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Abstract - The paper considers the development and simula-
tion testing of the control algorithms for an autonomous high-
glide aerial delivery system, which consists of 650sq.ft rectan-
gular double-skin parafoil and 500lb payload. The paper 
starts with the optimal control analysis and applies it further 
to the real-time trajectory generation. Resulting guidance and 
control system includes tracking this reference trajectory 
using a nonlinear tracking controller. The paper presents the 
description of the algorithm along with simulation results.. 

As expected the basic trajectory structure is similar to 
the ones reported in the literature. However, as shown in 
Section II, a single smooth inertial trajectory is generated 
using simple optimization and is tracked throughout the 
drop by the same control algorithm. This eliminates the 
need for multiple modes, extensive switching logic and 
wind information throughout the drop. The latter is made 
possible by the nonlinear control algorithm that tracks the 
inertial trajectory directly and treats wind as a disturbance. 

The specific delivery system considered in this paper 
is called Pegasus. It consists of 650sq.ft span rectangular 
double-skin parafoil and 500lb payload and was originally 
manufactured by the FXC Corp. It can be controlled by 
symmetric and differential flap deflections that occupy 
outer four (out of eight on each side) cells of the parafoil. 

I. INTRODUCTION 
Autonomous parafoil capability implies delivering the sys-
tem to a desired landing point from an arbitrary release 
point using onboard computer, sensors and actuators. This 
requires development of a guidance, navigation and con-
trol (GNC) system. The navigation subsystem manages 
data acquisition, processes sensor data and provides guid-
ance and control subsystems with information about para-
foil states. Using this information along with other avail-
able system data (such as local wind profiles), the guid-
ance subsystem plans the mission and generates feasible 
(physically realizable and mission compatible) trajectory 
that takes the parafoil from the initial position to the de-
sired landing point. Finally, it is the responsibility of the 
control system to track this trajectory using the informa-
tion provided by the navigation subsystem and onboard 
actuators. 

A complete six-degree-of-freedom (6DoF) model of 
Pegasus was developed and tuned using flight test data 
provided by the US Army Yuma Proving Ground, AZ 
(YPG) [3]. This model matches flight test data and is char-
acterized by the following integral parameters: the average 
descent rate is 3.7-3.9m/s, glide ratio is about 3.0, the turn 
rate of ~6°/s corresponds to the full deflection of one flap. 
An interesting feature from the control standpoint is that 
the system exhibits almost no flare capability (flaps deflec-
tion results in almost no change in the descent rate). There-
fore, it is very important to land it into the wind. 

This paper is organized as follows. Section II intro-
duces optimal control strategy for a simplified parafoil 
model using Pontrjagin's principle of optimality. Section 
III discusses real-time trajectory generation for the control 
algorithm. Section IV discusses the development of the 
tracking control algorithm. Section V introduces simula-
tion results of the complete guidance and control system. 
Finally, Section VI contains the main conclusions. 

In the past decade, several GNC concepts for gliding 
parachute applications have been developed and published 
(see [1] and references therein). Most of them were tested 
in a simulation environment, some in flight test. 

Present paper addresses the problem of GNC devel-
opment for a parafoil system as follows. First, a feasible 
trajectory is generated in real-time that takes the parafoil 
from initial release point to touch down at a desired impact 
point. It is assumed that only the direction of the wind at 
the landing zone (LZ) is known. The trajectory consists of 
an initial glide, spiral descent and of final glide and flare. 
The final glide and flare are directed into the wind at LZ. 
This structure is motivated by optimal control analysis 
carried out on a simplified model. The resulting trajectory 
is tracked using a nonlinear algorithm with guaranteed 
local stability and performance properties [2]. The control 
algorithm converts trajectory-tracking errors directly into 
control actuator commands. Therefore, only GPS position 
and velocity are needed to implement it. 

II. OPTIMAL CONTROL SYNTHESIS 
Consider the following kinematic model of a parafoil in 
the horizontal plane. Suppose we have a constant glide 
ratio and by pulling risers we can control its yaw rate. 
Mathematically, this is expressed by the following simpli-
fied equations: 
 cosx V ψ= , siny V ψ= , vψ = , (1) 
where [ ];v∈ −Ξ Ξ  is the only control. 

The Hamiltonian for the system (1) for a time-optimal 
control can now be written as: 
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where equations for adjoint variables xp ,  and yp pψ  are 
given by 
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The optimal control for the time-minimum problem 
now is given by 
 . (4) ( )v sign pψ= Ξ

By differentiating the expression for pψ  (3) and com-
bining it with Hamiltonian (2) for both cases when  
and  we can get a set of equations for 

0pψ >

0pψ < pψ : 

 . (5) 2 0p pψ ψ+ Ξ Ξ =∓
This differential equation gives two sinusoids (shifted 

with respect to abscise axis by ) as solutions for the 
general (non-singular) case 

1−±Ξ

 , (6) 1
1 2sin( )p C t Cψ

−= Ξ + ±Ξ

where  and  are constants defined by the concrete 
boundary conditions. If  the parafoil model moves 
along a descending spiral. It takes 

1C 2C
1

1C −≠ Ξ
12π −Ξ

1 = Ξ
 seconds to make 

a full turn with a radius of V . If C  there exists a 
possibility of singular control. This is caused by the fact 
that there exists a point in time where both 

1−Ξ 1−

pψ  and pψ  are 
zero as can be seen from (6). 

Consider singular control for this model. By definition 
it means that . For the time-optimal problem from 
the Hamiltonian (2) and third equation in (3) (of course 
keeping in mind the first two) it follows that for a singular 
control case 

0pψ ≡

 1 cosxp V ψ−= , 1 sinyp V ψ−= , constψ = . (7) 
Expressions (7) imply that singular control corre-

sponds to motion with a constant heading ( v ). It may 
not however be realized. Instead, the parafoil model may 
switch from right-handed spiral to a left-handed one or 
vice versa. Concrete boundary conditions define which 
case will be realized. 

0≡

To summarize, as suggested by the Pontrjagin's prin-
ciple of optimality [4] three-dimensional time-optimal tra-
jectories would consist of helices (spiral descent) and 
straight descent segments. The basic difference between all 
possible trajectories is whether parafoil expends its poten-
tial energy at the beginning of descent or at the end. It may 
depend on the tactical conditions in the LZ, terrain, or 
some other factors. In a general case parafoil could spend 
its potential energy in the vicinity of some other waypoint 
differing from the start and final portions of the trajectory. 
In any case, since the control system cannot meet any time 
constraints due to unavailability of thrust on a parafoil 
system, the common feature of these reference trajectories 

(RTs) is that they are defined in the inertial frame and are 
time independent. 
Another critical issue is that in order to meet a soft-landing 
requirement the parafoil at the LZ must align itself into the 
wind. 

III. REAL-TIME TRAJECTORY GENERATION 
The optimal control analysis of the previous section moti-
vated the basic RT structure as follows. This RT consists 
of three segments: initial straight-line glide (segment 1), 
spiral descent (segment 2) and final glide and flare (seg-
ment 3). Since it is required that the parafoil is aligned into 
the wind at LZ, the final glide segment ends at the desired 
impact point (DIP) and is directed into the wind. Further-
more, the final glide starts an offset distance d  away 
and a certain height above DIP. The height is determined 
by the flight path angle of the segment 3. Similarly, the 
first segment starts at the parafoil release point (RP) and 
ends at a point defined by the flight path angle of the first 
segment at the spiral descent segment. The first and last 
segments are fused together by the spiral descent segment. 
The radius of the spiral is adjusted to provide smooth tran-
sition between each segment. The rest of the section de-
rives the mathematical representation of the complete RT. 

offset

Let 
1RTγ  denote the desired flight path angle for the 

first straight-line segment of the trajectory, similarly let 

2RTγ  denote the flight path angle for the spiral-descent 

segment and, finally, let 
3RTγ  represent the flight path an-

gle for the final straight-line segment. Furthermore, let fψ  

represent the wind direction at the LZ, ( )0
T

0 0 0, ,x y z=p is 

the RP, and ( )T

f f f, ,fx y z=p  denotes the DIP. Define 

vector ( )),0
T

fψ π+cos( ),fψ π= + sin(i  to be the unit vec-
tor that points into the wind at the LZ and vector 

( )T
sin( ),cos( ),0f fψ π π+

i

ψ +∗i = −  to be the unit vector 

orthogonal to . Then the initial point ( )3 3 3, , 3
Tx y z=p  of 

the third segment is given by 

 ( )33 0,0, tan
T

offset f offset RTd z d γ= − + +p i . (8) 
Now, let RTp  denote the position on the RT, s  denote 

the path length traveled along the RT and RTV  - parafoil's 
velocity along this path. Then the expression for the third 
segment of the desired trajectory is 
 3 3( )RT s s= +p p T , RTs V= , (9) 
where 

 ( )3 33 cos cos , sin cos , sin
T

f RT f RT RTψ γ ψ γ γ= − − −T
3

(10) 

is the unit vector that points along the line connecting p  
to . Note, that the length of the third segment 

3

fp

3 3 fs = −p p . Similarly, let 1s  denote the length of the 
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first segment and 2s  - of the second. Then, along the third 
segment ( 1 2 1 2 3s s s

( )
s s s+ < ≤ + +

3 3 (RT

) 
s = +p p T

( 1 1, , T)y z

1 3 r ∗= +p p

1 r
d

− 1 1

1 0
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1 x x
ψ − −

−
=

2ψ

cosψ γ

 1 2 )s s s− + . (11) 
Next, consider Fig.1. Let r represent the radius of the 

spiral descent segment. Then the center of the spiral 

1 1x=p  has the following expression 

 , (12) i

Then, the choice of ∆  guarantees that the horizontal 
projections of vectors defined by (18) and (10) are aligned, 
i.e. 
 ( )

2 2
2 3 cos , sin

Thor hor
fs s s s

ψ ψ
= =

= = − −T T f . (19) which is used next to determine the expression for RTp  

along segment 1. Let 2 2
0 1 0 1( ) (x y y= − + − )d x , then 

sinψ∆ = , 0  and 2 1ψ ψ ψ= + ∆ . 

This fact implies that at  the horizontal projections 
of the commanded velocity vectors for segments 2 and 3 
are equal and are independent of the choice of r. 

3p

Finally, the radius of the spiral descent r is selected to 
guarantee that at p  segments 1 and 2 merge smoothly. 
This is done numerically by solving a single variable con-
strained optimization problem. Note that at p  

2

2
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Therefore, let 

ψ∆

 ( )2 1( ) sin , cos ,0 Te r r r− + ∆ − ∆p p , (21) 

then the desired value of r is . The val-

ues of  and  are selected to provide a unique solu-
tion that is consistent with physical limitations of the para-
foil. Note, in steady state turn the bank angle of the para-
foil is defined by the following expression:  

min max

arg min ( )des
r r r

r
≤ ≤

= e r

minr maxr

Fig.1 Top view of the parafoil RT 
 
Analogous to (10) define 
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T
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Then where g is acceleration due to gravity. By construction the 
horizontal projections of T  and  at  are aligned, i.e. 1 2T 2p

1 1
1 2
hor hor

s s s s= =
=T T . 
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2 0 1 cos RT

d r
γ
−

= +p p T , 1 0 2= −p ps  (14) 

and 
 0 1( )RT s s= +p p T , 10 s s≤ ≤ . (15) 

IV. INTEGRATED GUIDANCE AND CONTROL 
ALGORITHM 

The turn rate RTψ  along the spiral descent segment is 
given by 
 

2

1 cosRT RT RV r Tψ γ−= . (16) 
 

Then, along the segment 2 ( 1 1 2s s s s< ≤ + ) 
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The development of the integrated guidance and control 
algorithm presented in this section is based on the work 
reported in [2], where authors have proposed a new tech-
nique for tracking so-called trimming trajectories for un-
manned air vehicle (UAV). As shown in this paper trim-
ming trajectories consist of straight lines and helices. 
Therefore, this methodology is particularly suitable for the 
problem at hand. 

The key ideas of the design methodology include the 
following five steps: where RT RT RVρ ψ= , ( )2 1f RT s sψ π ρ∆ = + − − , 

2

2 3
2 sin RT

z
s

z
γ
−

= . 

1) reparameterize trimming trajectory using the arclength 
s, thus eliminating time as an independent variable; 

T

2) resolve the position and velocity errors in so-called 
Frenet frame; Without loss of generality, the z-component of the 

center of the spiral descent  was set to equal  in the 
definition of 

1p 2z
( )RT sp  above. 

3) form error dynamics for the system consisting of the 
trajectory and parafoil model, where the position and 
velocity error states are resolved in Frenet frame; 

4) design a linear tracking controller for the linearization 
of the system along the trimming trajectory; 

Let 
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Simple algebra shows that for straight-line segments 5) implement this controller with the true nonlinear plant 
using a nonlinear transformation provided in [2]. This 
implementation guarantees that the linearization along 
the trimming trajectory of the feedback system con-
sisting of the nonlinear plant and nonlinear controller 
preserves the eigenvalues and transfer functions of the 
feedback interconnection of the linearized error dy-
namics and linear tracking controller [5]. 

 1 0 1

3 3 1 2 1 2 1 2 3

T (p p ),0 ,
T (p p ) ( ), .

T

T

s s
s

s s s s s s s s∗

 − ≤ ≤= 
− + + + < ≤ + +

(24) 

Now, recall that segment 2 represents a spiral. In this 
case, only an approximation of s∗  can be found analyti-
cally. Its derivation is discussed next. 

Let 
 (25) 2 2 2

1 1 1{( , , ) : ( ) ( ) , }C l m n l x m y r z n z= − + − = ≤ 2≤

)
A. Derivation of the errors in Frenet frame 

define a cylinder centered at (1 1 1 1, , Tx y z=p . Then the 
spiral descent trajectory 

As shown in Section III the desired RT is parameter-
ized using the path/arclength parameter s. 
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Let ( , , T)x y z=p  denote current position of the para-
foil. The methodology presented above requires that posi-
tion and velocity commands ( )RT s∗p ,  used to 
compute position and velocity errors, 

( )RTV s∗
( )RT s∗ −p p  and 

 respectively, correspond to the point on the 
RT that is nearest to current position of the vehicle. This is 
done by first determining the value of the path/arclength 
parameter 

( )RTV s∗ V−

2s −parg mi
s

s∗ n ( )RT= p  and then using it to 

compute position and velocity commands. In [2] the prob-
lem of determining s∗  is reduced to a constrained optimi-
zation problem. However, computing limitations of the 
onboard processor have imposed a need to develop ana-
lytical techniques for the computation of s∗ , discussed 
next. 

( 1 1 2s s s s< ≤ + ) is a subset of C. Furthermore, the projec-
tion of the vehicle's position p onto C is 

 ( ) ( )1 1
1 1

1 1

,
, ,

,

T

proj

x x y y
x y r z

x x y y
 − −

= +  − − 
p

T

. (27) 

For any vector ( ), ,cyl cyl cyl cylx y z C= ∈p  define a 
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Π
An exact analytical expression for s∗  can be derived 

for straight-line segments 1 and 3. Recall (15) and (11). 
Then 

1

1 2 1 2 3

, 0
arg min

,s

s s
s

s s s s s s∗

≤ ≤
=  + < ≤ + + 


, (23) 

The function  maps the cylinder C onto a rectangle 
of width 2 rπ and height . Moreover, the trajectory 2z z− 1

( )RT sp
( (RT

 defined for segment 2 is mapped into a function 
))sΠ p  shown in Fig.2. 

where 0 1s= + −p T p

( )
 and 

3 3 1 2s s s= + − − −p T p . 

( ( ))RT sΠ p

2RTγ
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1nz
2 pz
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 xΠ

zΠ

2z

1z

2 rπ
Fig.2 Graphical representation of the range of the function Π  

 
Let  denote the distance from p to the nearest point d∗

)(RT s∗p on the trajectory ( )RT sp . Then ( )RT s∗p  can be 
obtained by determining the intersection of the ball dB

∗
 of 

radius d∗  centered at p. The mapping Π  is an ( dB
∗
∩ )C
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ellipse centered at ( )projΠ p with semi-major and semi-

minor radii given by 3z xr d=  and 
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sΠ  represents the mapping p
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is obtained next and then used to compute s∗
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Consider Fig.2. Note for the case illustrated in this fig-
ure, the  coordinate of Π  is bounded above by 

 and below by . Using the basic geometry shown in 
Fig.2, expressions for  and  are: 

For segments 1 and 3 the basis vectors are constant. 
For example, for segment 1 we obtain 
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where and for segment 3 
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Similarly, 
The basis vectors B1 and B3 are computed exactly as 

B2. Now the rotation matrix F
LTP iR  from LTP to Frenet 

frame for the i-th segment is given by  
and the corresponding position and velocity errors are 

( ), , TF
LTP i i i iR = T N B

  (31) 

 
The variables  and  represent the z-coordinates 

of the projections of  onto the two nearest legs of 
. These variables can now be used to find the ap-

proximation of , : 

  (38) 
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p p V p .−p
(Notice that by construction the x-component of the posi-
tion error vector p  is zero. These error vectors were used 
to design a tracking control system discussed in the next 
section.) 

e

 
2

2

, i

, o

roj proj

p

z z − < −



 (32) 

Note that logic (32) guarantees that in the case when 
two legs of  are equidistant from p, the point closer to 
the ground is selected. Furthermore, since  maps z-axis 
of  onto itself  can be used to compute app s∗  

B. Control System Design 

 s∗ = , (33) 

The trajectory tracking controller design methodology 
proposed in [2] is now applied to the design of a tracking 
controller for the trajectory generated using the algorithm 
developed in Section III. The controller can only use GPS 
position and velocity for feedback. This constraint is moti-
vated by the requirement to keep the cost of the onboard 
avionics low, therefore, only GPS is available for control. which follows from the definition of p  for the spiral 

descent segment. This value of ∗  can now be used to 
compute the unit basis vectors T2, N2, and B2 of the Frenet 
frame {F} for segment 2 at  

dT

During segments 1 and 2 the control system uses dif-
ferential flaps to drive the lateral components of the posi-
tion and velocity error vectors to zero. On the other hand, 
the last segment is tracked using both symmetric and dif-
ferential flaps, denoted here by Sδ  and Dδ , respectively. 
The structure of tracking controller for the lateral channel 
shown is Fig.3. 

 
c

c

d
ds
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The gains yK  and yK  shown in Fig.3 were selected 
to provide stability and performance for the lateral channel 
of the feedback system. The variables  and T denote 
backward shift and sampling period. The onboard GPS 

1z−

or in the final form 
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receiver, whose update rate is 2Hz, dictated the sampling period for this problem. 
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Fig.3 Lateral channel tracking controller structure 

 
The vertical channel controller uses symmetric flaps 

Sδ  to drive the vertical channel error to 0 and was only 
used to track the final segment of the trajectory. This deci-
sion was motivated by the fact that symmetric flaps have 
negligible control authority in spiral descent. Furthermore, 
deflecting symmetric flaps tends to increase the descent 
rate of the parafoil while reducing the flap deflection 
budget available for differential flaps command and, there-
fore, symmetric flaps were not used during segment 1 as 
well. 

V. SIMULATION RESULTS 
The trajectory tracking control system discussed in the 
previous section has been tested in simulation. Fig.4 shows 
an example of such simulation based on the 6DoF model 
discussed above. Each of 40 simulation runs included the 
real wind profile obtained at YPG. 
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Fig.4 Simulation results of the trajectory tracking control system 

 
The GPS position and velocity errors were modeled as 

white noise processes with zero mean and standard devia-
tions (STD) shown in Tab.1. Finally, landing performance 
statistics shown in Tab.2 indicate that system's perform-
ance exceeded the required circular error probable (CEP) 
of 100m. 

 

TABLE 1 GPS errors (STD) 
 x-direction y-direction z-direction 
Position (m) 5 5 10 
Velocity (m/s) 0.3 0.3 0.5 

 
TABLE 2 Touchdown errors 

CEP (m) Mean value (m) STD (m) 
70.7 67.5 20.5 

VI. CONCLUSIONS 
The optimal control strategy for the Pegasus parafoil pay-
load delivery system was synthesized based on Pontrjagin's 
maximum principle. This motivated the structure of the 
real-time reference trajectory generator. Together with the 
robust path following algorithm it enabled a successful 
development and simulation testing of the complete guid-
ance and control algorithm. 
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