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Abstract: Two iterative algorithms for solving systems of linear and nonlinear equations are
proposed. For linear problems the algorithm is based on a control theoretic approach and it is
guaranteed to yield a converging sequence for any initial condition provided a solution exists.
Systems of nonlinear equations are then considered and a generalised algorithm, again taking
inspiration from control theory, is proposed. Local convergence is guaranteed in the nonlinear
setting. Both the linear and the nonlinear algorithms are demonstrated on a series of numerical

examples.
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1. INTRODUCTION

A key objective which is central to control theory is to
feedback stabilise an equilibrium of a system, i.e. given a
system one seeks to design a control input which renders
an equilibrium of the system globally (or locally) asymp-
totically stable. A consequence of this is that the state
of the system converges to a certain equilibrium point.
Moreover, it may be desirable that a certain convergence
rate be achieved. For linear systems the rate of convergence
is determined by the locations of the eigenvalues associated
with the closed-loop system (Dorf and Bishop [2011]).
In contrast, stability analysis for nonlinear systems often
relies on Lyapunov methods (Isidori [1995], Khalil [1996]).
On the other hand, numerical analysis concerns algorithms
used to obtain solutions to mathematical problems when
closed-form solutions are not readily available. In general,
numerical methods can be divided into two approaches: di-
rect methods and iterative methods. Direct methods, such
as Gaussian elimination and the simplex method, allows
to compute the solution of a problem in a finite number of
steps. Moreover, given infinite precision, a solution found
via such methods is exact. Differently from direct methods,
iterative methods yield sequences which converge to a so-
lution of the underlying mathematical problem. Examples
of such methods include Newton’s method. In practice, if
an iterative method is convergent, it is terminated when
a sufficiently accurate solution is obtained, thus providing
an approximate solution of the problem.

Several links can be drawn between numerical analysis and
dynamical systems theory: for example, the solution of
a system of equations can be interpreted as the equilib-
rium of a dynamical system. There is a further similarity
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between the dynamics of a system and iterations of an
iterative numerical method. Thus, there is a clear anal-
ogy between the control theoretic problem of designing a
stabilising controller and that of determining a convergent
iterative method. In this paper we explore the similarities
between the two notions and propose a numerical method
for obtaining the solution of a system of linear equations
which is centred about a control theoretic approach. Due
to its simplicity (in terms of computational requirements),
the developed technique is well-suited for large-scale prob-
lems. Exploiting the system theoretic interpretation of the
proposed numerical method, it is modified to solve systems
of nonlinear equations, with local convergence results.

Different iterative methods for solving systems of equa-
tions exist. The Jacobi method and the Gauss-Seidel
method, which fall within the category of stationary iter-
ative algorithms, are two such examples (see, for instance,
Ortega [1990]). The convergence of these algorithms can
only be guaranteed for certain classes of problems (see
Ortega [1990]). Tterative methods for nonlinear systems of
equations include the well-known Newton’s method and
variations thereof (see, for example, Dennis Jr. and Schn-
abel [1996], Ortega and Rheinboldt [1970]). However, the
convergence of Newton’s method for nonlinear equations
relies heavily on the selection of the initial condition and
the method is not generally globally convergent (Dennis Jr.
and Schnabel [1996]). Other iterative methods include
a range of algorithms for solving unconstrained, convex
optimisation problems (see, for example, Boyd and Van-
denberghe [2004]) or Krylov subspace methods (see, for ex-
ample, Van Der Vorst [2000]). A summary of developments
made in the 20th century, relating to iterative methods
for solving linear systems of equations can be found in
Saad and Van Der Vorst [2000]. In Smale [1976] a so-called
global Newton method, which relies on the introduction of



an ordinary differential equations is provided. Properties
of the method are further considered in Keenan [1981].
With roots in dynamical systems theory the global Newton
method considered in Smale [1976] and Keenan [1981] has
been developed in the context of mathematical economics.

The parallels between control theory and iterative al-
gorithms have been studied from several different per-
spectives in the literature. In Bhaya and Kaszkurewicz
[2007] iterative methods for solving linear and nonlinear
equations are viewed as regulation problems for dynamical
systems with feedback and several iterative methods are
studied using this approach. The connections between the
convergence of iterative methods and stability analysis
based on Lyapunov functions are considered in Ortega
[1973]. More recently, the convergence properties of several
well-known iterative methods have been studied from a
system theoretic point of view in Kashima and Yamamoto
[2007]. The link between iterative algorithms and dynam-
ical systems is also utilised in Harbor [1989] and Han and
Han [2010]. Differently from the aforementioned literature,
in Hasan et al. [2013] the effects of finite precision on nu-
merical methods are investigated from a control theoretic
point of view.

In this paper, iterative algorithms are proposed based on
the discretisation of the ordinary differential equations
(ODEs) describing dynamical systems with stabilising
state feedback. The parallels between control theory and
numerical analysis have not yet been fully exploited:
the results in this paper are intended to highlight new
ways in which these parallels can be taken advantage of.
Moreover, this work is intended to pave the way for the
construction and the study of convergence properties of
interative methods for solving systems of couped algebraic
Riccati equations (AREs) which arise in linear quadratic
differential games (see, for example, Mylvaganam et al.
[2015], Engwerda [2005]). Coupled AREs are, in general,
not straight-forward to solve and, consequently, there is
a need for novel numerical methods to deal with such
problems.

The remainder of this paper is organised as follows. The
problem of solving a system of linear equations is intro-
duced along with a brief summary of available numerical
methods before a novel approach for solving such systems
of equations, based on a control theoretic approach, is
provided in Section 2. The approach results in a globally
convergent algorithm for solving systems of linear equa-
tions. Systems of nonlinear equations are then considered.
The approach introduced in Section 2 is generalised and
applied to nonlinear problems in Section 3, where a lo-
cally convergent algorithm for solving systems of nonlin-
ear equations is provided. Both methods (for linear and
nonlinear problems, respectively) and the resulting algo-
rithms are illustrated on a series of numerical examples in
Section 4. Finally, some concluding remarks and directions
for further research are provided in Section 5.

The following standard notation is used in the remainder
of this paper. The set of real numbers is denoted by R
and the open left half complex plane is denoted by C~.
The identity matrix is denoted by I. The spectrum of the
matrix A is denoted by o(A), i.e. o(A) = {\1,..., n},
where \;, ¢ = 1,...N, are the eigenvalues of A. The

spectral radius is of the matrix A is denoted by p(A), i.e.
p(A) = max;{|\],...,|An|}. The notation A = {a;;} is
used as a compact representation of the matrix A. The
weighted norm of a vector z € R™ is denoted by ||z g,
i.e. |z||lr = VaT Rz, with R € R™™". Finally, given a
vector € R™, max;{|z;|} denotes the element of x with
the largest magnitude.

2. AN ITERATIVE ALGORITHM FOR SYSTEMS OF
LINEAR EQUATIONS

Consider the system of linear equations
Ax +d=0, (1)
where A € R"*" z € R™ and d € R", and suppose we

want to find the solution 2* of equation (1). In what follows
the following assumption is made.

Assumption 1. The matrix A in (1) is non-singular, i.e.
det(A) # 0 (or, equivalently, rank(A) = n).

Clearly, the solution of (1) is

zt=—A"d. (2)
However, it is of interest to obtain the solution with-
out performing computationally demanding operations,
such as matrix inversions. Alternative, numerical methods
become particularly important for large-scale systems of
equations, i.e. when n is large. In what follows, iterative
numerical methods for solving the system of equations (1)
are considered.

In Harbor [1989] iterative numerical methods for solving
equations of the form (1) are considered from a control
theoretic perspective. In particular, it is demonstrated
that an iterative method, such as the well-known Jacobi
iteration and the Gauss-Seidel iteration, can be interpreted
as a feedback control system. An iterative method can thus
be described as a discrete-time system and its convergence
can be studied using standard tools for stability analysis.
In Han and Han [2010] an algorithm for solving systems of
nonlinear equations is provided. The algorithm proposed
therein relies on the observation that a solution of such a
system of equations can be interpreted as an equilibrium
of a dynamical system (see also Deuflhard [2011]). In the
remainder of this paper we pursue the idea of developing
numerical methods based on control theoretic concepts. In
particular, we seek to solve the following problem.

Problem 1. Consider the system of linear equations (1),
where A satisfies Assumption 1. Derive an iterative nu-
merical method which allows to determine the solution z*
(given by (2)) of the system without performing matrix
inversions.

Drawing inspiration from Harbor [1989] and Han and Han
[2010] an iterative method for solving Problem 1 which is
centred around dynamical systems and feedback control
is presented in this section. In particular, the problem of
solving the system of linear equations (1) is recast as a
problem of designing a dynamic feedback controller for
a linear dynamical system. A similar, yet preliminary,
approach has been adopted in Mylvaganam and Astolfi
[2016a] and Mylvaganam and Astolfi [2016b] to obtain
solutions for coupled algebraic Riccati equations (ARESs),
which are nonlinear.



To this end, consider the variables z(t) € R™ and u(t) € R”
and the extended system

T = Au+d,
U= w, (3)

with input w.

Problem 2. Consider the extended system (3). Design a
state feedback w such that the closed-loop system has an
exponentially stable equilibrium.

Remark 1. In the dynamic setting introduced above, the
constant term d in (1) can be interpreted as a static

disturbance affecting the dynamical system (3). A
Let K; € R"*" for i = 1,2, and let Ay = 0 4 A
7 ’ ) 4y cl Kl KQ .

solution of Problem 2 is provided by the following simple
statement.

Lemma 1. Let K;, i = 1,2, be such that o(A.) € C~ and
suppose K7 is invertible. Then the state feedback

w= Kz + Kou, (4)
is such that the dynamical system (3) is exponentially
stable and thm u(t) =x*. o

— 00

Substituting (4) into (3), the closed-loop system is de-

scribed by
T d

A selection of K; and K, satisfying the assumptions in
Lemma 1, and which does not require computing matrix
inverses, is provided in the following statement.

Proposition 1. The selection

Ki=-A", Ky,=-M, (6)
for some positive definite matrix M, is such that o(A4y) €
Cc™. o

Remark 2. Any positive definite matrix M is such that the
equilibrium of the closed-loop system (5) is exponentially
stable. A simple selection is then provided by

M=)\, (7)
where \ > 0. A

Lemma 1 implies that the solution of (1) can be obtained
by considering the evolution of the states of the closed-
loop system (5). Thus, the discretisation of (5) starting
from the initial conditions z(0) = ¢ and u(0) = g results
in an iterative algorithm for obtaining the solution of (1)
as shown in Table 1, where T is the step size and € > 0 is
a tolerance value, indicating the accuracy required by the
algorithm. In what follows the algorithm is referred to as
Algorithm A-LI. Algorithm A-LI in Table 1 results from
applying the Euler method for differential equations to the
ordinary differential equation (5) and it is guaranteed to
converge for a sufficiently small step size (provided K;
and K, are such that Ay € C7). Thus, Algorithm A-
LI provides a solution for Problem 1, i.e. it provides a
simple algorithm for obtaining an asymptotic solution of
(1). The conditions for Algorithm A-LI to converge, for any
initial condition xy and ug, are provided in the following
statement.

Table 1. A-LI: Iterative algorithn for linear
equations

Input: Parameters A, d, K1, Ko, T e.
Output: Estimated solution x*.

1: Initialization: Set initial conditions xq, ug.
2 Repeat

3 Tpt1 =z + (Aug +d)T

4 Uk4+1 = Uk + (Klib‘k + Kguk)T

5: ki=k+1

5: Until max;{|Az, +d|;} <€

6: 2" =u

7: End

Lemma 2. (Chapter 7, Ortega [1990]). Suppose that the
parameters K1, Ko and T in Algorithm A-LI are selected
such that p(I + AuT) < 1. Then Algorithm A-LI is
convergent, i.e. lim xzp = x*. o
k—o0
Remark 3. The matrices K7 and K, and the step size
T can be selected to maximise the speed of convergence
of Algorithm A-LI. In fact, the rate of convergence is
determined by p(H) and the aforementioned parameters
can be selected to minimise p(H), thus maximisising the
rate of convergence (see Chapter 7, Ortega [1990]). In some
cases it may be useful to apply Gershgorin’s Theorem,
or generalisations thereof (see, for instance Feingold and
Varga [1962]), to minimise the spectral radius of H without
the direct computation of its eigenvalues. A

The speed of the algorithm may be further improved ac-
cording to the following two remarks, essentially relating to
the method of disrectising the continuous-time dynamical
system (3) and the the selection of the step size T'.

Remark 4. Different schemes for discretising the continuous-
time system (3) resulting in iterations different from those
in Algorithm-ALI can be cosindered and may result in
improved convergence rates. Higher order one-step meth-
ods such as the classic Runge-Kutta method or multistep
methods may be considered (see, for example, Chapter 5,
Ortega [1990]). A

Remark 5. The step size T is constant in Algorithm A-
LI. Utlising an adaptive step size may prove useful in im-
proving the algorithm. Adaptive schemes are, for example,
considered in Ilie et al. [2008]. Note that the system (5)
with K7 and K> in (6) is a Hamiltonian system. It may
therefore be of interest to explore discrete-time models for
port-controlled Hamiltonian systems as given in Laila and
Astolfi [2006] and Stuart and Humphries [1998]. A

3. AN ITERATIVE ALGORITHM FOR SYSTEMS OF
NONLINEAR EQUATIONS

Algorithm A-LI in Section 2 is applicable only to systems
of linear equations. However, the algorithm can be gener-
alised to deal with systems of nonlinear equations. To this
end, consider the system of equations

f(z)=0, (8)
where z € R™ and f : R” — R" is a smooth mapping, and
suppose we want to find a solution z* satisfying (8), i.e.
f(z*) = 0. As in the case of linear systems discussed in
Section 2, it is often of interest to obtain such a solution



numerically. That is, we seek to solve the following problem
(which is a direct extension of Problem 1).

Problem 3. Consider the system of nonlinear equations (8).
Derive an iterative numerical method which allows to
determine the solution z* of the system.

In the following a second algorithm, generalised to handle
systems of nonlinear equations, is provided.

Remark 6. Unlike the case with systems of linear equa-
tions, systems of nonlinear equations of the form (8) may
have several solutions. Therefore, in what follows, local
solutions for Problem 2 are considered. A

Let z* denote a solution of (8). Consider, as in the linear
case in Section 2, the variables z(t) € R™ and u(t) € R®
and the extended system

z = f(u),

i ®

)

with w as input. The “nonlinear equivalent” of Problem 2
follows.

Problem 4. Consider the extended system (9). Design a
state feedback w such that the closed-loop system has a
(locally) asymptotically stable equilibrium at v = x*.

Remark 7. There exists a matrix-valued function F(u) :
R™ — R™™ such that the system (9) can be written in

the form! P J
Tz = Flu)u+d,
i (10

where d = f(0). A

Suppose an equilibrium, denoted by (z),ul)T of the

system (9) exists and consider the function V : R® —» V
V(z,u) =

1 A
9 [(x - xe)T (u— Ue)T ]

5P ()™ §FA(?6)} e

with A > 0 and 6 > 0. Let M : R™* R™ — R™ "™ denote a
positive definite matrix-valued function, i.e. M (z,u) > 0
for all x and u, and let A; : R™ x R®" — R"*" be
matrix valued mappings such that A;(u,ue)(u — ue) =
F(u)u — F(ue)ue and Ag(u, ue, z.) " (2 — ) = F(u) Tz —
F(ue)"@e. Finally, let Ty = £6 (F(ue)AJ + AgF(ue) '),
Flg = %(5F(U€)M+)\(A27A1)) and FQQ = M —
16 (F(ue) "A1 + A F(ue)).

Proposition 2. Let

w=—F(u)'z— Mz, u)u. (12)
Suppose F'(u.) is invertible, A and ¢ are such that
52
M — 7F(ue)TF(uQ) >0, (13)

and suppose the trajectories of the closed-loop system (9)-
(12) satisfy

T11 >0, Top—T1(T1) 'T12<0 (14)
holds in a neighbourhood N containing the equilibrium
(xl,ul)T. Then the dynamic feedback (u,w) is such that

e €

1 The statement follows directly from the observations that & =
f(u) — £(0) + f(0) and that the first two terms can be written as

f(uw) = £(0) = F(u)u.

Table 2. A-NLI: Iterative Algorithm for Non-
linear Equations

Input: Parameters f(z), M(x,u), Te.
Output: Estimated solution z*.

1: Initialization: Set initial conditions xg, ug.
2 Repeat

3 Tpt1 =z + flup)T

4: U1 -= uk—(F(uk)Txk—FM(J;k,uk)uk)T
5: k=k+1

5:  Until max;{|f(ug)|i} <e

6:2" =u

7: End

the equilibrium (z.,u.) is (locally) exponentially stable
and 75lim u(t) = «* where z* is the solution of (8). S
—00

Remark 8. In the linear case F' is constant and A; =
Ay = A. Thus, in the linear case the inequalities (14) is
trivially satisfied (for suitable values of A and §). From a
control theoretic perspective the challenge, which becomes
apparent in the nonlinear case, is that we seek to stabilise
an unknown equilibrium of the system. A

Similarly to what has been done in Section 2 for systems
of linear equations, the above statement is utilised to
develop an algorithm for solving Problem 2. In particular,
the iterative numerical algorithm, given in Table 2, for
obtaining an approximate solution of (8) follows from the
discretisation of the closed-loop systems (9)-(12). Hence-
forth the algorithm will be referred to as Algorithm A-
NLI. Similarly to what has been seen in Section 2 the
Algorithm A-NLI in Table 2 simply represents the Euler
approximation of the dynamical system (9).

Remark 9. As seen in Lemma 2 in the linear case, con-
vergence of algorithm A-NLI depends on the step size T.
Similarly to the observations made in Remark 3 the param-
eters may be selected to maximise the rate of convergence
and, as seen in Remarks 4 and 5, alternative methods of
discretising the dynamical system (9) may yield further
improvements. A

4. NUMERICAL EXAMPLES

Three numerical example are provided in this section. A
system of linear equations, a nonlinear equation, which is
a scalar ARE, and a system of nonlinear equations are
considered separately in the following.

4.1 System of Linear Equations

Consider first a system of equations of the form (1) with
1000 unknowns, i.e. n = 1000 and the error

er = max{|Aux +d|; }, (15)
which quantifies the maximum (absolute) residue at each
time. Note that this provides also the termination crite-
rion of the algorithm. A matrix A = {a,;}, such that
A € R1000x1000 " anq such that its diagonal elements sat-
isfy 1 < a;; < 10 and its non-diagonal elements satsify
—0.1 < a;; < 0.1, and a vector d € R1990 are randomly
generated in MATLAB. Algorithm A-LI shown in Table 1
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Fig. 1. Time history of the error e associated with Al-
gorithm A-LI (solid line) and with an alternative
algoritm based on the Runge-Kutta method (dashed
line).

is applied with thefollowing selection of parameters. The
initial condition zg = ug = 0 is selected, the sampling time
is taken to be T' = 0.05 seconds and ¢ = 5 - 107°. In line
with Proposition 1 K; = —B" and M = 10I. Following
Remark 4 an alternative to Algorithm A-LI in which the
discretisation is done using the classical (fourth order)
Runge-Kutta method in place of the Euler method (see, for
instance, Chapter 5, Ortega [1990]), is also considered, for
the same selection of parameters with the exception of the
step size which is taken to be T'= 0.1. Note that once the
desired accuracy is reached the algorithms are terminated.
The time history of the error e is shown in Figure 1 for Al-
gorithm A-LI (solid line) and for the alternative algorithm
based on the fourth order Runge-Kutta method (dashed
line). Note that, despite the parameters not having been
selected to optimise the convergence rate, the alternative
algorithm requires half the number of iterations compared
to Algorithm A-LI, indicating that, as noted in Remarks
4 and 5, the convergence rate may be further improved.

4.2 Scalar ARE

Consider the case in which n = 1 and
f(z) = 2az + 20%2° + ¢, (16)

where a € R, b € R and ¢ € R. Note that, similarly
to one of the examples considered in Mylvaganam and
Astolfi [2016Db], the quadratic equation (16) is a scalar
ARE. Note also that (16) can be written in the form (10)
in Remark 7. Thus, Algorithm A-NLI can be implemented
with F(u) = 2a + 2b%u and d = ¢. Consider the case in
which ¢ = —0.1, b = 0.2 and ¢ = 10. The parameters
for Algorithm A-NLI are selected as M = 10, ¢ = 1076
and T' = 0.2. The resulting time histories of z (top) and u
(bottom) are shown in Figure 2, whereas the time history
of the nonlinear error

ex = max{|f(ux)li}, (17)

is shown in Figure 3. The circular markers and dashed
vertical lines in Figures 2 and 3 indicate the iteration at
which Algorithm A-NLI terminates and returns a solution
of (16), namely z* = 13.5078. In this case the algorithm
converges to the positive root. Note that in the context of
optimal control and differential games one seeks to obtain
positive definite solutions of AREs.

200
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Fig. 2. Time histories of = (top) and u (bottom).
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Fig. 3. Time history of the error e.
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0 100 200 300 400 500 600 700 800 900 1000
iteratiom

Fig. 4. Top: time histories of 21 (solid line) and x5 (dashed
line). Bottom: time histories of u; (solid line) and us
(dashed line).

4.3 System of Nonlinear Equations with Two Unknowns

Consider the system

| aix1x2 +ax  sinxy
fla) = 0 azxs + as \d/’
£(0)
F(x)
and consider the case in which a1 = as = a3 =1, ag =0.5
and d = [75,71]T. Algorithm A-NLI is applied to the
problem with M = 20, ¢ = 107% and T = 0.1. Let
u = [uy,uz]". The time histories of x; (solid line) and

xo (dashed line) are shown Figure 4 (top) whereas the
time histories of u; (solid line) and ug (dashed line) are
shown Figure 4 (bottom). The time history of the error
(17) is shown in Figure 5. The circular markers and dashed
vertical lines in Figures 4 and 5 indicate the iteration at
which Algorithm A-NLI terminates, returning the solution
x* = [1.831, 0.7808]T. Note that the error response is not
monotinic.
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5. CONCLUSION

In this paper an iterative numerical algorithm for solving
systems of linear equations are proposed. The algorithm,
which takes its inspiration from control theory, is then
generalised to obtain solutions for systems of nonlinear
equations. The developed theory is demonstrated on a
series of numerical examples.

Directions for future work include improving the perfor-
mance of the proposed algorithms by using methods differ-
ent from the Euler method for discretising the dynamical
systems which form the foundations of the algorithms,
following the observations made in Remarks 4 and 5 and
in Section 4.1. It is also of interest to perform a more
thorough analysis of complexity and convergence of the
proposed algorithms, including a comprehensive compari-
son with other numerical methods. Underdetermined and
overdetermined systems of linear equations will also be
considered. Extensions of the proposed idea to matrix
equations and, in particular, coupled AREs, such as those
encountered in Mylvaganam and Astolfi [2016b,a], will be
investigated. Such systems of AREs typically arise in linear
quadratic nonzero-sum differential games. As mentioned in
Section 4.2, in optimal control and differential games, one
typically seeks positive definite (and symmetric) solutions
of the AREs. Therefore, systematic ways of selecting par-
ticular roots of the coupled AREs (if they exist) will be
sought.
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