
Software and Hardware Code Generation
for Predictive Control Using Splitting

Methods ?

Harsh A. Shukla ∗ Bulat Khusainov ∗∗ Eric C. Kerrigan ∗∗∗

Colin N. Jones ∗

∗ Laboratoire d’Automatique, Ecole Polytechnique Fédérale de
Lausanne, Switzerland. (e-mail: harsh.shukla, colin.jones@epfl.ch).
∗∗Department of Electrical and Electronic Engineering, Imperial

College London, London, SW7 2AZ, UK (e-mail:
b.khusainov@imperial.ac.uk)

∗∗∗Department of Electrical & Electronic Engineering and Department
of Aeronautics, Imperial College London, London, SW7 2AZ, UK

(e-mail: e.kerrigan@imperial.ac.uk).

Abstract:
This paper presents SPLIT, a C code generation tool for Model Predictive Control (MPC)
based on operator splitting methods. In contrast to existing code generation packages, SPLIT is
capable of generating both software and hardware-oriented C code to allow quick prototyping of
optimization algorithms on conventional CPUs and field-programmable gate arrays (FPGAs). A
Matlab interface is provided for compatibility with existing commercial and open-source software
packages. A numerical study compares software, hardware and heterogeneous implementations
of splitting methods and investigates MPC design trade-offs. For the considered testcases the
reported speedup of hardware implementations over software realizations is 3x to 11x.

Keywords: Model predictive and optimization-based control; Hardware-software co-design;
Embedded computer architectures; Hardware-in-the-loop simulation, Splitting methods.

1. INTRODUCTION

Model Predictive Control (MPC) is a control technique
that aims to minimize a predefined cost function satisfying
the design constraints. The cost function often reflects the
difference between predicted and desired trajectories of
the system states and inputs, while constraints capture
physical limitations of the system. Thus an MPC controller
requires the solution of an optimization problem at every
sampling instant, leading to the following challenges that
prevents further expansion of MPC:

• Solving an optimization problem efficiently so that
one can compute the control law within a sampling
interval.
• Quickly prototyping and deploying the controller on

different types of embedded systems.
• Trading off computational resources for FPGAs

against closed-loop performance of the resulting
cyber-physical system.

Thanks to progress on hardware development and efforts
on numerical computing, there are various toolboxes avail-
able to address the first two challenges. However, in this
work we address all the above-mentioned challenges by

? This work has received funding from the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework
Programme (FP7/2007-2013) under REA grant agreement no 607957
(TEMPO).

proposing an open source and free toolbox, namely SPLIT.
SPLIT generates code in C and the user interface is written
in high-level language (MATLAB). The idea is to provide
an easy to use toolbox, which allows rapid prototyping
and deployment of an MPC-based controller on embedded
processors, FPGAs or heterogeneous platforms. To solve
an optimization problem created from an MPC-based con-
troller, the toolbox uses operator splitting methods, also
known as decomposition methods.

The key feature of operator splitting methods is to de-
compose the original optimization problem into subprob-
lems, which are computationally cheaper to solve than the
original problem. Operator splitting methods have enjoyed
popularity in large scale optimization problems for a long
time and are gaining attention for small to medium scale
embedded optimization problems. Using SPLIT, users
can choose from a family of operator splitting methods,
and quickly define the optimization problem in MATLAB
(roughly 5–10 lines of code). SPLIT generates correspond-
ing C code, which can be deployed readily on embedded
processors. Another important feature of SPLIT is support
of code generation for FPGAs as well, due to the use of
the Protoip toolbox. The Protoip toolbox enables users
to go smoothly from C code to deployment on FPGAs.
Without having any prior knowledge about FPGAs, users
can directly implement the designed controller.

Algorithm 1 Alternating Minimisation Algorithm
(AMA)

Step 1: zk+1 = argmin
z

f(zk) +
〈
λk, Lzk + l − yk

〉
Step 2: yk+1 = argmin

y
g(yk) +

〈
λk, Lzk+1 + l − yk

〉
+(ρ/2)‖Lzk+1 + l − yk‖2

Step 3: λk+1 = λk + ρ(Lzk+1 + l − yk+1)

The organization of the paper is as follows. We briefly
introduce splitting methods in Section 2. In Section 3,
we provide a summary for different features of SPLIT.
We introduce reconfigurable and heterogeneous computing
in Section 4. In Section 5 we discuss details on how
SPLIT efficiently tailors the algorithm for reconfigurable
and heterogeneous platform and deploys generated code
using Protoip toolbox. Numerical examples are provided
in Section 6. Finally, Section 7 concludes the paper.

2. SPLITTING ALGORITHMS

In this section we discuss how splitting algorithms can
be applied to solve predictive control problems. We will
particularly focus on numerical operations involved in
splitting algorithms. This section is based on Stathopoulos
et al. (2016). Consider the following optimization problem:

minimize f(z) + g(y)

subject to Lz − y = −l , (1)

with variables z ∈ Rn, y ∈ Rm where f : Rn → (−∞,∞]
and g : Rm → (−∞,∞] are proper, lower semi-continuous
convex functions, l ∈ Rm and L ∈ Rm×n.

We want to solve an optimization problem of the form (1)
using splitting methods ,which can be seen as a three-step
algorithm. In the first two steps minimization with respect
to variables z and y is performed, followed by the third step
to bring consensus by the updating dual, corresponding to
equality constraints. The key feature of splitting methods
is that each of the three steps is computationally cheap
and often has a closed form solution. As an example, in
Algorithm 1, we illustrate the three steps for a particular
splitting method, namely the Alternating Minimization
Algorithm.

It is easy to rewrite a linear MPC problem in the form
of (1) and use splitting methods to solve the resulting
optimization problem. In such cases, f in (1) is a quadratic
objective function defined over a linear system and g is
an indicator function on a set (e.g. positive orthant). We
then see that the three steps in AMA comes down to the
following three numerical operations:

• Solving a system of linear equations;
• Matrix-vector multiplications;
• Vector-vector manipulations.

The most computational costly operation is solving a
linear system of equations. It is often the case that splitting
methods give rise to a KKT (Karush-Kuhn-Tucker) system
of the form

[
K11 K

>
21

K21 0

] [
x1
x2

]
=

[
b1
b2

]
. (2)

Fortunately, for splitting methods, the KKT matrix does
not change over iterations (except very few anomaly cases)
and thus one can precompute the inverse or matrix factor-
ization (e.g. LDLT). It is important to note that matrices
involved are often sparse and structured. Thus, one can
exploit this fact while either solving the linear system
of equations or computing matrix-vector multiplications.
In the following section, we introduce the SPLIT toolbox
and discuss how SPLIT utilizes sparsity arising from the
splitting methods for efficient computation on embedded
processors.

3. CODE GENERATION FOR SOFTWARE USING
SPLIT

The purpose of SPLIT is to provide an easy-to-use open
source and free toolbox that saves time and effort for users
deploying splitting methods on embedded systems. The
toolbox is written in a high-level language (MATLAB) and
code generation is tailored to a specific splitting algorithm.
In this way the toolbox exploits the problem structure for
generating efficient C code. SPLIT can be used to target
an embedded general-purpose processor or it can also be
used to deploy on pure FPGAs or heterogeneous platforms.
In this section, we will focus particularly on deployment
on general-purpose embedded processors and Section 5 is
dedicated for detailed discussions on code generation for
FPGAs.

The toolbox supports three splitting methods:

• Alternating Direction Method of Multipliers (Gabay
and Mercier, 1976);

• Alternating Minimization Algorithm (Tseng, 1991);
• Primal Dual Algorithm which is also known as Vũ-

Condat Algorithm (Condat, 2013).

It is also possible to enable different features for the
listed algorithms: acceleration based on Nesterov’s relax-
ation, preconditioning and adaptive restart. We refer to
Stathopoulos et al. (2016) for details.

Since SPLIT has its own libraries it can be used as a
library-free toolbox. The toolbox also provides users an op-
tion to select different linear algebra libraries like SuiteS-
parse (Davis and Hu, 2011), BLAS (Lawson et al., 1979)
and LAPACK (Anderson et al., 1999). Thus, depending
on an application, a user can use SPLIT as library-free or
with a suitable library. Another strength of the toolbox is
that it analyses the sparsity pattern of the problem and
recommends to the user a particular library or method.

As discussed in Section 2, the computationally expen-
sive operations for splitting algorithms are solving linear
systems and matrix-vector multiplication. We summarize
various ways to solve linear systems and computing matrix
vector multiplications using SPLIT in Table 1 and Table 2,
respectively.

• The idea behind the Custom method in Table 1 is to
compute the LDL> factorization in MATLAB, and
then explicitly write the entries of the factorization
in a generated C file.

Table 1. Different linear system solution meth-
ods supported by SPLIT

Library Sparsity Method Suitable for

Custom Sparse LDL Small sparse matrices

SuiteSparse Sparse LDL Large sparse matrices

CLAPACK Dense LDL Dense matrices

Table 2. Matrix-vector multiplications sup-
ported by SPLIT

Library Suitable for

BLAS Dense matrices

SuiteSparse Sparse matrices

Custom software Small sparse matrices

Custom HW sparse Sparse matrices on FPGAs

Custom HW dense Dense matrices on FPGAs

• It is important to note that for solving a linear
system based on precomputing the inverse offline and
performing matrix -vector multiplication online, any
method provided in Table 2 can be used.
• The idea for the Custom software method in Table 2

is to explicitly write the entries of the matrix in a
generated C file.
• Custom HW sparse and Custom HW dense are tai-

lored for implementation on FPGAs and they are
explained in Section 5.

Before we discuss how SPLIT deploys splitting algorithms
on FPGAs, we first introduce reconfigurable and hetero-
geneous computing in the following section.

4. RECONFIGURABLE AND HETEROGENEOUS
COMPUTING PLATFORMS

An FPGA is an array of relatively simple circuits, namely
flip-flops (FFs) and lookup tables (LUTs), that are con-
nected to switch matrices. Configuring switch matrices al-
lows creating connections between and within logic blocks
so that the desired circuit is obtained. Modern FPGAs pro-
vide special purpose units (e.g. dedicated memory blocks)
that are more efficient from a silicon usage and signal
routing point of view, compared to general purpose FFs
and LUTs (Crockett et al., 2014).

The key outstanding feature of reconfigurable platforms
is customizability. Unlike fixed architecture CPUs that
have fixed logic for performing a predefined set of op-
erations, FPGAs allow synthesizing computational units
with respect to a given algorithm. Moreover, computa-
tional units can be connected directly to each other to
create data pipelines. The data storage subsystem is also
flexible; memory blocks can be partitioned and placed near
the corresponding processing units so that each block is
processed independently.

However, the above-mentioned advantages often come at
the price of certain limitations. Firstly, FPGA clock rates
are often slower compared to CPU-like architectures. Over-
coming this limitation requires introducing a sufficient
degree of parallelism. Secondly, some algorithms cannot be
efficiently mapped on hardware due to data dependencies

SPLIT Protoip

Xilinx tools
(Vivado, Vivado HLS, SDK)C-code

with
directives Testbench and PIL

simulation files

Fig. 1. The proposed toolchain flow.

or resource-consuming operations. In such cases it might
be useful to employ heterogeneous platforms, known as a
systems-on-a-chip (SoCs), that incorporate both conven-
tional CPUs and FPGAs. With a heterogeneous comput-
ing approach, the computationally heavy part of the work-
load can be accelerated on the FPGA, while keeping the
rest of the algorithm on the CPU to save computational
resources. The SPLIT toolbox considers three options of
splitting the workload:

• Pure software implementation;
• Heterogeneous implementation: accelerating the lin-

ear system solver on the FPGA and computing the
rest on the CPU;

• Pure FPGA implementation.

A heterogeneous computing platform can be programmed
in several ways. Conventional approaches propose pro-
gramming each subsystem using a dedicated, often low-
level language and handling data transfer between sub-
systems manually. Although low-level programming often
leads to efficient realizations both from a time and re-
source usage point of view, these benefits come at the
price of high implementation effort and hence long time-
to-market. Model-based languages (e.g. the Matlab HDL
coder) on the other hand significantly reduce implemen-
tation effort, providing flexibility of shifting the workload
between different computational subsystems and allowing
quick closed-loop performance verification. Unfortunately,
the resulting circuit often cannot be considered as efficient.

The use of C-based integrated development environments
(e.g. Xilinx SDSoC) is a compromise between design effort
and implementation efficiency: although the whole com-
puting system is programmed using a unified language,
supplying the code with additional compiler directives
allows specifying low level details to satisfy given design
constraints. The SPLIT toolbox relies on a C-based ap-
proach and uses the Protoip tool (Suardi et al., 2015)
to manage underlying projects (see Figure 1). Protoip
allows rapid prototyping of optimization algorithms on
FPGAs by providing processor-in-the-loop (PIL) test fa-
cilities while abstracting low-level implementation details.
PIL simulation allows verifying controller performance by
running optimization algorithm on FPGA and simulating
the plant on a desktop machine.

5. CODE GENERATION FOR HARDWARE USING
SPLIT

We proceed to explain how SPLIT allows users to directly
deploy an MPC controller on FPGAs or on heterogeneous
platforms. The flow for code generation for FPGAs is
illustrated in Figure 1.

Following this, SPLIT generates hardware-oriented syn-
thesizable code with synthesis directives (e.g. pipelining,
parallelization) that allow efficient mapping on hardware.

// SW or i e n t e d code

f loat vec sum sw (f loat vec i n [1 0 0 0])

{
int i ;

f loat sum 0 ;

for (i = 0 ; i < 1000 ; i++)

{
#pragma HLS PIPELINE

sum += vec in [i] ;

}
return sum ;

}
// HW or i e n t e d code

f loat vec sum hw (f loat vec i n [1 0 0 0])

{
int i , j ;

int mask [2] = {0 , ˜ ((int) 0) } ;

f loat sum p [8] = {0} ;

for (i = 0 , j = 0 ; i < 1000 ; i++) // p a r t i a l

accumula t ion

{
#pragma HLS DEPENDENCE va r i ab l e=sum p array i n t e r

d i s t ance=8 true

#pragma HLS PIPELINE

sum p [j] += vec in [i] ;

j = (j +1) & mask [(j +1) != 8] ;

}
for (i = 1 ; i < 8 ; i++) // f i n a l accumula t ion

{
#pragma HLS UNROLL

sum p [0] += sum p [i] ;

}
return sum p [0] ;

}

Fig. 2. Software- and hardware-oriented C-code for calcu-
lating the sum of vector elements.

We classify all underlying computations for splitting algo-
rithms into scalar, vector-vector and matrix-vector opera-
tions.

Scalar operations, e.g. computing Nesterov’s relaxation,
do not require acceleration, since the computational com-
plexity for these operations does not increase with the
problem size.

Vector-vector operations often can be accelerated by
pipelining the loop that iterates over vectors elements.
For the simplest case, when consecutive iterations do not
depend on each other (e.g. element-wise addition), this is
implemented by supplying the source code with a pipelin-
ing directive. However, for some vector operations pipelin-
ing cannot be implemented in a straightforward manner,
which is a consequence of read-write data dependencies.
Consider the example of computing the sum of a vector’s
elements (see Figure 2). With a software-oriented approach
the next iteration of the main loop cannot be started
before finishing the previous iteration due to data reading
and writing dependencies, which applies restrictions on
pipelining. Hardware-oriented code computes partial sums
of the vector’s elements independently, which allows avoid-
ing undesirable data dependencies and creating an efficient
pipeline. After the partial accumulation is finished, the
final loop accumulates the partial sums. According to the
report from the synthesis tool Vivado HLS, the FPGA im-
plementation of vec sum hw() is 4.75x faster compared to
vec sum sw(). Note that the same memory access pattern
with the considered example holds for calculating vector
norms, vector-vector and matrix-vector multiplications,
which is exploited by SPLIT.

Matrix-vector computations required for splitting meth-
ods can be classified into dense matrix-vector multiplica-

tion, sparse matrix-vector multiplication and sparse for-
ward/backward substitution. Dense matrix-vector multi-
plication essentially represents a set of vector-vector mul-
tiplications, which can be computed in parallel. SPLIT al-
lows trading off computation time against FPGA resource
usage by changing the degree of parallelism, i.e. the num-
ber of rows processed in parallel. Regarding sparse matrix-
vector computations, SPLIT handles non-zero elements in
a certain order that allows avoiding data dependencies and
hence opens the possibility of pipelining. This is achieved
by scheduling, i.e. determining the order of processing
the non-zero elements, offline during the code generation
stage.

Once tailored C code with synthesis directives is generated,
SPLIT uses the Protoip toolbox for synthesizing the code
and deploying the controller on an FPGA. The use of
Protoip on the underlying level allows quick prototyping
of the algorithms on hardware as well as closed-loop
performance verification with processor-in-the-loop tests.
Note that the entire design flow is fully automated and no
prior FPGA knowledge is required from a user.

In this way, by defining an MPC-based formulation in
a high-level language like MATLAB, users can deploy a
controller on FPGAs or heterogeneous platforms. This is
the first free and open source toolbox that provides code
generation and deployment of an MPC-based controller on
FPGAs or heterogeneous platforms.

6. EXPERIMENTAL RESULTS

In this work we use a Xilinx Zynq-7000 XC7Z020 SoC
with dual-core ARM Cortex-A9 and FPGA logic, which
contains: 53200 LUTs, 106400 FFs, 220 DSP blocks and
140 block RAMs with total capacity 4.9 Mb. A high
throughput-oriented AXI bus provides fast communication
between the CPU and FPGA and hence allows heteroge-
neous implementations of computationally intensive algo-
rithms.

We consider the following optimal control problem for the
rest of the section:

minimize

N−1∑
i=0

(
x>i Qxi + u>i Rui

)
+ x>NQNxN

subject to xi+1 = Axi +Bui, for i = 0, . . . , N − 1 ,

xi ∈ X , for i = 0, . . . , N ,

ui ∈ U , for i = 0, . . . , N − 1 ,

x0 = x̂ ,

(3)

where the vector xi ∈ Rnx represents states, ui ∈ Rnu is
the input vector, Q and R are penalty matrices on states
and inputs with appropriate dimensions. A ∈ Rnx×nx is
the state transition matrix, B ∈ Rnx×nu is the input
matrix. The sets X and U are convex and define constraints
on the states and inputs, respectively. x̂ is an initial state
and N is a prediction horizon.

6.1 Software, heterogeneous and hardware implementations

In this example, we randomly create predictive control
problems of the form (3) while varying the number of
states, inputs and horizon length as provided in Table 3.

Table 3. Generated problems with varying size

nu nx N Dimensions

Problem 1 2 4 4 48

Problem 2 4 8 7 156

Problem 3 6 12 12 384

Dimensions

0 100 200 300 400

A
lg

o
ri
th

m
 l
a

te
n

c
y
,

u
s

10 1

10 2

10 3

10 4

10 5

PL_Directive

PL

SOC

SW_LDL

SW_invert

Fig. 3. Time per iteration with varying size of problem on
a log scale

The parameter Dimensions in Table 3 is the matrix size
when solving a linear system of equations. We incorporate
box constraints on inputs. The optimization problem is
solved using an accelerated version of AMA with single
precision floating point arithmetic.

The goal is to compare and study the latency and resource
usage for implementation on an FPGA, heterogeneous
platform and on a general-purpose embedded processor.
We consider the following five scenarios:

(i) Implementation on FPGA with synthesis di-
rectives: In this case, all the numerical operations
are performed on an FPGA. The code generated by
SPLIT with synthesis directive is used. The latency
is illustrated in Figure 3 as PL directive.

(ii) Implementation on FPGA without synthesis
directive: In this case, all synthesis directives are
commented to compare and study efficiency of gen-
erated C code with directives by SPLIT. The latency
performance is illustrated in Figure 3 as PL.

(iii) Heterogeneous implementation: In this experi-
ment, all the operations, except solving linear sys-
tems, are computed on the embedded processor and
the linear system is solved on an FPGA. This is
because the computational bottleneck for splitting
methods is the solution of a linear system. Since the
matrix involved in solving the linear system does not
change over iterations, it is preloaded on the FPGA
at circuit synthesis stage. Thus there is no online
memory communication for the matrix between the
embedded processor and FPGA. Heterogeneous im-
plementation is also inherently supported by SPLIT.
The latency of this approach is illustrated in Figure 3
as SOC.

Table 4. DSP usage in %

Problem 1 Problem 2 Problem 3

PL directive 11.82 13.64 13.64

PL 11.82 12.73 12.73

SOC 2.27 2.27 2.27

(iv) Software-based implementation of LDL: In this
approach, all the numerical calculations are per-
formed using the onboard dual-core ARM Cortex-A9
processor. The linear system is solved using LDL fac-
torization. In Figure 3, this is denoted by SW LDL.

(v) Software-based implementation of mat-vec: To
compare the performance of LDL factorization, we
precompute the inverse of the matrix in the linear
solve and perform matrix-vector multiplication on-
line. All the numerical operations are computed using
the embedded processor. For latency, see Figure 3
with label SW invert.

For all considered scenarios the CPU clock frequency was
set to 667 MHz, while the FPGA was clocked at 100 MHz.
We did not parallelize any operations on the FPGA for this
example to have a fair comparison with a pure software-
based implementation on an embedded processor.

As illustrated in Figure 3, implementation on an FPGA
with synthesis directives has the least latency, followed by
a heterogeneous platform and a software implementation
with LDL factorization. This shows the trade-off between
a pure FPGA-based implementation and a pure software-
based implementation. It is important to note here that an
FPGA-based implementation without synthesis directives
has a higher latency than an LDL-based pure software
implementation. Since SPLIT is tailored to an algorithm,
it performs synthesis directives during code generation and
thus is ready to deploy for end users. It is also interesting
to observe from Figure 3 that solving the linear system
based on precomputing the inverse in a software-based im-
plementation has the worst latency. We also note here that
to make a library-free implementation, we apply a custom
LDL factorization, which exploits sparsity. Since the linear
system solve step has a sparse matrix, the factorization is
sparse as well. Thus, the time taken for a factorization-
based solver is better than computing the inverse and per-
forming matrix-vector multiplication. However, due to lack
of definite pattern in-fill, the forward backward solve is
not suitable for implementing on FPGAs. A heterogenous
implementation is a good trade-off between a pure FPGA
implementation and implementation on embedded proces-
sor. This is due to the fact that the main computational
bottleneck is performed on the FPGA.

We summarize resources used in Tables 4–7. It is worth
noting that a synthesis directive-based implementation
uses similar amounts of resources as one without a syn-
thesis directive, while offering much better latency. A het-
erogeneous implementation uses less resources compared
to a pure FPGA-based implementation, while suffering in
latency.

Table 5. LUT usage in %

Problem 1 Problem 2 Problem 3

PL directive 19.70 22.42 25.72

PL 19.67 21.49 24.74

SOC 3.51 3.27 3.34

Table 6. FF usage in %

Problem 1 Problem 2 Problem 3

PL directive 7.54 8.86 11.76

PL 7.66 8.70 11.62

SOC 1.44 1.33 1.34

Table 7. BRAM usage in %

Problem 1 Problem 2 Problem 3

PL directive 2.68 9.82 50.53

PL 2.15 9.46 50.18

SOC 1.60 6.60 46.61

0 5 10 15 20

A
lg

o
ri
th

m
 t
im

e
,
u
s

5

10

15

20

25

30

of processors

0 5 10 15 20

F
P

G
A

 r
e
s
o
u
rc

e
 u

s
a
g
e
,
%

0

0.2

0.4

0.6

BRAM

DSP

FF

LUT

Fig. 4. Latency vs Resources trade-off

6.2 Trade-off : Latency versus Resources

In this example, we illustrate the trade-off between re-
source usage and latency. We randomly generate an MPC
problem of form (3) with 4 states, 2 inputs and horizon
length of 5 with box constraints on inputs. We solve
the optimization problem using an accelerated version of
the alternating minimization algorithm and implement on
an FPGA. Varying the number of parallel processors for
solving the linear system allows trading off FPGA logic
usage against latency, as shown in Figure 4. As we increase
parallelization, the latency improves (3x faster) at the cost
of using more resources. Selecting the number of parallel
processors for a particular application one has to keep in
mind Ahmdal’s law, which states that overall algorithm
parallelization speedup is limited by sequential part of the
algorithm. This explains why after reaching a certain point
parallelizing computations does not improve performance.

7. CONCLUSIONS

This paper presented a code generation tool for software,
hardware and heterogeneous implementations of predic-
tive control algorithms using operator splitting methods.
Experimental results confirmed that generating synthe-
sizable hardware-tailored C code allows achieving a 3x
to 11x speedup with hardware realizations compared to
pure software implementations. Moreover, it was shown
that splitting the workload between software and hardware
allows one to achieve a compromise between latency and
computational resource utilization.

Further work will be focused on developing systematic
techniques for automating selection of design parameters,
e.g. the degree of parallelism. This will allow avoiding
situations illustrated as in Figure 4, where starting from a
certain point, parallelizing computations does not improve
performance due to Ahmdal’s law.

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Don-
garra, J., Du Croz, J., Greenbaum, A., Hammarling,
S., McKenney, A., and Sorensen, D. (1999). LAPACK
Users’ guide, volume 9. SIAM.

Condat, L. (2013). A primal–dual splitting method
for convex optimization involving Lipschitzian, prox-
imable and linear composite terms. Journal
of Optimization Theory and Applications, 158(2),
460–479. doi:10.1007/s10957-012-0245-9. URL
http://dx.doi.org/10.1007/s10957-012-0245-9.

Crockett, L., Elliot, R., and Enderwitz, M. (2014).
The Zynq Book: Embedded Processing with the
Arm Cortex-A9 on the Xilinx Zynq-7000 All
Programmable Soc. Strathclyde Academic Media. URL
https://books.google.com/books?id=9dfvoAEACAAJ.

Davis, T.A. and Hu, Y. (2011). The University of Florida
sparse matrix collection. ACM Trans. Math. Softw.,
38(1), 1:1–1:25. doi:10.1145/2049662.2049663. URL
http://doi.acm.org/10.1145/2049662.2049663.

Gabay, D. and Mercier, B. (1976). A dual algo-
rithm for the solution of nonlinear variational prob-
lems via finite element approximation. Computers &
Mathematics with Applications, 2(1), 17 – 40. doi:
http://dx.doi.org/10.1016/0898-1221(76)90003-1.

Lawson, C.L., Hanson, R.J., Kincaid, D.R., and Krogh,
F.T. (1979). Basic linear algebra subprograms
for Fortran usage. ACM Trans. Math. Softw.,
5(3), 308–323. doi:10.1145/355841.355847. URL
http://doi.acm.org/10.1145/355841.355847.

Stathopoulos, G., Shukla, H., Szucs, A., Pu, Y., and
Jones, C.N. (2016). Operator splitting methods in
control. Foundations and Trends R© in Systems and
Control, 3(3), 249–362. doi:10.1561/2600000008. URL
http://dx.doi.org/10.1561/2600000008.

Suardi, A., Constantinides, G.A., and Kerrigan, E.C.
(2015). Fast FPGA prototyping tool for embedded
optimization. In Proc. European Control Conference.

Tseng, P. (1991). Applications of a splitting algorithm to
decomposition in convex programming and variational
inequalities. SIAM Journal on Control and Optimiza-
tion, 29(1), 119–138. doi:10.1137/0329006.

