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The analysis and prediction of fluid-structure interaction for viscous, separated flows 
presents a great challenge to the aeroelastician. In this paper a zonal method for the 
computation of unsteady, viscous, separated flows over airfoils is presented. The flowfield 
is divided into a viscous inner zone, where higher grid resolution may be used, and an 
inviscid outer zone. Zonal grid solutions are presented for subsonic and transonic flows 
over a NACA-0012 airfoil subject to ramp and oscillatory motions. Transonic 
shock/boundary layer interaction and dynamic stall effects are encountered during the 
unsteady motion. The computed solutions are in good agreement with available ex­
perimental data. 

1. INTRODUCTION 

THE ANALYSIS OF FLUID/STRUCTURE interaction problems requires efficient and accurate 
prediction of the airloads to which the structure is exposed. Often the flow is 
dominated by viscous effects involving vortices, shock waves, and large separated flow 
regions. In recent years, great progress has been achieved on the numerical procedures 
for the solution of the Reynolds averaged, Navier-Stokes equations for high-Reynolds­
number two- and three-dimensional flow problems. For a review of the present 
state-of-the-art numerical techniques we refer to the text by Hirsch (1990), the recent 
review paper by Hanel (1992) and the references listed therein. 

Navier-Stokes methods require computational meshes with sufficient grid clustering 
near the wall for the accurate prediction of the large flow gradients in the viscous 
layers. The mesh outer boundaries must be placed far enough, in order to apply the 
inflow/outflow boundary conditions. However, only a coarser grid is required for the 
computation in the flow regions where viscous effects are not significant and the flow 
gradients are small. 

Accurate prediction of turbulent high Reynolds number flow poses a great challenge 
to the computational fluid dynamicist. An additional challenge is encountered in 
transonic flows due to the occurrence of weak shocks and shock/boundary layer 
interactions. For example, recent experimental investigations of unsteady flows over 

t Originally presented at the 30th Aerospace Sciences Meeting and Exhibit, 6-9 January 1992, Reno, 
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pitching and oscillating airfoils by Chandrasekhara et al. (1990) have shown that at 
free-stream Mach numbers greater than 0·4, shocks are generated near the airfoil 
leading edge. The computation of these shocks requires the use of sufficient grid 
resolution and high-order accurate shock capturing schemes. Recent developments of 
high-order upwind shock capturing schemes (Roe 1985; Rai 1986; Rai & Chakravarthy 
1986) enable accurate capturing of flow discontinuities for a variety of fl.ow regimes. 
Solutions obtained for two and three-dimensional complex flow fields by Rai (1987a, b) 
have proven the accuracy of upwind methods. 

Unsteady solutions for pitching and oscillating airfoils have been computed in the 
past by Rumsey & Anderson (1988), Visbal (1988) and Ekaterinaris (1989) using a 
single grid approach. The need for a decomposition of the flow domain into 
subdomains in order to enable gridding of complex flow domains and to meet 
conflicting requirements of accuracy versus efficiency has been recognized by several 
researchers. The Chimera approach pioneered by Benek et al. (1985) is the most 
general one which has been implemented to date. This approach requires significant 
bookkeeping in order to find the relative location of the overlapped grids and to obtain 
the weights for the intepolation which establishes the communication between the 
grids. Rai (1986) developed a conservative scheme for boundary information transfer 
between patched grids. Recently, a zonal approach has been also reported by Chesshire 
& Hershaw (1990). 

In the present paper, a zonal method for the computation of unsteady, compressible, 
viscous flows is presented. This approach, in contrast to the Chimera approach, does 
not require bookkeeping, and yet enables unsteady solutions on moving fine grids close 
to the airfoil surface for capturing of the viscous flow effects, in combination with a 
coarser grid for the outer inviscid fl.ow. The Osher (1982, 1983) upwind scheme in its 
implicit form presented by Rai & Chakravarthy (1986) is implemented to evaluate the 
inviscid fluxes. The implicit part of the algorithm is approximately factorized and 
linearized, and the solution is obtained with an iterative time-marching scheme. The 
physical domain is decomposed into two zones. The inner zone consists of an 0-type 
mesh which surrounds the airfoil. The outer boundary of the inner grid is circular. The 
outer zone starts from the outermost circle of the inner grid and extends to the far field 
or to a specified flow boundary. The inner and outer grids overlap by three points at 
the circumferential grid lines. Because of the circular interface, the inner and outer grid 
circumferential lines never intersect even when the inner grid is rotated. In this 
manner, the two grids are generated independently and different computational 
techniques may be applied for the solution in each zone, if needed. 

At the zonal grid interfaces boundary-information transfer is significantly facilitated, 
because the grid boundaries coincide along the circumferential direction. At the 
overlapped interfaces, boundary information transfer is obtained by simple weighted 
averaging. Computation of the relative locations of the two grids and the weights of the 
interpolation is simple and computationally inexpensive. A simple zonal grid, where 
the inner and outer grids overlap by three points, is shown in Figure 1. 

At the zonal interface, the conservative variables are transferred from one grid to the 
other. This approach is not fully conservative, in contrast to the approach employed by 
Rai (1986) for patched grids, where the fluxes, instead of the flow variables, are 
transferred in a fully conservative manner. However, transfer of the conservative 
variables provides the flexibility of applying different solution techniques for the inner 
and outer grids, and overlapping allows to retain accuracy at the zonal interface. 
Solutions obtained for transonic flows, with zonal interfaces close to the airfoil, show 
that shocks can pass through the zonal interface without distortion. 
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Figure 1. Sample zonal grid over a NACA-0012 airfoil. 

Steady inviscid and viscous solutions for different circumferential resolution of the 
inner and outer grids are obtained, and the results are compared with available 
experimental data. For the viscous computations, only the inner grid solution includes 
the viscous terms, while the outer grid region is considered inviscid. Unsteady solutions 
over oscillating and rapidly pitching airfoils are obtained by rotating the inner grid. 

2. NUMERICAL METHOD 
2.1. GOVERNING EQUATIONS 

The strong conservation-law form of the governing Euler and thin-layer, compressible 
Navier-Stokes equations for a curvilinear coordinate system (~, t) along the axial and 
normal direction, respectively, is as follows 

A A A -1 A 

a,Q + atF + ai:G =Re ai;S. (1) 

The Euler equations are obtained when the right-hand side is set equal to zero. In 
equation (1), Q is the conservative variable vector, F and G are the inviscid flux 
vectors, and S represents the viscous terms in the normal direction. The conservative 
variable vector Q is 

where J = l/(xtZi: - Xi;Zt) = ~x?z - ~z?x is the Jacobian of the transformation. F and G 
are the invisid fluxes given by 

F = !{ pu:~~xP } 
] pwU + ~zP ' 

(e + p)U - ~,p 

G=!{ pu::?xP }· 
l pwW+~zP 

(e + p)W - ~,p 



110 J. A. EKA TERINARIS ET AL. 

The viscous term, when the thin-layer approximation is applied, and assuming that 
A= -2/3µ. is given by 

where 

a is the local speed of sound, K is the thermal conductivity, Pr is the Prandtl number, 
and U, W are the contravariant velocity components given by 

U = ugx + wg, +gt, W = u(x + w(z + 61· 
In equation (1), all geometrical dimensions are normalized with the airfoil root-chord 

length; the density is normalized with the free-stream density, p"'; the velocity 
components are normalized with the free-stream speed of sound, a"°; the total energy 
per unit volume is normalized with pooa~; and the pressure is related to density and 
total energy through the equation of state for an ideal gas, 
p = (y - l)[e - ~p(u2 + w 2

)]. 

2.2. NUMERICAL IMPLEMENTATION 

The numerical integration is performed using an upwind-biased, factorized, iterative, 
implicity numerical scheme given by 

[I+ h~(t1'0tk + d0zk)Y 
x [/ + h,( rflB tk + ~B ;:k - Re- 1 81:M;,k)]P x (Qf..t 1 

- Qf.k) 
= -[(Qfk - Q7.k) + h~(Ff+112.k - Ff-112.k) + h,(Gf.k+112 - Gf.k-112) 

- Re- 1 h,(Sf.k+112 - Sfk-112)] (2) 

where h~ = J.r I J.g, etc., A± = ( aP I aQ ), etc., are the flux Jacobian matrices, and L1, V, 
and 8 are the forward, backward and central difference operators, respectively. The 
quantities F;+ 112,ki G;,k+ 112, and S;,k+ 112 are numerical fluxes. 

Time accuracy of the implicit numerical solution is obtained by performing Newton 
iteration to convergence within each time step. The approximation to Qn+i at each 
subiteration is the quantity QP. When p::::: 2, during a given subiteration, QP = Qn+i, 
but when p = 1 and no subiterations are performed, then QP = Qn, and Qp+I = Qn+ 1. 
By subiterating to convergence, linearization and factorization errors are minimized, 
because the left-hand side of equation (2) can be driven to zero at each time step. The 
inviscid fluxes ft and (; are evaluated using Osher's (1982, 1983) upwinding scheme. 

The numerical fluxes for a third-order accurate upwind-biased scheme are given by 
;>.. - I[ + + ] r;+112,k = F;+112.k + 6 LlF;-112.k + 2L1F1+112,k 

- HL1Fi+312,k + 2L1Fl+112,k] 

= F(Q;,ki Q;+1,k) + UJ.F+(Qi+l,ki Q;,k) + 2J.F+(Qi,ki Q;+1,k)] 

- UJ.F-(Q;,ki Q;+1,k) + 2L1F-(Qi+l,b Q;,k)]; (3) 

here F is the first-order accurate numerical flux for the Osher's (1982, 1983) scheme 
given by 



ZONAL METHOD FOR UNSTEADY VISCOUS FLOW 111 

1 [ iQi+I ] 
Fi+112,k = 2 Fi,k + F;+1,k - J, . {F; - F;;} dQ , 

Q, 
(4) 

where Fq = F; + F;;, F: = (aF/aQ)±, and ilF± are the corrections to obtain high­
order accuracy. The Osher scheme evaluates the flux assuming a shock-tube solution 
where Fq is piecewise continuous, and yields good predictions of the flux, especially at 
supersonic Mach numbers. For the linearization of the left-hand side of equation (2), 
the flux Jacobian matrices A, B are evaluated by the Steger-Warming (1981) flux­
vector splitting. The linearization errors are reduced by subiteration to convergence. 
Typically, two to three subiterations are sufficient to drop the residuals two orders of 
magnitude during the Newton iteration process. Accurate steady-state solutions can be 
obtained even without subiteration. Two subiterations are used for the unsteady 
solutions. 

High-order accurate shock-capturing schemes have some limitations; they may select 
a nonphysical solution, such as expansion shocks violating the entropy condition as 
explained by Osher et al. (1982, 1983) and Hirsch (1990); they may produce spurious 
oscillations and they may develop nonlinear instability in nonsmooth and discontinuous 
flow regions. More appropriate high-order shock-capturing schemes suitable for the 
computation of flows with shocks are the TVD schemes, described in detail by Yee et 
al. (1983) and Yee (1989). 

In the present study, the Osher-Chakravarthy TVD scheme (Chakravarthy & Osher 
1985), is used. This TVD scheme has flux limiters which impose constraints on the 
gradients of the fluxes. The flux-limited values ilJ± are computed from the unlimited 
fluxes ilf ± as follows: 

Llfi+312,k = minmod[ilfi+312,k> {3 ilfi+112,k], 

ilfi+112.k = minmod[ilfi+112,k> {3 ilgj+312.k], 

ilf (+112.k = minmod(,1Ji:112,b f3 ilft-112.d, 

ilf(-112,k = minmod[ilff':-112.b {3 ilf(+112,d, 

where the minmod operator is defined by 

minmod[x, y] = sign(x) X max[O, min{lxl, y sign(x)}]. 

The viscous fluxes Si,k+ 112 are computed with central differences as follows: 

Si,k+112 = S[Qi.k+112, (Q,)i.k+112, Ci.k+112], 

Qi,k+l/2 = ~(Q;,k + Q;+1,k), (Q,)i,k+l/2 = Qi,k+l - Qi,k· 

(5) 

(6) 

(7) 

The experimental Reynolds numbers based on the chord length for the test cases 
examined are in the range 3·0 X 106

::::: Rec::::: 5·0 X 106
, and it is expected that the flow is 

mostly turbulent. Transitional flow is expected to have an effect at regions very close to 
the leading edge. As shown by Jang et al. (1991), the incorporation of transition 
modelling is essential for the successful prediction of separation bubbles on airfoils at 
chord Reynolds numbers less than one million. However, in this paper high Reynolds 
number flows only are considered. In the present work, the widely used two-layer 
Baldwin-Lomax (1978) turbulence model is used. The effectiveness of other turbulence 
models, such as the Johnson-King model (Johnson & King 1985) and the RNG based 
algebraic model developed by Yakhot & Orszag (1986) for steady and unsteady flows, 
were investigated by Clarkson et al. (1993). The conclusion of that study was that for 
mildly separated flows, such as the light stall cases considered here, the effect of the 
turbulence model on the prediction of the aerodynamic loads is not very significant. 
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3. BOUNDARY CONDITIONS 

The solutions on the two grids are computed separately, with the inner and outer 
solutions communicating through the zonal interface boundary. The inner grid 
surrounds the airfoil and includes the boundary layer region and the wake for viscous 
solutions. Inviscid solutions are obtained by applying the nonpenetration slip condition, 
where the normal contravariant velocity component, W, is set equal to zero on the 
surface. For viscous solutions, the nonslip condition is applied for the velocities on the 
airfoil surface. In both cases, the density and the pressure are obtained from the 
interior by simple extrapolation. For unsteady solutions, the surface velocity is set 
equal to the airfoil speed obtained by the prescribed airfoil motion as follows: 

(8) 

Unsteady solutions for pitching and oscillating airfoils are obtained by rotating the 
inner grid only. The inner grid is rotated without deformation, as a solid body. The 
unsteady motion may also be obtained by shearing the grid, but this approach produces 
severely skewed grids for large rotations. For the unsteady solutions only the metrics of 
the inner grid must be recomputed at each time step. 

At the inner zonal interface, the flow variables are obtained from the interior of the 
outer grid solution. Similarly, the inner zonal boundary of the outer grid obtains 
boundary information from the interior of the inner grid. The inner and outer grid 
radial lines (Figure 1) are not aligned, in general. The relative location of the two grids 
with respect to the inertial reference frame varies during the motion of the inner grid. 
The distances between neighboring points at the zonal interface are computed, and 
simple weighted averaging of the conservative variables is applied. 

All flows were computed for subsonic free-stream speeds. For subsonic 
inflow/outflow boundaries of the outer grid, the flow variables are evaluated using one 
dimensional Riemann invariant extrapolation. At the inflow boundary there are three 
incoming and one outgoing characteristics. Therefore, three primitive variables are 
specified: the density p, the normal velocity w, and the pressure p; the fourth variable, 
the axial velocity u, is extrapolated from the interior. The inflow boundary conditions 
are given by 

_ ( ai )oi-r-i) 
P1 - , 

/'S1 

- ( 1' - l) (R + - R-) a1 -
4 

i 2 

_ (p1ai) Pi- , 
1' 

(9) 

where Rt and R:; are the incoming and outgoing Riemann invariants given by 

Rt= Ux + 2aoo/(y -1), R:; = u2 - 2a2 /( y - 1). 

At the outflow boundary there are one incoming and three outgoing characteristics. 
Therefore, only one quantity, the pressure, is specified, while the others are 
extrapolated from the interior. For the density and normal velocity, simple first-order 
extrapolation is used, and the axial outflow velocity is obtained from the zero-order 
outgoing Riemann invariant. The outflow boundary conditions are given by 

P1 = pz, U1 =Rt - 2a1/(y -1), 

a1 = Yypif p1' W1 = Wz, P1 = Px· 
(10) 
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For the viscous flow solutions the viscous terms were included only for the inner grid. 
For the outer grid, where the viscous effects are small, the inviscid flow equations were 
solved. For the unsteady flow solutions, the outer grid remained stationary and the 
metrics were not re-evaluated at each time step. 

4. RESULTS AND DISCUSSION 

The validity of the zonal grid approach is first demonstrated for inviscid solutions. The 
main objective is to assess the accuracy and the conservative character of the solution 
for different locations of the zonal interface and grid densities. An advantage of the 
present approach is that different grid densities may be used for the inner and outer 
grids. 

The accuracy of the computed results for different inner and outer grid densities is 
tested. The effect of the location of the zonal interface relative to the airfoil on the 
accuracy of the solution is also investigated. Several viscous solutions at fixed angles of 
incidence, up to approximately the static stall angle, are computed. Finally, unsteady 
flow responses to a ramp motion at subsonic free-stream speed of Moo = O· 3 and for 
oscillation at a free-stream speed of Moo = 0·6 are also computed. 

5. STEADY-STATE SOLUTIONS 

The accuracy of the present method was first established by computing steady-state 
inviscid and viscous solutions for a variety of flow conditions and angles of incidence. 
The computed results are compared with the experimental measurements of Harris 
(1981) and, when possible, to a panel solution. 

5.1. INVISCID SOLUTIONS 

A two-block grid consisting of an 81 x 21 point 0-type inner grid and an 81 x 21 point 
outer grid was used as baseline grid for the inviscid solutions. An inviscid solution using 
the baseline grid for subsonic flow over a NACA-0012 airfoil at Moo= 0·7, a = 1 ·4° was 
obtained. The computed surface-pressure coefficient distribution is compared with the 
measurements of Harris (1981) in Figure 2. The agreement with the experiment is 
satisfactory. The ability of the zonal scheme to treat flow discontinuities was 
investigated for a transonic flow solution at Moo= 0·803, a = -0· 1°. The surface­
pressure coefficient distribution predicted from the inviscid solution using the baseline 

1·2 

u"' 0·8 
I 

c 
" 

0·4 
·;:; 
s 0 8 
t) 

~ 
-0·4 ::l 

"' "' J: -0·8 

-1·2 
0 0·2 0·4 0·6 0·8 l·O 

xlc 

Figure 2. Comparison of the computed and measured surface-pressure coefficient for an inviscid, 
shock-free solution; M00 = 0·7, a = 1 ·4°, 0, Measured (Harris 1981); -, computed. 
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Figure 3. Effect of grid density on the prediction of pressure coefficient for an inviscid transonic flow; 
M~=0·8, a= -0·1°. 0, Measured (Harris 1981); -, computed (baseline grid);---, computed (half 

resolution). 

grid is compared with the measurements of Harris (1981) in Figure 3. The shock is 
captured within two points with the baseline grid solution. The effect of the grid 
resolution on the prediction of the surface pressure coefficient is shown in the same 
figure. Solutions were obtained with half the streamwise resolution, e.g., a 41 X 21 point 
grid. The surface-pressure coefficient distribution obtained from this solution (Figure 3) 
is in general agreement with the baseline grid predictions, but it predicts the shock 
location further downstream due to lack of streamwise resolution. The predictions with 
an even coarser grid, e.g., a 41 X 11 point grid, predicted the shock location even 
further downstream. 

The solution on a zonal grid where the outer boundary of the inner grid was placed 
close enough to the airfoil so that the shock would cross the zonal interface was also 
obtained. Note that, for this case, an oval type of zonal interface was used, because the 
available grid-generation procedure was incapable of constructing an inner grid with a 
circular outer boundary placed close enough to the airfoil. The computed surface­
pressure coefficient distribution (not shown here) was in perfect agreement with the 
predictions shown in Figure 3. The computed flow quantities, such as density and 
pressure, showed that the zonal approach used can pass shocks through the zonal 
interface. In Figure 4 the computed Mach contours are shown, the shock location is 
indicated with the sonic line, and the zonal interface is indicated with a dashed line. 
The Mach contour lines cross the zonal boundary without distortion, and the shock is 
convected through the zonal interface. The preliminary test cases presented above were 
computed on regularly stretched inner/outer grids. 

5.2. Viscous FLOW SoLUTIONS 

Viscous, subsonic flow solutions were obtained at several fixed angles of attack. The 
flow conditions of the measurements reported by Harris (1981) were used, e.g., 
Moo= 0·3, Re= 4·0 X 106

• These solutions were obtained on a 181 X 56 point viscous 
inner grid and a 181 X 26 point inviscid outer grid. Solutions were also computed on a 
grid with half the streamwise resolution, e.g., a 91 x 56 point grid. 

The computed surface pressure coefficient distributions for several angles of 
incidence are compared in Figure 5. In the same figure, the predictions of the inviscid, 
incompressible panel method of Jang et al. (1991) are also shown. Solutions for fixed 
angles of incidence were obtained by either rotating the inner grid to the specified 
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0.1soo 

Figure 4. Computed Mach contours; M00 = 0·8, a= 0·1°, inviscid calculations. 

angle of incidence and setting the oncoming flow to zero degrees or by not rotating the 
inner grid and setting the oncoming flow to the specific angle of incidence. Both 
approaches were straightforward to implement and the computed results were in both 
cases the same. For the subsonic viscous solutions, no flux limiting was applied. 

6. UNSTEADY SOLUTIONS 

6.1. RAMP MOTION 

The unsteady solution for a ramp motion from a = 0 to a = 15·5° at Moo= 0·3, 
Re= 2·7 x 106 and pitch rate k = 0·0127 was obtained on both a 91x56 point inner 
grid and a 181 X 56 point inner grid. The pitch rate is defined as k = ac/2U"". 

The computed lift response is compared with the experimental measurements by 
Landon (1982) in Figure 6. Both the coarse and the fine grid solutions closely predict 
the measured lift. However, at the higher angles of attack, the finer grid gives higher 
lift. The surface-pressure coefficient distributions at several angles of incidence are 
compared in Figure 7. The computed surface-pressure coefficient distribution is in good 
agreement with the measured data over the entire incidence range. 

The computed boundary-layer profiles at a midchord point for a = 5·8°, 8·9°, 11 ·7, 
and 15·5° are compared in Figure 8 with the predictions of a boundary-layer 
computation of Jang et al. (1991) based on an unsteady viscous-inviscid interaction 
method. The solutions have been computed with different grid densities (approximately 
triple of the Navier-Stokes grid resolution in the normal direction is used for the 
boundary-layer solution). Also, the Cebeci-Smith turbulence model has been used for 
the boundary-layer solution. The computed velocity profiles predicted by the two 
methods are in very good agreement for all angles of incidence before the flow 
separates. At a = 15·5°, both solutions predicted flow reversal at the trailing edge only. 
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Figure 5. Comparison of the measured and computed pressure coefficient for (a) a= 8·3°, (b) a = 10· 1°, 
and (c) a=l1·9°; Mx=0·3, Re=4·0Xl06

, turbulent. 0, Measured (Harris 1981); --, computed 
(181 X 56 grid); - - -, computed (inviscid panel method). 
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Figure 6. Comparison of the measured and computed lift coefficient for a ramp motion from a = 0° to 
a = 15·5° with pitch rate k = 0·0127; Mx = 0·3, Re= 2·7 x 106

, turbulent. 0, Measured (Landon 1982); --, 
computed (181 x 56 grid); - - -, computed (91 x 56 grid). 
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Figure 7. Comparison of measured and computed unsteady surface ,pressure coefficient for (a) a = 5·8°, 
(b) a = 8·9°, (c) a = 11 ·7°, and (d) a = 15·5°; M00 = 0·3, Re= 2·7 x 10 , turbulent. 0, Measured (Landon 

1982); -, computed (181X56 grid). 

The computed results are in close agreement in the near wall region. The grid 
resolution for the Navier-Stokes solution at this angle of incidence is sufficient, and y+ 
is of the order of one. It is concluded, therefore, that the differences observed in the 
outer wall region are mainly due to the different turbulence models. 

The computed flowfield at the maximum angle of incidence for which experimental 
data are available, a = 15·5°, is mostly attached. A small separated flow region exists at 
the trailing edge region only. Unsteady solutions at a higher angle of attack, a = 17·0°, 
show development of the dynamic stall vortex at the leading edge region. The 
computed flowfield at a = 15·5° is shown in Figure 9(a-c). Figure 9(a) shows a global 
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Figure 8. Comparison of the computed unsteady velocity profiles for a = 5·8°, (b) a = 8·9°, (c) a = 11 ·7°, 
and (d) a = 15·5°; M= = 0·3, Re= 2·7 x 106

, turbulent. - - -, boundary layer solution (Jang et al. 1991); -, 
present zonal solution. 

view of the computed density field. The location of the zonal boundary is shown in this 
figure, and the density contours cross this boundary without distortion. The computed 
Mach contours at a = 15·5° are shown in Figure 9(b ). A detail of the leading edge 
region in Figure 9(c) shows that for a subsonic speed of M"' = 0·3 a significantly high 
local Mach number, M = 1 ·3, is reached at the leading edge. The computed results, 
however, do not indicate any shock formation. The unsteady solution for the ramp 
motion was obtained without TVD limiting. 

6.2. OSCILLATORY MOTION 

The unsteady solution for an oscillatory motion at Mx = 0·6, Rec= 4·8 X 106
, in a range 

given by a(t)=4·86+2·44sin(wt) with a reduced frequency k=O·l6 was also 
obtained. Here the reduced frequency is defined as k = we I U"'. The flow for this 
motion is initially purely subsonic; but, as the angle of attack increases to about 
a(t) = 5°, supersonic flow conditions are encountered at the leading edge region and a 
transonic shock forms. This shock is present during the upstroke until the maximum 
angle of attack is reached and during the downstroke to about a (t) = 5·0°. The 
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Figure 9. Computed unsteady flow field at a = 15·5°; M= = 0·3, Re= 2·7 x 106
, turbulent. (a) Global view; 

(b) close-up to airfoil; ( c) detail of leading edge region. 

computed and measured lift and pitching moment response are compared in Figures 
lO(a) and lO(b), respectively. The computed lift and pitching moment coefficients are 
in close agreement with the measured values. 

The computed surface-pressure distribution is compared with the measurements by 
Landon (1982) for two angles during the upstroke and two angles during the 
downstroke in Figure ll(a-d). The computed surface pressure is in better agreement 
with the measurements at the lower angles of incidence (a= 5·95° up and a= 5·11° 
down). At higher incidences [Figure ll(b, c)], the agreement deteriorates in the region 
around the shock. The computed flowfield at the higher angles of incidence, a = 6·97° 
up, showed a small separated flow region after the shock. 

The computed flow field at a = 6·97° during the upstroke is shown in Figure 12(a-c). 
The global view of the computed density field of Figure 12(a) shows that the density 
contours smoothly cross the zonal interface for the case where a shock exists. The 
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Figure 10. Comparison of the measured and computed (a) lift and (b) pitching moment coefficient for 
oscillatory motion a(t) = 4·86 + 2·44 sin( wt) with k = 0·16; Moc= 0·60, Re= 4·8 x 106

, turbulent. 0, 
Measured (Landon 1982); --, computed (181x56 grid). 
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Figure 11. Comparison of the measured and computed unsteady surface-pressure coefficient for oscillatory 
motion a(t) = 4·86 + 2·44 sin( wt) with k = 0·16; Moc= 0·6, Re= 4·8 X 106, turbulent. (a) a= 5·95°; up; (b) 

a= 6·97°, up; (c) a= 6·57°, down; (d) a= 5·11°, down. 

close-up of the computed density field at a = 6·97° shows the shock location. The shock 
location is also indicated with the Mach contours in Figure 12(c). The entire unsteady 
solution for the oscillatory motion was obtained using the flux limiters. 

7. CONCLUSIONS 

A solution procedure suitable for steady and unsteady compressible flow solutions on 
zonal grids was developed. An implicit upwind scheme was used for the numerical 
solution. Simple weighted averaging was used at the overlapped zonal interfaces. This 
approach enables a more economical, flexible, and accurate computation of the 
flowfield, as compared to a standard Navier-Stokes solver, because the solution of the 
outer inviscid region is computed on a sparser grid with a computationally less 
demanding Euler solution, while the near wall viscous region is computed on a finer 
grid. The present zonal approach yields a 30% reduction in computational time as 
compared to a full Navier-Stokes solution, without compromising the accuracy of the 
solution. In addition, the outer boundaries of the stationary, inviscid grid may 
conform to a specified shape, while the inner grid is moving. Steady, inviscid and 
viscous flow solutions for subsonic and transonic flows over airfoils were presented to 
validate the zonal grid approach. Viscous solutions for unsteady transonic and subsonic 
flows showed good agreement with experimental measurements. 
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Figure 12. Computed unsteady flow field; a = 6·97° Mx = 0·60, Re= 4·8 x 106 , turbulent. (a) Global view; 
(b) close-up view; (c) Mach contours. 
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