strength is met or exceeded. The constrained method uses the same logic as the 

unconstrained, but restrains accessions so that total personnel inventory does 

not exceed approved end strength. This study uses an accession plan for each 

projected FY. 

F. USER INTERFACE AND SCENARIO SETTINGS 

OSAM’s graphical user interface (GUI), named the scenario editor and 

shown in Figure 5, provides a convenient way to build and run a simulation 

scenario. Each scenario is a set of input parameters and settings that include a 

user’s choices of preset input tables referred to as plans; methods for applying 

accessions, promotions, and transfers; and Structured Query Language (SQL) 

statements that are used as options to program any further deviations from the 

originally set parameters (Mundy, 2014). The GUI allows users to easily set input 

parameters, define the modeling options, and specify desired output for each 

scenario. The GUI’s simulation building process exposes the user to the various 

input parameters and modeling options via the Parameters, Promotions, 

Accessions, and Force-Shaping tabs, as shown in Figure 5. 
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Figure 5. Officer Strategic Analysis Model Graphical User Interface 

1. Input Parameter Settings and Modeling Methods 

The primary input parameters are specified via the Parameters and 

the Force-shaping page. On the Parameters page, users can specify the length 

of the forecasting horizon and select from a variety of input tables for 

accessions plans, promotion plans, Officer Programmed Accession (OPA) or end 

strength plans, transfer plans, and loss rates categories. The force-shaping page 

allows users to add or constrain losses in addition to the losses resulting from 

the loss rates. 

The Promotion page, shown in Figure 6, Accessions page, and Advanced 

page allow users to choose among the different modeling methods by which 

OSAM calculates or determines promotions and accessions, and transfers, 

respectively. On the promotion and accession page, users may elect to use pre-

existing plans in the OSAM database or choose among the model’s modeling 
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methods to determine promotions and accessions, respectively. The advanced 

page allows users to specify outbound transfers by community and paygrade.   

 

Figure 6. Officer Strategic Analysis Model Promotion Methods 

2. Simulation Model Output 

Once each simulation scenario is completed, OSAM consolidates and 

aggregates all output into multi-year summary (MYS) tables and flow point tables 

containing entity level information for every simulation year. MYS tables produce 

aggregated forecast data from which counts of beginning of year (BOY) 

inventory, end of year (EOY) inventory, losses, promotions, transfers, and 

accessions are generated. Flow point tables include detailed promotion data that 

includes the number of vacancies, promotions, and flow point estimates for each 

competitive category and control grades O4, O5, and O6  (Mundy, 2014). The 
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OSAM software package also includes an analysis tool, built in Microsoft Excel, 

which is used to analyze and track differences in scenario output.  

The basic software version of OSAM and the analysis tool, however, are 

not suited for large-scale experiments involving thousands of iterations as 

needed for this study. Data farming tools are built to enable running multiple 

OSAM scenarios without the need for user interaction.     

G. OSAM SIMULATION RUNTIME 

The runtime for a single iteration of an OSAM scenario depends on the 

length of the forecasted horizon and the computing power of the machine on 

which OSAM is housed. A one year forecast scenario takes approximately two 

minutes on a 64-bit windows computer with an Intel 2.4 GHZ processor. A seven-

year forecast takes approximately eight minutes on the same machine. 
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III. METHODOLOGY AND IMPLEMENTATION 

This chapter discusses the two primary methodologies used in this study, 

Design of Experiments and Data Farming. Design of Experiments (DOE) is used 

to generate and explore a broad range of OSAM scenarios. Data Farming 

substitutes OSAM’s GUI with computing scripts that automate the process of 

iteratively running and collecting data from OSAM scenarios. Additionally, the 

chapter discusses supplemental software tools used to transform OSAM into a 

data farmable model.  

A. DESIGN OF EXPERIMENTS 

1. Definition and Applications 

Design of Experiments (DOE) allows for systematically determining the 

relationships between a factor, an input affecting a process or system, and the 

response, the output of that process or system, using computational 

experimentation. Varying input factors singularly, as by haphazardly choosing 

one scenario at a time in OSAM, is time wasting, limits insight, and may produce 

inconclusive or even disastrous results (Kleijnen et al., 2005). With DOE, one can 

carefully and efficiently make controlled changes to the input factors in order to 

gain maximum insight on how the factors affect the outcome variable. The design 

is specified as a matrix where columns correspond to factors and rows to a 

unique combination of factor levels, referred to as design points (Kleijnen, et al., 

2005). The response surface generated from the designed experiment is then 

studied and analyzed through metamodeling to gain insight on which, and to 

what extent, the simulation model’s inputs affect the model’s output. 

2. Relevant Input Factors 

A fundamental initial step in the design process is identifying and selecting 

relevant input factors (Sanchez et al., 2014). A factor, in the context of 

simulation, is an explanatory variable to a process or system’s output that is 
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manipulated by the experimenter. Decision factors are variables that can be 

controlled in the real world by a decision maker as opposed to noise factors that 

happen randomly, and are therefore uncontrollable.  

The choice of factors to vary depends on the factors’ characteristics, 

available computing resources, and the intent of the underlying experiment 

(Kleijnen et al., 2005). This research seeks to use OSAM to study the impact of  

accession plans, and the EPOCR policy characterized forced losses of SWO 

officers with four, five, and six years of commissioned service. Loss rate 

categories, transfer plans, accession plans, and force-shaping plans serve as the 

primary input variables of interest. Table 1 lists a summary of the factors used in 

our experimental design and their associated levels. A discussion of the factor 

ranges follows.  

Table 1.   Experimental Design Factors and Corresponding Levels 

Factor 
Variable  
Type Levels 

Controllable Factors 

EPOCR 4 YCS Discrete [0, 120] 

EPOCR 5 YCS  Discrete [0, 120 

EPOCR 6 YCS  Discrete [0,120] 

Transfer Plan Categorical FY[09_10, 14, 15], No Transfer 

Accession plan Categorical FY[12, 13, 14, 15]  

Uncontrollable Factors 

Loss Plans Categorical FY[06 ,07, 10, 13, 14, 15]  

 

3. Factor Range  

In order to build an experimental design, it is necessary to determine the 

ranges for the relevant input factors. This section lists and gives a general 

description and the range determination for all the decision factors and the 

uncontrollable factor used in this study.   
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a. Decision factors 

This section describes the decision factors used in this study. 

(1) Transfer plans 

URL communities depend on upward mobility transfers and to some 

extent lateral transfers to grow their non-accession inventory. Transfer plans are 

determined yearly and are effectively determined and controlled by strength 

planners and policymakers. OSAM programs inbound and outbound transfers for 

grades O1 to O2, dimensioned by pay grade, community, and FY of execution. 

Grades O1 to O6 transfer via training to parent designators or via probationary 

officer continuation retention (POCR) boards, whereas grades O3 to O6 laterally 

transfer into other communities. For this study, five transfer plans were chosen 

with guidance from N100 strength planners (P. Saluke, personal communication, 

April 26, 2016).  

(2) Accession Plans 

Accessions are the primary method by which communities get new 

personnel inventory. One of the primary objectives of this study is to determine 

the risk in future inventory posed by a low accession plan. As with transfer plans, 

Navy policy makers determine and have control over what accession plans to 

implement, and therefore are categorized as control factors for the purpose of 

this study. OSAM programs accession using predetermined tables that represent 

historical accession plans dimensioned by designator and the FY in which they 

were implemented. For this study, we selected four accession plans by choosing 

the plans that correspond to the most recent plan, the highest accession rate, the 

lowest accession rate, and a moderate accession rate. 

(3) EPOCR (Four, Five, Six YCS) 

EPOCR policy is simulated as user-added losses. OSAM’s flexibility 

allows users to increase or decrease losses by community, pay grade, FY and 

YCS after the natural losses are applied via its force-shaping functionality. This 
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thesis uses OSAM’s force-shaping functionality to model losses representing 

SWO officers referred to the EPOCR board. Each YCS group is represented as 

an independent factor corresponding to SWO officers with four, five, and six 

years of commissioned service. We model EPOCR losses with a range of 0 to 

120 losses for each YCS category. This range represents the proposed total 

number of officers referred to the EPOCR board. 

b. Noise Factors 

This section describes the uncontrollable factors used in this study 

(1) Natural Loss Rates 

Natural losses represent the uncontrollable factors in manpower modeling 

caused by inherent uncertainty in human behavior. For this reason, they are 

often the most complex factors to model. OSAM uses tabulated historical loss 

rates dimensioned by pay grade, community, and the FY or period in which the 

loss happens. (See Chapter .I) This study seeks to determine the variability in 

OSAM’s personnel end strength inventory projection over the uncontrolled 

losses. The study uses seven loss rate categories that represent a varied 

continuum of years with minimal losses to years with severe losses over the past 

ten years.  

4. Choice of Experimental Design  

Many competing design exist in the field of simulation analysis. The choice 

for which design to use, however, is significantly influenced by the number of 

factors, type of factors, and available computing resources (Kleijnen at al., 2005, 

Sanchez & Wan, 2012). This study uses a combination of three multi-level 

categorical and three discrete factors with a wide range of values. The relatively 

small number of factors, both categorical and, calls for a mixture of a gridded 

design and an efficient space-filling design applied to the categorical and discrete 

variables, respectively. Such a crossed design ensures all combinations of 

categorical factors are captured and reveals interactions and other possible 
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nonlinearities within the results. A full factorial design is appropriate for the 

categorical factors as it will examine the categorical factors at all levels and 

guarantee that all main effects and interactions are captured (Sanchez & Wan, 

2012). Nearly Orthogonal Latin Hypercubes (NOLH) arise as the most suitable 

design for the discrete variables given the broad range of values for the SWO 

forced losses. These designs, developed at the Naval Postgraduate School, offer 

excellent space-filling properties with minimal sampling (see Sanchez et al., 

2012, and Cioppa & Lucas, 2007). They also enable analysts to fit a broad range 

of meta-models and generate a diverse set of graphs. For additional families of 

NOLHs, see Hernandez et al., 2012 and MacCalman et al., 2016. 

5. Experimental Design Construct 

A full factorial design for the categorical variables is generated using the 

Full Factorial Design tool in JMP Pro 12.0.1 (JMP, 2015). The three categorical 

factors with six, four, and four levels, respectively, are crossed to get a design 

matrix of 96 design points. Figure 7 depicts the first 22 of the 96 design points for 

the full factorial design. 
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Figure 7. Full Factorial Design for the Three Multi-level Categorical 
Variables Generated Using JMP Pro 12.0.1 

An NOLH design is generated using Excel spreadsheet design template, 

created by Professor Susan Sanchez at NPS and available at the SEED center’s 

website https://harvest.nps.edu. The particular design template used generates 

33 design points and can accommodate up to 11 factors, more than sufficient for 

our three discrete factors. Figure 8 shows the complete design matrix with the 33 

design points, where, for instance, YCS_4 is a variable representing SWO 

officers with four years of commissioned service who have been referred to the 

EPOCR board.  
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Figure 8. NOLH Design—3 Factors and 33 Design Points 

The design point matrix for the categorical factors is then crossed with the 

design point matrix for the discrete factors using JMP. The crossing generates a 

mixed design matrix with 3,168 design points. Figure 9 depicts a scatter plot 

matrix revealing the space filling properties of the resulting crossed design. Each 

subplot within the scatter plot matrix shows a two dimensional projection of the 

entire design and the levels used for each factor. 
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Figure 9. Scatter Plot Matrix for the Full Factorial Categorical Design 
Crossed with the Discrete Variable NOLH Design 

6. Replication 

Replication is the repeating of the entire design matrix in a simulation 

experiment. Replication is necessary to gain precision in its output results and to 

estimate the experimental error in the design if using a stochastic model 

(Cavazzuti, 2013). However, a tradeoff between the number of replicates per 

design point and the number of total design points is considered when 

constructing a design (Kleijnen et al., 2005). Previous studies using the 

stochastically enhanced version of OSAM have shown the model to depict very 

little random variation in end strength results. Borozny (2015) used 100 

replications for her experimental design and found little stochastic variation in 
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OSAM’s end strength results. DeHollan (2015) found similar results using 100 

replications for a single base case design point. This thesis considers these 

findings, as well as conclusions from a base case scenario simulated for this 

study, in deciding a tradeoff between replications and the total number of design 

points to simulate. We use five replications for each of the 3,168 design points for 

a total of 15,840 simulation runs. 

B. DATA FARMING  

Data farming, in technical terms, is the process of using rapid prototyping, 

simulation modeling, experimental design, high-performance computing, and 

data analysis to study questions of interest with large possibility spaces (Horne et 

al., 2014). The process is analogous to agricultural farming. Where farmers 

manipulate the environment and cultivate land to maximize agricultural yield—

pest control, irrigation, fertilizer, etc.—data farmers manipulate simulation models 

with designed experimentation to produce a landscape of output. A model is data 

farmable if it is possible to programmatically modify its input and automatically 

start an instance of that model, usually with a computer’s command-line interface 

(Horne et al., 2014). 

OSAM in its original version is not configured for data farming as the 

model is incapable of running multiple scenarios or replications of single 

scenarios successively without user interaction. The external software is 

necessary to data farm OSAM. Steve Upton, a Faculty Associate for research at 

NPS’s SEED Center developed OSAMFarmer, a supplemental data farming 

wrapper that is a collection of two key software programs, OSAMRunner and 

SimpleFarmer. Together, these programs “wrap” around OSAM to make the 

simulation model data farmable. 

1. OSAMRunner 

OSAMRunner strips out the graphical user interface and allows a user to 

run successively one or more replications of an OSAM scenario by feeding input 

specifications to OSAM via a command line interface. The program takes as 
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input; the model file; a configuration file specifying OSAM input parameters and 

settings for a specific scenario; and a seed argument, where the number of 

seeds corresponds to the number of desired replications. The program 

automatically saves the model’s output from each completed replication and 

successively starts the next simulation until all replications are exhausted. A user 

can then consolidate and analyze the model’s output. 

2. SimpleFarmer 

The second of the two programs, SimpleFarmer, concurrently schedules 

and manages a set of predefined tasks on a single, multi-processor machine by 

distributing tasks across individual processors. The program takes as input two 

task files, one that labels the names and locations of OSAM input task elements 

including the experimental design, and another containing a set of tasks 

corresponding to the simulated design points. SimpleFarmer schedules and 

executes tasks based on predefined dependencies and the number of available 

processers. Since SimpleFarmer distributes OSAM runs across processors, one 

can use the software to take advantage of parallelized processing on high-

performance computer cluster nodes to cut down on the model’s run-time.   

3. Base Case 

In addition to the experimental design, this study includes a base case 

scenario to serve as a baseline for comparison of the experimental results. The 

base case contains the same input factors and parameter settings used for the 

experimental design and uses the most recent and prevailing manpower policies 

as represented in OSAM. No force-shaping policies are specified in the base 

case scenario. Input parameters include the FY 2016 accession plan, FY 2016 

transfer plan, and FY 2015 loss rates. The promotion method is set to FY 2017 

promotion plan for FY 2016 and 2017, and auto-promote for successive years. 

We replicate the base case scenario 100 times to further explore the stochastic 

variation in end strength results, and employ OSAMRunner to data farm OSAM. 
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C. EXPERIMENTAL RUNTIME 

The runtime for a single iteration of an OSAM scenario depends on the 

length of the forecasted horizon and the computing power of the machine on 

which OSAM is housed and run. Consequently, for this study, the total 

experimental runtime is the total time it takes to run all 15,840 of the simulation 

runs specified in the experimental design, each projected to seven years. A 

seven-year projection of OSAM takes approximately eight minutes to run using a 

64-bit windows computer with an Intel 2.4 GHZ processor. Without the benefits of 

parallelized cluster computing, this experiment would take approximately 88 

days. With the help of NPS’s SEED center resources, this study takes advantage 

of OSAMFarmer’s task distribution and scheduling properties to utilize a High-

Performance Computing (HPC) multi-processor cluster system housed at NPS’s 

SEED center. The HPC reduces the total experimental time to nine days (S. 

Upton, personal communication, July 14, 2016). 

This chapter explains and gives justification for the methodologies chosen 

to explore the research questions posed in Chapter I. This chapter specifically 

describes the approaches taken to generate simulated data from OSAM. The 

next chapter presents and analyzes the results. 
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IV. ANALYSIS OF RESULTS  

This chapter presents and discusses the output from the base case 

scenario and the experimental design using graphical and statistical tools. We 

analyze the base case output to determine the degree of stochastic variation in 

projected operating strength. Additionally, we use results from the base case to 

determine the expected trend in URL inventory strength assuming current policy 

and most recent loss rates. We then analyze experiment data to gain insight on 

the effect of accession plans, transfer plans, and loss rate categories on 

operating inventory strength. We further study the impact of EPOCR policy. 

Using robust design, regression tree analysis, and meta-modeling, we determine 

the policy’s implications on operating strength deviation (OSD). 

A. ANALYTICAL TOOLS 

We use R version 3.3.0 (R Core Team, 2016) to consolidate, filter, and 

organize the results from the base-case simulation. R is also used for initial 

exploratory analysis of the base case results. We use JMP Pro Version 12.0.1 

(JMP Pro 2015) to process, organize, and filter the raw experimental output data 

into analyzable form as well as for initial exploratory analysis. JMP’s analytical 

and graphical tools are used to further explore the base case and experimental 

data for insight.  

B. ANALYSIS OF BASE-CASE RESULTS 

Output from the base-case scenario is used to assess the stochastic 

variation induced by the modification of the latest version of OSAM used for this 

study. Additionally, the base case gives a projection of the expected operating 

inventory strength using standing policy and assuming the most recent applicable 

loss rate category. This helps to determine the expected direction of current 

operating inventory assuming the assumptions prevail over the projected period. 

Specifically, the base case simulates 100 replications of a single design point 

with FY2016 accession plan, FY2016 transfer plan, FY2015 loss Rate, and 
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FY2017 promotion plan for FY 2016 and 2017, and auto-promotion method set 

for successive years.  

1. Data Processing and Collection 

OSAMRunner saves the output from each of the 100 design points as a 

separate CSV file. Each file contains multi-year summaries, for all 70 

designators, from which counts of beginning of year (BOY) inventory, end of year 

(EOY) inventory, losses, promotions, transfers, and accessions by designator 

and pay grade are generated. We use R to consolidate the CSV files and filter 

the multi-year summaries to inventory strength counts of the specific URL 

designators of interest, SWO, SUB, PILOT, NFO, and their corresponding 

training designators. We further group the data by design point, FY, Grade, and 

Designator. Training designators are summed together with their corresponding 

primary designators. For instance, SWO trainee is grouped and summed with 

SWO.  

2. Stochastic Variation 

To determine stochastic variation in the base case, counts of inventory 

strength are summed over all designators, grouped by FY, and averaged across 

the 100 replications. The results show that OSAM produces very little variation in 

URL projected inventory strength results across the 100 replications of the base 

case scenario. Figures 10 and 11 depict the variation in the URL and SWO 

inventory strength, respectively, projected across the 100 replications over a 

seven-year period. The lines depicted in the figures correspond to different 

replications. Variance in the total projected inventory increases in later years in 

both cases although the variance is small relative to the total inventory. 
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Figure 10. URL Total Inventory Strength Projected across 100 
Replications of Base Case Scenario 

 

 

Figure 11. SWO Inventory Strength Projected across 100 Replications 
of Base Case Scenario 
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Summary statistics for URL inventory for each projected year are shown in 

Table 2. The standard deviation measures the variability of the projected values 

from the mean. FY 2023 has the highest variation in projected strength with a 

standard deviation of 12.49 and a mean of 22,890 officers, suggesting that 

stochastic enhancement of OSAM accounts for less than 0.06% of the variation 

in projected inventory strength. Similar results for SWO projections are shown in 

Table 3. 

Table 2.   Summary Statistics of URL Projected Inventory Strength across 100 
Replications of Base Case Scenario 

FY 
Mean 

Strength 
 Std. 
Dev. 

 Min Max 
25th 
Quantile 

75th 
Quantile 

2016 (BOY) 24815 - - - - - 
2016 24958 2.75 24952 24965 24956 24960 

2017 24545 6.28 24521 24556 24541 24549 

2018 24204 8.57 24176 24222 24199 24210 

2019 23911 10.67 23884 23936 23903 23918 
2020 23587 11.27 23558 23618 23579 23594 

2021 23304 12.42 23271 23334 23295 23312 

2022 23073 12.72 23023 23101 23066 23081 

2023 22890 12.49 22826 22909 22885 22899 

 

Table 3.   Summary Statistics of SWO Projected Inventory Strength across 100 
Replications of Base Case Scenario 

FY 
 Mean 

Strength 
 Std. 
Dev. 

 Min Max 
25th 
Quantile 

75th 
Quantile 

2016(BOY) 8365 - -    -    -    - 

2016 8405 1.8 8402 8409 8404 8407 

2017 8302 3.84 8294 8312 8300 8305 

2018 8229 5.1 8215 8240 8225 8232 

2019 8161 5.89 8148 8178 8156 8165 

2020 8066 7.03 8052 8085 8061 8072 

2021 7993 8.29 7967 8010 7987 7999 

2022 7950 10.3 7920 7976 7943 7957 

2023 7910 12.41 7878 7939 7902 7918 
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3. SWO Operating Strength Deviation-Base Case 

One objective of this study is to determine the risk in operating strength 

deviation presented by current policy. Since the base case parameters are set to 

reflect current manpower management policies, we use SWO inventory strength 

output from the base case to determine inventory risk by comparing projected 

operating strength to planned Officer Program Authorizations (OPA). SWO OPA 

given by grade and FY and programmed to FY 2022 are given in Table 4.  

The mean of the projected operating inventory strength by grade and FY 

compared to planned authorizations is shown in Figure 12. The total inventory 

strength composition for the SWO community is largely unchanged for FY2017 

and beyond. Standing out is grade O3 inventory, which over-executes 

authorizations by more than 40% in all projected FYs. There is significant 

increase in FY2017 OPA for grade O1, causing significant under-execution in this 

grade that persists to the end of the seven-year projection period.  

Table 4.   SWO Officer Programmed Authorization by Grade and FY 
Source: N100 (2016) 

. FY ENS LTJG LT LCDR CDR CAPT 

2016 1528 1091 1388 1096 657 256 

2017 2289 1371 1570 1082 651 243 

2018 2152 1379 1596 1096 654 241 

2019 2104 1442 1608 1111 660 241 

2020 1993 1442 1623 1103 661 238 

2021 1988 1441 1624 1101 661 238 

2022 1988 1441 1624 1101 661 238 
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Figure 12. Projected SWO Inventory Strength against Officer 
Programmed Authorization by Grade and FY (Base Case) 

C. INITIAL ANALYSIS OF EXPERIMENTAL DESIGN DATA 

This section describes and assesses the experimental design data, with 

EPOCR policies, generated by the constructs of data farming and design of 

experiments described in the previous chapter. Whereas the experimental data is 

used, in the context of this research, to assess the implications of manpower 

policy plans and EPOCR policies on future Surface Warfare inventory strength, 

the initial analysis assists in finding insightful information and extracting 

elementary conclusions from the experimental data itself. We describe the 

collections and processing of the experimental design data and analyze the 

effects of the key input factors on operating inventory strength. Regression tree 

analysis is used to determine the significant contributors to FY2022 total 

operating inventory strength, for all replications in the experimental design. 
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1. Data Processing and Collection 

Experimental data is consolidated and saved as Comma-Separated 

Values (CSV) file. The output file contains results for all the 15,840 design points, 

with each row in the CSV file corresponding to a design point. The data is 

structured as a multi-year summary report containing all designators and from 

which counts of beginning of year (BOY) inventory, end of year (EOY) inventory, 

losses, promotions, transfers, and accessions by designator and pay grade are 

generated. The file also includes a column for the random seed used for each 

design point, and columns representing each of the six factors in the 

experimental design. A format of the raw dataset produced from the experimental 

design is shown in Table 5. Since the raw dataset is all-inclusive, containing 

strength and loss counts for all 78 officer designators, and paygrades, including 

flag officers represented as grade O7, we use JMP to subset the raw data to 

retain only SWO and SWO trainee inventory counts for grades O1-O6, and 

further filter the count status to inventory strength rather than loss counts. The 

resulting dataset is treated as a parent dataset from which subsequent datasets 

are constructed for further analysis. The format of the resulting parent dataset 

showing the first 10 observations is shown in Table 6. 

Table 5.   Raw Data Format of Experimental Design Results 
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Table 6.   Data Format of the Filtered “Parent” Dataset Derived from the 
Experimental Design 

 

 

2. Initial Assessment of Experimental Results 

Since data farming generates a large amount of data, it is worth first 

exploring the output data graphically to get an initial understanding of OSAM’s 

modeling behavior. This section assesses OSAM’s results by visualizing the total 

inventory composition and measuring the effects of the explanatory input factors 

on projected inventory strength for all replications of the experimental design.   

We start by visualizing the total projected operating inventory strength 

profile across graders for the projected period. Box plots of projected SWO 

inventory strength for grades O1–O6 by FY across all design points are shown in 

Figure 13. The boxplots reveal how variation in inventory strength changes over 

the projected FY. A smoother is added to emphasize the mean trend in inventory 

strength by FY. For grades O1 and O2, variation increases in the first few FYs 

before declining and leveling off beyond 2019 and 2021, respectively. Grades 

O4, O5, and O6 appear to have a gradual increase in variation over the projected 

years. Grade O3 depicts the most variation, which also increases with FY. The 

large variation in this grade is partly due to the range of input values 

corresponding to the EPOCR policy. Grades O1, O2, and O5 appear to have a 

slightly negative trend while grade O3 has a more negative trend across all 

projected FYs. 
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Figure 13. Box Plots of SWO Projected Inventory Strength by Grade 
and FY for Experimental Design 

Additionally, of particular importance to N100 strength planners, is how 

OSAM’s different loss rate categories affect long-term inventory strength 

projections. Box plots again provide a manner in which to compare and contrast 

the variability in inventory strength results due to each loss rate category. Box 

plots in Figure 14 depict the variability in mean total inventory strength for 

FY2023 across all design points. The FY2010 loss rate appears to produce the 

lowest mean in total FY2023 projected inventory strength while FY2006 produces 

the highest mean. The variation in FY2023 projected total inventory strength is 

lowest with the FY2007 loss rate and highest with FY2015 loss rates. Appendix A 

contains inventory strength distribution plots and summary statistics 

corresponding to these plots. 
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Figure 14. Box Plot of SWO Total Mean Inventory Strength for FY 2023 
by Loss Rates for Experimental Design 

We further need to determine whether the differences in the mean total 

inventory strength results due to the different loss rate categories are caused by 

the effects of the loss categories rather than random effects in the modeling 

process. We cannot deduce such information from the box plots and a more 

robust statistical test is needed. The hypothesis tested is:  

 H0 : There is no difference in the mean of total inventory strength 

results in FY2023 due to OSAM’s loss rate categories, that is, 

μ1=μ2=…… μ6,  where  the  six  populations   refer  to the six  

different OSAM loss rate categories or levels chosen for the study. 

 HA: There is a difference in the means, that is, at least two means 

are different. 
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We use One-way Analysis of Variance (ANOVA) to test the hypothesis 

stated above. ANOVA tests differences in means between groups by partitioning 

the overall variance in the response into that due to each of the measured groups 

and the errors (Faraway, 2005). First, we test the assumptions of ANOVA to our 

data specifically that the mean inventory strength results across the loss rates 

categories are normally distributed and that the variance in the results is equal 

across the loss rate categories. We see in Figure 14 that these conditions are 

generally met, that is: (1) all the box plots depict a similar spread, suggesting 

equal variance among the loss rate category results; and (2) all the box plots 

appear symmetrical with centered interquartile ranges, suggesting normally 

distributed inventory strength results. An excerpt from the results of the ANOVA 

test is depicted in Figure 15. The y-axis is the mean total inventory strength 

results across all design points. The vertical span of the diamond shapes 

represents a 95% confidence interval around the mean of each loss rate 

category. The mean is represented by the center vertical line in each diamond. 

The size of the intersection of the circles measures the statistical difference in the 

mean total inventory strength results among each paired loss rate category, 

where the larger the intersection, the smaller the difference in means. Visual 

inspection of the ANOVA test reveals significant differences among the means. 

Statistical results shown in Figure 16 reveal a significant F-statistic, p-value < 

0.001, which supports the visual conclusion that there are significant differences 

in the inventory strength results produced by the loss rates.  
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Figure 15. One-way Analysis of Mean Variance of FY2023 Total 
Inventory Strength by Loss Rate 

 

Figure 16. ANOVA Statistical Test for Loss Rates 

Similar ANOVA hypotheses are tested for transfer plans and accession 

plans to determine the variables’ respective effects on projected inventory 

strength. One interesting observation from Figure 17 is that having no transfers 

produces a significantly higher projected inventory strength value than when 

using a transfer plan. One-way ANOVA results by accession plans are shown in 

Figure 18. Projected inventory strength values for FY 2015 and 2014 accession 

plans are statistically indistinguishable and have the lowest mean. FY2012 

accession plan has the lowest projected inventory strength value, which is also 

statistically different from the values from the rest of the accession plans.  
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Figure 17. One-Way Analysis of Mean-Variance of FY2023 Total 
Inventory Strength by Transfer Plan 

 

Figure 18. One-Way Analysis of Mean-Variance of FY2023 Total 
Inventory Strength by Accession Plan 
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3. EPOCR Policy 

We continue our initial analysis by determining the effects of implementing 

an EPOCR policy to operating inventory strength projections. For this, we 

summarize the mean inventory strength results across the design space by 

grade and FY and compare the results to Officer Programmed Authorizations 

(OPA). A composition of SWO inventory strength by grade and FY with Projected 

inventory strength compared against OPA is shown in Figure 19. We observe 

over-execution persisting in grade O3 in FY2016-2019, and gradually decreasing 

to healthy levels by FY 2022. FY2022 inventory strength summary statistics for 

each pay grade is shown in Table 7.  

 

Figure 19. Projected SWO Inventory Strength with EPOCR Policy 
Against Officer Programmed Authorization by Grade and FY 
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Table 7.   Summary Statistics of Mean SWO FY 2022 Projected Inventory 
Inventory Strength Composition Using EPOCR Policy 

Grade Strength 
Std. 
Dev. 

Min Max 
25th 
Quantiles 

75th 
Quantiles

OPA Deviation

1 1628 110.06 1427 1834 1540 1719 1988 -360

2 1402 107.64 1202 1648 1310 1500 1441 -39

3 1840 358.24 1028 3036 1574 2061 1624 216

4 1269 93.72 1031 1551 1205 1322 1101 168

5 802 44.23 709 900 759 832 661 141

6 435 24.81 386 484 408 457 238 197

Total 7375 738.70         7053 322

 

Figures 20 and 21 show projected inventory strength profiles for the 

lowest (FY2012) and highest (FY2015) accession plan, respectively. An 

interesting thing to note is that there is minimal difference between the low and 

high accession plan inventory projection profiles for grades O2 and O3, 

confirming our conclusions from the one-way ANOVA results for the accession 

plans. 

 

Figure 20. Projected SWO Inventory Strength with EPOCR 
Using a Low Accession Plan 
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Figure 21. Projected SWO Inventory Strength with EPOCR 
Using a High Accession Plan 

4. Regression Tree Analysis 

Regression trees offer a result structure that is more intuitive and are less 

computationally tasking than linear or polynomial regression. Additionally, they 

are powerful at identifying influential factors affecting an outcome variable, as 

well as finding interactions among variables (Faraway, 2005). The general 

regression tree methodology also allows analysis for a combination of discrete 

and categorical predictor variables as used in this study. 

We use regression tree analysis to determine the most influential factors 

of total SWO inventory strength for grades O1 to O6 in FY2022. The results of 

the regression tree model for total inventory strength are shown in Figure 22. The 

first node, the parent leaf, or root leaf, shows the mean and standard deviation of 

the total inventory strength in the entire dataset, 7,375 and 365, respectively, and 

the total count of all observations, 3,168. The data is recursively partitioned into 
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regions corresponding to the distinct paths from the parent leaf to the leaves with 

no further splits, the terminal leaves. The intermediate cells between the parent 

and terminal leaves are child leaves. A predictive model is fitted for each leaf and 

a corresponding estimate of the mean total inventory strength is determined for 

that leaf. The title cell shows the number of splits and the R-square value, which 

describes how well the tree explains the variance in mean total projected 

inventory strength results. The most influential factors in determining the 

projected mean total inventory strength in order of importance in the tree are 

transfer plans, EPOCR policy with 4 YCS, and EPOCR with 5 YCS. The R-

Square value of 0.733 suggests that the tree model explains about 73% of the 

variation in total end strength results. An expected observation, as revealed in 

the first split of the tree, is that having no transfer plan significantly increases the 

total mean inventory strength. Each distinct path from the terminal to the parent 

leaf also represents a sequence of interacting terms. Using a transfer plan with 

an EPOCR policy that refers 64 or more officers with four YCS, and 53 or more 

officers with 5 YCS will results in the least mean total inventory strength. On the 

contrary, having no transfers and referring fewer than 64 officers with four YCS 

results in the largest projected inventory strength value. 
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Figure 22. Regression Tree for SWO Total Inventory Strength 
in FY2022.  

D. ANALYSIS OF OPERATING STRENGTH DEVIATION 

Of importance to this research, and of interest to N100, is determining the 

best manpower policies that will minimize the deviation of projected SWO 

inventory strength from planned authorizations at a given future period. We will 

specifically focus on the total FY2022 projected inventory strength for grades O3 

to O6. We have already determined that there is significant variation in mean 

total inventory strength across the different manpower policies used in this study. 

Furthermore, we have identified the most influential factors that affect projected 

total inventory strength. This section uses tree analysis to find the most influential 

factors that determine FY2022 total OSD for grades O3 to O6. Concepts of 

robust design and meta-modeling are used to determine manpower policy 

settings that minimize projected total OSD in these grades.  
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1. Regression Tree Total Operating Strength Deviation  

We use regression tree analysis to identify influential factors determining 

total operating strength deviation (OSD) over the loss rates for grades O3 to 

grade O6. To set up our dataset for this analysis, we subset the parent dataset to 

grades O3 to O6 and FY2022 and introduce a column in the resulting dataset 

containing the OSD at each design point. We then sum OSD over the grades by 

all the input factors and random seeds. The resulting format of the data with a 

column for the sum of OSD represented as sum (Deviation) is shown in Table 8. 

We use JMP to build a regression tree model on the mean total OSD. The 

resulting regression tree is shown in Figure 23. The variables in the regression 

tree model at six splits explain about 63% of the variation in OSD. Transfer plan, 

EPOCR 5 YCS, and, EPOCR 4 YCS are most significant in determining the 

amount of OSD. 

Table 8.   Data Format with Inventory Strength Deviation Column 
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Figure 23. Regression Tree of Mean total Operating Strength Deviation 
for grades O3 to O6 

2. Robust Design and Construct 

Robust design is a powerful system optimization technique that takes the 

approach of finding ways to determine, with consistency, accurate and precise 

response values by controlling for uncertainty in the system. Both the mean and 

variation of the response are considered, where a system is optimized by 

choosing the closest mean to a target value with the smallest variance (Sanchez, 

2000). The idea is to select alternatives that best approximate the desired 

threshold value for their mean, as well as produce a reasonably small variance 
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around that threshold. Variability in robust analysis, then, represents a risk or 

cost in the system modeled. 

The approach in robust analysis is to separate the explanatory factors of a 

response variable into controllable and uncontrollable factors and then use a loss 

function to find the best configuration of the explanatory factors that produces the 

best results with minimal variability across uncontrollable factors. The response 

variable of interest is the operating strength deviation and the controllable 

variables are represented by the manpower plans: accession plan, the transfer 

plan, and the three EPOCR variables. Loss rate categories represent 

uncontrollable factors corresponding to the uncertainty in the real world. Loss or 

risk is a function of the variance and mean of the operating strength deviation, 

and is given by the formula 

 
2( ) ( ) ( ( ))E Loss variance deviation mean deviation   (4.1)  

where E(Loss) is the long run cost or risk of operating strength deviation, and 

where zero is the best possible value of the deviation. The loss function 

penalizes for both a higher variance and for the mean straying away from its best 

possible value. In other words, if both values are low, the manpower 

configuration is robust and should perform consistently well in minimizing 

operating strength deviation. The second term is squared to level the units for 

both terms to units-squared.  

To set up our data for robust analysis, we further process Table 8 data by 

averaging the mean and variance of the summed deviation over the loss rates. 

The resulting dataset is depicted in Table 9. We then proceed to build a meta-

model on operating strength deviation.  
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Table 9.   Data Format of Robust Design Dataset with Loss Column. 

 
 
 

3. Meta-Models for Mean and Variance of Operating Strength 
Deviation 

We extend our analysis to build a meta-model that determines robust 

parameters for correcting FY2022 total operating strength deviation for grades 

O3-O6. Meta-models act as proxies to the entire simulation model by offering a 

more computationally efficient way of computing response estimates from the 

simulation model (Law, 2000). We use meta-modeling to understand the 

relationship between the controllable input factors’ settings for the accession 

plans, transfer plan, and the three EPOCR variables with the response variables 

represented by the mean and variance of OSD. The meta-model quantifies the 

effects of each of the controllable variables on both the mean and variance of 

operating strength deviation. 

Using JMP, we simultaneously fit meta-models on the mean and variance 

of operating strength deviation using stepwise regression and with minimum 

Bayesian information criterion (BIC) selected as the stopping condition for fitting 

the best model. We screen out less significant factors from the resulting models 

and use the remaining factors to fit a model using all two-way interactions and 

second-degree polynomials terms. We further filter out insignificant factors from 

the resulting models, leaving only statistically significant factors and interactions. 

We use data splitting to avoid over-fitting and to ensure that the models have 
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significant prediction power. For this, the dataset used to build the model, Table 

9, is randomly partitioned into a training set that is 75% of the data, and is used 

to build the models. The rest of the data is set aside as a test set and is used to 

validate the predictive power of the model.  

A screen shot of summary statistics and diagnostic plots for the resulting 

meta-model built with the training set is depicted in Figure 24. The summary 

statistics indicate good predictive capability. All five input factors are statistically 

significant with t-statistic p-values < 0.01. Additionally, the model has a relatively 

high R-Square value of 0.999. The residuals are also sufficiently normal and 

exhibit constant variance, as evidenced by the Normal Quantile and Residual by 

Predicted plots, suggesting that the model has a good fit on the data. A bivariate 

fit of predicted values from the training and test set is shown in Figure 25. The 

linear diagonal fit indicates that the model has good predictive performance. 
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Figure 24. Diagnostic Plots for Mean Total End Strength Deviation 
Meta-Model Strength 
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Figure 25. Actual versus Predicted Plot for Test Set Using 
Mean Total Inventory Strength Meta-model 

4. Prediction Profiler 

JMP’s prediction profiler offers an interactive way of exploring a model’s 

response surface by varying the input factors. The profiler displays the predicted 

mean and variance of operating strength deviation as one input variable is 

changed while holding the others constant. We can use the prediction profiler to 

find the robust settings that minimize both the mean and variance of the OSD 

variable. A prediction profiler with function curves for the mean and variance of 

deviation is shown in Figure 26. The transfer plan and accession plan are set to 

FY2015 and EPOCR parameters are set to zero. This corresponds to the status 

quo where no EPOCR policy is implemented. Shifting the input parameters on 

the x-axis along the deviation curves results in a marginal change in deviation 

proportional to the slope of the curve. Thus, a curve with a slope of zero will have 

no effect on the response. The response at these values indicates a mean OSD 

of 1261 with a standard deviation of 189, suggesting that total projected 

operating inventory strength in grade O3 to O6 will over-execute OPA by an 

estimated 1261 officers in FY2022 where an EPOCR plan is not implemented.  
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This again assumes that that Navy implements the respective manpower policies 

each year over the projected period. Shifting the transfer plan to no transfers 

increases the mean OSD, as does shifting the EPOCR value setting to the right.  

 

Figure 26. Prediction Profiler of Mean-Deviation Meta-Model 

Figure 27 depicts a prediction profiler with transfer and accession plans 

set at their respective values from the robust analysis. The EPOCR parameters 

are arbitrarily set to a combination such that OSD is reduced to a modest level of 

300 with a standard deviation of 141. This suggests that the total inventory for 

grades O3 to O6 will over-execute OPA by a mean estimate of 300 officers in 

FY2022 assuming this policy prevails over the projected period.  
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Figure 27. Prediction Profiler of Mean-Deviation Meta-Model With 
Robust Settings for Transfer and Accession Plans. 

Figure 28 depicts a prediction profiler with robust settings for transfer and 

accession plans with EPOCR parameters arbitrarily set to a combination that 

reduces OSD to a mean estimated value of just two officers in FY2022. The 

standard deviation for this setting is 123 officers, suggesting an enhanced risk of 

under-executing SWO inventory. 
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Figure 28. Prediction Profiler with Robust Settings Converging 
Operating Strength Deviation to two Officers 
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V. CONCLUSION AND RECOMMENDATIONS 

This thesis extends the works of Sibley (2012), Borozny (2015), and 

DeHollan (2015) to enhance OSAM’s utility as an inventory projection model 

using data farming and design of experiments. The insights gained from this 

study go beyond the scope of the specific questions guiding this research. To 

illustrate OSAM’s utility, this thesis, first, analyzes the effects of current 

manpower policy on the future composition of URL inventory. Second, this thesis 

analyzes the effects of historical accession plans and the proposed EPOCR 

policy on surface warfare officer inventory. Finally, the study identifies the risk 

inherent in the EPOCR policy by measuring projected inventory deviation from 

planned authorizations and identifies policies that mitigate identified risk. The 

section that follows answers the specific research questions posed for this study 

A. ANSWERS TO RESEARCH QUESTIONS 

1. What Is the Expected Short- and Long-Term Trend in URL 
Operating Inventory Assuming Current Policy and Prevailing 
Assumptions?  

OSAM models inventory projections dynamically over annual time-steps, 

and as such, provides the ability to track URL inventory over the entire projected 

period. The base-case projects 2016 URL inventory over a seven-year period 

with a key assumption that the current policy, FY2015 accessions, transfer plans, 

and loss rates prevail over the projected period. We find that total operating 

inventory strength falls by an average of 8% over the seven-year period from 

24,815 officers at the beginning of 2016, to a mean and standard deviation of 

22,890 and 13 officers at the end of 2023. The mean Inventory strength results in 

the base case have extremely small standard deviation values, suggesting little 

value in using OSAM as a stochastic model.  
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2. What Are the Long-Term Risks in Inventory for the SWO 
Community Associated with Current Policy? 

We measure risk as operating strength deviation, the magnitude of 

expected deviation of operating inventory from planned authorizations (OPA). 

The base-case results show over 40% over-execution in grade O3 that is 

expected to persist over the entire projected period. We should remind the reader 

that the base-case assumes current manpower policy and loss rates prevailing 

over the projected period. In addition, the current accession plan is not enough to 

sustain an increase in programmed authorizations for grade O1 planned for 

FY2017 and beyond. Interestingly, the base case shows healthy inventory 

strength for grades O4, O5, and O6.  

3. What Is the Impact of the Enhanced Probationary Officer 
Continuation and Re-designation Board on SWO Inventory? 

The EPOCR results assume averages over all practical manpower 

policies as used in this study. Additionally, the results rest on the assumption that 

the policies prevail over the projected period. We find that implementing the 

policy significantly reduces grade O3 over-execution by FY2022, and levels the 

average operating strength in all grades to match OPA. Total operating inventory 

strength is reduced by 12% over the seven-year period, from 8,365 officers at the 

beginning of FY2016 to a mean and standard deviation of 7,375 and 739 officers 

at the end of FY2023. Total SWO over-execution is reduced to a modest 4% over 

FY2022 OPA from 34% in FY2015. The extremely high standard deviation on 

FY2022 total SWO inventory suggests a high risk of under-executing. Whereas 

the EPOCR policy will generally have a correcting impact on operating strength 

deviation, caution should be taken on how to implement it to avoid under-

execution. Robust analysis of the policy can identify how to best implement 

EPOCR. 

Focusing on the total inventory of grades O3 to O6, we use robust 

analysis and meta-modeling to determine the risks in implementing EPOCR, and 

find the best manpower policies that will correct operating strength deviation in 
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these grades. Our initial finding suggests that using a transfer plan and 

implementing an EPOCR policy for surface warfare officers with 4 and 5 YCS 

had the most significant effect on total OSD. We find that a low accession plan, 

that of FY2012, and a high transfer plan, that of FY2014, are the most robust 

non-EPOCR policies to correct OSD. All accession plans used in the study had 

relatively low impact on OSD, suggesting that an economically efficient plan, a 

low accession plan, holds the same risk as a high accession plan. Additionally, 

the FY2014 transfer plan produced the lowest OSD. Prediction profilers on meta-

models of OSD provide evidence that EPOCR can effectively correct operating 

end-strength to OPA.  

The study shows that it is possible to meet future SWO manpower 

requirements with a conservative accession plan coupled with an aggressive 

transfer plan referring officers to other communities. The Navy should additionally 

supplement its current force-shaping tools with EPOCR to manage officer over-

execution. When used correctly, EPOCR has a potential to minimize over-

execution in the SWO community with minimal and measurable risk of under-

executing. The number of officers within each YCS group refereed to EPOCR 

should be selected in such a manner to account for other constraints, 

assumptions, and interests external to the scope of this research.  

B. RECOMMENDATIONS FOR FUTURE STUDIES 

This study demonstrates the utility of OSAM as an officer projection model 

by applying efficient methods of extracting information from the model and 

providing a quantitative framework to analyze the model’s results. There exists 

potential for research that builds on this study or improves on OSAM’s utility. 

1. Continuous Input Levels 

Future work on OSAM can effectively enrich the factor space in the 

experimental design by varying beginning of year inventory, loss rates, transfer 

plans, and accession plans as continuous rather than categorical variables. The 

current version of OSAM, and as used by this study, represents these input 
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variables as a set of pre-established tables corresponding to historical 

realizations of these plans, given by FY, designator, and paygrade. Since OSAM 

retrieves the inputs as numerical sets, loss rates, transfer plans, and accessions 

are modeled as categorical variables in the experimental design construct, where 

the factors in the experimental design correspond to the manpower plans, and 

the factor levels to a numeric constant for each designator and grade. The factor 

levels do not cover a realistic range of possibilities for the manpower plans. 

Additionally, we cannot prescribe numeric values for the manpower plans in our 

results. However, using OSAM’s database structure, we can use an adjustment 

factor to effectively update input values for the plan parameters in the 

experimental design through SQL statements. For example,   

 

UPDATE AccPlan_FY16 SET Accessions=Accessions*1.5 WHERE 
‘Community’=SWO TRAINEE 

 

will increase FY2016 SWO accessions by a factor of 1.5. BOY inventory, loss 

rates, and transfer plan inputs can be adjusted in a similar way. We can then 

vary the adjustment factors in the experimental design to construct a realistic 

range of numeric values that cover the manpower plans. An experimental design 

varying the manpower plans as discrete factors would give a more precise 

assessment as to how the numeric levels of the manpower plans affect projected 

inventory strength.  

2. Fiscal Year Fixed-Effects 

This thesis also uses linear projections of OSAM inventory over the 

projected window. The manpower and force-shaping plans (EPOCR) are 

modeled with the assumptions that the specific input parameters for each 

scenario are implemented linearly and annually over the projected window. 

Further research should consider projected year fixed-effects for each of the 

manpower and force-shaping plans. The advantage of such a construct is that 
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the research can identify an optimal manpower policy for each projected fiscal 

year. We will add to this note that adding fixed-year effects will compound the 

number of factors needed by a factor proportional to the number of projected 

years. However, the computational resources needed to account for additional 

factors are minimized by using an appropriate experimental design. Additionally, 

since OSAM has very little variation, replication adds little value to an 

experiment. Construction of any designed experiment for future work should be 

weighted in favor of more design points rather than number of replications.  
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APPENDIX A. SWO PROJECTED INVENTORY BY GRADE AND 
FY ACROSS DESIGN POINTS-FY2023.  
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APPENDIX B. DISTRIBUTION OF PROJECTED END STRENGTH 
BY LOSS RATE CATEGORY-FY2023.  
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