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Abstract

A discretised planar tether model is proposed for the Motorised Momen-
tum Exchange Tether (MMET) in which axial elasticity is accommodated.
The model uses a generalised co-ordinate defining angular motion of the tether
about its centre of mass, as it travels at constant velocity on a circular or-
bit in the Earth’s equatorial plane and a generalised coordinate depicting the
elastic part of the tether length. The system comprises a symmetrical double
payload configuration, with outrigger counter inertia, and it is shown that
including axial elasticity permits an enhanced level of modelling accuracy for
the tether both in librating and spinning modes. A simulation has been de-
vised in MATLAB and SIMULINK for different data cases. This work will
be used later within a spin-up control system and will act as a precursor for
an in-depth study into the multi-scale dynamics of MMET tethers and space
webs, on more complicated orbits. This, in turn, will be assimilated within
new mission architectures.

1 Introduction

The motorised momentum exchange tether (MMET) was first proposed by Cartmell
[1] and based broadly on the conceptual schematic of the system shown in Figure 1.
The model and concept were developed further, Ziegler and Cartmell [2], which led
to proposals by Ziegler [3], who took physical angular co-ordinates for the generalised
co-ordinates representing spin and tilt, and a further angular co-ordinate defining
back-spin of the propulsion motor’s stator components, known henceforth as the
outrigger sub-system.

In Figure 2, there are two generalised co-ordinate systems, one is an Earth centred
X − Y − Z global co-ordinate system, the other is the x0 − y0 − z0 relative rotating
co-ordinate system. Two payload masses at each end, M1 and M2, are connected
by the tether sub-span, where the distance from the tether’s centre of mass M0 to
each end mass is denoted by L. R, R1 , and R2 are the distances from E (0 , 0 , 0 ) to
M0 (x0 , y0 , z0 ), M1 (x1 , y1 , z1 ), and M2 (x2 , y2 , z2 ), respectively, with M1 = M2 = MP ,
and M0 = MM . The centre of the Earth is denoted by E (Ex ,Ey ,Ez ), which is



Figure 1: Conceptual Schematic of the Motorised Momentum Exchange Tether

defined as the origin of the X − Y − Z system. The origin of the x0 − y0 − z0
rotating system is located at the centre of the facility mass. The X − Y plane
and the x0 − y0 plane lie coplanar to the orbit plane, where the Z and z0 axes are
perpendicular to the orbit plane. The X axis is aligned along the direction of the
perigee of the orbit, and the x0 axis is an extension of R. ψ is the in-plane pitch
angle, and this denotes the angle from the x0 axis to the projection of the tether
onto the orbit plane. α is the out-of-plane angle, from the projection of the tether
onto the orbit plane to the tether, and is always within a plane normal to the orbit
plane. θ is the circular orbit angular position, effectively the true anomaly. In the
case of a planar circular orbit, the R , α and θ are constants.

2 Modelling MMET Elasticity

A discretised model of the motorised momentum exchange system is shown in Fig-
ure 3. The configuration shown could potentially offer high performance for some
design data cases and orbital settings. The model contains both the dumb-bell char-
acteristics, as discussed in previous publications [1] [2] [3], along with new dynamics
which are representative of axial elasticity effects. The discretised MMET system
comprises a symmetrical double payload configuration, with an outrigger counter
inertia, as shown in Figures 1 and 3. The axial elasticity is defined by a string of
mass-spring-damper systems, where the masses are connected together serially with
springs and dampers, in which, k1 = . . . = kN+2 , c1 = . . .= cN+2 and m1 = . . . =
mN . The discretised MMET model in Figure 3 based on a discretisation scheme in
which the locations of the point masses along the length of the tether sub-span can
be calculated by means of equation (1). The location table of 1 to 20 point masses
is given in Figure 4. The location of each point mass within the tether is given by
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Figure 2: Planar Circular Orbit MMET System Schematic and Coordinates

equation (1):

li (i) =
(2i− 1) LT

2N
(i = 1, 2, ..., N) (1)

Figures 3 and 4 show the locations defined by equation (1) for the point masses
assumed for modelling the tether. The full length of the tether is LT in equation (2).
L0 is the original length of each sub-span of the tether when balanced symmetrically,
as seen in Figures 3 and 4. The start point is at i = 0 on the left, and the end is the
LT point at the right. Figure 4 shows the mass point locations within the full-length
of LT , the values of N in the list are the scaled locations of the point masses along
the full length LT , where N is the number of discrete point masses considered. An
example for N = 2 is given in Figure 4, where N = 2 means there are 2 point masses
in the tether, which are located at 0.25LT and 0.75LT , respectively. According to
previous research [2][3] on the tether’s potential energy, there should be at least 15
point masses to approximate adequately the full tether, and so Figure 4 gives a 1 to
20 point mass location scheme. The elastic length of the discretised MMET model
is given by equation (3), ∆xi is the relative deformation between two mass points
connected directly as defined in equation (7), and the time variant length L(t) of
the tether is the sum of the static length, L0 , and the elastic length, Lx , of the
discretised tether as given by equation (4).
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Figure 3: MMET Discretisation Strategy

LT = 2L (t) (2)

Lx (t) =
N+1∑
i=1

∆xi (t) (3)

L (t) = L0 + Lx (4)

On this basis equation (1) can be re-written as equation (5),

li (t, i) =
(2i− 1) LT

2N
=

(2i− 1) (L0 + Lx)

N
(5)

The elastic motion of the symmetrical tether system is considered to be dis-
tributed symmetrically along each tether sub-span, and so equation (6) transfers
the location of each point mass from the end-point-tether coordinate system, with
its generalised coordinate of i from 0 to LT in equation (5) to the motor-point-tether
coordinate system, with its generalised coordinate of x from 0 to L in equation (6).
The relative deformation between mass-points mi and mi+1 is given by equation (7),
and is also shown in Figure 3 and Figure 5.

lx (t, i) = |li (t, i)− L| =
∣∣∣∣
(2i− 1−N) (L0 + Lx)

N

∣∣∣∣ (6)

∆xi = lx(t, i + 1)− lx(t, i) (7)

In the discretised planar tether model, environmental effects such as solar ra-
diation, aerodynamic drag and electrodynamic forces, that may also influence the
modelling, are assumed to be negligible, and the motor consists of a rotor, which is
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attached to the propulsion tethers and a stator which can more relative to the rotor
by means of a suitable bearing. The power supplies, control systems, and communi-
cation equipment are likely to be fitted within the stator assembly in any practical
installation. The stator provides the necessary reaction that is required for the rotor
to spin-up in a friction free environment. The motor torque is assumed here to re-
main coplanar with the propulsive tethers and payloads. The tether and the motor
are connected by a spring-damper of as in Figure 3, when the tether moves out of
the orbital plane, the motor drive axis remains orthogonal to the tether plane, and
motor will similarly rotate about its centre of mass. In the planar discretised model,
the Cartesian components of the end masses of M0 , M1 and M2 in Figure 2 are
given by equation (8),(9) and (10):





x0

y0

z0



 =





R (t) cos θ
R (t) sin θ

0



 (8)





x1

y1

z1



 =





x0 + (L0 + Lx) cos αcos (θ + ψ)
y0 + (L0 + Lx) cos αcos (θ + ψ)

z0 + (L0 + Lx) sin α



 (9)





x2

y2

z2



 =





x0 − (L0 + Lx) cos αcos (θ + ψ)
y0 − (L0 + Lx) cos αcos (θ + ψ)

z0 − (L0 + Lx) sin α



 (10)

where R,θ, α,ψ, Lx could be defined as independent generalised coordinates, and
R, R1 ,R2 are the distances from the Earth’s centre to M0 , M1 and M2 . R1 and R2

are given by equation (11). In the current system, a planar circular orbit model has
been chosen and so R ,α and θ are henceforth considered to be constants.

R1 =
√

(L0 + Lx)
2 + R2 + 2 (L0 + Lx) R cos α cos ψ

R2 =
√

(L0 + Lx)
2 + R2 − 2 (L0 + Lx) R cos α cos ψ

(11)

T =
1

2
MP

(
ẋ1

2 + ẏ1
2
)

+
1

2
MP

(
ẋ2

2 + ẏ2
2
)

+
1

2
MM

(
ẋ0

2 + ẏ0
2
)

+
1

2
ρA (L0 + Lx)

(
ẋ2

T1 + ẏ2
T1

)
+

1

2
ρA (L0 + Lx)

(
ẋ2

T2 + ẏ2
T2

)
+

(
IP + IT +

1

2
IM

) (
ψ̇ + θ̇

)2

(12)

The discretised planar model is based on aspects of the spin-up of the point-
mass planar model, suggested by Ziegler and Cartmell [2] and stated in the results
of work by Ziegler [3]. The kinetic energy of a motorised tether, taking into account
the translation and rotation of each component, is given by equation (12), and the
potential energy is given by equations (13) or (14), incorporating gravitational and
elastic strain energy components.
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U = −µMP

R1

− µMP

R2

− µMM

R
− µρA

(L0+Lx)∫

−(L0+Lx)

(
R2 + l2 + 2lR cos ψ

)− 1
2 dl + SE

= −µMP

R1

− µMP

R2

− µMM

R
+

µρA ln


R cos ψ − (L0 + Lx) +

√
R2 + (L0 + Lx)

2 − 2 (L0 + Lx) R cos ψ

R cos ψ + (L0 + Lx) +
√

R2 + (L0 + Lx)
2 + 2 (L0 + Lx) R cos ψ


 + SE

(13)

Note that ln() is explicit in equation (13), and that this term has a numerical
singularity at ψ = nπ, which means for the case of a spinning motorised tether
problems will be encountered when numerically integrating. To avoid the singu-
larity situation, an alternative description of the potential energy is derived, which
discretises the tether mass, and so the potential energy is re-stated by equation (14).

U = −µMP

R1

− µMP

R2

− µMM

R
−

N∑
i=1

µρA (L0 + Lx)

N

√
R2 +

(
(2i− 1) (L0 + Lx)

2N

)2

+
2 (2i− 1) R (L0 + Lx)

2N cos ψ

−

N∑
i=1

µρA (L0 + Lx)

N

√
R2 +

(
(2i− 1) (L0 + Lx)

2N

)2

− 2 (2i− 1) R (L0 + Lx)
2N cos ψ

+ SE

(14)

The SE term is the strain energy of the discretised tether and is defined in
equation (16), CE is an assumed dissipation function based on Rayleigh damping
and defined in equation (17). The mass moments of inertia can be derived from first
principles, and are given by equations (15),

IP =
1

2
MP r2

P , IM =
1

2
MMr2

M , IT =
1

12
ρA (L0 + Lx)

(
3r2

T + (L0 + Lx)
2) (15)

where, IP is the mass moment of inertia of the payload,rp is the radius of payload,
IT is the mass moment of inertia of the tether,rT is the radius of the tether, IM is the
mass moment of inertia of the motor, rM is the radius of the motor.In the discretised
model, energy is stored as potential energy in the assumed spring elements. The
strain energy for tether elasticity is defined in equation (16).

SE =
N+1∑
i=1

1

2
ki∆x2

i =
1

2
keqL

2
x (16)
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Figure 4: Point Mass Location Scheme

Damping in each discretised elastic element is assumed to be classical linear
viscous in form and is given by,

CE =
N+1∑
i=1

1

2
ci∆ẋi

2 =
1

2
ceqL̇x

2
(17)

Equation (18) defines the equivalent spring stiffness keq, and the damping coeffi-
cient is ceq for each tether sub-span. A is the tether tube cross-sectional area, stated
in equation (19). Also f0 is the tensile force at the end of each tether sub-span, as
defined by equation (20).

keq =
ki

N + 1
, ceq =

ci

N + 1
(18)

A = πr2
T (19)

fi(t) = ψ̇2(t)


MP +

ρA

∣∣∣∣
(2i− 1−N)(L0 + Lx)

N

∣∣∣∣
2




∣∣∣∣
(2i− 1−N)(L0 + Lx)

N

∣∣∣∣ (20)

In Figure 6 the tether has a payload at each end and rotates due to the motor,
thereby experiencing centripetal acceleration. The tether’s tensile force related to
the tether stress is given by equation (20). Calculating the stress, Ziegler and
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Figure 5: The Relative Deformation Between Mass-points

Cartmell [4], provides a basis for Figure 6 in order to show the stress distribution
within the tether sub-spans. This shows the relationship between tether stress, point
mass location, and the angular velocity.

It can be note that ψ is defined as the planar pitch angle, and τ is the motor
torque, which is assumed to be a constant here. Equations (12), (14) are substituted
into Lagrange’s equation, leading to the dynamical equations of motion in ψ and
Lx .

Since assumptions have been made that there are two non-conservative forces are
acting on the system, namely, τ , the motor torque, and QLx , the generalised force
associated with the generalised coordinate Lx , then a classical linear viscous damping
term as a result of assuming a Rayleigh type dissipation function in equation (17)
is also assumed in equation (22).

N∑
i=1

µρπRr2
T (2i− 1)(L0 + Lx)

2sinψ

2N2

(
R2 − (2i− 1)Rcosψ(L0 + Lx)

N
+

(2i− 1)2(L0 + Lx)
2

4N2

) 3
2

−

N∑
i=1

µρπRr2
T (2i− 1)(L0 + Lx)

2sinψ

2N2

(
R2 +

(2i− 1)Rcosψ(L0 + Lx)

N
+

(2i− 1)2 (L0 + Lx)
2

4N2

) 3
2

+

1

6
(θ̈ + ψ̈)

(
3MMr2

M + 6MP r2
P + 4πρr2

T (L0 + Lx)
3 + 12MP (L0 + Lx)

2 + 3πρr4
T (L0 + Lx)

)
+

1

6
(θ̇ + ψ̇)L̇x

(
12ρπr2

T (L0 + Lx)
2 + 24MP (L0 + Lx) + 3πρr4

T

)− µRMP (L0 + Lx)sinψ
(

1

(R2 + 2R(L0 + Lx)cosψ + (L0 + Lx)2)
3
2

− 1

(R2 − 2R(L0 + Lx)cosψ + (L0 + Lx)2)
3
2

)

= τ

(21)
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Figure 6: Stress Distribution within Tether Sub-span

(
2MP +

1

2
ρπr2

T (L0 + Lx)

)
L̈x + 3ρπr2

T L̇x −
(

2MP (L0 + Lx)− 1

4
ρπr4

T − ρπr2
T (L0 + Lx)

2

)

(
θ̇ + ψ̇

)2

− ρπr2
T

(
Ṙ2 + R2θ̇2

)
+

k0Lx

N + 1
+ µMP




(L0 + Lx)−Rcosψ

(R2 − 2(L0 + Lx)Rcosψ + (L0 + Lx)2)
3
2

+

(L0 + Lx) + Rcosψ

(R2 + 2(L0 + Lx)Rcosψ + (L0 + Lx)2)
3
2




+ µρπr2
T




N∑
i=1




(L0 + Lx)

(
(2i− 1)2(L0 + Lx)

2N2 − (2i− 1)Rcosψ
N

)

2N

(
R2 − (2i− 1)Rcosψ(L0 + Lx)

N
+

(2i− 1)2(L0 + Lx)
2

4N2

) 3
2

−

1

N

(
R2 − (2i− 1)Rcosψ(L0 + Lx)

N
+

(2i− 1)2(L0 + Lx)
2

4N2

) 1
2




+

N∑
i=1




(L0 + Lx)

(
(2i− 1)2(L0 + Lx)

2N2 − (2i− 1)Rcosψ
N

)

2N

(
R2 +

(2i− 1)Rcosψ(L0 + Lx)

N
+

(2i− 1)2(L0 + Lx)
2

4N2

) 3
2

−

1

N

(
R2 +

(2i− 1)Rcosψ(L0 + Lx)

N
+

(2i− 1)2(L0 + Lx)
2

4N2

) 1
2







+ ceqL̇x = 0

(22)
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Figure 7: Ψ and Lx Simulation Graphs,τ = 2.5× 108Nm

3 Case Study

Unless stated otherwise all of the results were generated with the following sys-
tem parameters: the number of point masses N = 20, gravitational constant µ =
3.9877848×1014 m3s−2, propulsion tether mass of payload MP = 1000 kg, mass of
motor facility MM = 5000 kg, static length of propulsion tether L0 = 10000 m, cir-
cular orbit with eccentricity e = 0, periapsis distance rper = 6890 ×103 m, apoapsis
distance rapo = rper , radius of tether tube rT = 0.1 m, radius of facility of motor
rM = 0.5 m, radius of payload rP = 0.5 m, the original tether tube cross-sectional
area A = 62.83×10−6 m2 , the tether density ρ = 970 kg/m3 , initial angular ψ0 =
-0.9 rad, initial angular velocity of ψ̇0 = 0.001 rad/s, motor torque τ = 2.5 × 108

Nm in Figure 7 and τ = 2.5× 1012 Nm in Figure 8, damping coefficient ci = 2000
Ns/m, stiffness ki= 20000 N/m, acceleration of gravity g = 9.81 m/s2, The period

of elliptical orbit T = 2π( rapo+rper

2
)

3
2 /µ

1
2 , Numerical results were obtained by inte-

grating equations (21) and (22), in MATLAB/SIMULINK with a fourth-fifth-order
Fehlberg Runge-Kutta method using a relative error of 10−6 .

Figure 7 shows the time responses for the pitch angle ψ, and the axial displace-
ment of the tether, Lx, along with their corresponding phase spaces. It is clear that
over the integration time shown both quantities exhibit what looks to be steady
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Figure 8: Ψ and Lx Simulation Graphs,τ = 2.5× 1012Nm

state oscillation. Physically this equates to libration of the tether, and an axial os-
cillation about a constant tensile offset from the nominal length of around 5 metres,
with an amplitude of approximately +/- 5 metres about that offset value. For an
unstretched 10 km sub-span the constant offset represents a stretch of 0.05%, so
with the oscillation superimposed on this the tether oscillates between the nominal
unstretched length and a maximum extension of 0.1%. This is agreeably small in
percentage terms but could still have practical implications for payload delivery and
retrieval should the tether be required to work in the librating mode. The phase
plots show limit cycle behaviour for each coordinate, which tends to corroborate the
interpretations of steady-state. Figure 8 illustrates the system responses once the
tether pitch angle has bifurcated out of the periodic libration and into monotonic
spin. This response is highly nonlinear but shows a good build-up of rotation in
a short time. The axial response shows a gradual growth in tensile stretch over
a fraction of a metre and then oscillation once again, about a small tensile offset
value of just over 1 m. Although the integration time shown is limited it looks as
though the axial coordinate could, in time, reach a steady-state oscillation. How-
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ever, the phase plot for the axial coordinate is harder to decipher and a longer time
is needed to get accurate clarification of the qualitative aspects of this response. It
is interesting to note that the frequency of axial oscillation in Figure 8 is very much
higher than that of Figure 7, which is one reason why the plots in Figure 8 are for a
shorter integration time, noting that all detail would otherwise be lost. The torque
is increased 10000 times to provide the bifurcation from the case of Figures 7 to that
of Figure 8.

4 Conclusions

The work in this paper has shown that including axial elasticity within an MMET
model has a significant bearing on overall performance and that this effect should
not be ignored in future, particularly for control. All subsequent analyses for control
applications will henceforth include axial compliance within the modelling.
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