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Table I AJEE T'ransactions, l)t. I (Conutnuaication anld
Electronics), vol. 80, Sept. 1961, pp. 38:3-87.
4. SOME RECENT ADVANCES IN THE ANALYSIS AND

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 SYNTHESIS OF NONLINEAR SYSTEMS, Alfred A. Wolf.
Ibid., pt. II (Applications anid Ind-uistry), vol. 80,

x(t) ...91....8... .... 0.82 .. 0.75 .. 0.685 ... 0.62 .. ........0.5 ...12... 0.465 ... 0.42 ... 0.37
NOV. 1961, PP. 289-300.

8(t). 10...0.98 .. 0.915 ... 0.845 ... 0.772 ... 0. 674 ... .0.614.. 0.569 ... 0.52 .. 0.478.. 0.437 5. INTRODUCTION TONONLINEARANAI,YSIS (bOok),
W. J. Cunningham. McGraw-Hill Book Company,
Inc., New York, N. Y., 1958.

Table 11 6. FREQUENCY ANALYSIS OF VARIABLE NETWORKS,
L. A. Zadeh. IRE Proceediings, vol. 38, Mar. 1950,
pp. 291-99.

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 7. DETERMINATION OF IMPULSE RESPONSE OF
__________________________________________________________________________________________ VARIABLE NETWORKS, L. A. Zadeh. Journal of

Applied Physics, New York, N. Y., July 1950, pp.
X(t) . 1 .... .0.99 .. .0.96 ... .0.91 .... 0.86 .... .0.8 ... .0.73 .. 0.7.... 0.61 ... 0.55... 0.5 742-45.
ee(t). 0 .0.198 ... 0.384 ... 0.546 ... 0.688... 0.8 .... 0.87... 0.93... 0.97... 0.99 ... 1
g(t) .2.... 1.98 .... .1.85 .... .1.65 .... .1.48 .... .1.28.... 1.06... 0.9 ... .0.75 .... 0.6 ... .. 8. THEORY OF ORDINARY DIFFERENTIAr. EQJQUA-
3(t) ..2. 1 .... 2.9 .... 3.9 .... .4.5 .... .5 ... .5 . ... 5.9 5. 6 ....6 ... 6.1 .... 6.18 TIONS, E. A. Coddington, N. J. Levinson. McGraw-

Hill Book Company, Inc., 1955.

9. LECTURES ON FOURIER INTEGRALS (book),
Solmon Bochner. Princeton University Press,

and and repeating n tilnes, gives Princeton, N. J., chap. VIII, 1959.

xo(t) f,,'F [t, u, (p *(u) ]du (74) T 10. THE FOURIER INTEGRAL AND CERTAIN OF ITS

C*(t)Xo(t)Jo F[,U,0*l)]du(74)A APPLICATIONS, N. Wiener. Dover Publications,
Subtracting equations 73 and 74 gives 0[f(t)-¢(t)IIdt S

n
(79) New York, N. Y., 1953.

11. INTEGRAL EQUATIONS, F. G. Triccm. Inter-
science Publishers, New York, N. Y., vol. V, 1957.

([f F[t,u,/(t)]- Lettingn- gives
12. THEORY OF FUNCTIONALS, AND OF INTEGRAL

F [t ,u ,ck(u) B du j2 (75) j)]2 AND INTEGRO-DIFFERENTIAL EQUATIONS, Vito
} 2 5 O(i)- k(i)]2dt= 0 (80) Volterra. Dover Publications, 1959.

Therefore, Hence the solution 0(t) or x(t) is unique. 13. INTEGRAL EQUATIONS, AND THEIR APPLICA-
TIONS TO CERTAIN PROBLEMS IN MATHEMATICAL

[+*(t)....+(l)]2 2foKI(t 2)du (76) PHYSICS AND TECHNOLOGY, S. G. Mikhlin. Perga-
" K t,u)du(76)

Reerecesmon Press, New York, N. Y.
fT 2* References 14. BLOCK DIAGRAM TRANSFORMATION FOR SYS-

JO [sg)(u)-q,(u)]2du TEMS WITH ONE NONLINEAR ELEMENT, T. M. Stout.

Let 1. A MATHEMATICAL THEORY FOR THE ANALYSIS AIEE Transactions, pt. II (Applicationis and
OF A CLASS OF NONLINEAR SYSTEMS, Alfred A. Wolf. Industry), vol. 75, July 1956, pp. 130-41.

JXO[fT t )-¢>( t ) ] 2dt = S2 ( 77 ) Ph.D. Dissertation, University of Pennsylvania, 15. STABILITY THEORY oF DIFFERENTIAL EQUA-fT [~t ()dt = 31 (77) Philadelphia, Pa., 1958. TIONS, R. Bellman. McGraw-Hill Book Company.
Therefore, 2. EXISTENCE THEOREMS FOR ORDINARY DIFFER- Inc., 1953.

ENTIAL EQUATIONS, F. J. Murray, K. S. Miller.
[)(t)] a2(J)S2 (78) New York UJniversity Press, New York, N. V., 1954. (book translated from Russian), I. P. Natanaon.

3. GENERALIZED RECURRENCE RELATIONS IN THE Fredrickunsar Publishing CorrnI)any. NcVVork,
Substituting equation 78 in equation 76 ANALYSIS OF NONLINEAR SYSTEMS, Alfred A. Wolf. N. V.

D * { r A. r tor device to have real zeros and real )oles
esign or :>ome )mctive ompensators is no longer tenable; the problelns of

tolerances and adjustments which often

o f Feed back Contro ls made passive resonant circuits, bridged T,
parallel T, and lattice networks imprac-
tical solutions are not critical considera-
tions when an active network is used.

R. E. McCAMEY G.S J. THALER In this paper an attempt is made to

point out various situations in which it is
desirable (or even mandatory) to use a

Summary: Certain networks capable of real zeros and poles, and is to be cascaded compensator with complex zeros. Ac-
producing transfer functions with coniplex in the main transmission channel. There tive networks which are capahle of geni-
zeros (or complex poles) are presented. are some noteworthv exceptions to the erating complex zeros (or poles) are

complex singularities are developed afd are preceding statement; some authors treat analyzed It iS shown that the loci of the
equations of circles. Working equations compensation quite generally,'"2 or treat singularities on the s-plane are circles,
are tabulated as an aid to design. Using specific networks that generate conplex and the equations of these circles in
these in conjunction with Carpenter's zeros and poles,2 and a fe4 papers145 terms of parameter values are tabulated.
graphical construction, the network can zrsadpls n e aes

Poeue o h eino uhcm
be designed so -that the roots of the con- have presented some original concepts Procedures for the design of such com-
pensated system lie at a specified location which are helpful in the solution of pensators are developed and al)lled to
for a specified gain, specific problems. specific cases.

XXrhile passivre compensators will always A paper recommended by the AIEE Feedback Con-
be~~ ~usfl tai etitono opna trol Systems Committee and approved by the AIEEbe usful,taci resrletln olcompnsa- Technical Operations Department for presentation

N THE USUAL textbook on feedback tors to passive devices should be dis- at the AIEE Joint Automatic Control Conference,
I~~~~~~~~~~~~~~~~~~~New York, N. V., June 27-29, 196G2. Manuscript

*control systems, and in most of the continued, since the state of the art in the submitted November 6, 196)1; made available for
published literature, the problem of com- design of operational amplifiers makes printing July 10, 1962.
pensation network design is treated as- active compensators quite practical. In RG E. MCCAMEY iS witih theU.S. Marine Corps, and
suming that the network is passive, has like manner, restriction of the compensa- School, Monterey, Calif.
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and hydrattlic actuators. The root locus plane. TIhe compensator zeros must be
,-COMPENSATED for such an actuator used in a positioning chosen to force a root-locus segment

device is shown in Fig. 1. The loci from from these poles into the left-half plane,
__ ___-_7____1l the complex poles enter the right-half and if possible through a desired root

plane at a low value of gain so accuracy location. In general, the availability
and stability are incompatible. A cas- of complex zeros makes the compensa-

'UNCOMPENSATEO< caded compensator with complex zeros tion design much easier and the resulting
can effectivelv eliminate this problem, performance more satisfactorv.

Fig. 1. Root locus system having a third- a t
ore acutrwt ope oe

and the zeros need not be used to cancel
order actuator with complex poles th oe.Ueo omestr ihrathe poles. 1Use of compensators with real

Caatrsiso oeAtv

G(s)= K/s(si2w.s+1) zeros frequently will not even alleviate Characteristics of Some Active
X=poles, uncompensdted the problem and if it does the design nor- Networks
* = poles of compensator mally requires several additional stages of
O= zeros of compensator amplification in either case. Complex zeros and complex poles can

A second practical situation arises when be generated very simply using elementary
a high-order system (with all open-loop lead and lag networks in conjunction with

/COMPENSATED3> , poles real) must be operated at high gain, amplifiers. Two simple schemes are
yet specifications require that the dom- indicated in Fig. 5. The availability of
inant roots be complex, well damped, complex singularities is readily seen
and of reasonablv high frequency. An from the algebra. For the parallel

\ 4 f nuncompensated root locus for this second feed-forward case of Fig. 5(A)
UNCOMPENSATEDC V' case is shown in Fig. 2. If real zeros are VI Ai(s+Zl) A2(s+Z2)

used to reshape the locus it is often diffi- V- S T s±P1

Fig. 2. Root locus for high-gain operation cult to avoid a small real root which either A1(s+Z1)(s+p2)TA2(s+Z2)(s+P1)
* = root of closed-loop system dominates, or puts a long tail on the step (s+pi)(s+pi)

response, or adversely affects the band-
width. However complex zeros placed From equation 1 it is seen that the

COMPENSATEDz:17 near the desired root location (as shown numerator is the difference between two
aOUBLE in Fig. 2) usually provide a satisfactory quadratics, which is also a quadratic, and

. ->S 4 solution. with proper choice of constants this quad-
A third practical situation arises when ratic can have complex roots. Thus, the

--UNCOMPENSAT D> the designer introduces an additional pure transfer function of the active network
integration to produce a type-2 system. can be made to have complex zeros.

This technique has the advantage of in- For the feedback configuration of Fig.
suring steady-state accuracy, but ob- 5(B)

COMPENSATED viously makes the compensation problems v0 A1(s±Z1)/(s+pi)
f ROOTS _ more difficult. The root locus for this -=

ROOTS situation is shown in Fig. 3. The com- i1AMA ( X)
-; w - X i=t T <pensation problems are essentially the

same as in Fig. 2 and require no additional VO Ai(s+Zi)(s+P2)
tZ'examination. Vi (s+P1)(s+P2)TA A2(s+Zl)(s+Z2)
A fourth situation can arise when feed-

back compensation is considered. A In equation 2 the denominator shows that
Fig.c4. Rootlocusafor n convenient block diagram6 manipulation complex poles can be made available by

reduces the calculations to a problem in proper choice of parameter values.
cascade compensation, the uncompen- The roots of the numerator of equation

Situations for Complex Zero sated linear svstem being represented by 1, and also of the denominator of equa-
Compensators a single equivalent block. The poles of tion 2, can be controlled with the gains

the transfer function of this block are the A1 and A2. The effects of gain variations
In the practical design of high-powered roots of the uncompensated system on the root locations can be shown on

position-control loops (and speed-control characteristic equation. Thus the prob- the root-locus plot by rewriting the func-
loops) it is usually found that the loaded lem might be described by a typical root tions as
actuator unit is at least a third-order locus as in Fig. 4. Usually the un-
device with inherent complex poles. compensated system is unstable, thus A1(s+Z1)(s+P2) 1
Typical examples are d-c shunt motors yielding complex poles in the right-half A2(s+Z2)(s+Pl)

5k+ P, ±

(A) (B) U2 V Il P

Fig. 5. Block diagrams ofactive compensators R:

A -Parallel feed-Forward and sum

B-Positive or negative Feedback loop Fig. 6. Root locus for equation 3
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Table 1. Circle Equations for the Zeros of Active Networks

Compensator Equation of the Root Locus of Complex Zeros

~~ +~Zd Zd-dZd 2 PdiPd2(Zd - Zd2) ±ZdlZd2(Pd2- pdi) ± Pd2Zdl-PdiZds 12Lead-lead feed-forward difference compensator L.................. xiZd2 Zd2Zdl±d2Pd2- l Pd2Z+diPdld22
Zd2-Zdi+Pdi-Pd2- Zd2-Zdi+ Pdl- d2 -Zd2-Zdi + pdi -Pd2-

xr P92Zgl-Pg#lZg2 2 --PgP92(Zgl-Zg2)+ZglZg2(Pg2-Pgl) r P92z91-P9tZq2 2
Lag-lag feed-forward difference compensator I Z25-xl l

12
+

PQ2Q2 42+) ± 1
e2 ±= pol 14Z2-4g1 ±+'P5lp2J Zg2-Zn ±psl-Ps2 Lz02 -4g' + Pg -Pg:l

r PdZg-PgZd 12 Pdpg(Zg-Zd) +ZdZg(Pd-Pg) r dZg-gZd
Lag-lead feed-forward summing compensator .+Y= Zd.-.Z.-..................x+- L d +Pg-Pgdi-Zg+Zd+pg-Pd_I Zd-Zg+Pg-Pd _Zd-Zd+Pg-Pd_

Note: The subscript d designates a lead network, g designates a lag network.

Table II. Circle Equations for the Poles of Active Networks

Compensator Equation of the Root Locus of Complex Poles

______________ -2 PdlPd2(Zdl ±+Zd2) -Zd,Zd2(Pdl ± Pd2) ± PdPtd: ZdiZd2 1 2Lead-lead negative-feedback compensator ....................... x+ 2

Zdi +Zd2c--pdl-pd2i Zdi + Zd2-Pdl-Pd2 Ldi t Zd2-Pdl-Pd2J

F PglPg2 - ZgZ2 12 PglPg2(Zg±+Zg2)-Z9lZ92(pgl+P2n) r PPglPg2-ZglZgZ 12
Lag-lag negative-feedback compensator ............. ............ x+ Z +y2 = ++L 4+ -P- Z+l+4g-Po'-P22- +Z9 2-P-Pg2-pgl-Pg2

Lag-lead positive-feedback compensator ...................... PdPg-ZdZ] y2 PyPd(Zd+Zg)-ZdZg(Pd+Pg) Pdpg-ZdZg2
I Zd + Zg-Pd-g] Zd+Zg-Pd-Pg Zd+Zg-pd-pg

Table Ill. Complex Zero Relationships

Numerator Root-
Compensator Working Equation Locus Equation Real Poles Ke

Lead-lead feed-forward difference compensator..... (Zd2-Zdl+Pdl-Pd2)(X2+y2) +2x(Pd2Zd1-PdiZd2).Ai(S+Zdl)(S+Pd2)_ 1 A A
= PdiPd2(Zd1-Zd2) +ZdlZd2(Pd2-Pdl) A2(s+Zd2)(s + Pdi)

Lag-lag feed-forward difference compensator.(.4.2.-..(Z9-Zgl+pgl-pg2)(x2+y2) +2x(p92Z91l-pAaZg 2).......AP.P2.... ai(sA+Z)a(s PA 2
)

=Pglp02(Z91-Zg2) +Zg92(Pg2-Pn1) A2a2(s+Z92) (s+P91)
Lag-lead feed-forward summing compensator....... (Zd-Zg+ pg-pd)(x2+y2) +2x(PdZ-PgZd)..Z . Aa(s+Zg) (s +Pd) P-1d., Pg... (Alaa+A2)

= ZdZg(Pd-Pg) +Pdpg(Zg-Zd) A I(s+Zd)(s+Pg)

Table IV. Complex Pole Relationships

Denominator Root-
Compensator Working Equation Locus Equation Real Zeros K1

Lead-lead negative-feedback compensator. (Zdi + Zd2 - Pd - Pd-2) (x2 + y2) +2x(PdPd2-ZdiZd2).AAl(s + Zi)(S+Zd2) _._ ._._._. .Zd Pd ....._1
= PdiPd2(Zdl +Zd2) -ZdlZd2(Pdi+Pd2) (s+pdl) (s+Pd2) - Pd. +AA

Lag-lag negative-feedback compensator ........(Zgl+Zg2-Pgl-Pg2)(X2+Y2)+2x(pgipgz-Zg Z92). --A,a1a2(s+Z1l)(s+Z92) -.. , P1.1

= pglpg2(Zgl+Zg2)-ZgnZg2(pgl+Pg2) (s +Pgl) (s +Pg2) 1 A1aa2

Lag-lead positive-feedback compensator,. (Zg+Zd -Pg-Pd)(x2+y2) +2x(PgPd-ZgZgZd)....1............4, Pd.......
lag in feedback path =pgPd(Zd+Zg)-ZgZd(Pg+Pd) (S+Pg)(s+Pd) 1-A,a

Lag-lead positive-feedback compensator,. ( ± Zdo - Pg - Pd)(x2 +y2) + 2x(pgpd -ZgZd) .... A=I.. a(s+4)(s+Z) pg,1
lead in feedback path PgPd(Zg+ Zd)-ZgZd(Pd+Pg) (s+Pg) (s +Pd) *-1 Z . 1-Aa

AiA2(s+Z,)(s+Z2) (4) circuit combinations which produce coml- and the equations of the pole loci are of
(s+-PI)(S+P2) plex poles and zeros, together with the the form:

equations for the resulting circular loci. P-P2 - -,2
Equations 3 and 4 show that either zero It is important to note that only certain [X+Z +2-l-2 |
or 7r loci may be used, depending on the filter combinations produce complex sin- ZS+- P l
circuit connections; also the relative gularities; the majoritv of the active net- 2 P-P2(Z2±Z2)-Z,Z2(p,+P)±
magnitudes of the poles and zeros is works produce only real poles and zeros.
important. (Note the Z, and P2 are the From the tables of the circular loci it FPZ pZjZp-2 6
zeros of equation 3, while Z2 and p are the is seen that all of the equations for the LZi+Z-.P-p?
poles.) Fig. 6 shows a root-locus plot zero loci are of the form:
for possible values in equation 3. The Some further properties of these cir-
roots thus determined are complex zerosfo± l2Zp 2clrlc a entdbtis)cino

eqllation . The pols of equaton 1 L Z1Z2+p2-P1Jequations 5 and 6. The denominators of
would be Pi and P2. The locus of the 2 _Z,Z2(p1-p2)+p,p2(Z2-Z )+ the terms which define the centers of the
complex zeros is precisely a circle. This = Z1 -Z2+p2-p1 circles may approach zero more or less
is derived for a specific case in Appendix I. r Z.p2-Z2pl 12 () independently of the sign or magnitude of
A tabular listing is also given for some Lz1-Z23p,-ps j the numerator of those terms. Therefore,
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the center of the circle may vary from a specified point is not in itself any great evaluate it for several values of onle variable
negative to positive infinity. Similarly, problemn. Simultaneously meeting the and select any convenient, physically

realizable values for the zeros of the passivedenominators of the terms which define requirements of dominance, steady-state networks.
the squared radii of the circles may ap- accuracv, and transient response is, how-

~~~. .~~~~~(I) Substitute the real poles and zeros ofproach zero more or less independently of ever, quite another matter. A consider- the passive networks into the niumiierator
the sign or the magnitude of the numera- able number of techniques exist for the root locus equation of Table III corre-
tor. Thus, it is possible to have radii simultaneous solution of the steady-state sponding to the active network chosen.
which vary from zero to infinity. In the accuracy and root location problems.7,8 Plot this equation and the selected coniplex
cases for which the squared radius is These techniques apply only to compensa- compensator zeros on another s-planie.
negative, of course, the circle is unde- tion with negative real poles and zeros and (mn) Determine the value of A1/A2 whlich

will cause the roots of the numerator offined. The denominators of the center do not easilyv extend to the use of complex G, to lie at the selected locationis for the
and radii terms are the same, though, so poles and zeros. The technique presented complex zeros.
as the center of the circle goes to infinitv, here for complex zeros requires some in- (n) Using the results of steps g and in,
the radius must also go to infinity. How- tuition and trial and error. The tech- and A2 may besclculated and th
ever, the center does not have to go to niques of solution, whether for complex comiipensator design is coinpleted.
infinity at the same rate as the radius poles or complex zeros, are practically (o) The transient response inust be
since the numerators of the terms are identical, so only the complex zero case is computed aiid compliance with specifica-
different. In fact, it is possible to have given: tions determined.
the center remain at the origin while the
radius goes to infinity. The result of this determinie the open-loop transfer function
is that, in general, it is possible to locate and manipulate the clharacteristic equation Numerical Example
complex poles or zeros anywhere in the into the form
left- or right-half of the s-plane, providing The example preseiited herein is
the correct compensator is chosen. Some K2 II (s+Zi) straightforward in order to illustrate the
of the circles are restricted to the left-half =GGc- 1 use of active networks as compensators
s-plane by the nature of their root loci. sm H (s+pi) without becoming unnecessarily involved

It is possible to use equation 5 or 6 in a j=1 in other considerations. It is assumed
trial and error fashion. By inspection where G, is the transfer function of the that active compensation was necessary
select desired zero (pole) locations thus conipensator. due to unspecified considerations. The
specifying x and y. Next choose ar- (b) Plotthe Z, pj, and s oithe s-plane. subsections correspond to the steps in the
bitrarily (or from experience) an active techniqueofGsolution.

circit hatseem sutabe. Slec tw of (c) Select the real poles of Gc so as to becircuit that seems suitable. Select two of
ms ovnet ovnec ilb*'most convenient: Convenience will be Gien: The feedback control system ofthe filter parameters (usually those which determined by the particular problem.

will be real poles or zeros in the composite Plot these poles on the s-plane. This will Fig. 7. K=5. 0.
transfer function). The two remaining determine which of the complex zero- R
parameters are determined by trial and producing active networks is to be used. Requiremets: Utse cascade compensa-tion. Desired root location to be such
error so that the equation is satisfied and (d) Select the desired locations, P and that 0.5< <0.7 settling time1.O sec-
the compensator is physically realizable. P', of two complex conjugate closed-loop - - -

* . ~~~~~roots. Plot P and P' on the s-plane. As onds. K8, not to be reduced.
Such a technique seldom leads to optimum mention Previously, t shped At

resuts,butit s uabl. Asigifiant
mentioned previously, it is hoped that

Sltinresults, but it is usable. A significant these roots will prove dominant, but there Solution:
simplification can be made as follows: is no way of ensuring this. (a) The compensated open-loop transfer
For equation 5, let it be required that (e) Calculate the phase angle at P or function of Fig. 7 is

P' due to zi, pj, sm, and the real poles of K
Z1p2 = Z2p1P K1 (7) G,. Then construct the locus of,complex Fo= -Gc

zeros, in the manner described in Appendix S(S2+ 5s+ 100)
Then, equation 5 reduces to II, which will result in P and P' being on a The characteristic equation of the un-

180-degree locus, compensated system is
x2+y2= K (8) (f) Choose two complex conjugate points,
Application of equation 7 restricts the ac- Q and Q', on this constructed locus. TheseApplication,ofeuto,-retit h c

will be the complex zeros of G,.tive compensator to two lag networks or w K

two lead networks. In like manner, for (g) Determine the root-locus gain, KRL S(S +5S+100)
which will cause roots to be at P and P'

equation 6 let it be required that with the zj, s', and the chosen real poles
A and complex zeros of G,.

Z1Z2=phP2h tan (9)* Fig. 7. Block diagram of a feedback control
(h) Substitute KRL and the real poles and

Then equation 6 reduces to complex zeros of G, into the open-loop system
transfer function to determine if steady-

x12+yw,2= K2 (10) state accuracy specifications are met. Ifx2+y2=K2 (10)
not, choose two new locations of the

and the active compensator is restricted complex zeros of Gc and repeat stepsf and g.
to use one lead and one lag networkc. (i) Determine x and y from the chosen r-laoe X

locations of the complex zeros of Gc. x x - >

theCompensator for- a j) Substitute - and y and the selected
Designing ~~~~~~~real poles of G0 into the appropriate equa- IQ2 0l

Prespecified Root Location tion of Table III to determine the algebraic x
relationship between the real zeros of the

Relocation of the root loci of the charac- compensator passive networks. Fig. 8. s-plane constructions for designing
teristic equation so that they pass through (k) Construct a graph of this equation or the compensator

MAY 1963 McCamey, Thaler-Design of A ctive Compensators of Feedback Controls 87



w2 'I8 Pjk e[ xt00

Pd, Pd, Z d2 Zd, d
ICESN

Q, d Pd2 Ad2 id NCREASINGAi
20 AA NCREASINGH

Fig. 10. Possible root locus for a lead-lead /
Fig. 9. s-plane pole-zero array feed-forward compensator P.

Fig. 11. Construction needed to obtain
K -3.0 were selected as the zeros of the lead Carpenter's results

lS(±S2+5s+ 100)= networks.

(b) The Zj, py, and stm are plotted in Fig. 8. (1) Substituting the chosen Zdl, Zd2, Pdi an amplifier gain is the more attractive ofb) The zip,an s'ae pltted n Fi. and Pdr9 into the numerator root-locus
(c) Select Pdl= -25, Pd°= -30, so as not equation of the lead-lead feed-forward these two methods as it results in the com-
to add any more poles in the region near difference comipensator of Table III yields plex poles or zeros moving along a circle
the origin. Pdo and Pd2 are also plotted which is precisely defined by the passive
in Fig. 8. Ai(s+2.5)(s+30) 1 circuit elements.

(d) Select the points s= -5±j7 to be P A2(s+3)(s+25) Since the location of the complex poles
and P', the roots of the characteristic This relationship arld the chosen coImiplex and zeros is a function of amplifier gain, a
equation which will meet the requirements. compensator zeros are plotted in Fig. 9. requirement for a very stable amplifier is

(e) From Fig. 8, the lead angle required (mn) From Fig. 9, Al/A2=0.8368 will cause generated. This requirement mav be
at P is 307.3 degrees. The construction the numerator zeros to be at the chosen relaxed somewhat if the compensated
agle comle PoJgtarlrlxecsatiatiotenopesaeangles at Pare comiplex conjugate locations,

system is not too sensitive to the compen-
= 153.65 degrees (n) The values of A1 and A) m-nay now be sator pole and zero locations.

computed from the equations The lag-lead feed-forward summing
P'=307.3 degrees T-

A,1/A2 = 0.8.368 compensator has characteristics which
The arc of the circle on which comnplex m s

1 - TZ , _ns ~~~~~~meritspecial attention. .Since the gain
compensating zeros can be located was K(Ai-A2) =KRL=657 (SK of this compensator is A iaA-2, the
constructed in Fig. 8 using these angles. Since K is a variable-gaiin elemnent, any possibility presents itself of using this
(f) In Fig. 8, chooses=j8.8tobe Q, andQ'I values of K, A1, and A2 which satisfy these compensator as the main transmission
the locations of the complex compensator equations will vield satisfactorv results.
zeros. path amplifier. The comlex zeros re-
(g)os. (o) The characteristic equation of the sulting from the network could be ad-
(g) The root-locus gain at P usinig all compensated systen may now be written as justed tob the needs of a ecifi
poles and zeros is justed to best suit the needs of a specifc

6578(s+2.5+j8.4)(s+2.5-j8.4) = system while the over-all gain renmained
s(smh+ l0s+ 100)(s+25)(s+30) independent.

(h) Substituting this value of gain and Design of the active compensaton
the chosen compensator poles and zeros The roots of this equation were obtained bythe choesen compensator poles and Zeros calculation on a digital computer as using the circular locus eqjuations in

into the open-loop transfer function obtains cojnto ihCrpne' osre
K,=3.51. This does not meet require- s --5.11 +l-j.26 conjuncto with ca ntrs onstruc-
ments. Therefore, choose two new com- tion leads to accurate control of the com-
plex conipensator zeros a little closer to the s -5.11 -j7.26 plex roots of the compensated system.
desired root locations. Let these new
locations be s= -2.55j8.4, Q. and Q'2. S- 4.69+j 1.69
With these new zeros, the root-locus gain C

at~~~~~~~~~~~~-is-4.69-jl 1.69at P is s= -4.69 -j11.69 Appendix I

KRL= 6,578 s -40.4

Substituting this root-locus gain and the The roots at s -5.11 +j7.26 aid s =-5.11 - Derivation of the Equations of the
new complex zeros into the open-loop j7.26 corresponds to those selected early in Root Loci of the Complex Poles and
transfer function yields K h6.72. This the solution. There is some error due to
meets the requirements. the graphical techniques required in the Zeros

solution, however the agreement is close
( i) From the chosen locations of the enough for engineering work. The For a lead-lead feed-forwvard differeilce
complex zeros. transient response may now be calculated compensator the equation of the colmiplex

zeros is derived as follows: In Fig. 10,
x=2.5

and final agreement with requirements let Q be a point with co-ordinates (x, y)determined bwhich is on the root locus.
y= 4 8.4 A zero-degree locus is required, therefore,
(j) Substituting these values of x and Y Conclusions <ICQ=2nr=-a+O+ -

Pd1 and Pi'2 into the working equation of the
lead-lead feed forwardl difference com- Th aciv newok prsne nti here- <12< arid is an inlteger.
pensator of Table III yields

paper afford a simple method of generat-

Zd, =1i4o.34Fzd2+O.54661 ing complex poles and zeros. The loca- sn(<Q)= si (- +d+ )i
L135.34-Zi i tions of these complex poles and zeros Expanding by trigonometric idenltities:

the algebraic relationship between ''dl mlay he accurately predicted and Vare 0 = (sin 13 cos a-cos 13 sinl c)X
and Zd2- easily varied by adjusting an amplifier (cos a' cos ¢+sin A, sinl i-)+
(k) Several values of 0d2 were substituted gain or one or more of the passive ele- (cos 13 cos a+sin 13 sin a)X
into this equation and Zdl-=-2.5, Zd2= ments of the networks. The varying of (sin a cos ¢-cos 511sn2
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From Fig. 10, p O+g=90 degrees

sin a= Y/A sin y= Y/C 2%k+2g= 180 degrees
X-Zd l =X-Pd 2 h

cosa= cos 2g=h
A C | Subtracting

sin 13=Y/B sin = Y/D F 1 2q5=180 degreesF ~ ~ G
X-Z62 X-Pdl

cos (3 = cos r = Fig. 12. Construction to locate the center h+r= 180 degrees
B D of the circular arc P= 180 degrees - It

Substituting, expanding, and collecting Subtracting again
terms obtains the equation of a circle. poles or zeros, R and R', producing a

Pa2Zdl-Pd1Zd2 2 constant phase at a point P, in the s-plane, 20 =r=
I

X
Z ± + is an arc of a circle passing through that

_Zd2-Zdl+Pdl-pd2 point. The center of the circle lies on the thus proving thne statenient.
pdlp42(Z4l-Zd2)+ZdlZd2(Pd2-pv1) real axis. With the center of the circular arc ands2Pd1Pd2(Zd1 Zd2)+ZdiZd2(Pd2 Pds) real axis. its point of intersection with the real axis

Zd2-Zdl+Pdl-Pd2 From the figure: knowni, from 0 arid K, the arc mnav he easily
F Pd2Zdl - PdlZd2 12 ABCD constructed.

LZ62-Zd1±P~-Pd j -1- (0) a=90 degrees+a±j3Zd -Zdl+Pdl-Pd2 Y

This equation was derived with the b=90 degrees+a References
.J Q=2n7r. Since identical results could a+b =0B+2a+180 =MA1=angle contributed
have been obtained with < Q= (2n-1 )7r by complex pair at point P. But d +2ce-+ 1. AUTOMATIC FEEDBACK CONTROL SYSTEM SYN-
it must be shown that for this case, -y = 180 degrees. Subtracting 360-M= THESIS, John G. Truxal. McGraw-Hill Book Com-

pany, Inc., New York, N. Y., 1955, chap. 3, sect. 7.'~~Q±(2n-1)lr~~~~~ '=a constant.< Q-+-(2n- 1)7r The vertex of y, therefore, lies on an arc 2. FEEDBACK CONTROL SYSTEMS, Otto J. M.
f ~~~~~~~~~~Smith.McGraw-Hill nook Company, Inc., 1958,

That this is the case may be seen from PP', of a circle whose center is on the real chap. 9, sect. 8 and Appendix A.
Fig. 10, since all of the (2n -1 )7r loci are axis, by a fundamental theorem of plane 3. FEEDBACK SYSTEM SYNTHESIS BY THE, INVERSE
on the real axis. geometry. ROOT LOCUS METHOD, J. A. Aseltine. ConIentionSince the arc always intersects the real Record, Part II, Instituite of Radio Engineers,

axis, the arc may be quickly constructed New York, N. V., Mar. 1956, pp. 13-17.
by first locating that intersection. The 4. OPTIMUM LEAD-CONTROLLER SYNTHESIS IN

Appendix 1 intersection is found by constructing the FEEDBACK-CONTROL SYSTEMS, L. G. Walters.
angle Transactions, Institute of Radio Engineers, vol.angle CT-1, no. 1, 1954, pp. 45-48.

Construction of the Locus of = M/2 5. SYNTHESIS OF FEEDBACK SYSTEMS WITH
SPECIFIED OPEN-LOOP AND CLOSED-LOOP POLESComplex PolesorComplexZeros

at the point P. AND ZEROS, W. E. Carpenter. Paper GM-TM-
Producing a Constant Phase Angle atthe poin besonta hecntuto 0165-00355, Space Technology Laboratories,
at a Point in the s-Plane It can also be shown that the construction Washington, D. C. 1958.angle at the point P which locates the 6. FEEDBACK COMPENSATION: A DEsiGN TEcH-
It has been shown by Carpenter5 that center of the circular arc on the real axis is NIQUE, G. J. Thaler, J. D. Bronzino, D. E. Kirk.AJEE Tranisactions, pt. II (Applications asld Ill-if the angle at a point in the s-plane due to r= M dsr) l. p0Nv l9lpp.300-05.

an array of poles and zeros be known, it
is possible to construct the locus of complex The necessary construction to show this 7H DESIGN OF SERVO COMPFNSATION, BASED ONY ~~~~~~~THEROOT Locus APPROACH, E. R. Ross, T. C.conjugate poles or complex conjugate is Fig. 12. F is the intersection of the Warren, G. J. Thaler. ibid,., vol. 79, Sept. 1960,
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root locus. This locus of complex poles or the angle rf. HG is the perpendicular 8. AN EXACT METHOD OF SERVOMECHANISM
zeros proves to be an arc of a circle. Car- bisector of PF. Since the center of the COMPENSATION USING S-PLANE CONCEPTS, AND AN
penter's derivation is shown in Fig. 11. circular arc is on the real axis, the inter- ANALYSIS OF THE EFFECTS OF PASSIvE NETWORKS

Fig. 11 shows the necessary construction section G must be the center of the circular UPON STEADY STATE PERFORMANCE, Charles D.Fig. 11 Shows th:le necessary construction section GJ must be thle center of thle circular Pollock. Master's Thesis, UI.S. Naval Postgraduate
in proving the locus of complex conjugate arc, by plane geometry. From Fig. 12: School, Monterey, Calif., 1960.

M I . . IIAlI . r I e which may be described bv sets of-
u tivaria le ) aptive tontrol aystem equations not necessarily known in

detail, and one which is affected by the
environment in which it resides. It is

N. N. PURI C. N. WEYGANDT adaptive if it is capable of determining
its performance equations and the effect

Summary: A inultivariable control system computer elements. Information is given A paper recommended by the AIEE Feedback
in which the parameters of the plant in a form which nsay be readily inserted Control Systems Committee and approved by
transfer function matrix are unknown func- into a controller for realization of a general the AIEE Technical Operations D)epartment for
tions of time is described in this paper. It is type of adaptive control system. PConference, New York, N. V., June 2a7-29, 196f2.1
a sequel to a previous one1 dealing with a Manuscript suhmitted September 26i, 196)1; made
single variable control system. A scheme available for printing July 10, 1962.
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of the plant transfer function are tracked IHE WSORD "'ADAPTIVE"N ha hee nology, Philadelphia, Pa., and C. 1N. WEYDANO>T
and the controller transfer- function matrix * sen is with the University of Pennsylvania, Moore
is adjusted in such a way as to keep the * used with many shades of meaning. School of Electrical Engineering, also in Phila-
overall system optimized. The system may For the present purpose, the adaptive diha1 1- . . . 1 . ~~~~~~~~~~~~~~~~~~~Thispaper is a condensation of part of a PhI. ).be realized in terms of ordinary analog control system may be defined as one dissertation by N. N. Puni.
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