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Table |

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x(t).o...... L. 1 0.91...0.82 ...0.75 ...0.685...0.62 ...0.563...0.512...0.465...0.42 ...0.37
B(t). 1 0.98...0.915...0.845...0.772...0.674...0.614...0.569...0.52 ... 0.478...0.437

Table 11

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x(t)..... 1....099 ....0.96 ....0.91 ....0.86 ....0.8 ..0.73....0.67....0.61 0.55....0.5
alt)..... 0....0.198....0.384....0.546....0.688....0.8 ....0.87....0.93....0.97 0.99....1
g(t)..... 2....1.98 ....1.85 ....1.65 ....1.48 ....1.28....1.06....0.9 ....0.75 0.6 ....0.5
Blty..... 1....2.9 ....3.9 ....45 ....5 .56 ....5.9 ....6 RN ) 6.1 ....6.18
and and repeating » times, gives

T

o*()=xo(t)— ) Fliu,e*(u))du (74) fT am

, o , [o*(1) — (1) J2dt < 52— 79
Subtracting equations 73 and 74 gives 0 S n! (79)

7 . .
[o*()—o12 =[S | Fltue()] - Letting n—> e gives
* 2 T . .
Flta*wlldu]* (75) [ 4%y~ g(i)]2dt=0 (80)
Therefore, Hence the solution ¢(¢) or x(¢) is unique.
7

[* (D) —s(0 2 < o K2tu)du (76)
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Design of Some Active Compensators

of Feedback Controls

R. E. McCAMEY

Summary: Certain networks capable of
producing transfer functions with complex
zeros (or complex poles) are presented.
The equations for the s-plane loci of the
complex singularities are developed and are
equations of circles. Working equations
are tabulated as an aid to design. Using
these in conjunction with Carpenter’s
graphical construction, the network can
be designed so that the roots of the com-
pensated system lie at a specified location
for a specified gain.

N THE USUAL textbook on feedback
control systems, and in most of the
published literature, the problem of com-
pensation network design is treated as-
suming that the network is passive, has
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real zeros and poles, and is to be cascaded
in the main transmission channel. There
are some noteworthy exceptions to the
preceding statement; some authors treat
compensation quite generally,? or treat
specific networks that generate complex
zeros and poles,” and a few papers®#5
have presented some original concepts
which are helpful in the solution of
specific problems.

While passive compensators will always
be useful, tacit restriction of compensa-
tors to passive devices should be dis-
continued, since the state of the art in the
design of operational amplifiers makes
active compensators quite practical. In
like manner, restriction of the compensa-

tor device to have real zeros and real poles
is no longer tenable; the problems of
tolerances and adjustments which often
made passive resonant circuits, bridged T,
parallel T, and lattice networks imprac-
tical solutions are not critical considera-
tions when an active network is used.

In this paper an attempt is made to
point out various situations in which it is
desirable (or even mandatory) to use a
compensator with complex zeros. Ac-
tive networks which are capable of gen-
erating complex zeros (or poles) are
analyzed. It is shown that the loci of the
singularities on the s-plane are circles,
and the equations of these circles in
terms of parameter values are tabulated.
Procedures for the design of such com-
pensators are developed and applied to
specific cases.

A paper recommended by the AIEE Feedback Con-
trol Systems Committee and approved by the AIEE
Technical Operations Department for presentation
at the AIEE Joint Automatic Control Conference,
New York, N. Y., June 27-29, 1962. Manuscript
submitted November 6, 1961; made available for
printing July 10, 1962.

R. E. McCaMEY is with the U.S. Marine Corps, and
G. J. THALER is with the U.S.Navy Postgraduate
School, Monterey, Calif.
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order actuator with complex poles
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Fig. 4. Root locus for a problem in feedback
compensation

Situations for Complex Zero
Compensators

In the practical design of high-powered
position-control loops (and speed-control
loops) it is usually found that the loaded
actuator unit is at least a third-order
device with inherent complex poles.
Typical examples are d-c shunt motors

Vi

»”

and hydraulic actuators. The root locus
for such an actuator used in a positioning
device is shown in Fig. 1. The loci from
the complex poles enter the right-half
plane at a low value of gain so accuracy
and stability are incompatible. A cas-
caded compensator with complex zeros
can effectively eliminate this problem,
and the zeros need not be used to cancel
the poles. Use of compensators with real
zeros frequently will not even alleviate
the problem and if it does the design nor-
mally requires several additional stages of
amplification in either case.

A second practical situation arises when
a high-order system (with all open-loop
poles real) must be operated at high gain,
vet specifications require that the dom-
inant roots be complex, well damped,
and of reasonably high frequency. An
uncompensated root locus for this second
case is shown in Fig. 2. If real zeros are
used to reshape the locus it is often diffi-
cult to avoid a small real root which either
dominates, or puts a long tail on the step
response, or adversely affects the band-
width. However complex zeros placed
near the desired root location (as shown
in Fig. 2) usually provide a satisfactory
solution.

A third practical situation arises when
the designer introduces an additional pure
integration to produce a type-2 system.
This technique has the advantage of in-
suring steady-state accuracy, but ob-
viously makes the compensation problems
more difficult. The root locus for this
situation is shown in Fig. 3. The com-
pensation problems are essentially the
same as in Fig. 2 and require no additional
examination.

A fourth situation can arise when feed-
back compensation is considered. A
convenient block diagram® manipulation
reduces the calculations to a problem in
cascade compensation, the uncompen-
sated linear system being represented by
a single equivalent block. The poles of
the transfer function of this block are the
roots of the uncompensated system
characteristic equation. Thus the prob-
lem might be described by a typical root
locus as in Fig. 4. Usually the un-
compensated system is unstable, thus
vielding complex poles in the right-half

Fig. 5. Block diagrams of active compensators

A—Parallel feed-forward and sum
B—Positive or negative feedback loop
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plane. The compensator zeros must be
chosen to force a root-locus segment
from these poles into the left-half plane,
and if possible through a desired root
location. In general, the availability
of complex zeros makes the compensa-
tion design much easier and the resulting
performance more satisfactory.

Characteristics of Some Active
Networks

Complex zeros and complex poles can
be generated very simply using elementary
lead and lag networks in conjunction with
amplifiers. Two simple schemes are
indicated in Fig. 5. The availability of
complex singularities is readily seen
from the algebra. For the parallel
feed-forward case of Fig. 5(A)

K(,=A1(s+Z1 ):FA2(5+Zz)

Vi s+p1 S+pe
~ A(sHZi)(s+p2)F Aao(s+2Za)(s+p1)
a (s+p1)(s+p2)

From equation 1 it is seen that the
numerator is the difference between two
quadratics, which is also a quadratic, and
with proper choice of constants this quad-
ratic can have complex roots. Thus, the
transfer function of the active network
can be made to have complex zeros.

For the feedback configuration of Fig.
5(B)

Vo _ Ai(s+2Z,)/(s+p1)

1)

Vi 1F A4, (s+2Z1)(s+2»)
(s+p1X(s+p2)
Vo Ai(s+Z1)(s+p2)

Vi (s+pi)(s+p2)FA1Ae(s+20)(s+22) @)
In equation 2 the denominator shows that
complex poles can be made available by
proper choice of parameter values.

The roots of the numerator of equation
1, and also of the denominator of equa-
tion 2, can be controlled with the gains
Aiand 4. The effects of gain variations
on the root locations can be shown on
the root-locus plot by rewriting the func-
tions as

A(s+Z1)(s+p2)

=F1 3)
As(s+2Z2)(s+ 1)
zz P Py Z, i
Ry =/i\

Fig. 6. Root locus for equation 3
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Table I. Circle Equations for the Zeros of Active Networks

Compensator Equation of the Root Locus of Complex Zeros

Lead-lead feed-forward difference compensator.................. [ parZdi— pdiZdy

] 2 o pdipdi(Zdi— Zdz) + Zar1Zdx(pd2— pdr) pasZdr— pdi Zdz :l .
Zd:— Zdar+ pdr— paz.

Zds— Zdr+ pd1— pdz Zdr — Zd1+ pdr— pde.
_bopgr(Zgi— Zg2) +Zg1 Zg2(pgr— pg1) peZgi—pgZge :|2
Zgp—Za+pn—pee Zgr—Zg+pgr— Py

paZa—paZge ]2 2
Zgr—Za+pp—pee

Lag-lag feed-forward difference compensator.................... [x

pdpg(Zg—Za) +ZdZg(pd— pg)
Zd—Zg+pg—ra

[x+ paZg—pg9Zd

]+ . paZg—pgZd ]
—Zg+Za+pg—pd

Lag-lead feed-forward summing compensator....................
Zda—Zd+pg— bd

Note: The subscript ¢ designates a lead network, g designates a lag network.

Table Il. Circle Equations for the Poles of Active Networks
Compensator Equation of the Root Locus of Complex Poles
Lead-lead negative-feedback compensator....................... [x—{- _pdipa—ZdiZdr ] 2 e Plipa(ZastZa) — ZarZax(pa+ pdz) . pdipdr— Zdi Zdz :l 2
Zar+ Zde— pdr— pdz Zar+ Zd2— pdr— pdz Zdi+Zd2— pd1— pdz
. poper—ZgZg pa1peZg+Zg) — ZpnZg(pg1+ pg2) popgr—ZgZgr 7|
: fedback compensator..—..... ... B T ]
Lag-lag negative-feedback compensator +Zg1+Zg2— by~ bor +y Zoit Zgr— por— pas Zoi+ Zga— pgi— Py
lag-lead positive-feedback compensator...................... I:x—!- papy=ZdZg :l +y2= popa(ZatZg) — ZaZo(pat pg) papy—ZaZg :]2
Za+Zg—pd-pg Zd+Zg—pd— g Zd+Zg—pd—pg
Table lll. Complex Zero Relationships
Numerator Root-
Compensator Working Equation Locus Equation Real Poles Ke
Lead-lead feed-forward difference compensator. . ... (Zaz— Zar+ par— paz) (x2+ %) +2x(pdeZdr — pdrZdz) . . . . . M - pav. pd (A1— A2
= pdipde(Zdr— Zdsz) + Zd1 Zd2(pd2— pdr) As(s+Za) (s+pa) T ! a
Lag-lag feed-forward difference compensator. . . .. .. (Zg2—Zgi+pgr— pga) (x2+92) +2x(pgeZ g — pnZgs) . . . . . M -1 pus, pun (Aroar— Asc)
=pq109:(Z1—Zg2) +ZZg2(Pg2— pn) Arar(s+Zg)(s+2g) T ’ o )
Lag-lead feed-forward summing compensator....... (Zd—Zg+pg—pa) (x4 +2x(pdZg—pgZd) . . ... .. .. Ara(s+Zg)(s+pd) _ _ 1., pd, by .. .. (Ara+A2)
=ZdZg(pd— pg) + pdpg(Zg— Zd) Ax(s+Za)(s+2g)
Table IV. Complex Pole Relationships
Denominator Root-
Compensator Working Equation Locus Equation Real Zeros K.
Lead-lead negative-feedback compensator. . . .. (Zdr+Zdz— par— pas) (x2+y%) +2x(pdipdr— Zd1 Zds) . . - - . Auls+Za) (s +Zd2) = Zav, pa: o
= pdipdx(Zdr+ Zdz) — Zd1 Zax(pdr+ bd2) (s+pd1) (s+ pd2) T e 14+ 4,
Lag-lag negative-feedback compensator . . . ... (Zg+Zge— ppr— pga) (2243 +2x(ppge— ZgnZga) .. . . . Arean(s+Zo) (s+Zg2) _ _ 1...... Zgi bgr. ... .. _r
=pnp0:(Zon+Zg2) — Z1 Zgx(pg1+D02) (s+2g0)(s+202) 1+ Araiar
Lag-lead positive-feedback compensator,...... (Zg+Za— pg— pa) (x2+y2) +2x(pgpd — ZgZa) . .. .. ... Ara(s+Zg)(s+2a) 1o Zg, bd... ... — 1
lag in feedback path =popd(Zd+2Z9) — ZgZd(pg+pa) (s+29)(s+2d) 1-Aie
Lag-lead positive-feedback compensator,. . .... (Zg+Zd—pg— pa)(x2+32) +2x(pgpd—ZgZd) . .. .. .. .. Ara(s+29)(s+Za) =1 pa, Zd _r
lead in feedback path =pgpd(Zg+2Zad) — ZgZa(pd+pg) (s+pg)(s+pa) T Dot Ara

and the equations of the pole loci are of

Ads(s+21)(s+Z») circuit combinations which produce com-

(s+p)s+p2) -F @

Equations 3 and 4 show that either zero
or = loci may be used, depending on the
circuit connections; also the relative
magnitudes of the poles and zeros is
important. (Note the Z; and p, are the
zeros of equation 3, while Z, and p; are the
poles.) Fig. 6 shows a root-locus plot
for possible values in equation 3. The
roots thus determined are complex zeros for
equation 1. The poles of equation 1
would be p; and p.. The locus of the
complex zeros is precisely a circle. This
is derived for a specific case in Appendix I.
A tabular listing is also given for some
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plex poles and zeros, together with the
equations for the resulting circular loci.
It is important to note that only certain
filter combinations produce complex sin-
gularities; the majority of the active net-
works produce only real poles and zeros.

From the tables of the circular loci it
is seen that all of the equations for the
zero loci are of the form:

Zipr—Zapr :]2

|:x+Zl_ Zotpa—p1 +

ZiZor— o)+ pr1pe(Ze— Z1)
—Zot+pa—

Zipa—Zopr ]2
—_— 5
I:Zl""Zz‘l'PT_Pl ( )

2

the form:

Dipe— 212y -JZ
|:x+Z1+Zz—P1—P2 +
P Zi+Zo) — 21 Zo 1+ pe)
Zi+Zy—pi—po

pip.—Z\Z, ]2
B — (6
I:Zl‘i‘Z‘:"Px—P? )

Some further properties of these cir-
cular loci may be noted by inspection of
equations 5 and 6. The denominators of
the terms which define the centers of the
circles may approach zero more or less
independently of the sign or magnitude of
the numerator of those terms. Therefore,

May 1963
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the center of the circle may vary from
negative to positive infinity. Similarly,
denominators of the terms which define
the squared radii of the circles may ap-
proach zero more or less independently of
the sign or the magnitude of the numera-
tor. Thus, it is possible to have radii
which vary from zero to infinity. In the
cases for which the squared radius is
negative, of course, the circle is unde-
fined. The denominators of the center
and radii terms are the same, though, so
as the center of the circle goes to infinity,
the radius must also go to infinity. How-
ever, the center does not have to go to
infinity at the same rate as the radius
since the numerators of the terms are
different. In fact, it is possible to have
the center remain at the origin while the
radius goes to infinity. The result of this
is that, in general, it is possible to locate
complex poles or zeros anywhere in the
left- or right-half of the s-plane, providing
the correct compensator is chosen. Some
of the circles are restricted to the left-half
s-plane by the nature of their root loci.
It is possible to use equation 5 or 6 in a
trial and error fashion. By inspection
select desired zero (pole) locations thus
specifying x and y. Next choose ar-
bitrarily (or from experience) an active
circuit that seems suitable. Select two of
the filter parameters (usually those which
will be real poles or zeros in the composite
transfer function). The two remaining
parameters are determined by trial and
error so that the equation is satisfied and
the compensator is physically realizable.
Such a technique seldom leads to optimum
results, but it is usable. A significant
simplification can be made as follows:
For equation 5, let it be required that

Zipo=Zop S K, (7)

Then, equation 5 reduces to
% tyr=K, (8)

Application of equation 7 restricts the ac-
tive compensator to two lag networks or
two lead networks. In like manner, for
equation 6 let it be required that

Z122=P1P2£_K2 (9)
Then equation 6 reduces to
x2+y?=K» (10)

and the active compensator is restricted
to use one lead and one lag network.

Designing the Compensator for a
Prespecified Root Location

Relocation of the root loci of the charac-
teristic equation so that they pass through

May 1963

a specified point is not in itself any great
problem. Simultaneously meeting the
requirements of dominance, steady-state
accuracy, and transient response is, how-
ever, quite another matter. A consider-
able number of techniques exist for the
simultaneous solution of the steady-state
accuracy and root location problems.”®
These techniques apply only to compensa-
tion with negative real poles and zeros and
do not easily extend to the use of complex
polesand zeros. The technique presented
here for complex zeros requires some in-
tuition and trial and error. The tech-
niques of solution, whether for complex
poles or complex zeros, are practically
identical, so only the complex zero case is
given:

(a) Select the compensation path. Then
determine the open-loop transfer function
and manipulate the characteristic equation
into the form

K M (s+2;)
=1

s™ q (s+p7)
i=

where G, is the transfer function of the
compensator.

(b) Plot the 35, pj, and s™ on the s-plane.

(¢) Select the real poles of G, so as to be
most convenient: Convenience will be
determined by the particular problem.
Plot these poles on the s-plane. This will
determine which of the complex zero-
producing active networks is to be used.

(d) Select the desired locations, P and
P’, of two complex conjugate closed-loop
roots. Plot P and P’ on the s-plane. As
mentioned previously, it is hoped that
these roots will prove dominant, but there
is no way of ensuring this.

(e) Calculate the phase angle at P or
P’ due to z;, pj, s, and the real poles of
Ge. Then construct the locus of complex
zeros, in the manner described in Appendix
11, which will result in P and P’ being on a
180-degree locus.

(f) Choose two complex conjugate points,
Q and Q’, on this constructed locus. These
will be the complex zeros of G..

(g) Determine the root-locus gain, Kgr
which will cause roots to be at P and P’
with the z;, p;, s™, and the chosen real poles
and complex zeros of G..

(k) Substitute Kgzz and the real poles and
complex zeros of G, into the open-loop
transfer function to determine if steady-
state accuracy specifications are met. If
not, choose two new locations of the
complex zeros of G, and repeat steps f and g.

() Determine x and y from the chosen
locations of the complex zeros of G..

(7) Substitute x and y and the selected
real poles of G, into the appropriate equa-
tion of Table III to determine the algebraic
relationship between the real zeros of the
compensator passive networks.

(k) Construct a graph of this equation or

evaluate it for several values of one variable
and select any convenient, physically
realizable values for the zeros of the passive
networks.

(1) Substitute the real poles and zeros of
the passive networks into the numerator
root locus equation of Table III corre-
sponding to the active network chosen.
Plot this equation and the selected complex
compensator zeros on another s-plane.

(m) Determine the value of 4,/4, which
will cause the roots of the numerator of
Ge to lie at the selected locations for the
complex zeros.

(n) Using the results of steps g and m,
A; and A, may be calculated and the
compensator design is completed.

(o) The transient response must be
computed and compliance with specifica-
tions determined.

Numerical Example

The example presented herein is
straightforward in order to illustrate the
use of active networks as compensators
without becoming unnecessarily involved
in other considerations. It is assumed
that active compensation was necessary
due to unspecified considerations. The
subsections correspond to the steps in the
technique of solution.

Given:
Fig. 7.

The feedback control system of
K,=5.0.

Requirements: Use cascade compensa-
tion. Desired root location to be such
that 0.5<¢<0.7 settling time==Z1.0 sec-
onds. K, not to be reduced.

Solution:

(a) The compensated open-loop transfer
function of Fig. 7 is

R S
T s(s2+55+100) ¢

The characteristic equation of the un-
compensated system is

_"'T
Fig. 7. Block diagram of a feedback control
" system

4

K
S(S7+55+100)

Fig. 8. s-plane constructions for designing

the compensator
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Pd, P4, 24, 24,
.
Q,O
Fig. 9. s-plane pole-zero array

_5— =0

s(s"’+5s+100)_

(b) 'The z;, pj, and s™ are plotted in Fig. 8.
(¢) Select par= —25, pao=—30, so as not
to add any more poles in the region near
the origin. pa; and pg. are also plotted
in Fig. 8.

(d) Select the points s= —5=%37 to be P

and P’, the roots of the characteristic
equation which will meet the requirements.

14+

(e¢) From Fig. 8, the lead angle required
at P is 307.3 degrees. The construction
angles at P are

@ =153.65 degrees
I'=307.3 degrees

The arc of the circle on which complex
compensating zeros can be located was
constructed in Fig. 8 using these angles.

(f) InFig. 8, chooses=;8.8tobe Q and Q"
the locations of the complex compensator
Zeros. i

(g) The root-locus gain at P using all
poles and zeros is

KRL=3,25O

(k) Substituting this value of gain and
the chosen compensator poles and zeros
into the open-loop transfer function obtains
K,=3.51. This does not meet require-
ments. Therefore, choose two new com-
plex compensator zeros a little closer to the
desired root locations. Let these new
locations be s=—2.54784, Q. and Q.
With these new zeros, the root-locus gain
at P is

KRL=6,578

Substituting this root-locus gain and the
new complex zeros into the open-loop

transfer function yields K,=6.72. This
meets the requirements.
(i) From the chosen locations of the

complex zeros.
x=—2.5
y==+84

(j) Substituting these values of x and y,
p% and py» into the working equation of the
lead-lead feed forward difference com-
pensator of Table III yields

Zd2+0.5466:|

Zay=140.34
@ [135.34—21zz

the algebraic
and 2gs.

relationship between zg

(k) Several values of zq» were substituted
into this equation and zg1=—2.5, zg2=
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Fig. 10. Possible root locus for a lead-lead
feed-forward compensator

—3.0 were selected as the zeros of the lead
networks.

(1) Substituting the chosen sq, 2¢2 Pa1,
and pg: into the numerator root-locus
equation of the lead-lead feed-forward
difference compensator of Table III yields
Al(s+2.5)(s+30)_

Ax(s+3)(s+25)

This relationship and the chosen complex
compensator zeros are plotted in Fig. 9.

(m) From Fig. 9, 4:/4.=0.8368 will cause
the numerator zeros to be at the chosen
complex conjugate locations.

(n) The values of 4; and 4, may now be
computed from the equations

A1/ A4, =0.8368
K(A1—As)= Kz, —6578

Since K is a variable-gain element, any
values of K, 4,, and A. which satisfy these
equations will yield satisfactory results.

(0) The characteristic equation of the
compensated system may now be written as

6578(s+2.5478.4)(s+2.6—8.4)
s(s2+ 105+ 100)(s+25)(s+30)

The roots of this equation were obtained by
calculation on a digital computer as

s=—511+477.26

s=—511—4726
s=—4.69+4711.69
= —4.60—11.69
s=—40.4

The roots at s—5.11477.26 and s= —5.11—
§7.26 corresponds to those selected early in
the solution. There is some error due to
the graphical techniques required in the
solution, however the agreement is close
enough for engineering work. The
transient response may now be calculated
and final agreement with requirements
determined.

Conclusions

The active networks presented in this
paper afford a simple method of generat-
ing complex poles and zeros. The loca-
tions of these complex poles and zeros
may be accurately predicted and are
easily varied by adjusting an amplifier
gain or one or more of the passive ele-
ments of the networks. The varying of

T
\

Construction needed to obtain

Carpenter’s results

Fig. 11.

an amplifier gain is the more attractive of
these two methods as it results in the com-
plex poles or zeros moving along a circle
which is precisely defined by the passive
circuit elements.

Since the location of the complex poles
and zeros is a function of amplifier gain, a
requirement for a very stable amplifier is
generated. This requirement may be
relaxed somewhat if the compensated
system is not too sensitive to the compen-
sator pole and zero locations.

The lag-lead feed-forward summing
compensator has characteristics which
merit special attention. Since the gain
K. of this compensator is A;a+4,, the
possibility presents itseli of using this
compensator as the main transmission
path amplifier. The complex zeros re-
sulting from the network could be ad-
justed to best suit the needs of a specific
system while the over-all gain remained
independent.

Design of the active compensaton
using the circular locus equations in
conjunction with Carpenter’s construc-
tion leads to accurate control of the com-
plex roots of the compensated system.

Appendix |

Derivation of the Equations of the
Root Loci of the Complex Poles and
Zeros

For a lead-lead feed-forward difference
compensator the equation of the complex
zeros is derived as follows: In Fig. 10,
let Q be a point with co-ordinates (x, ¥)
which is on the root locus.

A zero-degree locus is required, therefore,

€O=2nr=—a+p+v—¢

where— o <n<© and is an integer.

sin (€Q)=0=sin (—a+8+7—0)
Expanding by trigonometric identities:

0=(sin B cos a—cos B sin a)X
(cos v cos {+sin v sin { )+
(cos B cos a+sin B sin a) X
(sin  cos {—cos v sin {)
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From Fig. 10,

sin a=Y/A4 sin y=Y/C
X—Za =X = pas
cos a= cos vy
A C
sin 8=Y/B sin { =Y/D
X— Zrlz X_Pdl
cos 3 = cos { =
B D
Substituting, expanding, and collecting

terms obtains the equation of a circle.

[X pazZar— parZas :l"’
Zaz—Zar+ par— pae
o Papa(Zar— Zaz)+ZaZax par— pas)
- Zaz—Za+par— paz
[ parlar— parZas ]2 ABCD
Zaz—Zar+par—paz y
This equation was derived with the
€Q=2nr. Since identical results could

have been obtained with €Q=(2n—1)x
it must be shown that for this case,

€Q+(2n—1)r

+

(0)

That this is the case may be seen from
Fig. 10, since all of the {2n—1)= loci are
on the real axis.

Appendix I

Construction of the Locus of
Complex Poles or Complex Zeros
Producing a Constant Phase Angle
at a Point in the s-Plane

It has been shown by Carpenter® that
if the angle at a point in the s-plane due to
an array of poles and zeros be known, it
is possible to construct the locus of complex
conjugate poles or complex conjugate
zeros which will cause this point to be on a
root locus. This locus of complex poles or
zeros proves to be an arc of a circle. Car-
penter’s derivation is shown in Fig. 11.

Fig. 11 shows the necessary construction
in proving the locus of complex conjugate

|

|
I

Fig. 12. Construction to locate the center
of the circular arc

poles or zeros, R and R’, producing a
constant phase at a point P, in the s-plane,
is an arc of a circle passing through that
point. The center of the circle lies on the
real axis.

From the figure:
a=90 degrees+ «+8
b=90 degrees+«

a+b=8+2a+180= M =angle contributed
by complex pair at point P. But g+2a+
v=180 degrees. Subtracting 360— A=
y=a constant.

The vertex of v, therefore, lies on an arc
PP/, of a circle whose center is on the real
axis, by a fundamental theorem of plane
geometry.

Since the arc always intersects the real
axis, the arc may be quickly constructed
by first locating that intersection. The
intersection is found by constructing the
angle

b=M/2

at the point P.

It can also be shown that the construction
angle at the point P which locates the
center of the circular arc on the real axis is

r=M

The necessary construction to show this
is Fig. 12. F is the intersection of the
circular arc with the real axis defined by
the angle ¢. HG is the perpendicular
bisector of PF. Since the center of the
circular arc is on the real axis, the inter-
section G must be the center of the circular
arc, by plane geometry. From Fig. 12:

¢+ g=90 degrees
2¢+42¢g =180 degrees
2g=h

Subtracting

2¢ =180 degrees
h~+T =180 degrees
I'=180 degrees—#
Subtracting again
20=T=M

thus proving the statement.

With the center of the circular arc and
its point of intersection with the real axis
known, from ¢ and K, the arc may be easily
constructed.

References

1. Avuromaric FEEDBACK CONTROL SYSTEM SYN-
THESIS, John G. Truxal. McGraw-Hill Book Com-
pany, Inc., New York, N. Y., 1955, chap. 3, sect. 7.

2. FeEeEpBack CoNTROL SystEms, Otto J. M.
Smith. MecGraw-Hill Book Company, Inc., 1958,
chap. 9, sect. 8 and Appendix A.

3. FEEDBACK SYSTEM SYNTHESIS BY THE INVERSE
Root Locus MeTrOD, J. A, Aseltine. Convention
Record, Part 1f, Institute of Radio Engineers,
New York, N. Y., Mar. 1956, pp. 13-17.

4. Oprmmum LeEAD-CONTROLLER SYNTHESIS IN
FeepBack-CoNTROL Systems, L. G. Walters.
Transactions, Institute of Radio Engineers, vol.
CT-1, no. 1, 1954, pp. 45-48.

5. SYNTHESIS OF FEEDBACK SYSTEMS WITH
SPECIFIED OPEN-LOOP AND CLOSED-LOOP POLES
ANp Zeros, W. E. Carpeater. Paper GM-TM-
0165-00355, Space Technology laboratories,
Washington, D. C.,1958.

6. FEEDBACK COMPENSATION: A Dgesien TecH-
NIQUE, G. J. Thaler, J. D. Bronzino, D. E. Kirk.
AIEE Transactions, pt. 11 (Applications and In-
dustry), vol. 80, Nov. 1961, pp. 300-05.

7. DESIGN OF SERVO COMPENSATION, BASED ON
THE Roor Locus ApproacH, E. R. Ross, T. C.
Warren, G. J. Thaler. 1bid., vol. 79, Sept. 1960,
pp. 272-77.

8. AN Exact METHOD OF SERVOMECHANISM
CoOMPENSATION USING s-PLANE CONCEPTS, AND AN
ANALYSIS OF THE EFFECTS OF PASSIVE NETWORKS
UPON STEADY STATE PERFORMANCE, Charles D.
Pollock. Master's Thesis, U.S. Naval Postgraduate
School, Monterey, Calif., 1960.

Multivariable Adaptive Control System

N. N. PURI

Summary: A multivariable control system
in which the parameters of the plant
transfer function matrix are unknown func-
tions of time is described in this paper. Itis
a sequel to a previous one! dealing with a
single variable control system. A scheme
is presented here in which the parameters
of the plant transfer function are tracked
and the controller transfer function matrix
is adjusted in such a way as to keep the
overall system optimized. The system may
be realized in terms of ordinary analog
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computer elements. Information is given
in a form which may be readily inserted
into a controller for realization of a general
type of adaptive control system.

T'HE WORD “ADAPTIVE” has been
used with many shades of meaning.
For the present purpose, the adaptive
control system may be defined as one

which may be described by sets of-
equations mnot necessarily known in
detail, and one which is affected by the
environment in which it resides. It is
adaptive if it is capable of determining
its performance equations and the effect
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