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A MISSION EXECUTOR FOR AN AUTONOMOUS UNDERWATER 
VEHICLE 

Yuh-jeng Lee and Paul Wilkinson 

Computer Science Depamnent 
Naval Postgraduate School 
Monterey CA 93943 

Abstract. The Naval Postgraduate School has been conducting research into the design and testing of 
an Autonomous Underwater Vehicle (AUV). One facet of this research is to incrementally design a software 
architecture and implement it in an advanced testbed, the A W  11. As part of the high level architecture, a 
Mission Executor is being constructed using CLIPS version 5.0. The Mission Executor is an expert system 
designed to oversee progress from the A W  launch point to a goal area and back to the origin. It is expected 
that the Executor will make informed decisions about the mission, taking into account the navigational path, 
the vehicle subsystems health and the sea environment, as well as the specific mission profile which is 
downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted obstacles, 
waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a submarine captain) are 
required. Many of the vehicle subsystems are modeled as objects using the CLIPS Object Oriented Language 
(COOL) embedded in CLIPS 5.0. Additionally, truth maintenance is applied to the knowledge base to keep 
configurations updated. 

AUTONOMOUS UNDERWATER VEHICLE RESEARCH 

The development of autonomous vehicles has been an ambition for decades. Automated weapons 
such as the Tomahawk missile now have a proven record of achievement in hazardous conditions. 
The MAZLATIAAI Pioneer, a remotely-piloted vehicle (while not fully autonomous), similarly 
has a capable record in high-risk environments, as evidenced by the Gulf War. Several marine 
autonomous and remotely-piloted vehicles are already in use for such diverse functions as 
underwater cable inspection, hydrography, and mine-hunting. The practical advantage of low-risk 
to humans coupled with the potential ability to operate at over-the-horizon distances from the 
control platform make the autonomous underwater vehicle a highly desirable project. While there 
are several operational autonomous underwater vehicle testbeds in the United States, until 
recently most underwater vehicles have been tele-operated or merely data autonomous while 
receiving power via an umbilical cable. 

Many software architectures have been proposed and are currently being tested for a fully 
autonomous underwater vehicle. One of the well-known is MIT's Sea Sprite Vehicle which 
adapted the layered control architecture proposed by Brooks (Bellingham 1990, Brooks 1986). 
The KBIEAVE (Knowledge-Based Experimental Autonomous Vehicle) AUV program of the 
University of New Hampshire's Marine Systems Engineering Lab essentially uses a subsumption 
architecture (as generally described by Brooks). High level and low level tasks are divided in 
hardware. The software uses the "focus of attention" approach to keep upper-level reasoning 
foremost while low-level behaviors occur (Blidberg 1990). International Submarine Engineering 



of Canada also uses a layered control architecture with behaviors classified as reflexive, logical, 
and trained. These require reasoning on several levels, with planned and learned responses, 
encoded in a scripting language instead of a traditional A1 language (Zheng 1990). 

The Naval Postgraduate School has been conducting research into the design and testing 
of an Autonomous Underwater Vehicle. Both high-level and low-level software have gone 
through several versions of development. Currently, the software is destined to reside on a 
GESPAC MPU30HF processor board using the OS-9 operating system on a Motorola 68030 
centtal processing unit. From a software architecture standpoint, the AUV software can best be 
designed in a hierarchical structure and viewed at different levels of abstraction for different 
purposes, for example, mission planning, mission execution, world modeling, collision avoidance, 
and vehicle control. This software has to perform both numeric computing and symbolic 
reasoning. Most of the computations also involve real-time constraints and time-dependent 
representations of the states of the AUV and the environment. In addition, many tasks are 
knowledge intensive and require domain specific information. For example, the collision 
avoidance routine needs to interpret sensor input, react to uncharted obstacles, replan a new 
vehicle path or mission based on available choices, and so on. 

The NPS AUV I1 software is partitioned into several main modules, including an off-line 
mission planner, mission executor, guidance system , autopilot system, navigation system, sonar 
data processor, on-board mission replanner, and vehicle system monitor (Healy et al. 1990). 
Each of the modules contains submodules performing more specific tasks. For example the 
autopilot system includes routines for digital-analog data conversion, for hydrodynamic surfaces 
control, and for main motor control; the guidance system includes a local path planner for 
creating postures form waypoints and the tracking controller for providing desired postures to the 
autopilot (Cloutier 1990, Lee et al. 1991). Figure 1 shows the dataflow diagram of the AUV I1 
baseline system. 

DESIGN OF SKIPPER 

The high-level design of the AUV I1 is the result of an incremental development which began 
in 1988 with AUV I. Initially, vehicle control was essentially lower-level closed-loop. 
Evolutionary changes in subsequent software designs resulted in the need for a high-level control 
module to coordinate the functionalities of various subsystems. The Mission Executor, SKIPPER, 
attempts to do this while integrating decisions based on input from three worlds: the vehicle's 
internal systems, the environment, and the mission. The design of Mission Executor essentially 
consists of a rule base and an object base. The major equipments aboard the submarine are 
modeled as objects to be monitored. Further, each obstacle encountered by the submarine sonar, 
whether planned for or not, is modeled as an object. Decisions on courses of action to take are 
modeled as objects for the purpose of easy retrieval via hyperlinks (this will be more self-evident 
shortly). All of these are linked together in the SKIPPER'S Display, a blackboard subset of all 
of these. The SKIPPER'S Display is a composite of the most vital information and consists only 
in the c m n t  decisions, obstacles which are still active (those in a 180-degree arc about the bow 
of the submarine), and the current state of the system monitors. This intelligent database is 
frequently updated and queried by the rule base. 

While the vehicle's different states are updated and monitored by querying objects (and 
firing attached daemons), the heuristics for the three worlds (internal, environmental and mission) 
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Figure 1. AUV System Dataflow Diagram 



are contained in the rule base, which is partitioned into divisions of vehicle maneuvering rules, 
system monitor rules, navigation rules, environmental hazard rules and specialized missioi rules. 
Input to the Mission Executor consists in both the internal vehicle configuration and mission 
plans (designed as vehicle postures of nineteen variables at the various waypoints). Output from 
the Mission Executor consists of final reference postures passed .directly to the lower level 
Guidance system. Lower level Guidance reacts by controlling the autopilot at the next level. 
Figure 2 shows this decision process. 

Input mission postures are f ~ s t  given to a Mission Interpreter which places a posture into 
the proper object format and designates the high-level classification of the configuration as transit 
or specialized mission. It further determines a lower level of configuration as a turn, ascent, dive 
or surfacing based on the succeeding posture. Navigation rules determine whether the next 
waypoint will be made on time. Obstacles or elapsed time may determine that a new or updated 
waypoint be constructed. The Navigator Module (external to the Mission Executor) is invoked 
by SKIPPER for this purpose. In the event that an obstacle or obstacles force a detour in the 
path execution of the AUV, an Obstacle Avoidance DecisionMaker invokes the replanner (also 
external to the Mission Executor) to plan a new route to the goal mission area. The new route 
is evaluated for both proximity to the old route and ability of the AUV to reach the destination 
and cany out the mission with available battery power. 

Measures of uncertainty are used for initial sonar obstacle determinations which SKPPER 
receives from the Obstacle Avoidance Decision Maker. As the classification improves, certainty 
of the obstacle's location better fixes the progress of the transit or mission. It also allows for 
determination of whether the obstacle(s) in question requires avoidance maneuvers. 

IMPLEMENTATION IN CLIPS 5.0 

The decision to build a Mission Executor in CLIPS was made in the fall of 1990 based on the 
rapid prototyping capability of CLIPS. Its LISP-like rules, relative compactness and low-cost are 
attractive features for a control system designed to fit in a compact real-time testbed. Further 
strengthening the argument for CLIPS is an evaluation by William Mettrey of Bell-Northem 
Research which compared U P S  against other rule-based tools. CLIPS outperformed three of 
the other four tools (all commercial) (Mettrey 1991). Balanced with its low-cost, it was clearly 
the winner. 

Initial development actually focussed on modeling the internal world of vehicle systems. 
The model of this internal world turned out much like the model Giarratano used for his Joe's 
Object Oriented Database (JOD) (Gianatano 1991a). The implementation is somewhat different. 
This is not meant to be a user-interfaced advisory system. Using low salience , a monitor-health- 
continuously rule checks the state of thirteen instances of various equipment objects (nearly as 
a background function). The equipment objects all share the common attributes that they are 
being monitored for their respective higuow redline thresholds and higMow guardline 
thresholds. The system monitor class is further broken down into a sonar class (there are four 
sonars on the testbed), a control system class, an onboard computer class, a navigation 
instruments class with instances of dead-reckoning analyzer (DRA) and Global Positioning 
Satellite (GPS) receiver, and an environmental sensors class [figure 33. Through queries and 
daemons, the changing object states cause pattern matches in the system monitor rules. 

Decision-making, while contained in the rule base, is preserved in the object base by the 







decision-objects. This is because some decisions may require knowledge of previous decisions. 
This is particularly true for the high-level mission decisions. The design of the decision objects 
incorporates slots for high-level mission decisions, lower-level manuever decisions, navigation 
decisions, system-monitor decisions, and special-mission decisions. In addition, provision is made 
for time-stamping the decision. Literally any decision-change will cause a new decision-object 
to be created, as a record must be maintained of all decisions. The instance current is copied to 
another unnamed instance using definction calls, as shown in the following example: 

(deffunction copy-old-instance (?instance) 
(send (symbol-to-instance-name ?instance) put-rnission-decision 

(send [current] get-mission-decision)) 
(send (symbol-to-instance-name ?instance) put-maneuver-decision 

(send [current] get-maneuver-decision)) 
(send (symbol-to-instance-name ?instance) put-sysmonitor~decision 

(send [current] get-sysmonitor-decision)) 
(send (symbol-to-instance-name ?instance) put-navigation-decision 

(send [current] get-navigation-decision)) 
(send (symbol-to-instance-name ?instance) put-special-rnission-decision 

(send [current] get-special-mission-decision)) 
(send (symbol-to-instance-name ?instance) put-justification 

(send [current] get-justification)) 
(send (symbol-to-instance-name ?instance) put-decision-time) 

(send [current] get-decision-time))) 

(defclass DECISION (is-a USER) 
(slot mission-decision (multiple)) 
(slot maneuver-decision) 
(slot sysmonitor~decision) 
(slot navigationdecision) 
(slot special~mission~decision) 
(slot justification) 
(slot decision-time)) 

(deffunction maneuver-decision-change-obstacles (?change ?justification) 
(bind ?name (gensym*)) 
(make-instance ?name of DECISION) 
(copy-old-instance ?name) 
(send [current] put-maneuver-decision ?change) 
(send [current] put-justification ?justification) 
(send [current] put-decision-time (time))) 

Certain physical changes to the vehicle's environmental or internal world may improve the state 



of the vehicle somewhat. Yet, the mission-world must dominate behavior. If a mission decision 
was previously made to continue-with-restrictions or abort-mission, improvement in the other 
two worlds may or may not justify improvement to continue unrestricted. To prevent a collision 
of defrules, another basis must be used, such as the justification for the continue with restrictions 
state. Retrieval of the justification for the previous mission status may involve searching back 
over several state changes. This should not involve a lengthy amount of traversal. This is more 
easily done with hyperlinks between objects or a simple query rather than a linked-list. The 
following example of a post-casualty vehicle recovery rule highlights this. While the left-hand 
side (LHS) conditions indicate that the mission may be fully recoverable, the right-hand side 
query hunts for the existence of the only possible justification for full recovery. This further 
requires a call to a deffunction to determine if the mission is physically recoverable in terms of 
mission parameters mission-critical power and distanceltime-to-go (called from the navigation 
module external to the Mission Executor). 

(deffunction recovery-mission-evaluation ( ?location ) 
(if (or (< (send [battery] get-power-status) ?*mission-critical-power*) 

(> (navigator-update-from ?location) ?*recovery-time*)) then 
(send [current] put-mission-decision Abort-Mission) 
(send [current] put-justification mission-deviation-nonrecoverable) 

else 
(send [current] put-mission-decision Continue-Unrestricted) 
(send [ c m n t ]  put-justification mission-deviation-recoverable))) 

(deh le  vehicle-recovery-state 
(mission-status Continue-with-Restrictions) 
(sys tem-monitors normal) 
(location ?location) 
(or (redundant-systemonline ?system) 

(normally-operating ?system)) 
=> 
(do-for-instance ((?ins DECISION)) (eq mission-deviation 

(send ?ins get-justification)) 
(recovery-mission-evaluation ?location ))) 

Certain high-level behaviors, such as the overall mission decision are modeled using the 
Artificial Neural Paradigm implementation suggested by Giarratano (Giarratano 1991). This 
application of salience is useful in differentiating between a high-level, less frequent rnacro-action 
and a lower-level frequently performed action. The philosophy for using salience in this manner 
is that a situation (pattern match) which may cause a mission abort usually requires immediate 
or timely reaction and certainly takes precedence over a routine action such as a normal turn or 
depth change in a deep-water open-ocean environment. The emergency-action rule must be 
guaranteed firing before other semantically lower-priority rules on the agenda. This (however 
loosely) heuristically models a submarine commander's "situational awareness" in an emergency 



(defrule emergency -evasive-maneuver 
(declare (salience 1000)) 
(obstacle-proximity ?direction danger-close) 
(maneuver-available ?maneuver) 
(system-monitors ?status) 
(not (previous~mission~decision abort-mission)) 

(assert (emergency-guidance ?maneuver)) 
(assert (mission-decision alter-track)) 
(Replanner get-new-route ?position)) 

(defrule battery-power-guardline 
(declare (salience ?*sysmonitor-salience*)) 
(mission-percentage ?percent&:(< ?percent 70)) 
(battery ?number at-guardline) 
=> 
(bind ?*sysmonitor-salience* (+ ?*sys-monitor 

salience 100)) 
(assert (mission-status critical)) ) 

Figure 4. Setting Precedence with Salience in SKIPPER 



[figure 41. 
Salience is also used in some background functions such as the sequencing of the mission 

timer and the loop which causes the slots of the respective system monitors to be queried on a 
nearly continuous basis. Still, it is used sparingly. SKIPPER still retains a strong declarative 
nature. The rest of the rule base pattern-matches on the objects are of normal undeclared 
salience. 

CONCLUSION 

Successful software for an AUV must incorporate techniques from artificial intelligence, real-time 
processing, environmental sensing, and vehicle maneuverability into a compact integrated 
package. This is due to an AUV's lack of human control during mission execution and the 
inability for human intervention in the event of unforeseen problems. In addition, many tasks are 
knowledge-intensive and require domain-specific information. Therefore, the ability to include 
autonomous intelligent decision-making on an AUV is essential for its satisfactory performance. 
With the accumulated experience in submarine operation, we believe many of the onboard 
problem-solving and reasoning can be adequately modeled using a rule-based system. The 
Mission Executor is designed to (1) monitor relevant vehicle variables, component parameters, 
and environment data; (2) ensure the progress of pre-planned mission execution; and (3) in the 
event of unplanned interruptions during a mission, be able to diagnose the problematic situations 
and enable the vehicle to adapt to the unexpected environment by manipulating and changing 
vehicle and mission parameters. 

A prototype for the Mission Executor has been completed and will be incorporated in the 
testbed as dependent modules are finished. The design is one that is extensible. Further, its 
object-oriented nature allows for incremental construction and testing of modules in relative 
isolation. The specific mission modules are areas for more fine-grained research. Because of 
the specialized nature of each of the mission modules, they are excellent areas for application of 
object-oriented tools like CLIPS 5. 0. 
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