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I. INTRODUCTION

This paper addresses the problem of estimating
the relative position and velocity of an unmanned
air vehicle (UAV) with respect to a reference point
on a ship. The sensor suite considered in this
application includes an infrared camera (IR), an
inertial measurement unit (IMU) and a pressure
altitude sensor. These passive sensors, installed
on board the UAV, provide data on the aircraft’s
inertial position and attitude as well as on the ship’s
position in the image frame of the camera. The ship’s
reference point is represented by the centroid of the
image of its smokestack (referred to as a hot spot) in
the IR camera plane. The primary application of the
proposed solution is for the autonomous landing of an
UAV on a ship in an adversarial environment, hence
the reliance on passive sensors. In this environment,
the ship will not expose itself by transmitting its
position to the UAV.
This problem has been previously addressed in

[1], where sufficient conditions for the existence of
nonlinear filters to estimate the relative position and
velocity of a UAV with respective to a ship using
passive sensors were obtained. The structure of
the filters derived is appealing because it embodies
straightforward kinematic relationships and allows for
an intuitive interpretation in terms of rotation matrices
between the different reference frames involved.
Stability and performance of the filters developed in
an H1 setting were established by solving a set of
linear matrix inequalities (LMIs). However, the results
reported in [1] did not address the critical issue of
out-of-frame events, inherent to the operation of the
IR camera and that arise when the camera loses sight
of the image it is tracking.
The key contribution of this work is the

extension of the results in [1] to deal explicitly
with out-of-frame events. Sufficient conditions are
obtained for the existence of filters with guaranteed
regional stability and performance in the presence
of out-of-frame events. In addition, an LMI-based
design technique is developed that allows an engineer
to study the trade-off between filter performance, the
size of a suitable spatial “work” region where good
performance is desired, and the maximum expected
duration of out-of-frame events.
The results obtained in [1] used the theory of

linear parameter varying systems (LPVs), which are
defined as linear systems whose dynamics depend on
time-varying parameters. In its simplest form, an LPV
admits the representation

_x= A(p(t))x, x 2 <n (1)

where p is an arbitrary signal taking values in a
parameter set P. Further assumptions may include
restrictions on the parameter rates of variation.
The representation (1) may also be extended to
include exogenous inputs and outputs. In some
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cases, the parameter p may itself be a function of
the state x (see [2, 3] and the references therein).
By casting the dynamics of a general (possibly
nonlinear, time-varying) system in the form of an
LPV, similarities with linear systems can be exploited
to yield powerful results on stability and input-output
behavior characteristics. The results are established for
all possible parameter variations, irrespective of which
specific parameter trajectory (not known a priori)
affects the system dynamics. This is in striking
contrast with standard linear time-varying system
theory, where the model description is assumed to be
known for all times. LPVs provide thus an elegant and
powerful set-up for the analysis of some classes of
linear time-varying and even nonlinear systems.
In order to extend the results obtained in [1] to

include out-of-frame events, a new mathematical
machinery has been developed for the analysis of
LPVs with so-called brief instabilities. This can be
simply explained by considering an LPV of the form
(1). If one assumes that any piecewise-continuous
signal p is allowed in (1), then stability of all the
matrices A(p), p 2 P is necessary to guarantee
boundedness of any solution to (1) (here, stability is
equivalent to requiring that all eigenvalues of A(p)
have negative real parts). However, this is no longer
the case when the time variation of p is such that the
resulting A(p) is only temporarily unstable. The work
presented here shows how, with an appropriate notion
of “brief instability,” it is possible to prove that the
state space trajectories of an LPV system converge to
zero exponentially even when some of the matrices
A(p) are unstable for brief periods of time. Necessary
conditions for this to occur are cast in terms of a
parameterized family of LMIs, which have become
the tool par excellence for controller and filter system
analysis and design. For LPV systems described
by (1), together with additional input and output
equations, the paper analyzes the impact of brief
instabilities on the performance of an LPV system,
as measured in terms of its input-output L2-induced
operator norm. In particular, a parameterized set of
LMIs is derived that, when feasible, provides an upper
bound on the L2-induced norm of an LPV system
with brief instabilities.
The analysis of LPV systems with brief

instabilities is inspired by previous work of the first
author on switched systems [4, 5] as well as by
the work reported in [6] and [7]. Switched systems
can be viewed as a form of LPV systems where
the signal p(t) in (1) is restricted to be constant
between two consecutive discontinuities. The idea of
brief instabilities was introduced in [6] for switched
systems,1 where the authors provide conditions for

1Although in [4] the authors consider a slightly more conservative
definition of brief instabilities, their results seem to be easily
extendable to the definition given in Section II.

exponential stability of switched system with brief
instabilities. These results were extended in [7] for L2
disturbance attenuation.
The work reported here is also closely related

to that described in [8], where the authors provide
conditions for the stability of asynchronous dynamical
systems (ADSs). The latter can also be viewed as a
particular form of switched systems for which the
system dynamics change in response to external
asynchronous events. These events may make the
system become unstable for certain periods of time.
In [8] the authors provide a set of LMIs that, if
feasible, guarantee exponential convergence of the
state of ADSs. Feasibility of the LMIs requires that
the periods of instability occur for a small fraction
of the time. Because the authors of [8] only consider
asymptotic rates for the occurrence of the events that
trigger changes in the dynamics, their results are only
asymptotic and do not provide uniform bounds on the
state.
In this paper, new results of the analysis of LPV

systems with brief instabilities are shown to provide
an appropriate framework for the design of filters
that integrate IR, inertial, and air data to estimate the
relative position and velocity of an UAV with respect
to a given point on a ship and to yield guaranteed
regional stability and performance in the presence of
out-of-frame events. Field tests with a prototype UAV
illustrate the performance of the filter and the scope of
applications of the new theory developed.
The paper is organized as follows. Section II

introduces basic theoretical results that play a key role
in analyzing the stability and performance of LPV
systems with brief instabilities. Section III applies
the theory developed in Section II to the design of
an integrated vision/inertial filter for an air vehicle.
The experimental set up that was used to implement
and assess filter performance is described. Finally,
the paper ends with some conclusions and a brief
description of problems that warrant further research.

II. LPVS WITH BRIEF INSTABILITIES

This section introduces the concept of LPV
systems with brief instabilities. This is followed by the
derivation of stability and performance analysis results
for LPV-based systems. Consider the homogeneous
LPV system

§p :=
½ _x= A(p)x
y = C(p)x

(2)

that is obtained from (1) by including an output
equation for the variable y. In (2), p denotes a
piecewise-continuous2 time-varying parameter taking
values in the set P ½<k, k ¸ 1 and A : P!<n£n and
C : P!<m£m are functions of the parameter set P.

2We say that a signal v : [0,1)!<k is piecewise-continuous if v
has a finite number of discontinuities on any finite interval.
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Let Pstable denote the subset of P for which A(p) is
a stability matrix, i.e., A(p) is stable if and only if
p 2 Pstable. The remaining elements of P form the set
Punstable. We assume that P is a compact (closed and
bounded) subset of a finite-dimensional space and
that A and C are continuous functions in P. Because
of these assumptions, it is straightforward to show
that Punstable is also compact. In the sequel we derive
conditions on p that are sufficient to guarantee that x
converges to zero exponentially fast. We also compute
an upper bound on the transient response of the
output y.
For a given time-varying parameter p and t > ¿ >

0, let Tp(¿ , t) denote the amount of time in the interval
(¿ , t) that p remains in Punstable. Formally,

Tp(¿ , t) :=
Z t

¿

Â(p(s))ds (3)

where Â : P!f0,1g denotes the characteristic
function of Punstable defined as

Â(p) :=
½
0 p 2 Pstable
1 p 2 Punstable

:

The integral in (3) is well defined because
piecewise-continuity of p and compactness of Punstable
guarantee that Â(p) is also piecewise-continuous. We
will say that §p has brief instability if

Tp(¿ , t)· T0 +®(t¡ ¿), 8 t¸ ¿ ¸ 0
for some T0 ¸ 0, ® 2 [0,1]. The scalar T0is called the
instability bound and ® is the asymptotic instability
ratio.

A. Stability

The following result gives conditions under
which system (2) is stable in the presence of brief
instabilities.

LEMMA 1 Consider the LPV system §p defined by
(2) and assume there exist positive definite matrices
R 2 <m£m and X 2 <n£n and positive scalars ¸0, ¹ such
that

A(p)TX+XA(p)·¡¸0X, 8 p 2 Pstable (4)

A(p)TX+XA(p)· ¹X, 8 p 2 Punstable (5)

and
X ¸ C(p)TRC(p), 8 p 2 P: (6)

Further assume that §p has brief instability with
instability bound T0 and asymptotic instability ratio
® < ®¤ = ¸0=(¸0 +¹). Then, x and y converge to zero
exponentially and y(t)TRy(t)· e(¸0+¹)T0x(0)TXx(0),
8t¸ 0, along solutions of (2).
Note 1 When (4) holds, (5) will always hold for

sufficiently large ¹. Moreover, X can always be scaled
so that (6) also holds.

PROOF OF LEMMA 1 Given an arbitrary solution x(t)
of (2), let

V(t) := x(t)TXx(t):

From (4)—(5) it follows that _V ·¡¸0V while
p 2 Pstable and _V · ¹V while p 2 Punstable. Therefore,
V(t)· e¡¸0(t¡¿¡Tp(¿ ,t))+¹Tp(¿ ,t)V(¿), 8 t¸ ¿ ¸ 0:

(7)

Let ¸ := ¸0¡®(¸0 +¹). From the assumptions of the
theorem, ¸ > 0 and

¡¸0(t¡ ¿ ¡Tp(¿ , t))+¹Tp(¿ , t)· (¸0 +¹)T0¡¸(t¡ ¿),
8 t¸ ¿ ¸ 0: (8)

Using (7) and (8) yields

V(t)· e(¸0+¹)T0¡¸(t¡¿ )V(¿), 8 t¸ ¿ ¸ 0:
Furthermore, (6) implies that

y(t)TRy(t)· x(t)TXx(t)· e(¸0+¹)T0¡¸tx(0)TXx(0)
(9)

for every t¸ 0, thus completing the proof.
LPV models such as (2) are often used to model

nonlinear systems where the time-varying parameter p
is a function of the state, e.g.,

p(t) := f(x(t), t)

where f :<n£ [0,1)! P. When this happens, further
care must be taken to ensure that the parameter p
does indeed lie in P for all possible trajectories of
the state x(:). This can be done by restricting the set
of initial states in (2), thus yielding a local version
of Lemma 1. To that effect, take a positive definite
matrix R 2 <m£m and consider the set of states for
which the output y is guaranteed to be in the ellipsoid
defined by yTRy · 1, i.e., in the set

− := fw 2 <n : wTC(p)TRC(p)w · 1, 8p 2 Pg:
We now consider a version of Lemma 1 that

is local to the set −. Suppose that there exists a
symmetric positive definite matrix X 2 <n£n and
positive scalars ¸0, ¹ for which

A(p)TX +XA(p)·¡¸0X, 8 t : x(t) 2 − and

p(t) 2 Pstable (10)

A(p)TX +XA(p)· ¹X, 8 t : x(t) 2 − and

p(t) 2 Punstable (11)

X ¸ C(p)TRC(p), 8 t : x(t) 2 − and

p(t) 2 P: (12)

By requiring that the initialization of (2) satisfy
e(¸0+¹)T0x(0)TXx(0)< 1, it is straightforward to
prove by contradiction (see (9)) that x(t) will always
remain inside − along solutions to (2). The following
corollary of Lemma 1 is thus proved.
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COROLLARY 1 Assume that (10)—(12) hold. Suppose
that §p has brief instabilities with instability bound
T0 and asymptotic instability ® < ®

¤, and assume that
x(0)TXx(0)· e¡(¸0+¹)T0 . Then, x converges to zero
exponentially along solutions of (2), without leaving −.

B. Performance

Suppose now that an input u and an extra output
z are added to the LPV system considered in Section
IIA to obtain the new system

§p :=

8><>:
_x= A(p)x+B(p)u

y = C(p)x

z =D(p)x

: (13)

The reason why two outputs are included will
become clear in the sequel. The variable z denotes
the true output of the system under study, whereas
y is a fictitious output aimed at restricting the state
x to a desired region. The next result quantifies the
input/output behavior of the above system. Namely,
it provides conditions under which an input signal
of bounded energy u will generate an output signal
of bounded energy z and sets an upper bound on the
ratio of their energy contents. The following standard
notation is required.
Given a signal ½ in L2, we denote by k½k2 its

L2-norm, i.e., k½k2 =
qR1

0 k½(t)k2dt. Given the LPV
system §p of (13), we say that §p is finite gain stable
if it maps L2 to L2 and the induced operator norm

k§pk2,i = sup
p2P

sup
f2L2

½k§pfk2
kfk2

: f 2 L2, kfk26= 0
¾

from u to z is well defined and finite. This induced
norm captures the worst case of input-output energy
amplification when the parameter p undergoes
arbitrary trajectories in the parameter space P.
The lemma below shows how to upper-bound the

L2-induced norm of (13) from u to z when p has brief
instabilities.

LEMMA 2 Consider the LPV system §p defined by
(13) and assume there exist positive definite matrices
R 2 <m£m and X 2 <n£n and positive scalars ¸0, ¹ and
° such that

J·¡¸0X, 8 p 2 Pstable (14)

J· ¹X, 8 p 2 Punstable (15)

and (6) holds, where

J= A(p)TX +XA(p) +XB(p)B(p)TX +
D(p)D(p)T

°2
:

(16)

Suppose p has brief instability with instability bound
T0 and asymptotic instability ratio ® < ®

¤ and that u is

bounded. Then x and y remain bounded along solutions
of (13) with

y(t)TRy(t)· e(¸0+¹)T0 (x(0)TXx(0)+
Z t

0
ku(s)k2ds),

8 t¸ 0:
Moreover, the L2-induced norm from u to z is no larger
than °

p
e(¸0+¹)T0¸0=(¸0¡®(¸0 +¹)) and both x and y

converge to zero if u 2 L2.
PROOF OF LEMMA 2 Given an arbitrary solution
x(t) of (13), let V(t) := x(t)TXx(t). Consider now an
interval (t1, t2) on which p 2 Pstable. The existence of
such an interval follows from the fact that p has brief
instability. Inequality (14) implies that

_V ·¡¸0V+ kuk2¡kzk2°¡2

on that interval and therefore

V(t)· V(t1)
e¸0(t¡t1)

+
Z t

t1

ku(¿)k2¡kz(¿)k2°¡2
e¸0(t¡¿ )

d¿ ,

t 2 [t1, t2]: (17)

Similarly, it follows from (15) that on any interval
(t2, t3) on which p 2 Punstable the function V satisfies

V(t)· V(t2)
e¡¹(t¡t2)

+
Z t

t2

ku(¿)k2¡kz(¿ )k2°¡2
e¡¹(t¡¿)

d¿ ,

t 2 [t2, t3]: (18)

Iterating (17) and (18) over consecutive intervals
yields

V(t)· V(¿)
e¸0(t¡¿¡Tp(¿ ,t))¡¹Tp(¿ ,t)

+

Z t

¿

ku(s)k2¡kz(s)k2°¡2
e¸0(t¡s¡Tp(s,t))¡¹Tp(s,t)

ds,

8 t¸ ¿ ¸ 0:
Using the above relationship, the two following
inequalities are also obtained for 8t¸ ¿ ¸ 0:

V(t)· V(¿)
e¸0(t¡¿¡Tp(¿ ,t))¡¹Tp(¿ ,t)

+
Z t

¿

ku(s)k2
e¸0(t¡s¡Tp(s,t))¡¹Tp(s,t)

ds

(19)
andZ t

¿

kz(s)k2
°2e¸0(t¡s¡Tp(s,t))¡¹Tp(s,t)

ds· V(¿)
e¸0(t¡¿¡Tp(¿ ,t))¡¹Tp(¿ ,t)

+

Z t

¿

ku(s)k2
e¸0(t¡s¡Tp(s,t))¡¹Tp(s,t)

ds:

(20)

Let ¸ := ¸0¡®(¸0 +¹). From the assumptions of
the theorem, ¸ > 0 and (8) holds true. From (8) and
(19) it can be concluded that

V(t)· e(¸0+¹)T0¡¸(¿¡t)V(¿ )+
Z t

¿

ku(s)k2
e¡(¸0+¹)T0+¸(t¡s)

ds,

8 t¸ ¿ ¸ 0:
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Furthermore, (6) implies that

y(t)TRy(t)· x(t)TXx(t)· x(0)TXx(0)
e¡(¸0+¹)T0+¸t

+ e(¸0+¹)T0
Z t

0

ku(s)k2
e¸(t¡s)

ds:

Using (8) in (20) and the fact that (¸0 +¹)Tp(s, t)
¸ 0 yieldsZ t

¿

kz(s)k2
°2e¸0(t¡s)

ds· V(¿)
e¡(¸0+¹)T0+¸(t¡¿)

+

Z t

¿

ku(s)k2
e¡(¸0+¹)T0+¸(t¡s)

ds,

8 t¸ ¿ ¸ 0: (21)

Integrating both sides of (21) over the interval
(¿ ,1) gives

1
°2

Z 1

¿

Z t

¿

kz(s)k2
e¸0(t¡s)

dsdt· V(¿ )
e¡(¸0+¹)T0

+
Z 1

¿

Z t

¿

ku(s)k2
e¡(¸0+¹)T0+¸(t¡s)

ds:

Exchanging the order of integration, it is easy to
show that

1
¸0°

2

Z 1

¿

kz(s)k2ds· e
(¸0+¹)T0

¸

µ
V(¿) +

Z 1

¿

ku(s)k2ds
¶
,

thus completing the proof.

A local version of Lemma 3 is derived next. Take
a positive definite matrix R 2 <m£m and consider the
set − of states for which the output y is guaranteed to
be in the ellipsoid defined by yTRy < 1, i.e.,

− := fw 2 <n : wTC(p)TRC(p)w · 1, 8p 2 Pg:
Suppose now that there exist symmetric positive

definite matrices R 2Rm£m and X 2Rn£n and positive
scalars ¸0, ¹, and ° such that

J·¡¸0X, 8 t : x(t) 2− and

p(t) 2 Pstable (22)

J· ¹X, 8 t : x(t) 2− and

p(t) 2 Punstable (23)

X ¸ C(p)TRC(p), 8 t : x(t) 2− and

p(t) 2 P (24)

where J is defined in (16). The following Corollary of
Lemma 3 is then straightforward to derive.

COROLLARY 2 Assume that (22)—(24) hold. Suppose
that §p has brief instability with instability bound T0
and asymptotic instability ratio ® < ®¤, u is bounded,
and x(0)TXx(0)+

R t
0 ku(s)k2ds· e¡(¸0+¹)T0 . Then, x

converges to zero along solutions of (2) without leaving

Fig. 1. Coordinate systems.

the set −. Furthermore, the L2-induced norm from u to
z is no larger than °

p
e(¸0+¹)T0¸0=¸.

III. APPLICATION. DESIGN OF INTEGRATED
VISION/INERTIAL FILTERS

This section contains the main results of the paper.
Specifically, the theoretical results of Section II (on
LPV systems with brief instabilities) are applied to
the synthesis of a nonlinear filter that estimates the
relative position and velocity of a UAV with respect to
a given point on a ship. These results extend the work
reported in [1] to explicitly account for out-of-frame
events.

A. Process Model

Consider an aircraft equipped with an IR vision
camera operating in the vicinity of a ship that is
moving with a constant velocity (this is a general
requirement during shipboard landing operations).
The situation is depicted in Fig. 1. Let fIg denote an
inertial reference, fBg a body-fixed frame attached
to the aircraft, and fCg a camera-fixed frame (we
assume without loss of generality that the origins of
fBg and fCg are coincident). The symbol fSg denotes
a ship-fixed body frame.
Suppose that: 1) the ship’s inertial velocity is

constant, 2) the ship is always located in front of the
UAV’s camera, and 3) the height of the ship’s deck
above the sea surface is negligible when compared
with the altitude of the UAV. Following the notation
introduced in [1], let pC = [xC yC zC]

T denote the
relative position of the center of fCg with respect to
fSg and let ICR and I

BR denote rotation matrices from
fCg to fIg and from fBg to fIg, respectively, that
we assume are available from the onboard attitude
measurement system. Further let p= I

CRpC and
Bam

be the inertial acceleration of the UAV (expressed
in body frame fBg), as available from the onboard
inertial navigation system. Using this notation, the
underlying process model developed in [1] can be
described as

G =

8><>:
_p= v
_v=¡IBR(Bam+wa)
ym = g(pC) +wy

(25)

where ym 2R3 denotes the vector of measurements
available from the onboard IR camera and altimeter,
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g(pC) :R
3!R3 is given by

g(pC) =

24 f

xC

·
yC

zC

¸
¡sinµxC ¡ cosµ sinÁyC +cosµcosÁzC

35 ,
(26)

and wa and wy denote process and measurement noise,
respectively. In (26), f denotes the focal length of the
IR camera, and Á and µ represent the roll and pitch
angles, respectively, of the IR camera with respect
to fIg.

B. Problem Definition

The practical problem considered in [1] consisted
of determining the relative position and relative
velocity of an aircraft with respect to a landing site
using IR vision and other onboard passive sensors. In
[1], the structure of a nonlinear filter was proposed
and its stability and performance characteristics were
assessed in the presence of measurement noise, but in
the absence of out-of-frame events.
However, a realistic scenario suggests that the

image of the ship smokestack can be lost temporarily
by the onboard camera due, for example, to excessive
aircraft rotational motions. It is thus crucial that the
results of [1] be extended to deal explicitly with
out-of-frame events.
As a first step in this direction, define a binary

signal s : [0,1)!f0,1g as follows:

s(t) :=
½
0 out-of-frame event at time t

1 camera tracks the smokestack at time t:

(27)

Furthermore, for a given binary signal s and
t > ¿ > 0, denote by Ts(¿ , t) the amount of time in
the interval (¿ , t) that s= 0. Formally, Ts(¿ , t) :=R t
¿ (1¡ s(l))dl.
The signal s is said to have brief out-of-frame

events if Ts(¿ , t)· T0 +®(t¡ ¿), 8t¸ ¿ ¸ 0, for some
T0 ¸ 0 and ® 2 [0,1]. Notice the parallel with the
definition of brief instability introduced before.
In what follows, due to operational reasons, the

vector pC is assumed to lie in the compact set

PC = fpC : xmin · xC · xmax, ymin · yC · ymax,
zmin · zC · zmaxg

where the positive numbers xmin, : : : ,zmax are
determined from the geometry of the problem. As
will become clear, filter design will aim at ensuring,
among other objectives, that the estimates p̂C of pC
also lie in a compact set

P̂C = fp̂C = [x̂C ŷC ẑC]
T : jx̂C ¡ xC j · xmax¡ xmin +dx,

jŷC ¡ yC j · ymax¡ ymin +dy,
jẑC ¡ zC j · zmax¡ zmin +dzg

where dx, dy, and dz are positive real numbers, and
dx < xmin. Equipped with the above notation, we
now introduce a mathematical formulation of the
practical problem that is a natural extension of the
one in [1].

Problem F1: Regional Stability. Consider the
process model (25) and assume that wa =wy = 0.
Given sets PC and P̂C, find ®0 > 0 and a causal
dynamical system (filter) F that operates on ym and
Bam to produce estimates p̂ of p and v̂ of v in the
presence of brief out-of-frame events, such that:

p̂C(t) 2 P̂C for any t > 0

kp̂C ¡pCk+ kv̂¡ vk! 0 as t!1,
provided that

k[(p̂C(0)¡pC)T (v̂(0)¡ v(0))T]Tk< ®0: (28)

Problem F2: Regional Stability and Performance.
Consider the process model (25) with the noise vector
w := [wTa w

T
y ]
T : kwk2 · !̄, !̄ > 0. Let the sets PC

and P̂C of allowable position and estimation vectors
respectively, defined before, be given. Given ° > 0
and ®0 > 0, find a stable filter F that operates on ym
and Bam to obtain estimates p̂ of p and v̂ of v in the
presence of brief out-of-frame events, such that if (28)
holds, the filter satisfies the following conditions for
all w 2 L2, kwk2 · !̄:

p̂C(t) 2 P̂C for all t¸ 0
kp̂C ¡pCk+ kv̂¡ vk! 0 as t!13

kTewk2,i < °,
where Te1w :w! e1 is a closed-loop operator from
disturbances to the position estimation errors e1 :=
p̂C ¡pC (a bound on e1 will be computed later in the
Proof of Theorem 1).

C. Proposed Solution

This section describes the solutions to problems
F1 and F2. For technical reasons, it is necessary to
assume that

rx =
xmax¡ xmin + dx

xmin
< 1: (29)

We start by presenting a solution to problem F1.

THEOREM 1 Let PC and rx be given. Assume that (29)
holds. Suppose there exists a matrix X = XT 2R6£6
and positive constants T0, ®, ®0, ¸0, and ¹ such that

3As long as w 2 L2 we always obtain convergence to zero.
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Fig. 2. Filtering structure: filters F1 and F2.

® < (¸0=¸0 +¹) and

X > 0 (30)

FTX +XF¡ 2(1¡ rx)2"CTC ·¡¸0X (31)

FTX +XF · ¹X (32)

X ¡ ±¡2CTC ¸ 0 (33)

®¡20 e
¡(¸0+¹)T0I¡X ¸ 0 (34)

where

F :=

·
0 I

0 0

¸
C := [I 0]

± := minfxmax¡ xmin +dx, ymax¡ ymin +dy, zmax¡ zmin +dzg
and

" := min
p̂C2P̂C

¸min(H
T(p̂C)H(p̂C)) = min

p̂C2P̂C
¸min»(p̂C)

(35)

where H(pC) denotes the Jacobian of g(pC) with
respect to pC and »(p̂C) :=H

T(p̂C)H(p̂C).
Define the filter (see Fig. 2)

F1 :=

8>><>>:
_̂p= v̂+ sK1

I
CRH

T(p̂C)(g(p̂C)¡ ym)
_̂v=¡BIRBam+ sK2ICRHT(p̂C)(g(p̂C)¡ ym)
p̂C =

C
I Rp̂

(36)
where s is defined by (27) and

K =
·
K1

K2

¸
:=¡X¡1(1¡ rx)CT: (37)

Then, filter F1 solves the filtering problem F1 for brief
out-of-frame events characterized by the parameters To
and ®, provided that (28) holds.

REMARK 1 Theorem 1 is an extension of Theorem
4 in [1] to out-of-frame events. The key difference
is the addition of inequality (32) and of the positive
constants T0, ®, ¸0, and ¹. As a result, the matrix
inequalities (30)—(34) are nonlinear in the parameters

X, T0, ¸0, and ¹. In contrast, the matrix inequalities
obtained in Theorem 4 of [1] are linear.

REMARK 2 Notice how the proposed filter
complements the information from the vision and
air data sensors with that available from the inertial
navigation system (INS) (see Fig. 2). In the presence
of out-of-frame events, the filter simply integrates
the inertial acceleration to obtain an estimate of the
relative position (dead reckoning). Once a reliable
image is reacquired the integrators are reset based on
the new vision data.

REMARK 3 The solvability of inequality (31) is
addressed in [1]. There, it is shown that the inequality
has a solution if and only if rx < 1.

PROOF OF THEOREM 1 Define the error state e=
[eT1 e

T
2 ]
T where e1 := p̂¡p and e2 := v̂¡ v. Simple

algebra (see [1]) shows that the error dynamics can be
written as

d

dt

·
e1
e2

¸
= (F + sKICR¼(p̂C ,pC)

I
CR

TC)
·
e1
e2

¸
(38)

where the operator ¼(p̂C ,pC) is defined by ¼(p̂C ,pC) =
HT(p̂C)diag(x̂Cx

¡1
C , ŷCy

¡1
C ,0)H(p̂C). Notice that the

error dynamics correspond to an LPV system with
parameters s and pC . To show that p̂C 2 P̂C, it is
sufficient to prove that ke1k · ± or, equivalently, that e
remains in the set − := fe j kCek · ±g. From Corollary
1, it can be concluded that this is true provided there
exists a matrix X > 0 and constants ¸0 and ¹ such that
(32) and (33) hold,

(F +KICR¼(p̂C ,pC)
I
CR

TC)TX+X(F+KICR¼(p̂C ,pC)
I
CR

TC)

·¡¸0X (39)

is satisfied for all times for which e 2 − and s= 1, and

[e(0)T1 e(0)
T
2 ]X[e(0)

T
1 e(0)

T
2 ]
T · e¡(¸0+¹)T0 : (40)

Inequality (40) follows from k[e(0)T1 e(0)T2 ]Tk · ®0
and (34). In the following, we focus on the solvability
of (39). Given (37) it is straightforward to conclude
that (39) is equivalent to

FTX +XF +
·¡2(1¡ rx)ICR¼(p̂C ,pC)ICRT 0

0 0

¸
·¡¸0X:

(41)
In the set − we have ke1k · ± and therefore

diag(x̂Cx
¡1
C , ŷCy

¡1
C ,1) := I+

264(x̂C ¡ xC)x
¡1
C 0 0

0 (x̂C ¡ xC)x¡1C 0

0 0 0

375
> 1¡ rx: (42)

Thus,

¡2(1¡ rx)ICR¼(p̂C ,pC)ICRT <¡2(1¡ rx)2ICR»(p̂C)ICRT

<¡2(1¡ rx)2"I: (43)
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Because of this and the fact that

CTC =
·
I 0

0 0

¸
,

we conclude that (31) implies (41) in the set −. Now,
from Corollary 1 it follows that ke1(t)k · ±, 8t¸ 0 and
e1(t),e2(t)! 0 as t!1.
The next theorem provides a solution to the

filtering problem F2.

THEOREM 2 Let PC be given. Assume that (29) holds.
Given ° > 0, suppose there exists a matrix X = XT 2
R6£6 and positive constants T0, ®, ®0, ¸0 and ¹ such
that ® < (¸0=¸0 +¹) and

X > 0 (44)"
FTX +XF +¸0X +

µ
e(¸0+¹)T0¸0

¸°2
I¡ (1¡ rx)2"

¶
CTC XFT

FX ¡I

#
· 0

(45)

FTX+XF +XFTFX +
e(¸0+¹)T0

¸°2
CTC · ¹X (46)

X ¡ ±¡2CTC ¸ 0 (47)

®¡20 (e
¡(¸0+¹)T0 ¡ !̄2)I¡X ¸ 0 (48)

where

F :=
·
0 I

0 0

¸
C := [I 0]

± := minfxmax¡ xmin + dx, ymax¡ ymin + dy,
zmax¡ zmin + dzg

and
" := min

p̂C2P̂C
¸min(»(p̂C)):

Define the filter (see Fig. 2)

F2 :=

8>><>>:
_̂p= v̂+ sK1

I
CRH

T(p̂C)(g(p̂C)¡ ym)
_̂v=¡IBRBam+ sK2ICRHT(p̂C)(g(p̂C)¡ ym)
p̂C =

C
I Rp̂

(49)
where

K =
·
K1

K2

¸
:=¡X¡1(1¡ rx)CT: (50)

Then, filter F2 solves the filtering problem F2 for brief
out-of-frame events characterized by the parameters T
and ®, provided that (28) holds.

REMARK 4 Theorem 2 is an extension of Theorem
5 in [1] to out-of-frame events. As in the case of
Theorem 2, the key difference is the addition of
inequality (46) and of the positive constants T0, ®, ¸0

and ¹. As a result, the matrix inequalities (44)—(48)
are nonlinear in the parameters X, T0, ¸0 and ¹.
Again, this is in contrast to the matrix inequalities
obtained in Theorem 5 in [1].

PROOF OF THEOREM 2 Using the same notation as in
Theorem 1, the error dynamics can be written as (see
[1])

d

dt

·
e1
e2

¸
= (F + sKICR¼(p̂C ,pC)

I
CR

TC)
·
e1
e2

¸
+
µ·

0
I
BR

¸
¡ sKICRHT(p̂C)

¶
w: (51)

We now show that if inequalities (44)—(48) are
satisfied and (28) holds, then p̂C 2 P̂C for all w 2 L2
for which kwk2 · !̄.
To prove that p̂C 2 P̂C, it is sufficient to show

that ke1k · ± or, equivalently, that [eT1 eT2 ]T remains
in − := fe j kCek · ±g. From Corollary 2 (with ½ :=
°
p
¸=e(¸0+¹)T0¸0) it can be concluded that this is true

provided that there exists a matrix X > 0 and constants
¸0, ¹ such that (46) and (47) hold,

(F +KICR¼(p̂C ,pC)
I
CR

TC)TX+X(F +KICR¼(p̂C ,pC)
I
CR

TC)

+X(FTF +KICRH
T(p̂C)H(p̂C)

I
CR

TKT)X +
e(¸0+¹)T0

¸°2
CTC ·¡¸0X

(52)

is satisfied for all times for which [eT1 e
T
2 ]
T 2 − and

s= 1, and

[e(0)T1 e(0)T2 ]X[e(0)
T
1 e(0)T2 ]

T+

Z 1

0

kw(s)k2ds· e¡(¸0+¹)T0 :

(53)

In (46) and to obtain (52) the following identity was
used: ·

0 0
I
BR 0

¸·
0 I

BR

0 0

¸
=
·
0 0

0 I

¸
= FTF:

Inequality (53) follows from k[e(0)T1 e(0)T2 ]Tk ·
®0, kwk2 · !̄, and (48). We now discuss the
solvability of (52). Equation (50) yields

XK =¡(1¡ rx)CT

and therefore (52) is equivalent to

FTX+XF +XFTFX

+

2664
e(¸0+¹)T0¸0
¸°2

I+(1¡ rx)2ICR»(p̂C)ICRT

¡2(1¡ rx)ICR¼(p̂C ,pC)ICRT 0

0 0

3775·¡¸0X:
Using the first inequality in (43), the above matrix

inequality reduces to

FTX+XF +XFTFX

+

" e(¸0+¹)T0¸0
¸°2

I¡ (1¡ rx)2ICR»(p̂C)ICRT 0

0 0

#
·¡¸0X:
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Furthermore, using the second inequality in (43)
and the fact that

CTC =
·
I 0

0 0

¸
it is straightforward to show that the latter inequality
holds if

FTX +XF+XFTFX +
e(¸0+¹)T0¸0
¸°2

¡ (1¡ rx)2"·¡¸0X:

(54)

By applying Schur complements [9] and from
definition (35), (54) holds because of (45). The
theorem then follows from Corollary 2.

The next theorem derives necessary and sufficient
conditions under which (45) is satisfied.

THEOREM 3 Let F, ° and " and be defined in
Theorem 2. Then, 9X = XT > 0 such that"

FTX +XF +¸0X +

µ
e(¸0+¹)T0¸0

¸°2
I¡ (1¡ rx)2"

¶
CTC XFT

FX ¡I

#

· 0, e(¸0+¹)T0¸0
¸°2

¡ (1¡ rx)2"· 0:

Notice how Theorem 3 entirely avoids searching over
the parameter space in equations (44)—(48). This is
done by exploring the geometry of the problem under
consideration, namely using indentity (19) in [1].

PROOF OF THEOREM 3 The results are obtained by
rescaling ° in the proof of Theorem 5 in [1].

REMARK 5 Theorem 3 shows that the LMI (45) is
feasible if and only if

e(¸0+¹)T0¸0
¸°2

I¡ (1¡ rx)2"· 0, °2 ¸ e(¸0+¹)T0¸0
¸(1¡ rx)2"

:

Recall that

"= min
p̂C2P̂C

fk¸min(»(p̂C))kg · min
pC2PC

fk¸min(HT(pC)HT(pC))kg

= max
pC2PC

fk(HT(pC)HT(pC))
¡1kg¡1:

and therefore

°2 ¸ e
(¸0+¹)T0¸0
¸(1¡ rx)2

= max
pC2PC

fk(HT(pC)HT(pC))
¡1kg:

(55)

This inequality imposes a lower bound on the
achievable values of °. Furthermore, since ¸ :=
¸0¡®(¸0 +¹), it follows that

lim
T0!0,®!0

e(¸0+¹)T0¸0
¸(1¡ rx)2

=
1

(1¡ rx)2
:

The above expression shows that the lower bound
on the achievable ° in the absence of out-of-frame
events converges to the lower bound derived in [1].

The bound derived in (55) bears close affinity
to the classical positional dilution of precision
(PDOP) metric that is commonly used in navigation
systems to determine a lower bound on the achievable
error covariance as a function of geometry of the
underlying navigation problem [10—12]. Using our
notation, the PDOP for the problem at hand can be
written as

PDOP =
q
tr(HT(pC)H(pC))¡1:

We therefore see that the new bound derived
here captures a worst case performance scenario and
the estimate of xC increases the lower bound on the
achievable °, since 1> (1¡ rx)2 > 0.

D. Numerical Implementation and Performance
Studies

In the absence of out-of-frame events (®= 0,
T0 = 0) the matrix inequalities developed in Theorem 2
can be reduced to the set

X > 024FTX +XF +
µ
1
°2
¡ (1¡ rx)2"

¶
CTC XFT

FX ¡I

35< 0
1
®20
(1¡ !̄2)¡X > 0

X¡ ±¡2CTC > 0
where ² is inversely proportional to the “size” of P̂C ,
° determines the filter’s performance, and ®0 is the
bound on the initial error in position and velocity
estimates.
From a design standpoint, one would like to

minimize ² and maximize ®0. In what follows we
solve a related problem that allows for the study
of tradeoffs involved in filter design. This is done
by letting w1 = °

2, w2 = 1=®
2
0, w3 = " and defining

the cost functional J = c1w1 + c2w2 + c3w3, where
c1, c2, c3 are positive weights to be selected by the
designer. This leads naturally to the following convex
optimization problem that can be solved numerically
using MATLAB’s LMI toolbox [13]:

find min J subject to

X > 0264F
TX +XF ¡ (1¡ rx)2w3CTC CT XFT

C ¡w1 0

XF 0 ¡I

375< 0
w2(1¡ !̄2)¡X > 0
X ¡ ±¡2CTC > 0:
For a given choice of weights ci; i= 1,2,3 the

resulting values of X, ®0 and ° can then be used
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Fig. 3. Achievable ° versus T0.

Fig. 5. Experimental setup.

to study the impact of out-of-frame events on filter
performance using equations (45)—(48) in Theorem 2.
This was done here by inserting the solutions X, ®0
obtained above into equations (45)—(48) and studying
the evolution of ° as a function of out-of-frame
parameters T0 and ®0.
In a particular design example that we considered,

and in the absence of out-of-frame events, the value
of the performance bound ° achieved with the filter
was 35. However, in the presence of out-of-frame

Fig. 4. Achievable ®0 versus !̄.

events the value of ° increases as a function of T0
as illustrated in Fig. 3. The numerical values of ®
obtained were on the order of 10¡5¡ 10¡4 and their
impact on the levels of achievable ° is thus negligible.
Furthermore, as the graph in Fig. 3 suggests, T0
exhibits logarithmic dependence on °. This implies
that for values of T0 > 2:5 s small increases in T0 result
in large increases in achievable °, in other words,
recovery from out-of-frame events that exceed 2.5 s
becomes very difficult.
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Fig. 6. Examples of IR images. (a) At range of 450 m. (b) 80 m.

Fig. 7. Performance of filter during final approach.

Another interesting trade-off is shown in Fig. 4,
where for two value pairs of (T0,°) = (0:52,55),
(T0,°) = (2:5,250) the graphs of !̄ versus ®0 are
plotted. Recall, in this work ®0 defines the bound on
the norm of the initial estimation error (28), while !̄
defines the bound on the norm of the sensor noise.
Fig. 4 shows the trade-off between the size of the
initial estimation error tolerated by the filter and the
bound on the sensor noise. Clearly, as T0 increases the
achievable values of !̄ and ®0 decrease.

E. Experimental Setup and Flight-Test Results

This section describes briefly the experimental
setup and the flight test experiments that were
executed to evaluate the performance of the nonlinear
filter obtained in the previous section. The Frog UAV
operated by the controls lab at Naval Postgraduate
School was equipped with an IR video camera (pixel
resolution of 320£ 240), a DGPS receiver, an IMU,
and a pressure altitude sensor. Fig. 5 illustrates the
complete experimental setup that includes the UAV,
onboard avionics schematics and ground station.
(Reference [14] contains a complete description
of the onboard sensor suite and the performance
characteristics of the UAV.)

A charcoal grill was used to model the hot spot
on a ship and an image-processing algorithm was
developed to find and track the grill observed by
the airborne IR camera. Fig. 6 includes examples
of the images taken by the IR camera. A detailed
description of the image-processing algorithm can be
found in [14]. The image plane coordinates and GPS
altitude were used by the integrated IR/Inertial filter to
compute the relative position and velocity with respect
to the hot spot.
Fig. 7 shows the results of applying the integrated

IR/Inertial filter to the flight test data. In particular,
the upper graph shows the DGPS landing approach
trajectory. The bottom left graph shows estimation
errors computed by comparing the DGPS position
with the position estimates produced by the filter. It
shows rapid convergence of the position estimation
errors, down to a few centimeters in less than a
second from the time the hot spot was acquired by
the onboard vision system. The bottom right graph
shows the filter’s response to an out-of-frame event.
It zooms in on the position estimation errors in the
interval between 1.3 s and 1.8 s. The out-of-frame
event took place in the interval of [1.3 s, 1.45 s] and
resulted in the gradual increase in the x and y position
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errors. The filter quickly recovered once the image
of the hot spot was reacquired. Notice that the errors
in the z channel remained small due to uninterrupted
availability of barometric altitude sensor.

IV. CONCLUSIONS

This paper introduced the concept of LPV systems
with brief instabilities and derived new results for
stability and performance analysis of such systems,
where performance is evaluated in terms of L2
induced norms. The main results show that stability
and performance can be assessed by examining the
feasibility of parameterized sets of nonlinear matrix
inequalities. These results were applied to the design
of an integrated IR/inertial/air data navigation filter
with guaranteed stability and performance in the
presence of out-of-frame events. Numerical trade-off
studies were conducted to determine the filter’s
achievable performance versus the duration of the
out-of-frame events. Finally, the filter was tested using
flight test data collected by a UAV equipped with
air data and inertial sensors as well as an IR camera.
The results of the test showed that the filter performs
well in the presence of out-of-frame events. Future
work will aim at extending these results to address
the problem of determining the relative position,
velocity, and orientation of multiple vehicles flying in
formation by using vision, passive sensors, and other
navigational data available through the inter-vehicle
network. Vision is expected to play a major role
in situations where the network quality of service
deteriorates.
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