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Dynamic instability in barotropic flow 

By G. J. HALTINER, U .  S. Naval Poatgradmte School, Monterey, Californk 
and LT .R. T. SONG, Korean Navy 

(Manuscript received July 9. 1962) 

ABSTRACT 

The dynamic stability of single-jet and double-jet zonal currents is investigated for 
several quasi-barotropic models by a finite difference method and by means of finite 
Fourier series. 

The two methods give generally similar results, but some moderate differences occur 
when the mesh length is decreased or the number of Fourier components is increased. 
Also the stability characteristics of single-jet and double-jet profiles differ considerably. 

1. Introduction 

The primary purpose of this investigation is 
to determino the stability properties of quasi- 
barotropic currents by several approximation 
methods and compare the results. KUO (1949) 
gave the first detailed treatment of non-diver- 
gent barotropic flow and provided a necessary 
and sufficient condition for unstable waves in 
a jet-typo current. ELIASSEN (1954) introduced 
a simpler approximation method to obtain the 
stability characteristics of some specific non- 
divergent currents. More recently W~IN-NIEL- 
SEN (1961) utilized Eliassen’s method of finite 
Fourier scries to determine the stability pro- 
perties of the divergent one-parameter quasi- 
barotropic model for a jet-type current. He 
also considered tho socond-order changes and 
showed from the linear theory that a single-jet 
current would develop a double-jet structure as 
a result of mcridional convergence of momentum 
by unstable eddies. The latter results were also 
verified by an extension of Lorenz’s method of 
maximum simplification of the hydrodynamical 
equations, and in addition the transition from 
a double jet to a single jet was established. 

In  this paper the stability properties of the 
non-divergent, divergent, and the “stratified” 
(ARNASON 1961) quasi-barotropic models will 
be investigated for single- and double-jet zonal 
wind currents by a finite difference technique 
and by the finito Fourier series method. 
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2. The divergent one-parameter model 

Following WIIN-NIELSEN (1  959), the vorticity 
equation for the divergent one-parameter model 
may be written in the form 

a av 
- ( V 2 Y ) + V * V  ( V % + / ) = q S -  (1 )  
at at 

Here V =k  x V Y ;  Y is the stream function; 
and pa, to be treated as a constant, is a para- 
meter depending on the mean coriolis parameter, 
the static stability and the vertical variation of 
the wind near 500 mbs. 

By application the method of small pcrturba- 
tions, equation (1) may be linearized and ex- 
pressed in the form 

a y ’  a aY’ aY ’ 
V 2 - + U - ( V 2 Y ’ ) + -  B--a =q8-, (2) 

at ax ax ( $yu) at 

where Y‘ is the perturbation stream function, 
and U is the zonal current, a function of y alone. 

Next assuming the perturbation to be of 
harmonic form 

(3) 

and substituting this into (2) yields a linear 
second-order differential equation, 

( U  -c)(f$“ -$$) + ( b  - U” +p2c)f$ = 0; (4) 



384 a. J. HALTINER AND LT.R. T. SONG 

The prime here designates differentiation with 
respect to y, p is the Rossby parameter, p = 

2n/L with L the wave length, and c is the phase 
velocity, which may be complex, 

c = c, +ic,. 

The simplest boundary conditions that ap- 
proximate actual conditions to some extent 
are that the perturbations vanish a t  two 
latitudes corresponding, say, to y = O  and y = 

D, i.e., 

+ ( O )  = + ( D )  = 0. (5) 

Of particular interest here is the characteristic 
value problem, namely, the determination of 
values of c for which solutions of the system 
(3), (5) exist. Even for rather simple functions 
U (y), solutions in terms of elementary functions 
generally do not exist; although methods for 
finding infinite-series solutions are well known. 
The characteristic-value problem in the latter 
methods, however, is frequently very difficult. 
Hence it is desirable to attempt to approximate 
solutions by use of finite-difference or finite 
Fourier methods. 

3. Method I. Method of finite differences 
This method consists of dividing the basic 

interval D into n subdivisions of width d by 
(n - 1) equally spaced points within the funda- 
mental interval, 0 <y < D.  The derivatives of 
C$ (y) are then approximated by the finite dif- 
ference ratio 

> (6) 
I I  &+I  - 2&+ 41-1 

+j  = d B  

where i represents any interior point of the 
interval. A similar representation may be used 
for U” if so desired; however this will not be 
necessary for most of the examples considered 
here in which the zonal wind fields will be 
represented by analytic functions. In  general it  
may be expected that the accuracy of the solu- 
tions obtained through the use of (5) will 
increase as the value of n increase; however 
the computational effort naturally increases 
with increasing n. For the cases considered 
here, n will be restricted to the values 6 and 8. 
Moreover, only zonal wind profiles which are 
symmetrical with respect to the center of the 
basic interval will be considered. Hence, since 

the p parameter is treated as a constant, the 
amplitude of the perturbation stream function 
may also be expeoted to be symmetrical with 
respect to the basic interval. 

Case (A), n =6. 
First consider the case n - 6  and let the sub- 

scripts 0, 1 and 2 correspond to the points 
r )  = 0 1 2 ,  2013 ,  and 5016, respectively. Next, 
equation (4) is written for each of these points 
utilizing the finite difference approximation 
(6) for C$“, as appropriate. With the boundary 
condition $ ( D )  =0 ,  the following system is 
obtained: 

[ ( c  - U,)(2 +p%?Z) +d2(F - U,)  +d%&]C$, 
+ 2 ( U ,  -c@, = 0 

(77, -c)+, +[ (c - U1)(2 +p2da) +d2(p  - UL) (7) 
+ d 2 q 2 ~ ] ~ ,  + ( U ,  - c)$, = 0 

( U ,  -c)+, +[(c - U , ) ( 2  +pad2) +da(p - U , )  
+ d 2 q 2 ~ ] + ,  = 0 

For a known function U ,  the above equations 
constitute a linear homogeneous system in the 
“unknowns”, I$~, C$,, and The characteristic 
values of c may now be obtained by imposing 
the condition for a non-trivial solution for the 
+’s, namely, the determinant of the coefficients 
must vanish. The resulting frequency equation 
has the form 

a3c3 +a& +a,c +a,  = 0, (8) 
where 

a3 = h(h2 - 3 )  

a,  = h[(P, +Pz) h + ( U ,  + U,)(  1 - rh) ]  + (h2 - 1) 
(Po - U,r) + 2h( U ,  I U , )  - 2(P,  - U , r )  

a, = h[ U ,  U,(ra - 1) + P ,  P, - r (Pl  U ,  
+P,  UJl +[W, +PA + ( U ,  + U,) 

+ 2 ( U ,  + U,)(P, - U , r )  

(9) 
(1 - rh) ] (P , - -U,r )  -2hU,U,  

a, = [ U ,  U,(r* - 1) + P , P ,  -r(Z’, U ,  +P, U , ) ]  
[Po  - U,r]  - 277, U, (P ,  - U , r )  

P ,  = d2(p - U y ) ,  h = r +d2q2, and r = 2 +pzd2 

Since (8) is a cubic equation, in general there 
exists 3 roots, which may include a pair of 
conjugate complex values. Equation (8) has 
been solved numerically on a Control Data 
Corporation 1604 computer, using the MULLER 
method (1956), for several zonal wind profiles 

Tellus XIV (1962) ,  4 
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and for a variety of values of the parameters, 

Example I. Single-jet basic current 
The first example considered is the single-jet 

zonal wind profile used by Wiin-Nielsen (1961), 
namely, 

D ,  L, q, and B. 

which is shown as curve ( 2 )  in figure 1. The 
value of B is 30 m/sec, implying a rather intense 
jet with a maximum wind speed of 60 m/sec. 
The results are shown in figures 2 and 3 which 
give only the imaginary part of c as a function 
of wave length L for D =2000 km, and D = 

4000 and D=6000 km, respectively. Each 
figure contains a number of curves corresponding 
to different values of B and divergence, as 
represented by pa. From figures 2 and 3 the 
following conclusions are evident: 
(a) the B parameter has a stabilizing influence 

in the sense that the magnitude of c, is less for 
@ =@,, than for @ = 0, and also the band of 
unstable wave lengths is narrower. 

( b )  divergence, as represented by the para- 
meter q 2 ,  has a stabilizing influence with ci  
decreasing with increasing q2. 

(c) the wave length of maximum instability 
shifts toward shorter wave lengths with in- 
creasing qa and @; 

( d )  the instability decreases with increasing 
width of the channel D, except possibly for 
the case p =qe  = 0, but the wave length of 
maximum instability increases with increasing 
D; 

FIG. 1. Zonal wind profiles: Curve 2, U = B( 1 - cos 
(2nlD)y); Curve 1, U = B (sin(n/D)y+sin(3n/D)y). 

Tellus XIV (1962), 4 

FIG. 2. ci as a function of L for U = B ( l  -cos 
(2nlD)y) with n = 6, B = 30 m/sec, D = 2000 km and 
Curve 1: B = 0, q 2  = 0; curve 2: =B4,, q 2  = 0; curve 3: 
@=pas, qz=0.5 x 10-l2 m-2; curve 4: q a =  
1.0 x 10-lZ m-2; curve 5: B = P I S ,  pa = 1.5 x 10-lZ m-2. 

( e )  the unstable waves are generally found 
for intermediate wave lengths with very long 
and short waves stable, similar to baroclinic 
instability and in general agreement with the 
average wave length of observed synoptic 
waves. 

Example II. U ,  = 2 B ,  U ,  = B, U ,  = B / 2  
Figure 4 shows the results for a somewhat 

more pointed single-jet profile where the 
velocity at y = 2 / 3  D is 1/3  less than for the 

FIQ. 3. Similar to figure 2 except that D = 4000 km; 
dashed curve corresponds to D = 6000 km. 
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FIQ. 4. Similar to  figure 2 except that U , = 2 B ,  
U, = B, U ,  = B / 2  and D = 4000. 

previous case. As might have been expected 
from the variation with D in the previous 
example, the instability is somewhat less here 
than for the corresponding values in the first 
case; however, the general characteristics are 
similar. 

Example I I I .  U = 23 

This zonal profile also has a rather sharp 
single-jet of westcrlies but possess a band of 
easterly winds on either side. The stability 
characteristics for D = 4000 km, as displayed 
in figure 5, are similar to the cases already 
shown; but, when compared to figure 3, the 
magnitude of ci is seen to be larger for all 
curves. However, curves (1) and (2) show a 
narrower band of instability than previously. 
The curves for 2000 km and 6000 km are not 
shown; but as D increases there is a decrease in 
the width of tho band of unstable wavelengths, 
a shift of this band toward longer wavelengths 
and a sharper decrcase of the magnitude of c t  
with increasing B and q2. 

Example I T .  Double-jet basic current 

A quite common occurrence observed on 
synoptic maps is tho split of the isotach maxi- 
mum so that maxima of wind speed are found 
a t  two different latitudes. Hence it is of interest 
to examine the stability properties of a double- 

FIG. 5.  Similar to figure 3 except-that U = B(cos 
(4zlD)y - cos ( 2 n / D ) y ) ,  (horizontal scale expanded). 

jet zonal current. The profile chosen for this 
example is represented by 

which is shown as curve ( 1 )  in figure 1. Utilizing 
the expression in equation (8) and carrying out 
a similar series of computations with B = 40 m/ 
sec. yielded the results shown in figure 6 and 
7, corresponding to D =2000 and 4000 km, 
respectively. 

The general shape of the curves in figure 0 
and 7 is similar to the results of the previous 
curves, however contrary to Example I, B and 
q2 do not exhibit a stabilizing influence for all 
wavelengths. Instead, for wavelengths longer 
than that corresponding to the maximum 
instability, the value of ct increases for the 
larger values of B and q2; thus the latter have 
a destabilizing influence there. Moreover, the 
band of unstable wavelengths broadens with 
increasing /3 and qa in addition to showing the 
previously implied shift of maximum instability 
toward slightly longcr wavelengths. 

Figure 7 shows a somewhat more complicated 
set of curves than heretofore; however, qualita- 
tively, the deviations from the single-jet case 
arc similar to those described for figure 6. The 
primary differcnces from the latter are firstly, 
the appearance of two maxima of ct with 
respect to wavelength; and secondly, the pro- 

Tellus XIV (1962), 4 
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FIG. 6. Similar to figure 2 except that U=B(sin 
( n / D ) y  + sin(3n/D)y), B = 40 m/sec, horizontal scale 

expanded. 

nounced broadening of the band of unstable 
wavelengths for the larger value of D. Thus 
the stability characteristics of the double-jet 
profile appear quite different in many respects 
from those of the single-jet case. 

A word of caution should be injected here, 
however, for it must be remembered that a 
finite difference approximation for derivatives 
is being used to reduce the differential equation 
(4) to the linear algebraic system (7) ,  and the 
subdivision of the channel into 6 mesh lengths 
is probably a cruder representation for the 
double-jet current than for the simpler single-jet 
case, giving rise to larger truncation errors. 
Case B), n = 8. 

As a check on the previous results the mesh 
size was decreased by dividing the basic interval 
into 8 subdivisions. In  this event equation (4) is 
applied at 4 interior points leading to a linear 
system of 4 equations in #,, j =0, 1, 2, 3, ana- 
logous to (7J. The condition that the deter- 
minant vanish for a non-trivial solution leads 
to a quartic equation for c. 

Example I .  Single-jet basic current,equation (10). 

The values of ci  as a function of wavelength 
for D =4000 km and the same series of values 
of /? and q2 are shown in figure 8. Only one pair 
of conjugate complex roots resulted in each 
case and these were quite similar to the case, 
n = 6. A comparison of figures 8 and 3 reveals 
the following differences: 

Tellus XIV (1962), 4 
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FIG. 7.  Similar to figure 6 with D = 4000 km. 

( a )  with n = 8, there is a shift of curve 1 (for 
/? = q 2  = 0) toward somewhat longer wavelengths; 
and, comparing curves (2) and (3), /? appears to 
have a destabilizing influence on the shorter 
unstable waves; 

( b )  the band of unstable waves is slightly 
broader and the magnitude of ci  is somewhat 
larger for n = 8 than for n = 6; 

(c) the curve for D =2000 and D =6000 km, 
which are not given, show the previous decrease 
in instability with increasing D and the shift 
of the instability toward longer wavelengths. 

For somewhat more detail regarding the phase 
velocities, consider the specific values for D - 
4000 km, /? =/?,,, pa = .5 x 10-lo m-a and L = 

6000 km: 

n = 6: c ~ , ~  = 15.51 rtr 3.2i, 
c3 =41.87, (mlsec), 

n = 8: c1,2 = 12.93 I4 .06i ,  
c3 = 29.67, c4 = 49.65, (m/sec) 

Thus the single real root for n = 6 lies between 
the pair of real roots for n = 8; also the complex 
roots differ somewhat. 

Example I V .  Double-jet basic current, equation 
( l l ) ,  n =8. 

As suggested earlier, greater differences be- 
tween the cases n = 8 and n = 6 might well be 
expected in the double-jet profile than the 
single-jet bccause of its greater complexity. 
Figure 9, which shows the results for D =4000 
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FIG. 8. Similar to figure 3 with n = 8. FIQ. 9. Similar to  figure 6 with n = 8. 

(n = 8 ) ,  is fairly similar to figure 7 ( D  =4000, 
n = 6), except as follows: 

(a) the magnitude of ci is generally somewhat 
larger in curves 1, 2 and 3 and the band of 
unstable wavelengths is somewhat broader. 

b )  curves 3,  4 and 5 indicate that an in- 
creasing pa has a stabilizing influence; however, 
a comparison of the slopes suggests that this 
effect will reverse at sufficiently longer wave- 
lengths. 

4. Method 11. Finite Fourier series method 
When trigometric functions are used to 

represent the zonal wind, it is logical to con- 
sider a Fourier series representation for 4 (y). 
Because of the assumed symmetry of this func- 
tion, the special character of the differential 
equation (4) and the type of zonal wind profile 
used here, either an even or an odd set of func- 
tions may be used. Consider a solution of the 
form 

N 

i=1 
+(y) = 2 +, sin jly, j = 1, 3,  5, ... N ,  (12) 

where t = n/D. The expression (12) obviously 
satisfies the boundary conditions ( 5 ) .  The 
reliability of the results may be expected to 
increase with increasing N. 

WIIN-NIELSEN (1961) has present the 
stability characteristics for the zonal wind 
profile (10) for the case N = 3. Larger values of 
N (including even values) have been considered 

by ELIASSEN (1954), but with divergence 
excluded, and mainly for B = O .  Eliassen found 
only one pair of conjugate complex values of c 
corresponding to odd values of j .  

Here odd values of j will be of primary con- 
cern with N = 5 and N = 7. 

Example I .  Single-jet basic current, equation 10, 
N = 5 .  

Inserting (12) into equation (4), obtaining a 
series in terms of the elementary functions sin 
ly, sin3ty, etc., and finally equating the coef- 
ficients of these terms to zero, leads to a linear 
homogeneous system of equations for the cor- 
responding c$~,  etc., namely, 

[ ( A 2  +p2 + q 2 ) c  +/I - (1/2)B(3$ - t 9 ) ] 4 1  

+[(1/2)B(512 + P ~ ) ] + ~  = 0 

[(1/2)B(pa -312 ) ]41  +[(9t2 + p  +Q')c + B  - 
-B(9 ta  + p ' ) ~ $ ~  +(1/2)B(21ta + p 2 ) ] 4 ,  = 0 (13 )  

[(1/2)B(5ta + p 2 ) ] ~ 3  +[(251* +p2  +pa),  
+ B  -B(2512 +p2)]+,  = 0 

Setting the determinant equal to zero as before 
gives a cubic frequency equation for the phase 
velocity c. 

c3(RWE) +c2[E(RB +SW) +RWG] +c[E 
( S V  - T H )  +G(RV +SW)  - P H W ]  +G(SV 

- T H )  -PHV = O ,  

Tellus XIV (1962), 4 
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FIG. 10. Similar t o  figure 3 with N = 5  (Fourier FIG. 11. Similar to figure 10 with N = 7  (Fourier 
method). method). 

When N = 7, a similar procedure leads to  a 
system of four linear homogeneous equations 
in the amplitudes &$,,&b, and a quartic 
equation in c. 

Figure 10 gives ci as a function of wavelength 
for the single-jet profile (equation 10) for N = 5, 
D =4000 and various values of /3 and q*; and 
figure 11 gives similar results for N =7. A t  
most one pair of conjugate imaginary roots for 
c appeared in the latter case. 

There is obviously a close similarity in the 
essential features between the cases N =5, 
N = 7. Moreover, these results correspond closely 
to those of the finite difference method, parti- 
cularly between the latter case for n = 8  (figure 
8 )  and the Fourier method for N = 5 (figure lo), 
but also between the finite difference case 

TABLE 1. Phase velocity c (mlsec) for single-jet basic current as obtained by Fourier method for 
N = 5 and N = 7 with D = 4000 km, ,9 = ,f?45, and q 2  = .5 x 10-12 m-2; wave-length L i s  given in unit8 

of 1000 km. 

N = 5  N = 7  

L Cl CZ c3 Cl CZ c3 c4 

1 11.80 35.61 54.47 7.72 24.49 43.56 55.67 
2 12.71 33.50 48.74 8.76 23.96 40.70 50.74 
3 13.58 30.24 42.90 9.61 23.26 35.84 47.13 
4 14.63 24.67 39.23 10.38 21.75 29.91 45.54 
5 16.77 k2.75i 37.52 11.68 17.25 26.32 44.84 
6 13.97 k4.481 36.68 11.99k3.50i 25.18 44.46 
7 11.51 k4.06i 36.20 9.62 k4.22i 24.75 44.24 
8 9.44k 1.81i 35.90 7.58 k 3.54i 24.53 44.10 
9 3.90 11.54 35.70 5.87 k 1 . l l i  24.40 44.00 

10 .47 12.14 35.57 .89 8.04 24.31 44.93 
11 - 2.16 12.43 35.47 - 1.94 8.54 24.25 43.88 
12 - 4.27 12.61 35.39 - 4.13 8.80 24.21 43.84 

Tellus XIV (1962), 4 
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FIG. 12. Similar to  figure 2 with U = B ( l  -cos 
(4n/D)y), D = 2000 km and N = 5.  (Fourier method), 

horizontal scale expanded. 

n = 6 (figure 3) and Wiin-Nielsen’s results for 
N =3.  Tho following differences may be noted, 
except possibly for p = q2 = 0, 

( a )  the maximum cI  decreases slightly, but 
the band of unstable waves becomes a little 
broader as N increases; 

( b )  the wavelength for the maximum ci shifts 
slightly toward somewhat longer wavelengths 
as N increases. 

As a further comparison between the results 
of the Fourier method for N = 5 and N = 7, the 
roots of the frequency equations are provided 
in Table I for the case, D ~ 4 0 0 0  km, p = B,,, 
and q2 = .5 x 10-l2 m-2 for wavelengths of 1000 
to 12,000 km. Though quite similar, the dif- 
ferences here are somcwhat greater than noted 
by Eliassen. 

Example V .  A slightly different double-jet 
basic current is examined next as represented 
by the equation 

U = B  1-cos-y , ( 3 
where again B is 30 mjsec. This current is 
zero a t  the center of the channel, as well as a t  
both lateral boundaries, and has value 2B a t  
y = D l 4  and 3014 .  It is shown as U (0) in 
figure (16). Figuro 12 (horizontal scale ex- 
panded) gives c i  as a function of wavelength 
for D = Z O O 0  km. Here the band of unstable 

I I I I I I 
FIG. 13. Similar to figure 12 with D = 4000 km. 

wavelengths is rather narrow and confined to 
rather short waves; also the variation with 
different values of B and q is negligible. Figure 
13 shows the results for D -4000, which 
indicates broader instability with shift toward 
longer wavelengths and also a greater variation 
of stability with B and q. A comparison of 
figures 9 and 13 shows that what appears to 
rather minor changcs in the shape of the basic 
wind profile, together with the difference due 
to method, can givo moderato differences in 
the instability characteristics. 

5. The stratified model 
AFCNASON (1961) has developed a quasi- 

barotropic model, which was intended in part, 
to serve as interim device for the prediction of 
the movement, but not development, of pressure 
systems a t  and below the 600-mb surface until 
baroclinic models were more successful. Some 
recent tests indicate that this model is slightly 
better than the divergent one-parameter model 
a t  500 mb and achieves its aim with moderate 
success a t  several other levels. 

It therefore appears desirable to examine its 
stability characteristics. 

The vorticity equation for the stratified model 
may be expressed as 

2Y* 
( V z - q z )  - + V * V  (Vz Y ” + f )  - y 2  V .VY” i 0, (16) 

at 

where q2 =f ( V 2 Y  +f)/f”’, and will be treated 

Tellus XIV (1962), 4 
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FIG. 14. Similar to figure 3 but for stratified model. 

as a constant; g" is a measure of gravity, cor- 
rected for compressibility; and V is a space- 
mean wind. Applying the perturbation method 
leads to the form 

(P-$:-q'U) -0.  ( 1 7 )  

Comparison to the analogous divergent one- 
paramcter cquations (1) and (2) shows that the 
abovo cquations have one more term, which 
may be considered as divergence in addition 
to the Helmholtz term. According to Arnason 
this leads to better control of long waves and 
also can provide for proper movement of 
systcms a t  lrvcls below 600 mb. 

Substituting the harmonic perturbation (3) 
into ( 1 7 )  gives: 

( U - C ) ( $ " - ~ ~ ~ $ ) + [ P - U " + ~ ~ ( C - U ] $  = O ,  (18) 

the double prime designating a second derivative 
with respect to y. 

The stability characteristic of this model will 
be dctermincd by the Fourier method with 
N = 6 for the zonal wind profile 

FIG. 15. The zonal wind profile U = B ( 1  -cos 
( 4 ~ l I ) ) y )  initially, U (0 ) ,  and after 1, 2, and 2 4 days 
with B :=B15, q2 7- 0, D = 3000 km, L = 3000 km, B - 
30 m/sor, A ,  for a perturbation velocity of 5 m/sac 

and A ,  = 0. 

Substitution of (10) and (12) into (18) leads to 
the same type of frequency equation aa (14); 
however, some of the coefficients diffcr some- 
what as follows: 

G = j3 - 1/2B(3p2 -1' + 3q2), 
H = 1/2B(5A2 +p2  +q2) 
P = 1/2B(p2 + q 2  - 3P),  
s = #8-B(9P+p2+q2), 
T = 1/2B(21ii2 +pa  +q2), 
V = B - B ( 2 5 P  +p2  +q2) 

Figure 14 gives c i  as a function of L for the 
stratified model with D =4000 km. Those 
results may be compared to those of the 
analogous standard one-parameter model, which 
are given in figure 10. Curves 1 for =p = 0, and 
also curves 2 for B = Pd5, p = 0, are quite similar 
in the two figures. However, curves 3 and 4 of 
the stratified model show generally larger 
values of c i ,  a shift of the unstable band toward 
longer wavelengths and a much broader band 
of unstable wavelengths. For the wavelengths 
shown, there were no eomplcx roots in tho 
stratified model corresponding to curvo 6 of 
figiirc 10; however, such may occiir a t  still 
larger values of L. Thus, thc stratificd modcl 
displays greater instability than the conven- 
tional one-parameter model. 

Tellus X I V  (1963), 4 
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FIQ. 16. Similar to figure 15 except that A ,  is same 
as A ,  there. 

The curves for D =2000 for this model are 
not given here but are somewhat like those 
of figure 13 and, in general, revealed greater 
instability than the broader basic current 
represented by figure 14. 

6. Momentum transfer 

In  WIIN-NIELSEN’S paper (1961) it was shown 
that a single-jet basic current tends to split 
into double-jet flow as a result of the meridional 
convergence of momentum transfer by the un- 
stable eddies. This result was based on the 
roots of the frequency equation derived for 
the basic flow. However, as the basic flow is 
modified by the momentum transfer, the profile 
may be altered so radically that the solution 
to the initial perturbation pattern no longer 
applies. As a matter of fact, Wiin-Nielsen, using 
a different method suggested by E. N. Lorenz, 
presented additional computations showing an 
oscillation from single to double-jet and vice 
versa. Nevertheless, it may be of some interest 
to utilize the solutions presented here for the 
double-jet profile and determine the time 
required for transition to a single-jet from the 
results of the linear theory. Combining the 
equation of motion in the x-direction and the 
equation of continuity and taking the average 
over one wavelength leads to the result 

au a(u’u’)  

at aY 
_ -  

FIQ. 17. Similar to figure 16, except that D = 6000 
k m  and L = 4000 km. 

Next the perturbation stream function (3) is 
used to determine the wind components u’ and 
v‘ for evaluation of the right hand member of 
(18). The 4, and corresponding c, are obtainable 
from the linear homogeneous system of equa- 
tions for the 4, and the associated frequency 
equation. For example, for the single jet with 
N = 5, the required equations are (13) and (14). 
For comparison to Wiin-Nielsen’s results for 
the single jet with N =3, the computations 
have been carried out here for the double-jet 
given by (15) with B =30 m/sec and N = 3. 
The basic derivation is the same as that given 
by Wiin-Nielsen, only the various coefficients, 
phase velocities, and amplitudes are different. 
The initial perturbation is taken as 

4 = A,sin(ny/D) +A,sin(tny/D). (18) 

The results for the double-jet basic current 
are shown in figures 15, 16 and 17. Figure 15 
gives U as a function of time for the non- 
divergent model (p = 0 )  with /I =/I,,, D =3000 
km, L = 2000 km, an A, which gives a perturba- 
tion velocity of 5 m/sec, and A, = 0. The wave- 
length of 2000 km corresponded to maximum 
instability when D = 3000 km, with c = (28.9 If: 
3.9i) m/sec. During the first day there was little 
change; however, by the end of the second day 
the zonal wind at the center of the channel had 
increased markedly, and by 2 4  days the 
transition from a double-jet to a single-jet cur- 
rent had been completed. 
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Figure 16 is similar to 15 except that A, = 

5 m/sec also. Here the transition is even more 
rapid with the jet becoming stronger and more 
sharply peaked by 24 days. 

Finally, figure 17 depicts the non-divergent 
case for a broader current with D =6000 km, 
L = 4000 km and the other parameters the same 
as in figure 16. As might be expected the 
period for transition from double to single-jet 
is much longer. 

It follows from the last three diagrams that 
if there exists barotropic instability in a basic 
current exhibiting a double-jet structure, 
meridional convergence of momentum by the 
unstable eddies will tend to transform the 
velocity profile into a single-jet zonal wind. 

7. Summary and conclusions 

The dynamic stability of single-jet and 
double-jet zonal currents is investigated for 
several quasi-barotropic models by two ap- 
proximations, namely, a finite difference techni- 

que and a finite Fourier series method. In  
general the two methods give similar results but 
some moderate differences occur when the 
finite difference mesh length or the number of 
Fourier components is varied. Also the stability 
characteristics of the various single- and 
double-jet profiles studied differed considerably. 

The Helmholtz divergence term by and large 
tends to reduce the instability in the single-jet 
currents; however, the reverse was usually 
found for the double-jet current, particularly 
in the longer wavelengths. The instability also 
tends to decreaae with increasing width of the 
basic current. 

Arnason’s stratified model is found to be 
more unstable than the conventional one-para- 
meter barotropic model. 

In the last section it is found by linear theory 
that a double-jet basic current tends to be 
transformed into a single-jet current in a few 
days aa a result of the meridional convergence 
of momentum transfer by unstable perturba- 
tions. 
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