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Abstract 

 

Significance: Metabolic syndrome is a frequent precursor of Type 2 diabetes (T2D), a 

disease which currently affects ~8 % of the adult population worldwide. Pancreatic beta cell 

dysfunction and loss are central to the disease process, though understanding of the 

underlying molecular mechanisms is still fragmentary.   

Recent Advances: Over-supply of nutrients including glucose and fatty acids, and the 

subsequent over-stimulation of beta cells, is believed to be an important contributor to insulin 

secretory failure in T2D.  Hypoxia has also recently been implicated in beta cell damage. 

Accumulating evidence points to a role for oxidative stress in both processes. Although the 

production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration 

during stimulation with glucose and other fuels, the expression of anti-oxidant defence genes 

is unusually low (or “disallowed”) in beta cells.  

Critical Issues: Not all subjects with metabolic syndrome and hyperglycemia go on to 

develop full blown diabetes, implying an important role in disease risk for gene-environment 

interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta cell 

granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus 

susceptibility to hypoxia and oxidative stress.  

Future directions: Loss of normal beta cell function, rather than total mass, is increasingly 

considered to be the major driver for impaired insulin secretion in diabetes. Better 

understanding of the role of oxidative changes, its modulation by genes involved in disease 

risk, and effects on beta cell “identity”, may facilitate the development of new therapeutic 

strategies to this disease.  
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Introduction 

Alongside central obesity, hyperglycaemia is included as a criteria in all existing definitions of 

the metabolic syndrome (61). Although usually accompanied by insulin resistance of 

peripheral tissues (notably adipose tissue, muscle, liver), the failure of the pancreatic beta 

cell to produce insulin in amounts that are sufficient to control blood glucose levels is a sine 

qua non for both prediabetes and full blown Type 2 diabetes (T2D) (5,80,168,191,199). 

Further demonstrating the importance of disrupted beta cell function for the development of 

type 2 diabetes mellitus in the context of the metabolic syndrome, genome-wide association 

studies (38,183) indicate that the majority of the known gene variants that increase the risk of 

T2D affect beta cell function, rather than insulin sensitivity (58,164). The extent to which 

decreased beta cell mass (24) and dysfunction (35) contribute to the impairments in insulin 

production in T2D are contested (168) though recent estimates of relatively minor changes 

(~24% at diagnosis) in the former (112) have placed the onus on dysfunction as the 

important driver. The interaction of environment and genetic background in the development 

of obesity and type 2 diabetes mellitus is depicted in figure 1. 

Pancreatic beta cells are amongst the most metabolically active tissues within the human 

body and they are highly dependent on oxidative metabolism for ATP synthesis, particularly 

at elevated glucose concentrations (152,176). Indeed, elevated oxygen consumption at high 

glucose levels is central to the stimulation of insulin secretion ((168) and see below). 

Accordingly the pancreatic islet is efficiently perfused with blood (76,107): although islets 

occupy only 1-2%, of the volume of the pancreas they receive up to 15 % of the pancreatic 

blood supply (77), and each beta cell is in direct contact with an endothelial cell (17).  

Despite this high level of metabolic activity, and the fact that reactive oxygen species (ROS) 

are an unavoidable by-product of mitochondrial respiration during glucose stimulation (and 

may even be required for normal glucose sensing) (100), enzymes involved in anti-oxidant 

defence are present at unusually low levels (103) or are encoded by “disallowed” genes 

(152) in beta cells. As discussed below, this imbalance may render beta cells highly 
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susceptible for damage induced by either oxidative stress or oxygen deprivation. This 

hypothesis will be reviewed here. We also discuss the interaction between GWAS genes, 

hypoxia and oxidative stress and the possibility that in the metabolic syndrome the latter 

stressors may reduce functional beta cell “identity” and insulin secretion without necessarily 

causing beta cell destruction.  
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Formation of reactive oxygen species in pancreatic beta cells: The role of gluco-lipo-

toxicity 

Formation of reactive oxygen species in pancreatic beta cells 

The term ROS (reactive oxygen species) is generally used to describe reactive molecules 

containing oxygen. Although such molecules share some common characteristics, they also 

exhibit very different properties regarding their effects in biologic systems, which may be 

either beneficial or toxic. 

A major source of ROS within the pancreatic beta cell is the mitochondrial respiratory chain, 

as observed in other tissues (127,200). Complexes I and III, located within the inner 

mitochondrial membrane generate highly reactive superoxide (O2¯) ions by single electron 

reduction of molecular oxygen (101), which is – as a charged species – not able to freely 

cross biological membranes. However, it may do so via anion channels. Superoxide is 

converted to less active hydrogen peroxide (H2O2) by superoxide dismutase (SOD) 

isoenzymes. Being a less reactive, uncharged species, H2O2 can diffuse across membranes 

through aquaporins and be converted to highly reactive hydroxyl radicals (HO˙). In addition 

the formation of peroxynitrite (ONO2¯) results from the reaction of superoxide with the free 

radical nitric oxide (NO) (135). As well as by mitochondrial production, ROS are also 

generated by cytosolic and plasma membrane oxidoreductases which oxidize NAD(P)H and 

directly produce ROS through the reduction of molecular oxygen (59). The general 

mechanisms of ROS production within the pancreatic beta cell are depicted in figure 2. 

 

Stimulation of the formation of reactive oxygen species in beta cells by glucose 

The main task assigned to the pancreatic beta cell is glucose-stimulated insulin secretion, 

the molecular basis of which is described below (figure 3). Briefly, after entering the cell via 

glucose transporters (with some continued debate about the role of GLUT1 and GLUT2 in 

human beta cells (118,196)), glucose is phosphorylated by the high Michaelis-Menten 
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constant (KM) hexokinase, glucokinase (102). Since the capacity for glucose transport is 

considerably higher than that of glucose phosphorylation, it is usually assumed that glucose 

concentrations quickly equilibrate across the plasma membrane, leaving glucose 

phosphorylation as the key step controlling glycolytic flux (168). An increase of the glycolytic 

flux is followed by increased tricarboxylate (TCA) cycle activity (as well as increased 

synthesis of TCA cycle intermediates via anaplerosis (174)), resulting in an increased ATP 

production in mitochondria and a rise in ATP to ADP ratio within the cytoplasm (195). 

Subsequently, this promotes closure of the ATP-sensitive K+ (KATP) channels, which in turn 

decreases the hyperpolarizing outward K+ flux (5). As a result of these changes, 

depolarization of the plasma membrane occurs, followed by influx of extracellular Ca2+, a rise 

in intracellular Ca2+ and subsequent insulin secretion (163,168). Other less well-defined 

changes, which depend upon but do not lead to the closure of KATP channels, also contribute 

to the stimulation of secretion (67).    

Compared to other mammalian cells, a rapid and proportional increase in glycolytic flux is 

observed in pancreatic beta cells following a rise of extracellular glucose concentrations. 

Uniquely in these cells, glycolytic flux is tightly coupled to increased mitochondrial oxidative 

activity (138,176), with almost 100 % of glucose carbons being fully oxidised to CO2 (174). 

This in part reflects low levels of lactate dehydrogenase (LDH) (2,176) and plasma 

membrane lactate/pyruvate transporter (MCT-1/Slc16a1) (73,213) activities, as well as the 

stimulation by high Ca2+ of mitochondrial glycerol phosphate dehydrogenase (167) and of 

intramitochondrial Ca2+-sensitive dehydrogenases (36,194) at high glucose.   

The above increases in both glycolytic and TCA cycle flux are needed in order to assure 

adequate insulin secretion as a response to high blood glucose levels. However, when 

glucose clearance starts to be impaired due to peripheral insulin resistance, the continuous 

increase of glycolytic flux may also increase ROS production in the beta cell, with potential 

pathological consequences (figure 4). Notably, increases in intracellular Ca2+ are able to 

stimulate both the mitochondrial generation of ROS (155,186) and to activate protein kinase 

C (PKC), which in turn leads to NADPH oxidase-dependent generation of superoxide and 
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other species (123,209). In addition to these effects, there is evidence that not only 

hyperglycaemia, but also hyperinsulinaemia itself, caused by peripheral insulin resistance, 

may contribute to the generation of hydrogen peroxide in beta cells (170). This is in contrast 

to other tissues, where insulin was found to reverse glucose-induced ROS generation (57). 

Although high glucose levels are clearly associated with induction of oxidative stress, there is 

also evidence that low glucose levels promote ROS formation in pancreatic beta cells 

(70,171). Furthermore, increasing glucose concentrations suppress the generation of 

superoxide in these cells (113). Of importance, the suppressive effects of glucose on 

superoxide production occurred over a low range of glucose concentrations (0-5 mM), 

consistent with a requirement for basal glucose flux to allow NAD(P)H formation, which in 

turn is able to suppress superoxide formation by complex I. 

Further, recent studies confirmed that lowering of the glucose concentration from 10 to 2 mM 

reversibly increases rather than decreases ROS production in pancreatic beta cells (161). 

Consecutive studies from the same authors were able to demonstrate that glucose (and 

other nutrients) acutely reduce the glutathione oxidation ratio in pancreatic beta cells in the 

mitochondrial matrix, but not the cytosol/nucleus (192). These changes inversely correlated 

with changes in NAD(P)H autofluorescence, suggesting that they indirectly resulted from 

increased NADPH availability rather than from changes in ROS concentration. 

 

Stimulation of the formation of reactive oxygen species in beta cells by free fatty acids 

Although the relationship between circulating free fatty acid (FFA) levels and obesity, insulin 

resistance and dysregulation of fat metabolism is still debated (85), many studies have 

shown that individuals with insulin-resistance exhibit higher FFA concentrations (119), as 

well as increased fat content in insulin-responsive tissues including skeletal muscle or liver 

(75,96,137). Impaired suppression of FFA oxidation and an increased rate of FFA release 

into the plasma are associated with fat distribution patterns typical of the metabolic 
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syndrome, and are associated with visceral obesity (78) and hepatic lipid accumulation (non-

alcoholic fatty liver disease, NAFLD) (46). 

High concentrations of FFA induce ROS production in a variety of different tissues, including 

the pancreatic beta cell (26,104). A variety of studies have examined the mechanisms by 

which FFA may induce this production. In vascular smooth muscle cells there is evidence 

that this involves PKC-dependent activation of NAD(P)H oxidase (72). In insulin secreting 

BRIN BD11 cells, on the other hand, palmitate induced ROS production was accompanied 

by an increase in the expression of the p47phox component of the NADPH oxidase (123), 

though this was also partially sensitive to the actions of the PKC inhibitor GF109203X. 

Further, oleate-induced inhibition of the respiratory chain was shown to contribute to 

enhanced ROS induction in insulin secreting cells by others (95). 

Recent studies focused on the subcellular compartment where reactive oxygen species are 

produced, in particular with regard to lipotoxicity. It could be demonstrated that H2O2 

formation in the peroxisomes rather than in the mitochondria is responsible for toxicity 

induced by saturated nonesterified fatty acids (NEFAs) (45). Further studies from these 

authors demonstrated that this H2O2 formation in peroxisomes by saturated NEFAs could be 

prevented by unsaturated NEFAs (53). 

Of note, and via the inhibition of complexes complex I and III (173), ceramides derived from 

non-esterified fatty acids promote ROS generation in heart mitochondria (37,62). Whether a 

similar mechanism pertains in beta cells remains to be tested. 

 

Effects of oxidative stress and antioxidant defences in the pancreatic beta cell  

Positive and negative effects of reactive oxygen and nitrogen species in pancreatic beta cells 

The potential deleterious effects of increased reactive oxygen and nitrogen production 

include oxidative damage to ribonucleic acids, proteins and lipids by mechanisms of nitration, 

carbonylation, peroxidation and nitrosylation. Consequently, ROS / RNS may impact on the 
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function and survival of the beta cell through a variety of mechanisms including changes in 

enzyme activity, ion channel transport, receptor signal transduction, dysregulated gene 

expression and apoptosis (88,128).  

Disruption of normal beta cell function in response to oxidative stress has been 

demonstrated in multiple studies (110,215). 

For example, oxidative stress appears to be a major contributing factor to the 

pathophysiology of Friedreich’s ataxia (4). Affected individuals are at increased risk of 

developing diabetes (48), and recent studies confirmed that loss of glucose tolerance is 

driven by dysfunction and loss of beta cells, as demonstrated by altered glucose tolerance 

and decreased beta cell mass (31,32). Friedreich’s ataxia involves lowered expression of the 

frataxin protein due to the expansion of a GAA repeat in the FXN gene (111). Frataxin is 

located at the mitochondrial matrix and directs iron-sulfur-cluster assembly (125). Deletion of 

this protein selectively in the beta cell in mice affected oxidative energy flux, impaired 

glucose tolerance and led eventually to overt diabetes mellitus (156). Diabetes followed beta 

cell growth arrest and apoptosis, and was paralleled by an increase in ROS production (156).  

Targets for oxidative stress in the beta cell are likely to include duodenal homeobox factor 1 

(PDX-1), which plays an important role in pancreas development and differentiation, as well 

as in maintaining normal beta cell function (130). Thus, oxidative stress, imposed by the 

exposure of rat islets to H2O2, reduced the DNA binding activity of PDX1 and consequently 

lowered insulin gene expression (83,114). This effect was mediated by the c-Jun N-terminal 

kinase (JNK) pathway, and later studies (86) suggested that decreased nuclear accumulation 

of PDX-1 resulted from the JNK activation and increased nuclear uptake of forkhead box 

protein O1 (FOXO1) (87). 

Changes in the expression or activity of MafA, a member of the basic leucine zipper family of 

transcription factors involved in insulin gene expression (115), are also implicated in the 

deleterious effects of oxidative stress on beta cells (66). Thus, beta cell-selective 

overexpression of the antioxidant enzyme glutathione peroxidase preserved intranuclear 
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MafA and reversed diabetes in db/db mice (65). p38 MAPK is a major regulator of MafA 

protein stability under oxidative stress (94) and the  prevention of p38 MAPK-mediated MafA 

degradation ameliorated beta cell dysfunction under oxidative stress (44). Recent studies in 

transgenic db/db mice overexpressing MafA conditionally and specifically in beta cells have 

corroborated these findings (116).  

Might there be a positive role(s) of, or a requirement for, reactive oxygen or nitrogen species 

for the normal function of pancreatic beta cells? Evidence for such a role does exist. Thus an 

elegant study by Penicaud and colleagues in 2009 (100) demonstrated that mitochondria-

derived ROS are necessary for normal glucose-stimulated insulin stimulation. While 

antioxidants in this study were able to blunt insulin secretion, insulin release could be 

induced with mitochondrial complex blockers that generate ROS. More recent studies (109) 

have confirmed these observations, demonstrating that ryanodine receptor-mediated Ca2+ 

release induced by ROS is an essential step in glucose-induced insulin secretion. 

In addition, the subcellular localisation of glucokinase, the key flux generating step 

responsible for the stimulation of insulin secretion by glucose (see preceding sections) is also 

regulated in beta cells by insulin via NO production and S-nitrosylation, the latter leading to 

an association of the enzyme with secretory granules (157). Similarly, insulin granule 

exocytosis itself is enhanced by S-nitrosylation of syntaxin 4, a key mediator of granule 

docking at the plasma membrane (207). 

 

Antioxidant defence strategies of pancreatic beta cells 

Given the existence of both beneficial and deleterious actions of reactive oxygen and 

nitrogen species in the beta cell as described above, it might be anticipated that the 

antioxidant properties of pancreatic beta cells differ from that of other tissues. Supporting the 

view that the ability of these cells to counteract oxidative stress is limited, work conducted 

almost 20 years ago revealed pancreatic islets exhibit an expression level of the antioxidant 

enzymes superoxide dismutase, glutathione peroxidase and particularly catalase that is 
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substantially lower than most other tissues (103). Indeed, levels of catalase are so low that 

this enzyme falls into the class of beta cell “disallowed” genes as defined by ourselves 

(151,152) and others (197). Later work demonstrated that beta cells are particularly rich in 

other peroxidase-based anti-oxidant defences, such as glutaredoxin and thioredoxin (74). 

Of interest, but in accordance with the observation that the production of reactive oxygen 

species is both necessary and at the same time potentially hazardous for normal beta cell 

function, modulation of the different antioxidant systems can elicit either beneficial or adverse 

effects, depending on the context. For example, whereas microinjection of glutaredoxin 

potentiated the effects of NADPH on exocytosis, thioredoxin antagonized the action of this 

nucleotide (74).  

The role of the uncoupling protein 2 (UCP2) (21) as possible antioxidant mechanism in beta 

cells has also been assessed (98,142,149,160,212). In the report of Zhang and colleagues 

(212) UCP2 deficient mice were found to have higher insulin levels and to display increased 

glucose-stimulated insulin secretion, attributed to increased glucose-stimulated ATP 

synthesis in these mice. This observation was confirmed in later studies, where beta cell 

function was similarly shown to be enhanced in UCP2 null mice after induction of 

hyperglycaemia by multiple low-dose streptozotocin (STZ) injections (98).  It was proposed in 

the latter report that increased chronic ROS signaling in UCP2 deficient mice enhanced beta 

cell function but impaired alpha cell function, leading to an attenuation of STZ-induced 

hyperglycaemia. However, other studies with UCP2-depleted mice have reached different 

conclusions. Thus, examined in animals backcrossed for several generations onto highly 

congenic background, UCP2 deletion led to a significant increase in oxidative stress, as 

demonstrated by increased expression of antioxidant enzymes and nitrotyrosine staining.  

Furthermore, on the congenic background islets from UCP2 null mice displayed impaired 

glucose-stimulated insulin secretion although no overt hyperglycaemia, hypoinsulinaemia or 

glucose intolerance was observed in vivo (142). Further insights into these debated 

mechanisms were provided by the generation of a beta cell specific UCP2 knockout mouse 

model. Islets from these mice displayed, as expected, elevated intracellular ROS levels, but 
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enhanced glucose stimulated insulin secretion. However, UCP2BKO mice were glucose 

intolerant, showing greater alpha cell area, higher islet glucagon content, and aberrant ROS-

dependent glucagon secretion under high glucose conditions. Thus it was concluded that, in 

beta cells, UCP2 contributes to the regulation of intra-islet ROS signals that mediate changes 

in alpha cell morphology and glucagon secretion (160). It should be noted, however, that the 

Cre deleter strain used in the latter studies (RIP2Cre) (52) is well known to cause deletion in 

extrapancreatic tissues including the brain (206), and also to express human growth 

hormone (23), both of which may complicate the interpretation of the results of the above 

study  

Transgenic mice with beta cell-specific overexpression of the UCP2 gene exhibited not 

significantly modified plasma glucose and insulin levels, or glucose-induced insulin secretion 

(149). Similar results were obtained after UCP2 induction in the pancreatic beta cell line INS-

1, where glucose-induced insulin secretion was not altered. However, increased UCP2 levels 

resulted in a decreased production of reactive oxygen species upon cytokine exposure (149), 

indicating a potential protective effect. This observation was confirmed by UCP2 knock-down 

experiments in a similar cell-line, where it was shown that UCP2 activity prevents a glucose-

induced increase in mitochondrial ROS production compared to cells lacking this factor (1). 

The above results illustrate how a regulator of mitochondrial coupling of oxidative 

phosphorylation and ATP production, as well as ROS production, may influence beta cell 

function in a complex manner, acting by a variety of mechanisms. 

There is some controversy regarding possible differences between human and rodent islets 

regarding antioxidant defences. Thus, early studies suggested a superior antioxidant 

capability of human islets compared to rodent islets (42,43,205). However, this idea was 

challenged later by reports indicating low levels of major antioxidant systems in human islets 

(33,159,198).  

Interestingly differences in antioxidant levels in beta cells between males and females have 

been observed in studies with mice (33) as well as humans (198), indicating reduced 
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oxidative defence mechanisms in females. This observation is of particular interest in the 

context of published evidence for a better defence against oxidative stress in women in 

general (150). As a possible explanation for this observation, it was proposed that during 

evolution, beta cells have lost some of their antioxidant defence capacity in order to 

guarantee reduced insulin action in situations of increased stress, re-directing glucose 

disposal towards organs that are not insulin-sensitive, in particular the brain (154). The same 

authors hypothesized that low levels of antioxidants in females facilitate an inhibitory role of 

ROS on insulin secretion, allowing glucose levels during pregnancy that are sufficient to 

meet the increasing nutritional requirements of the growing foetus. 

Figure 5 outlines the ambiguous role of reactive oxygen species as well as antioxidants in 

beta cell function and oxidative damage. 
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Antioxidant therapy for pancreatic beta cells 

Effects of antioxidant therapy on pancreatic beta cell dysfunction 

Studies in animal models of type 2 diabetes have, nonetheless, demonstrated beneficial 

effects of an antioxidant treatment on the course of the disease. Thus, treatment of Zucker 

diabetic fatty rats with the antioxidants N-acetyl-L-cysteine (NAC) or aminoguanidine 

prevented hyperglycemia, glucose intolerance, defective insulin secretion as well as 

decrements in beta cell insulin content (193). Similarly, treatment of diabetic db/db mice with 

NAC, vitamins C plus E, or both has been evaluated. NAC treatment resulted in retained 

glucose-stimulated insulin secretion and moderately decreased blood glucose levels. 

Vitamins C and E were not effective when used alone but slightly effective when used in 

combination with NAC (82). 

In humans however, beneficial effects of antioxidant treatment on glycaemic control, and in 

particular on beta-cell function in type 2 diabetes have not been observed consistently, nor 

when their effects were assessed in comprehensive meta-analyses (190).  

Overall, the current data do not, therefore, support the theory that oxidative stress in the 

pancreatic beta cell is an initial causative element in the development of the metabolic 

syndrome and type 2 diabetes mellitus, but rather a contributing factor initiated by factors 

such as gluco-lipotoxicity (as stated above). Thus, any therapy that aims at targeting 

oxidative stress within the beta cell can only considered being an additional therapy that 

reduces beta cell stress arising from a sub-optimal therapy for metabolic syndrome, as 

insulin-resistance, hyperlipidaemia and hyperglycaemia (158). 

 

Antioxidant treatment in islet transplantation 

Although not a useful clinical modality in T2D, transplantation of isolated islets of Langerhans 

for patients with type 1 diabetes emerged as an alternative to whole organ pancreas 

transplantation in 2001 after a study from Shapiro, Rajotte and colleagues demonstrated 
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persistent insulin independence in recipients when a steroid-free regimen was used (180).  

Subsequent data have confirmed improvement of glycaemic control, albeit with shorter 

durations of insulin independence (99,181). 

Oxidative stress in isolated and transplanted islets remains a concern that counteracts 

successful implantation and function of the islet graft (20). Thus, strategies were developed 

to reduce oxidative stress already before transplantation. Treatment of human islets with 

SOD mimics by adding these compounds to islets in culture, after isolation, allowed for the 

survival of a significantly higher islet cell mass. Furthermore, treated islets were superior 

regarding restoration of glucose control in streptozotocin treated mice after transplantation of 

a marginal islet mass (19). Similarly, induction of radical scavenging heme oxygenase-1 

(HO-1) was able to protect islets from apoptosis and to improve functional performance, in 

vitro as well as in an in vivo model of marginal mass islet transplantation (144). Further 

studies aimed at the introduction of antioxidant agents already very early in the process of 

islet transplantation by treatment of the explanted pancreas with an infusion of L-glutamine 

through the main pancreatic duct. This led to an increase in islet yield, and the percentage of 

diabetic mice rendered normoglycaemic with glutamine-treated islet transplants was higher 

than with control islets (7). Recent work demonstrated that a reduction of ROS in isolated 

pancreatic islets and improved islet transplantation outcome with increased survival of 

diabetic recipient mice can also be achieved by administration of exendin-4, a glucagon-like 

peptide-1 analog (136). 
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Oxygen availability and hypoxia in the pancreatic beta cell 

Hypoxia induction in pancreatic beta cells 

Similar to their high susceptibility to oxidative stress caused by nutrient excess, pancreatic 

beta cells are also prone to the stress of oxygen deprivation which, paradoxically, also leads 

to ROS production and other signs of the oxidative stress (184). Under normal conditions, 

the high oxidative phosphorylation rate of pancreatic islets relies on the availability of a 

constant oxygen supply. However, reduced oxygen content of islets is not necessarily a sign 

of a pathological process. In an interesting recent study (132) it was shown that oxygenation 

differes widely between individual islets within the pancreas at a given time point, and that 

these differences may reflect a mechanism to recruit only a fraction of the available islets into 

an “active” (normoxic) beta cell mass. The remaining less well oxygenated islets may 

represent a “dormant” subpopulation, constituting a functional reserve of endocrine cells. 

According to this model, the reserve islet pool may be available for recruitment upon 

reduction of the total islet mass, as elegantly demonstrated by experiments using 

pancreatectomy in a rat model (132). 

In the context of therapies for T1D, oxygen deprivation is always observed in pancreatic 

islets upon isolation and transplantation. Separation of islets from the exocrine tissue leads 

to disruption of the vascular access of islets and leaves diffusion as the only way that 

provides oxygen to the cells. Thus, hypoxia primarily occurs within the core of isolated islets 

(55) because a gradient in oxygen tension exists between the surface and the centre of the 

islet, which increases with the square of the islet diameter (6,131). Immediately after 

transplantation, implanted islets still remain dependent on oxygen diffusion from the 

surroundings for their survival (97). It is only after 1-3 months that vascularization of 

engrafted islets develops, a process which depends, among other factors, on implantation 

location. The liver, currently the main location of human islet transplantation, was shown to 

be inferior compared to other sites regarding islet re-vascularisation (133). 
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Of major interest is the question whether processes associated with the development of beta 

cell failure in the metabolic syndrome and type 2 diabetes also involve hypoxic changes in 

pancreatic islets. Exposure to high glucose levels has been shown to induce hypoxia and 

hypoxia-induced pathways in pancreatic beta cell lines and isolated islets (11). Additional 

studies provided evidence that islets of animals suffering from diabetes are particularly prone 

to hypoxia (172,214). Direct comparison of the susceptibility of different islet cell types to 

hypoxia revealed that hypoxia results in severe functional abnormality in both beta and alpha 

(glucagon producing) cells, but alpha cells display a significantly lower rate of apoptosis 

compared to the intensive apoptotic injury of beta cells (13). Gene expression profiling in 

islets of pre-diabetic Zucker diabetic fatty rats showed increased expression of hypoxia-

related genes, and further investigation revealed a severely disturbed vascular integrity of 

these islets as a possible reason for the development of hypoxia (106). 

 

Roles of hypoxia-inducible factors in pancreatic beta cells 

Hypoxia rapidly activates hypoxia-inducible factors (HIFs). These transcription factors, 

notably hypoxia-inducible factor 1alpha and 2alpha, are usually present in the cytosol. Under 

normoxic conditions, they are constantly hydroxylated at conserved proline residues by 

prolyl-hydroxylases (177). This leads to their recognition and ubiquitination by the Von-

Hippel-Lindau (VHL) E3 ubiquitin ligase (117). In hypoxia, however, degradation of HIF 

factors does not occur, allowing them to dimerize with the HIF-1beta subunit, to be 

transported into the nucleus, and to execute their transcriptional functions (79) (figure 6). 

One of the main changes in cellular metabolism promoted by HIFs is a switch from aerobic to 

anaerobic energy production. Induction of glucose transporter 1 (GLUT1), several glycolytic 

enzymes, as well as lactate dehydrogenase (LDH) (178) and pyruvate dehydrogenase 

kinase 1 (PDK1) (91), reprograms the utilization of available glucose into anaerobic 

metabolism to maintain a high rate of glycolytic ATP production, at the same time 

downregulating mitochondrial oxygen consumption (139). 
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The specific effects exerted by this “metabolic switch” have been explored using mice 

deleted specifically in the beta cell for VHL. This modification leads to oxygen concentration-

independent stabilisation of HIF factors (25,153,210). As might be expected, these animals 

exhibited stably increased rates of glycolysis, but unaffected or even increased insulin 

secretion in the fasting state, probably a result of a rise in ATP production. Glucose tolerance 

in these animals was markedly impaired, a change attributed directly to a disturbed beta cell 

function by activation of the hypoxia-inducible pathway, since additional deletion of the factor 

HIF-1alpha in these VHL deficient mice was able to rescue the phenotype (figure 7). 

Contrasting with these results, other workers (64) demonstrated that disruption, but not 

activation, of the hypoxia signalling pathway by knock-out of HIF-1beta or HIF-1alpha (29) 

was also able to cause pancreatic beta cell dysfunction with consecutive glucose intolerance 

in mice. The same group also observed a 90% decrease in the expression of HIF-1beta in 

islets from T2D patients compared to normal glucose-tolerant controls (64). 

Taken together, and also considering the fact that hypoxia is probably involved in the 

regulation of general beta cell activity as mentioned above, it is tempting to speculate that 

there might be a basal activity of the hypoxia-inducible pathway, which is necessary for 

normal beta-cell function, but beneficial only on a low level. Disruption as well as prolonged 

increased activity of this pathway is followed by impaired function of beta cells. 

 

Intermittent hypoxia 

The phenomenon of intermittent hypoxia is of particular interest since it is a consequence of 

obstructive sleep apnea, which is a highly prevalent disorder in obese patients, characterized 

by repeated episodes of pharyngeal obstruction during sleep that lead to intermittent 

hypoxia, sleep fragmentation and excessive daytime sleepiness (140). An association of 

obstructive sleep apnea with disturbed glucose tolerance and type 2 diabetes could be 

shown by a variety of observational studies (18,148,162). Experimental animal models 

confirmed an increase of insulin resistance in obese mice treated with intermittent hypoxia. In 
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addition, experiments in diabetic mice demonstrated a significant drop in pancreatic tissue 

oxygenation and impaired insulin secretion as well as an activation of caspase-3 within islets 

upon treatment with intermittent hypoxia (182). Another study confirmed induction of beta cell 

apoptosis by intermittent hypoxia and also demonstrated a protective effect of antioxidant 

treatment with N-acetylcysteine (47). 

 

The role of hypoxia in beta cell death 

Prolonged hypoxia results in pancreatic beta cell death, typically by necrosis (55). However, 

induction of apoptosis-related pathways upon hypoxia exposure has also been described. 

Thus, activated caspase-3 (146) colocalises in pancreatic islets with HIF-1alpha (124), 

suggesting that activation of apoptosis occurs primarily in those parts of the islet where 

hypoxia is most profound. However, whether hypoxia is a cause or a consequence of 

apoptosis is still debated (60). Although induction of pro-apoptotic pathways by hypoxia-

inducible factors has been described (185), HIF activation is thought to be mainly an 

adaptive response that allows cell survival when oxygen levels are low. This conclusion was 

demonstrated by comparing apoptosis rate and transplantation success between wild-type 

islets and islets lacking HIF-1alpha (188). The latter exhibited impaired survival and 

increased apoptosis. The same study presented similar results for human islets where HIF-

1alpha was up-regulated by chemical agents. 
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The role of zinc ions in oxidative stress and hypoxic damage to pancreatic beta cells 

Role and regulation of zinc homeostasis in pancreatic beta cells 

Only few years after the discovery and successful use of insulin in the treatment of patients 

with diabetes (8), it was also recognized that zinc ions (Zn2+) may play an important role in 

insulin crystallization (175). In particular, Zn2+ is present in secretory granules of beta cells, 

where insulin undergoes a maturation process, aggregating to form 2-Zn-hexameric 

complexes (14,121,187). This dimerization process reduces the solubility of the hexamer, 

causing crystallisation within the granule, and the formation of a dense crystalline core. The 

process increases insulin storage capacity before secretion, but also reduces the 

susceptibility to enzymatic degradation of insulin (40,69). Re-conversion to the monomeric 

form of insulin is necessary for its biological action. This happens immediately after the 

exposure of the granule interior to the extracellular milieu, with a concomitant substantial 

release of Zn2+ (49,56). 

As an important structural and functional component of cells, the intracellular concentration 

and distribution of Zn2+ are tightly regulated (134,201). The two main components of Zn2+ 

homeostatsis are Zn2+ transporters and cytoplasmic Zn2+ buffers (34,41,81,165). Whereas 

cytosolic free Zn2+ concentrations in pancreatic beta cells are comparable to those in other 

cells and quite low (~ 1nM) (10), they are much higher (~120 nM) (68,202) in the secretory 

granule: corresponding total Zn2+ contents are in the mM and tens of mM range, respectively 

(51,71) (figure 8).  

One of the most important regulatory transporters in beta cells, expressed almost uniquely in 

these cells and in pancreatic alpha cells, is the zinc transporter ZnT8, responsible for zinc 

transport from the cytosol into the secretory granules (30). Paradoxically, however, deletion 

of ZnT8 from beta cells lowers both cytosolic and granular free Zn2+ (54,122,129). This zinc 

transporter became of major interest when genome-wide association studies (GWAS) 

revealed that a non-synonymous single nucleotide polymorphism (rs13266634) in the 

SLC30A8 gene which encodes ZnT8 is associated with a ~20% increase in T2D risk per 
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allele (16,92,183). However, it is noteworthy that recent studies show that rare loss-of-

function mutations in the SLC30A8 gene are associated with protection against type 2 

diabetes. The potential reasons for this apparent discrepancy are discussed elsewhere 

(166). 

 

The role of Zn2+ in oxidative stress and hypoxia 

Besides its specific role in insulin storage and secretion in the pancreatic beta cell, zinc is 

known for its antioxidative properties (22,27,147) and has been studied extensively as a 

possible treatment option in the context of diabetes in animal models (3,208,211) as well as 

in human patients (50,63). However, the results have been inconclusive possibly because 

changes in zinc intake are often too small to alter intracellular levels of Zn2+ to an extent that 

allows a measurable effect on oxidative stress. Nonetheless, zinc supplementation was 

found to lower fasting glucose levels in carriers of the common T2D risk allele at rs11558471 

(84) and studies in rodent models of diabetes have indicated an action to improve insulin 

sensitivity (9). A further challenge in the use of zinc supplementation as a therapeutic or 

profilactic strategy in the metabolic syndrome is that the range of intracellular concentrations 

offering beneficial effects may be limited: from studies in neuronal tissues, it is well known 

that high levels of intracellular Zn2+ are able to induce production of reactive oxygen species, 

and that this effect can be attenuated by antioxidant treatment (145,169). The dose 

dependency of the antioxidant versus oxidative stress inducing effects of zinc was also 

demonstrated using isolated brain mitochondria (179). 

Similarly, Zn2+ has “Janus-faced” properties regarding its effects in hypoxia. As described 

above, hypoxia induces apoptosis in pancreatic islets. Zinc is known to be a potent inhibitor 

of the apoptotic protease, caspase-3 (141), improves cell survival after hypoxia exposure 

(15) and protects tissues from ischemia-induced damage (203). On the other hand, based on 

experiments performed with neuronal tissues, it is believed that rising zinc levels increase 

hypoxia-mediated cell death occurring during tissue ischemia (120,189). Correspondingly, 
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this effect can be reduced by the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-

diamine (TPEN) (108,204). In pancreatic beta cells, the effect of zinc on hypoxia-mediated 

effects has not been studied in detail. In general, it is known that high levels of zinc are 

cytotoxic and enhance pancreatic islet cell death (28,89). On the other hand, zinc increases 

the expression of metallothioneins (39,93,126) which are protective factors in pancreatic 

islets and other tissues vis-à-vis the deleterious effects of hypoxia and oxidative stress 

(90,105). Our own studies (54) have revealed that hypoxia has profound effects on cytosolic 

Zn2+ in pancreatic beta cells, down-regulating zinc transporter ZnT8 and decreasing cytosolic 

zinc levels. When comparing the response to hypoxia of islets lacking ZnT8 completely, we 

detected a reduced rate of cell death in subpopulations of these islets in older mice. Thus, 

we concluded that reduced expression of ZnT8 and reduced cytosolic Zn2+ levels induced by 

hypoxia may reflect an ‘adaptive’ response of beta cells to permit survival under hypoxia by 

reducing possible deleterious effects of high levels of zinc in this situation of acute stress 

(figure 9). 

 

Concluding remarks 

Availability of oxygen, aerobic and anaerobic glycolysis, oxidative phosphorylation and the 

production of reactive oxygen species are closely linked to the normal function of the 

pancreatic beta cell, since these processes are directly involved in glucose sensing and 

insulin release. Although hypoxia and oxidative stress are potentially harmful, and even 

lethal, processes for these metabolically highly active cells, evidence gathered during the 

past two decades indicates that both reactive oxygen species and hypoxia-induced pathways 

have an important regulatory function in pancreatic beta cells. It became evident that these 

factors belong to the regulatory network of the beta cell, and that changes in their availability 

and activation may lead to beta cell failure and death. 

There are still many open questions regarding the precise role of these processes in the 

development of disturbed glucose tolerance and T2D in the context of the metabolic 
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syndrome, and further research is necessary in order to understand their contribution to the 

pathophysiology as well as possibilities to modulate them in a therapeutic way. To what 

extent, for example, does oxidative stress affect beta cell identity - and consequently function  

- independently of cell survival (168)?  Do T2D-associated genes in addition to SLC30A8 

also modulate beta cell responses to hypoxia or oxidative stress? Future studies will be 

needed to explore this and other questions and may lead to the identification of new ways to 

modulate the impact of oxidative stress for therapeutic benefit. 
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Figure legends 

 

Figure 1. Role of genes and the environment in the development of obesity and type 2 

diabetes. Interaction of genes that affect body adiposity with environmental factors results in 

development of obesity and associated insulin resistance. However, only when genes for 

abnormal beta cell function are present along with those for body adiposity does interaction 

with the environment result in development of type 2 diabetes. (Reprinted from (80) with 

permission from Elsevier). 

Figure 2. Production of reactive oxygen species within the pancreatic beta cell. Basic 

mechanisms leading to the production of cellular reactive oxygen species as described in the 

text.  

Figure 3. Overview of canonical signalling mechanisms involved in beta cell glucose 

sensing, and responses to secretory potentiators or inhibitors. See the text for further 

details. This figure was originally published by G. A. Rutter in (168) (reprinted with 

permission). 

Figure 4. Schematic representation of the different mechanisms underlying beta cell 

pathophysiology in T2D that precede and follow the establishment of hyperglycemia, 

and the role of glucotoxicity in the aggravation of insulin resistance and beta cell 

failure. In the absence of a defect in glucose induced insulin secretion (GSIS), beta cells 

maintain normoglycemia at the price of hyperinsulinemia. The extent of beta cell 

compensation is thought to be predetermined genetically. This adaptation involves a 

coordinated increase in beta cell mass, insulin biosynthesis and insulin secretion. However, 

in genetically predisposed subjects, this phase is bypassed by a second phase of 

decompensation due to the inability of beta cells to sustain an adequate secretory response 

to match the organism demand (beta cell overwork). This phase is characterized by the 

alteration of glucose induced insulin secretion, gene expression and likely beta cell apoptosis 

leading to the development of impaired glucose tolerance (IGT) and finally the establishment 



  53 Gerber & Rutter 
 

of hyperglycemia with reduction of functional beta cell mass. Chronic hyperglycemia leads to 

the exacerbation of beta cell overwork and the alteration of beta cell function and survival by 

several not fully understood mechanisms. In addition, hyperglycemia exerts toxic effects on 

peripheral tissues which contribute to the aggravation of insulin resistance. Very importantly, 

beta cell endogenous defenses are triggered in response to beta cell failure and elevation of 

glycemia to restore the functional β-cell mass. The imbalance between the protective effects 

of endogenous defenses and the deleterious effects of glucotoxicity is at the root of T2D 

pathology. (Reprinted from (12) with permission from Elsevier). 

 

Figure 5. Simple scheme of how ROS could affect glucose-stimulated insulin secretion 

(GSIS). 1. Glucose metabolism in beta cell produces transient increase in ROS. Together 

with other glucose-derived signals (e.g. ATP/ADP), insulin is secreted. 2. The action of 

insulin on target tissues (indicated by the dashed line) results in glucose uptake and a 

lowering of net plasma glucose levels. 3. Oxidative stress sets in motion the increase in 

enzymes and small molecule ‘antioxidants’ to scavenge these radicals. 4. This antioxidant 

response has the potential to also scavenge the transiently generated ROS in response to 

glucose in 1., thus blunting the GSIS response. 5. Exaggerated and persistent oxidative 

stress that is unrelieved by antioxidants can lead to cell damage and death; beta cell 

destruction will also result in impaired GSIS. (Reprinted from (143) with permission from 

Wiley). 

Figure 6. Activation of HIF-1alpha by hypoxia. Under normoxic conditions, hypoxia-

inducible factros are hydroxylated at conserved proline residues by prolyl-hydroxylases. This 

leads to their recognition and ubiquitination by the Von-Hippel-Lindau (VHL) E3 ubiquitin 

ligase. In hypoxia, hydroxylation and degradation of HIF factors does not occur, allowing 

them to dimerize with the HIF-1beta subunit, to be transported into the nucleus, and to 

execute their transcriptional function. 
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Figure 7. Insulin secretion in normoxia and hypoxia. Insulin secretion depends on the 

production of ATP and is, in normoxia, tightly regulated by extracellular glucose 

concentrations (see figure 3). ATP is mainly produced by oxidative phosphorylation, but also 

to some extent during glycolysis. In hypoxia, stabilisation of hypoxia-inducible factor HIF-

1alpha leads to an increase in anaerobic glycolytic flux independently of glucose levels. This 

may lead to higher insulin and lower glucose levels in the fasting state, but clearly impairs 

glucose induced insulin secretion during post-prandial hyperglycaemia. 

Figure 8. Measurement of free Zn2+ concentrations in subcellular compartments in 

mammalian cells using genetically-encoded sensors. Measurements with different 

genetically-encoded zinc sensors using Fӧrster Resonance Energy Transfer as the sensing 

modality and consisting of a donor and acceptor fluorescent protein linked by a zinc-binding 

peptide sequence. Dark numbers: Measurments with the sensor ZapCY1/2 (secretory 

granule: eZinCh-1), bright numbers: Measurements with the sensor eCALWY-4. While 

similar values were returned for all probes when located in the cytosol, much more variation 

exists for mitochondria and endoplasmic reticulum. The reasons for these variations are 

unclear and may involve differences in intracellular pH on which the probes are steeply 

dependent. This figure was originally published by G. A. Rutter in (165) (reprinted with 

permission). 

Figure 9. Possible role of ZnT8 in beta cell adaptation to hypoxia. Hypoxia induces 

downregulation of the zinc transporter ZnT8. This may compromise insulin secretion, but  

thereby also reduce further aggravation of hypoxia. Furthermore, the consecutive reduction 

of cytosolic Zn2+ concentrations possibly prevents deleterious effects of zinc in the situation 

of hypoxia induced stress. 
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