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Abstract-A new method is proposed to implement 
gain-scheduled controllers for nonlinear plants. Given a 
family of linear feedback controllers designed for lineariza- 
tions of a nonlinear plant about constant operating points, a 
nonlinear gain-scheduled controller is derived that preserves 
the input-output properties of the linear closed loop systems 
locally, about each equilibrium point. The key procedures in 
the proposed method are to provide integral action at the 
inputs to the plant and differentiate some of the measured 
outputs before they are fed back to the scheduled controller. 
For a fairly general class of systems, the nonlinear 
gain-scheduled controllers are easy to obtain, and their 
structure is similar to that of the original linear controllers. 

1. Introduction 
This paper addresses the problem of implementing gain 
scheduled controllers for nonlinear plants. Traditionally, the 
development of such controllers involves the following steps. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Linearize the plant about a finite number of 
representative operating points. 
Design linear controllers for the plant linearizations 
at each operating point. 
Interpolate the parameters of the linear controllers 
of Step 2 to achieve adequate performance of the 
linearized closed loop system at all points where the 
plant is expected to operate-the resulting family of 
linear controllers is called a gain-scheduled con- 
troller. 
Implement the gain-scheduled controller on the 
nonlinear plant. 

The resulting gain-scheduled controller is nonlinear, its 
parameters evolving as functions of the plant states, inputs, 
outputs and exogenous parameters, or any combination 
thereof. As an illustrative example, consider the design of a 
controller for an airplane. First, the nonlinear equations of 
motion are linearized about selected operating points that 
capture the key modes of operation throughout the flight 
envelope (the set of conditions under which the airplane is 
expected to fly). Linear controllers are then designed to 
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achieve desired stability and performance requirements for 
the linearizations of the plant about the selected operating 
points. Since these requirements must be satisfied throughout 
the flight envelope, the parameters of the controllers are then 
interpolated as a function of a gain scheduling variable- 
typically, this variable can be dynamic pressure, Mach 
number, altitude, angle of attack or a combination of the 
above. Finally, the scheduled controller is adequately 
modified and implemented on the nonlinear plant. 

This technique has proven successful in many engineering 
applications. See for example Astrom and Wittenmark 
(1988) and Stein er al. (1977) for interesting applications in 
the areas of flight control, ship steering, combustion control 
and control of the air/fuel ratio in car engines. However, 
designing a gain-scheduled controller remains largely an ad 
hoc procedure that requires extensive computer simulations. 
This is due to the lack of powerful analysis tools to assess the 
stability and performance of the resulting nonlinear 
time-varying feedback systems. 

In recent years considerable progress has been made in the 
theory of nonlinear gain-scheduled control systems that arise 
from scheduling on a reference trajectory or on the plant 
outputs (see Shamma, 1988; Shamma and Athans 1990, and 
references therein). The main results are a set of conditions, 
albeit conservative, guaranteeing that the properties of 
robust stability and performance of the linear frozen-time 
feedback systems obtained at each operating point carry over 
to the global gain-scheduled system. In practice, these 
conditions formalize rules of thumb for the design of 
gain-scheduled systems. 

Assuming those conditions hold, it is then natural that the 
development of gain-scheduled controllers proceed as 
follows: (i) design a family of linear controllers to achieve 
satisfactory closed-loop dynamic behavior for the linear 
designs at each operating point-this is within the scope of 
linear control theory; (ii) gain-schedule the resulting linear 
controllers so that the following fundamental property holds. 

Linearization property. At any given operating point, the 
linearization of the feedback system consisting of the 
gain-scheduled controller and the nonlinear plant (frozen- 
time system) exhibits the same internal and input-output 
properties as the feedback interconnection of the linearized 
plant and the corresponding linear controller. (See Step 2 
above.) 

Surprisingly, this property is not satisfied in some 
gain-scheduled systems described in the literature. See for 
example the comments in Shamma and Athans (1990) and on 
p. 904 of Shamma (1988). Whereas most of the research 
effort has concentrated on the design and analysis of the 
gain-scheduled controllers described in Steps 2 and 3 above, 
the issue of properly implementing such controllers (Step 4) 
so that the linearization property holds has largely been 
ignored. In fact, many schemes resort to direct implementa- 
tion of the linear gain-scheduled controllers obtained in Step 
3 on the nonlinear plant. This may result in a loss of 
performance or even instability of the feedback system 
linearized about one of the operating points. Clearly, in this 
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case not even the properties guaranteed in Step 3 are 
recovered locally. 

The importance of this issue has been acknowledged in the 
control literature in a series of papers by Rugh and his 
co-workers devoted to extended linearization techniques 
(Baumann and Rugh, 1986; Wang and Rugh, 1987; Bauman, 
1988; Lawrence and Rugh, 1993; Rugh, 1990, 1991). For 
single-input multi-output nonlinear systems, a technique has 
been reported by Baumann and Rugh (1986) for the design 
of state feedback and observer/state feedback based 
controllers such that the eigenvalues of the family of 
linearized closed-loop systems are invariant with respect to 
the operating point. The extension of these results to the 
multi-input multi-output case can be found in Baumann and 
Rugh (1987) and Baumann (1988), where the authors show 
that nonlinear state feedback and observer/state feedback 
control laws can be derived as to place the eigenvalues of the 
family of closed-loop linearizations at specified locations, 
which may be a function of the closed-loop operating point. 
In a very general set-up, the procedure requires the solution 
of partial differential equations that involve nontrivial 
integrability conditions. A related paper by Wang and Rugh 
(1987) establishes necessary and sufficient conditions on 
general linear control laws that can arise when a nonlinear 
dynamic feedback control law for a given nonlinear system is 
linearized about a family of operating points. The sufficiency 
proof is constructive in the sense that it provides the recipe 
for building the corresponding gain-scheduled controller. In 
the general case, however, the procedure also requires the 
solution of partial differential equations of considerable 
difficulty. 

In this paper we derive a new, simple method for the 
implementation of gain-scheduled controllers for nonlinear 
plants, so that the linearization property holds. The method 
can be applied to a fairly general class of control structures 
that are usually referred to as tracking controllers. Given a 
family of linear feedback controllers designed for lineariza- 
tions of the nonlinear plant about constant operating points, 
a nonlinear gain-scheduled controller is derived that 
preserves the internal and input-output properties of the 
linear closed-loop systems locally, about each equilibrium 
point. The method is based on the observation that linear 
controllers obtained in Step 2 above are designed to operate 
on the perturbations of the plant’s inputs and outputs about 
the equilibrium points. Proper blending of the different 
controllers requires that they have access to such 
perturbations, locally. This is achieved by differentiating 
some of the measured outputs before they are fed back to 
the gain-scheduled controller. In order to preserve the 
input-output behaviour of the feedback system, integral 
action is provided at the input to the plant. The resulting 
nonlinear gain-scheduled controller is easy to obtain, and its 
structure is similar to that of the original linear controller. 
Furthermore, despite the use of differentiators, this scheme 
does not introduce additional noise amplification at the 
relevant inputs and outputs of the linearized feedback 
system, since all closed-loop transfer functions are preserved. 
The issue of noise amplification inside the controller and how 
it impacts on the behavior of the nonlinear feedback system 
is not addressed in this paper. On the positive side, at the 
level of local linear analysis, since all closed-loop transfer 
functions are preserved, it follows that no extra noise 
amplification is introduced by our scheme. 

It is important to emphasize that a potential weak point of 
this method, namely the requirement that some of the 
outputs be differentiated, can be dealt with in practice by 
using suitable approximations: on an analog computer, 
differentiation can be replaced by a causal operation while 
having the resulting system satisfy the linearization property 
asymptotically; in the case of digital computers 
differentiation is replaced by taking the difference between 
present and previous values of the measured outputs. See 
Kaminer et al. (1994) for complete details. 

The method proposed here bears a close connection to 
so-called velocity algorithms for the implementation of PID 
controllers in process control (Isermann, 1981). Since in 
practice derivatives are often implemented numerically using 

finite differences, the method will be referred to as the 9 
method for gain-scheduled control. The 9 method was first 
conceived by E. Coleman, C. Thompson and P. Salo (see 
Salo, 1987), while working for the Boeing Company. Since 
then, it has been successfully applied to a number of flight 
control problems. The reader is referred to Kaminer et al. 
(1990) for an interesting application to the design of a lateral 
autopilot for an airplane. See also Kaminer et al. (1991) for 
the implementation details of a trajectory-tracking controller 
for an underwater vehicle. 

It should be stressed that this paper does not include a 
discussion of the nonlinear properties of the proposed 
implementation, namely the extent of asymptotic stability of 
the nonlinear gain-scheduled system. This important issue 
warrants further research. 

The paper is organized as follows. Section 2 summarizes 
the basic notation, and Section 3 provides the problem 
formulation. Section 4 introduces the 9 method for the 
implementation of continuous-time gain-scheduled tracking 
controllers. Finally, Section 5 describes an approximation to 
the 9 method to guarantee the causality of the controller 
proposed. An early conference version of this paper 
appeared as Kaminer et al. (1993). 

2. Notation 
The following notation will be used. Given a function 

f(x, u): R” X R” -+ W of class C’, 

denotes the derivative of f with respect to x evaluated at 
(x0, ua). Similarly, 

;f(%, U”) o RPX” 

denotes the derivative of f with respect to u evaluated at 
(x0, u,,). We shall deal with dynamical systems described by 
equation of the type 

i = f(x, u), (I) 

Y = w, u), (2) 

where f(x, u): R” X R’“+ R” and h(x, u): R” X R” + R’ are 
both of class C’. The vector (x0, uc) E R” X R” is called an 
equilibrium point of (l), (2) if f(xa, us) = 0. The linearization 
of (l), (2) at (x0, ue) is the system defined by 

i = A+,, no)6 + B(xo, uc)n, (3) 

6 = C(x0, u0)5 + D(x0, u&7, (4) 
where 

A@,, ~a) := $(~a, ~a), 

B(X”, u0) := $(x0, ue), 

C(x0, &I) := %h(x,, uc), 

D(X”, ue) := ;h(x,, uo), 

and 5, n and @ correspond to small perturbations of x, u and 
y about x0, uc and y0 = h(x,, uc). 

3. Problem formulation 
Consider the feedback system shown in Fig. 1. The 

nonlinear system 3 consists of a dynamical model of the 
physical plant to be controlled, together with appended 
dynamics that shape the exogenous signals w, the control 
inputs u and the internal input and output variables that 
contribute to the generalized error signals t. The controller 
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Fig. 1. Feedback interconnection of nonlinear plant 54 and 
controller V 

Ce operates on the measured output variables y to produce 
the control inputs u. 

In this paper we consider general tracking control 
structures whereby some of the plant outputs are required to 
track (step or slowly varying) reference commands. 
Therefore, the vector w is decomposed as w = [d’ wh r’]‘, 
where d is the vector of exogenous signals that are not 
accessible for measurement (e.g. external disturbances and 
sensor noise), w,,, is the vector of measurable exogenous 
signals (e.g. air speed in an airplane or water speed in an 
underwater vehicle) and r is the vector of external reference 
signals to be tracked. Furthermore, y = [y; y;]‘, where yz is 
the vector of output signals that must track the reference 
commands r and y, consists of an extra set of measurable 
output signals that will be used for feedback. We allow y, to 
include some or all of the components of yP This will 
simplify the exposition, as shown in the sequel. With this 
notation, the generalized plant 9 can be described as 

where f, g, h, and h2 are functions of class C’, x E R” is the 
state vector, w E R’, u E R”, z E Iwq and y E UP. 

3.1. Equilibrium points. We assume that the plant 3 has a 
family of (equilibrium) operating points 

where w, = [d;l w& r,j’ E R’ and a is an open subset of 
tP x R’ x R”. We further assume that the set ‘8 can be 
parameterized by a vector a0 in some open subset & of Iw”; 
that is, 

8 = c&(Q) := {(%I, WO, UO) := (x0, wo, uo) = g(oo), a0 o 4 

where g: .4-+ R” X R’ X R” is continuously differentiable and 
one-to-one. We remark that the definitions of R and a0 are 
problem-dependent and are largely dictated by experience. 
Moreover, o. is often determined indirectly by measuring the 
equilibrium values of some of the inputs and outputs of the 
plant. Let Y:= {(wO, uO, yO):yo = h(x,, wo), (x0, ~0, uO) E g}. 
We assume that a0 = u(wO, uO, y& where V: Y+ B8” is a C’ 
function. By applying the function u to the measured values 
of w, u and y, we obtain the variable 

(Y := u(w, u, y) E R”, (6) 

which is usually referred to as the scheduling variable (Wang 
and Rugh, 1987). We set do(cr,) = 0 for all (Y,, E &, since the 
exogenous inputs d are not known in advance and, more 
importantly, because we are usually interested in the 
response of the overall feedback system to small 
perturbations in d about its zero nominal value. Note that the 
scheduling variable (Y := u(w, u, y) may depend explicitly on 
the reference commands r and on the exogenous measurable 
variables w,. 

3.2. Linearized plant models. Given (x0, wO, uO) E 8, set 

zo := &o, wo, a”), 

YIO:= h,(xo, w0), 

yzO:= h2h Woh 

and let 6, v, 7, J, 0, and 0z correspond to small perturbations 
of x, w, u, z,yI and yz about x0, wo, UO, ZO,Y~, and YZ 
respectively. The family of linear models ‘& associated wtt ,R 
the plant ?J and the set K is defined as ge:= 
I%&,, wo, no) :(x0, wo, uo) o $], where 

+%(X”, WOJ uo) 

i = 4x0, wo, a& + B&o> WO, uo)v + B2(xo, wo, uoh, 

.- 

'- 81 = Cdxo, wo, 43)5 +mxo, wo, uob, 

i 

5= cot%, WO? UoE + ~o*(.h wo, uob + D"Z(XO> WI, klh 

02 = C2(xo. wo, UOM + 4(x0, wo> uo)v 

(7) 

is the linearization of 3 at (x0, w,, uO). For notational 
simplicity, &(x0, w,,, uo) will often be written simply as 
$(aO), since it is assumed that the equilibrium points are 
parameterized by rxO. 

3.3. Family of linear controllers. As discussed in Section 1, 
a common approach to the design of a gain-scheduled 
controller for B requires designing a family of linear 
controllers for a finite number of plants in 5!$, and then 
interpolating between controllers as to achieve adequate 
performance for all the linearized plants in $. During 
real-time operation, the controller parameters are updated as 
functions of the gain-scheduling variable (Y. In this paper we 
restrict ourselves to the idealized case where the description 
of each controller for each plant in & is available (Rugh, 
1990). Therefore we assume that the first design step 
produces the set qce,:= {‘&(cyo) :a0 E Sa}, where Sp is the 
parametrizing set referred to above and %$(a,) denotes the 
controller for the plant %$(x0, wO, uO). Let e = y2 - r denote 
the vector of tracking errors, and let p and E correspond to 
small perturbations of r and e about the equilibrium points r, 
and eo=y2” - rO respectively. The linear (tracking) con- 
trollers %$(a,) considered in this paper are described by (see 
Fig. 2) 

%(ffO) 

1 

i,, = &,(45,, + &,(a~)@, + &2(45,2, 
:= &2:=E=tl-p, (8) 

17 = Gel&, + Cc2(45c2 + W%M + &2(%)E> 

where &, E R’, lc2 E UP and r) E IF!“‘, and the matrices are of 
compatible dimensions. We further assume that the 
parameters of the controller are C’ functions of o,,. 

The structure of the linear controller %do,) has two 
important features. 

(i) Suppose the closed-loop system consisting of (7) and (8) 
is asymptotically stable. Then the controller ‘?$(a,) will 
ensure zero steady-state error E to a step input in p. This 
is achieved by integrating the error l = 13~ -p. This 
structure is typical of tracking controllers, since they are 
designed to drive errors between step changes in 
reference commands and the corresponding plant 
outputs to zero in steady state. Note that the block 
K(ao) (see Fig. 2) may itself contain additional 
integrators. 

K(4= [=$=-& 
Fig. 2. Linear controller %‘Aao). 
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(ii) A subset 0, of the measured outputs of &(cr,,) is fed 
back directly to the controller. This controller structure 
includes controllers with inner/outer loops that are used 
extensively in aerospace applications. 

3.4. Problem formulation. The problem that we address in 
this paper is to find a gain-scheduled (possibly nonlinear) 
controller 

& = fc(&, Y, a), 
(e(a) := 

1 

24 = h,(x,,y, a), (9) 
a = v(w, 4 Y) 

for the nonlinear plant %I so that the linearization property 
given in Section 1 is satisfied at each equilibrium point 
determined by (Ye E &. Let 

be the closed-loop linear system that results from connecting 
%$((r,,) to &Jo,,), and denote by T(5!$(a,), ?&(a”))@) the 
corresponding matrix transfer function. Let 

T(??, V):w-+z 

be the nonlinear closed loop system that consists of V and 3, 
and let 

denote its linearization at (Ye. Here we are assuming that the 
equilibrium points of the controller are also parameter&red 
by crO E ti and satisfy fJx,(a,,), yo(ao), a,,) = 0 and Us = 
~,(x,((Y,), yo(ao), ao). With this notation, the controller 
implementation problem considered in this paper can be 
stated as follows. 

Controller implementation problem. Find a gain-scheduled 
controller (e(a) such that for each equilibrium point of % in 
9~) the following properties hold: 

(i) the feedback systems FP(% U)(%) and 
T(%cQ), %(a~)) have the same closed-loop 
eigenvalues; 

(ii) the closed-loop transfer functions Tr(%, g)(~)(s) and 
T(%do,), %daO))(s) are equal. 

4. The !&methodology for the implementation 
of gain-scheduled tracking controllers 

This section provides a complete solution to the controller 
implementation problem formulated in Section 3. For the 
sake of clarity, we first illustrate the key features of the 
proposed solution with a simple example. 

4.1. Motivating example. This example is based on the 
simplified one-dimensional motion dynamics of an under- 
water vehicle (Slotine and Li, 1991). The vehicle is driven by 
the (propeller-generated) force U, moves with forward 
velocity x with respect to the water, and is subjected to a 
drag force proportional to x 1x1. The objective is to design a 
gain-scheduled controller to steer the vehicle along a 
desired velocity profile. 

In this case the plant %is described by 

~:= mi = -cx Ix/ + u, 

y=x+d, (10) 

where d is the noise that corrupts the velocity measurement, 
and m and c denote the total mass (including so-called added 
mass) of the vehicle and the drag coefficient respectively. For 
simplicity, we assume that c = m = 1. Consider the set of 
equilibrium points 

and let the scheduling variable (Y be the measured velocity of 
the vehicle, that is, a =y. The linearization of Y? at each 
equilibrium point (Y,~ = y, = x0 is 

Consider a traditional proportional-plus-integral controller 
for this plant, described by 

Simple algebra shows that the characteristic polynomial of the 
feedback interconnection of the linearized plant (11) and the 
controller (12)_is h* + PA + l,_and that the closed-loop trans- 
fer functions .$(s)/,?(s) and [@)/S(s) equal l/(s2 + /3s + 1) 
and (s(2_r0 - p) - l)/(s’ + /3s + 1) respectively. Note that in 
this particular example the closed-loop eigenvalues are 
independent of the equilibrium point. However, this is not 
essential to the proposed solution. Since the controller 
parameters are given explicitly as functions of the 
equilibrium point, there is no need to interpolate between 
them. 

Consider the (rather naive) gain-scheduled controller 

(13) 

that is obtained by simply mimicking the structure of the 
linear controller. The linearization of the feedback system 
that consists of the plant 9, (lo), and the controller %,,, (13) 
has characteristic polynomial s2 + (p - 2~~)s + 1. If x,, 5 $, 
the linearized system becomes unstable. This happens 
because the scheduling variable a = y introduces additional 
dynamics that show up in the linearization procedure. Notice 
how the linearization of the term (p -2y)y about the 
operating point x0 gives (p -4x0)6 and not (p -2x@ as 
desired (see (12)). Clearly, this implementation leads to the 
wrong results. 

Consider now the gain-scheduled controller Z(y) formed 
by moving the integrator of X$(y) in front of the plant 9: 

g(y) := (;Z=x-~ + r - (P - 2~));~ 
C. 

(14) 

The feedback system consisting of the plant %, (lo), and 
controller V, (14), can be linearized about the equilibrium 
point (x0, r, = x,) = y,,, do = 0, xm = x$), leading to the closed- 
loop equations 

k = -2x05 f 5,, (13) 

&, = (- 1 + zr,p - 4x:)5 + (2X” - p)& t p - 6 + (2x, - pp. 

(16) 

It is trivial to check that the eigenvalues of the closed-loop 
system (1.5), (16) are the roots of the polynomial s* + fi + 1. 
Moreover, the closed-loop transfer functions from p and 6 to 
5 are l/(s* + ps t 1) and (s(2x, - p) - l)/(s* + ps t 1) 
respectively. With the implementation (14) the closed-loop 
eigenvalues and the closed-loop transfer functions of the 
linear designs are preserved at each operating point. Clearly, 
this implementation avoids the problems encountered by the 
previous one. In the next subsection we present the solution 
to the controller implementation problem that was used to 
obtain the realization (14). 

4.2. Main result. Given the set %?< of linear controllers for 
the family Y$ of linearized plant models, we propose the 
following structure for the gain-scheduled controller %(a) 
(see Fig. 3); 

%(a) := 

1 

& = &(cu)x,i + &,(e)j+ + &(a)c, 

Ac2 = Ccl(~)+ f D,i(a)3, + C,2(a)e, 
e = y2 - r, (17) 

u = xc2 + D,2(a)e, 
a = u(w, u, y). 

Equations (17) will be referred to as the &&controller 
implementation methodology, since they require that the 
output signal y, be differentiated. Note in Figs 2 and 3 that 
the structure of the gain-scheduled controller is easily 
obtained from that of the linear controllers. 
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r---+y- 
Fig. 3. 9 implementation of %$(a). 

We make the following assumptions: 

(Al) dim (x,J = dim (u) = dim (yz); 
(A2) the matrix 

[ 
sI - &(ao) &Z(Q) 

-G(%) C&a”) 1 
has full rank at s = 0 for each (~a E .x’& 

(A3) w E Ci[O, 03) or y, = y,(x); that is, y, is only a function 
of x. 

Assumption (Al) implies that the number of integrators is 
equal to the number of control inputs. This is necessary if the 
controller is to provide independent control of the measured 
outputs yz using the control inputs u. Assumption (A2) 
implies that the realization (A,,, Ec2, Cc,, Cc,) has no 
transmission zeroes at the orign. Assumption (A3) is 
sufficient to ensure that j, exists and is continuous. 

The main result of this section is as follows. 

Theorem 4.1. Suppose Assumptions (Al)-(A3) hold. Then 
the gain-scheduled controller U(a) given by (17) solves the 
controller implementation problem, i.e., for each equilibrium 
point of 3 in %(cQ), the following properties hold: 

(i) the feedback systems FfJ% V(Q) and 
.!~Y%(ae), %(cua)) have the same closed-loop 
eigenvalues; 

(ii) the closed-loop matrix transfer functions TA?$ %)(Q)(S) 
and T(%d(~a), %~o,,))(.r) are equal. 

Proof. We set the controller throughput matrices D,, and 
Dc2 equal to zero. This does not change the results of the 
theorem, and considerably simplifies the algebra. Let aa E &J 
be given, and consider the feedback interconnection of the 
linearized plant $(aa) and the corresponding linear 
controller %~a,). The state matrix F of the feedback system 
can be written as 

A BzCc, BzCcz 

F:= Bc, C, A,, Bc, 

L c, 0 0 1 , (18) 
where for notational simplicity we have omitted writing the 
explicit dependence of the matrix on Q. Next we linearize 
the feedback interconnection of the plant 3 and the 
controller %(u), shown in Fig. 3, at the equilibrium point 
(x0, wa, x,,~,Y,~) determined by (~a. First, we proceed to 
determine the states of the controller corresponding to this 
equilibrium point. Consider the set of algebraic equations 

&(Q)G,, + Bci(otJ?iiO + &z(~(Yz~ - d = 0, (19) 

G(&,i, + C,~(~CJ(YZ, - r0) = 0, (20) 

&I = X,2”. (21) 

Since y,, is constant, it follows that &=O. Therefore (19) 
and (20) can be written in matrix form as 

[ 
A,,(%) &,(a,) I[ 1 &I” Ccd4 GA%) = 0. 

~2, - r0 
(22) 

Assumptions (Al)-(A2) imply that the matrix 

II 
&(a~) Mao) 
G(ao) Ccz(ao) 1 (23) 

is square and invertible for each (Y,, E d. It then follows from 
the assumptions and (21) and (22) that 

y2,, - r. = 0, xclo = 0, cc% = uo. 

In order to compute the linearization of the feedback 
interconnection of 9 and (e(o), we must first obtain the 
linearizations of (5) and (17) about the operating points 
(~0, ~0, u3 and &I,, = 0, x,2,, = UO, ~3, = 0, eo = Y 
respectively, determmed by a,,. The linearization o the plant P 

- ro = 0) 

3 is given by (7). The linearization of the controller (e(a) can 
be written as 

+B,,(o),o$[yi f+yl v] 
+ i [LU~)(Y~ - r)ll0 5 +U$[BEZ(h - ril0 v 

+~[B,2(~)(Yz-r)l1017+~s2(~)lo(~-P). (24) 

4i2 =; K&MI0 6 + $ [cc2(~hllo v 

+~LwxcIllo 7 + G(~)lo 5CI 

+~[Cc2(aM10 5 +&-IWo)ell0 v 

+ ~ICc2(akl/0 II + Cc2(a)10 (02 - P), 

77 = 5c27 

where lo means that the preceding expression is evaluated at 
the equilibrium point determined by a0 E 1. Note that 

d;e>~:; “, (in (25) the subscript i represents both the ith 
+, and the ith column of A,,). Similar results 

can be obtained for (~l~w)[A,d~hl~~~ ~~l~u)[&,(a~~Illo 
etc. Therefore the linearization of the controller has the form 

$1 = &,(~o)Sc, + Moo)& + &(a~)(% - P), 
5,2 = Cc,(ao)S,, + Cc2(~0)(@2 - P), (2’3 

7 = 552. 

It is easy to verify that the state matrix M of Tf(%, %)(ao) is 

[ 

A 0 B2 

M:= B,,C,A+B,,C, A,, B,,C,Bz , (27) 
cc2 G cc1 0 1 

where again we have omitted writing the explicit dependence 
of the elements of the matrix on the operating point. To 
complete the proof of the first part of the theorem, we now 
show that there exists a nonsingular matrix P such that 
F = PMP-‘. Earlier in the proof. it was shown that the 

is invertible. Let 

and set 
li 

r I O 01 
P:= 

1 

-X&C, x Y 

-ZB,,C1 z w 1 

(29) 
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Routine algebra shows that 

P~i=[.I, ;; sd 

and F = PMP -‘. Thus F and M have the same eigenvalues. 
In order to show that Te(Y (e)(%)(S) = 
T(?&(Q), $(a,))(~), it suffices to prove that the linear 
controllers (8) and (26) have the same transfer functions 
from (13;, 13;, p’)’ to 7. A simple computation shows that 

+cc* ;rm - P(s)1 

for both controllers, where e(s), a,(s), e,(s) and b(s) denote 
the Laplace transforms of 7, 0,) O2 and p, respectively. 

Properties of %implementation. It is worth emphasizing 
the following important properties of the %implementation 
methodology. 

1. The result in Theorem 4.1 holds for all the operating 
points of the plant in the set ‘Z 

2. The structure of the gain-scheduled controller is easily 
obtained from that of the linear controllers. 

3. Since all the closed-loop transfer functions of the local 
linearizations are preserved, at the level of local linear 
analysis, the method does not introduce any additional 
noise amplification, despite the presence of a 
differentiation operator. 

4. At equilibrium, xc% = u0 and xc10 = 0. Therefore the input 
trimming value is naturally provided by the integrator 
block with state xFzO. 

5. Suppose D,, = 0. Then the integrators xc2 are directly at 
the input of the plant, which makes it straightforward to 
implement anti-wind-up schemes. This becomes necessary 
in applications where the input u is hard-limited owing to 
actuator saturation, for example. 

We remark that in practical applications gain-scheduled 
controllers are often switched on after an initial phase where 
the plant is steered by an operator (manual mode) or by a 
linear time-invariant controller. It is then important to 
initialize properly the states of the gain-scheduled controller 
at the time of the switching in order to achieve bumpless 
transfer (see Hanus et aZ., 1987; and references therein). 
Property 3 of the gain-scheduled controller (17) leads to a 
trivial solution to this problem when DC2 = 0. In fact, assume 
that the plant has been brought to an equilibrium point 
(xa, wa, ~a) at time t = t, 2 0 via manual control or by a fixed 
controller. Further assume that the inputs to the plant are the 
outputs of a chain of integrators with state 8 (in the case of a 
fixed controller this means that the controller exhibits 
integral action). Then bumpless transfer is_ achieved by 
implementing (17) with x,z replaced by 5 and setting 
x,,(t,) = 0. 

5. Approximations of the 9 method 
The 9 method presented in Section 4 requires differentiating 

some of the plant’s measured outputs. Except for the case 
where some of the derivatives have physical meaning and are 
available from dedicated sensors, this cannot be done in 
practice. In this section we indicate how to circumvent this 
difficulty when realizing controllers on analog computers. For 
the implementation of gain-scheduled controllers on digital 
computers, see Kaminer et al. (1994). 

The main result of this section is stated in Theorem 5.1, 
where it is shown that the differentiation operator can be 
replaced by a causal system with transfer function s/(es + 1) 
(see Fig. 4), with E >O, while having the linearization 
property recovered asymptotically as E -+ 0. The result can be 
extended to the case where the differentiation operator is 
replaced by a strictly causal one. 

Theorem 5.1. Let %, $(e((yc) and %$(a,,) be as in Theorem 
4.1. Consider the gain-scheduled controller 

xc1 = &(a).~~ + B,I(~)(Y~ - 4) + C,z(a)e, 

& = Cci(o)xcl + &i(cu)(yi - 2) + D,z(o)e, 

%*(,(a) := 
&=-T+y, 

( 

(30) 
e =yz- r, 

u = xc2 + &(cy)e, 

a = u(w, u, Y), 

where (Y is the scheduling va_iable, E is a positive real 
parameter, B=,(a) = BcI(~)/~, D,,(a) = Dcl(a)/e and Z E R 
denote the fast states of the controller, with dim(Z) = 
dim ( y, ) = m. 

Then as l + 0, the following hold. 

1. 

2. 

m of the eigenvalues of ?Tp(%, %‘J(u,,) approach infinity, 
while the rest approach the eigenvalues of 
y((Wa,). %Aan)). \ .\ VI, b\ .,,, 

Il~e(% %)(4 - F(S~e(ao), ~~aO))~lp,~ tends to zero for 
every 1 ‘p 5 m, where ll.IID., denotes the ZD-induced 
(input-output) operator norm. In particular, when p = 2, 
it follows that the transfer matrix Te(%, %J(c~a)(s) 
approaches T(&(((Y,,), %~cyO))(s) in the H, norm, that is, 
uniformly over the right-half complex plane. 

The main ingredients of the proof come from the theory of 
single-parameter singularly perturbed systems (KokotoviC et 
al.. 1986) and from the work of Pascoal er al. (1991) and 
Vidyasagar (1984) on robust stabilizability of those systems. 
For details of the proof the reader is referred to Kaminer et 
al. (1994). 

At this point, we revisit the example of Section 4.1 with d 
set equal to zero. The corresponding (singularly perturbed) 
gain-scheduled controller is given by 

I f, = _x + r _ (P - b)(x - a 
E 

%(x):= I i _ -f fx 
E ’ 

The feedback system consisting of the plant (10) and 

Fig. 4. Analog implementation of ‘%da) 
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controller (31) can be linearized about the equilibrium point 
(x,,, r, = x,,, x, = x6, To = x0), leading to the system 

(32) 

It is easy to check that the characteristic polynomial 
associated with (32) is given by (e(s3 + 2x,s*+s) + (s’+ 
ps + 1). A root-locus type of argument shows that as e-+0, 
two of the eigenvaues of (32) tend to the roots of s* + ps + 1, 
while the third tends to infinity along the negative real axis. 
Furthermore, 

$Qs) A- 1 
p(s) sz+ps+1 

es*@ - %I) 
=(sz + ps + l)[& + s2(1 + 2E.Q) + s(P + E) + l] . 

It is now straightforward to show, using the results of 
Kokotovi6 et al. (1986, p. 57) on the asymptotic behaviour 
of the closed-loop eigenvalues that 

liiO I/Q(.)Ilm= IiiOsup{&jw)l:w E R}=O. 

6. Conclusions and suggestions for future work 
A new method has been described to implement 

gain-scheduled controllers for nonlinear plants. The starting 
point is a family of linear controllers with integral action, 
designed for linearizations of a nonlinear plant about 
constant operating points. Based on that family, the method 
produces a gain scheduled controller that preserves the 
closed-loop eigenvalues as well as the input-output 
properties of the original linear closed-loop systems locally, 
about each operating point. The method is simple to apply, 
and leads to a nonlinear controller with a structure similar to 
that of the original controllers. Future work will concentrate 
on the following issues: (i) determining the extent of 
asymptotic stability of the nonlinear gain scheduled system; 
(ii) studying the impact of the dynamics involved in 
computing the scheduling variable (from the observed inputs 
and outputs to the plant) on the system’s performance. 
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