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Steady, incompressible flow down a slowly-curving circular pipe is considered, analyti-
cally and numerically. Both real and complex solutions are investigated. Using high-order
Hermite–Padé approximants, the Dean series solution is analytically continued outside its
circle of convergence where it predicts a complex solution branch for real, positive Dean
number, K. This is confirmed by numerical solution. It is shown that other previously
unknown solution branches exist for all K > 0, which are related to an unforced com-
plex eigensolution. This non-uniqueness is believed to be generic to the Navier–Stokes
equations in most geometries. By means of path continuation, numerical solutions are
followed around the complex K-plane. The standard Dean two-vortex solution is shown
to lie on the same hypersurface as the eigensolution and the four-vortex solutions found
in the literature.

Elliptic pipes are considered and shown to exhibit similar behaviour to the circular case.
There is an imaginary singularity limiting convergence of the Dean series, an unforced
solution at K = 0 and nonuniqueness for K > 0, culminating in a real bifurcation.

1. Introduction

Functions of a real variable can rarely be fully understood without considering their
behaviour over a complex domain. Arguably the same should be true for the set of
solutions to a system of nonlinear PDEs. Just as two complex roots of a function may
coalesce and materialise on the real line as a parameter is varied, so may real solution
branches come into being above some critical parameter value. Sometimes these new
solutions may be identified with a subcritical bifurcation off a known solution branch at
a higher parameter value. On other occasions the solution branches remain separate and
the origin of the new solutions remains a mystery if only real solutions are considered.

For the Navier–Stokes equations in a given geometry, it is well-known that there is
a unique steady solution at sufficiently low Reynolds number, but for many problems
multiple equilibria may exist at higher values. This statement requires qualification. The
energetic arguments used to prove uniqueness presuppose that the flow is real. It is not
known whether a low-Reynolds-number flow might have additional complex solutions. In
this paper we shall for the first time demonstrate that indeed, complex solutions can
exist even at low values of the (real) Reynolds number. As we are to consider complex
solutions, it is natural to allow the Reynolds number to take complex values also, and
to investigate the entire solution space. The motivation for seeking complex solutions is
twofold: we wish firstly to comprehend the global structure of the solution space. But
secondly, we hope to quantify how and when new, real, physical equilibria may materialise
as complex solutions merge.

† Email address for correspondence: j.mestel@ic.ac.uk
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In a previous paper (Boshier & Mestel 2014), henceforth referred to as BM, we demon-
strated that the classical problem of Dean flow, a small curvature limit of steady flow
in a curved pipe, had a symmetry-breaking complex bifurcation at a certain imaginary
value of the Dean number, K. This value was known by Van Dyke (1974) to limit the
convergence of the Dean series. The complex solutions were found both by extending
the Dean series solution using the techniques of Drazin & Tourigny (1996) and also by
numerical solution of the complex Dean equations. New solution branches were found
for imaginary K, and it was shown that as K → 0 along the imaginary axis, the solu-
tion approached an unforced “eigensolution”, with an unbounded amplitude at K = 0.
Though not previously observed, it is not hard to demonstrate that this solution implies
the existence of complex solutions for real K > 0. Now Dean flow is known to possess ad-
ditional real solution branches for high enough K > K2, known as “4-vortex solutions”,
(McConalogue & Srivastava 1968; Daskopoulos & Lenhoff 1989; Siggers & Waters 2008).
It was found in BM that the 4-vortex solutions did not appear to bifurcate from the
main branch at finite Dean number. For K < K2, there are no real 4-vortex flows, but
they may continue to exist as complex solutions. As we have new complex branches just
above K = 0 and just below K = K2, it is natural to suppose that they will join up as K
increases from zero. In fact, the picture is more complicated. In this paper we will show
that the eigensolution for low, real K and the first 4-vortex branch are in fact continu-
ously linked, although smooth linkage requires a path through fully complex K-values.
We can therefore in principle locate the physical bifurcation from the main solution in
a rational and continuous manner, although the means of so doing is, for the classical
Dean problem, disappointingly laborious.

Historically, Dean flow has been studied predominantly in circular pipes, but this is not
necessary. In the final part of this paper, we perform analysis and numerics for elliptical
cross-sections, as in Machane (2010). We use elliptic coordinates and obtain solutions by
both a Dean series and DNS. A range of eccentricities is considered, from the squat pipes
which approximate the rectangle of Mestel & Zabielski (2012) to the tall pipes which
approach a Taylor-Couette geometry. The elliptic solutions merge smoothly with those
in a circle and qualitatively similar behaviour is found. Square root singularities exist on
the imaginary Dean axis and unforced complex solutions are believed to exist for ellipses
also. In the high aspect-ratio limit these are shown to take a simple form.

The structure of this paper is as follows: In §2 we formulate the problem and in §3
summarise the methods and results of BM. In §4 numerous complex solution branches
for real K > 0 are described and linked to the 4-vortex solutions. In §5 the corresponding
problem for a pipe with elliptic cross-section is solved and we conclude in §6.

2. The Dean Equations

We consider steady, fully-developed, incompressible flow of a Newtonian fluid with
viscosity µ and density ρ down a weakly curved circular pipe of radius a driven by a down-
pipe pressure gradient, G. We take local Cartesian (x∗, y∗) and polar coordinates (r∗, θ)
at the pipe centre as shown in figure 1, where the superscript ∗ denotes a dimensional
variable. Note that the angle θ is defined differently in BM. The radius of the pipe
centre-line is R, where a� R, and φ is the angular, down-pipe coordinate. The velocity
components in the r∗, θ and φ-directions are u∗, v∗ and w∗ respectively and for fully-
developed flow these are independent of φ. We adopt the non-dimensional variables

r∗ = ar, u∗ =
ν

a
u, v∗ =

ν

a
v, w∗ = w0w, (2.1)
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Figure 1. Coordinate system for curved pipe with circular cross-section of radius a and large
curvature radius R.

where w0 = a2G/(4µ) is the maximal velocity which would be driven in a straight pipe
by the same pressure gradient and ν = µ/ρ is the kinematic viscosity. In addition, we
introduce the streamfunction ψ to satisfy the continuity equation, such that u = ψθ/r
and v = −ψr. The small-cruvature Dean limit is obtained by letting (a/R) → 0 and

defining the Dean number, K = (2a/R) (aw0/ν)
2
, following Dean (1928). We obtain the

dimensionless Dean equations

∇4ψ = J (∇2ψ,ψ)−Kwwy, (2.2)

∇2w = J (w,ψ)− 4, (2.3)

where

∇2f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂θ2
, J (f, g) =

1

r

(
∂f

∂r

∂g

∂θ
− ∂f

∂θ

∂g

∂r

)
. (2.4)

Finally, we impose the solid wall boundary conditions, requiring that at r = 1

w =
∂ψ

∂r
= ψ = 0. (2.5)

The Dean equations (2.2) and (2.3) have the up-down symmetry θ 7→ −θ, ψ 7→ −ψ,
which is preserved in all solutions. As we will be considering all complex values of the
Dean number K, it is useful to note the following additional invariances:

I1 : θ → π − θ, K 7→ −K, w 7→ w, ψ → −ψ, (2.6)

I2 : K 7→ K, w 7→ w, ψ → ψ. (2.7)

I1 corresponds to reflection in x = 0 inverting the inside and outside of the bend, and I2
to complex conjugation.

3. Solution methods

We adopt two techniques to study complex solutions of the Dean equations: direct
Navier–Stokes simulation (DNS) and analytic continuation of series expansions using
high-order approximants (HOA). Details were given in BM, which we summarise below.
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3.1. Direct Navier–Stokes simulation (DNS)

To solve the Dean equations (2.2) and (2.3) numerically, we use a spectral decomposition
in θ and second-order central differences in the radial direction,

w(rj , θ) =

κ∑
k=0

Wk(rj) cos(kθ), ψ(rj , θ) =

κ∑
k=1

Ψk(rj) sin(kθ), (3.1)

where rj = j/(M + 1) for 0 6 j 6 M + 1 are the radial grid-points. The truncation
parameter κ and number of gridpoints M are varied to ensure adequate resolution. In
contrast to BM, for numerical efficiency we here restrict attention with this decomposition
to flows which are symmetric about the x axis:

w(r, θ) = w(r,−θ), ψ(r, θ) = −ψ(r,−θ). (3.2)

No steady solutions, real or complex, violating this constraint have been found, al-
though some of the real 4-vortex solutions are known to be unstable to time-dependent
symmetry-breaking perturbations (Daskopoulos & Lenhoff 1989).

The resulting algebraic system is solved by path-continuation in the parameter K,
which may be complex. Bifurcation points are traversed using pseudo-arclength and
branch-switching techniques. As we shall see, owing to the localized structures on some
of these solution branches, the resolution required varies greatly across the complex
branches studied. For each solution presented here the robustness has been verified and
the resolution used is specified.

3.2. Series extension and analytic continuation by high-order approximants (HOA)

Following Van Dyke (1974), we construct the Dean series of the solution, an expansion
in powers of K

w(r, θ) =

∞∑
n=0

wn(r, θ)Kn and ψ(r, θ) =

∞∑
n=0

ψn(r, θ)Kn, (3.3)

with the leading order term being Poiseuille flow in a straight pipe

w0(r, θ) = 1− r2 and ψ0(r, θ) = 0. (3.4)

Substituting the series into equations (2.2) and (2.3) and collecting in powers of K, we
find that as n increases, ψn(r, θ) andwn(r, θ) satisfy a sequence of successively more com-
plicated linear problems in the lower-order coefficients which can be represented as recur-
rence relations and solved exactly to all orders. Schematically, wn ∼

∑
Enijr

2j cos(2iθ).
At order n roughly n3 coefficients need to be found. In total, about 107 coefficients have
been calculated up to n = 196 using an arbitrary precision package in C++, (GMP 2013).

It is convenient to pick a global quantity as a measure for the flow. Here, we adopt the
flux ratio, Q, defined as the integral of w over the pipe cross-section divided by the flux
in a straight pipe. It only involves even values of n ≡ 2m and its series has the form

Q =

∞∑
m=0

am
(
K2
)m

where am =

7m+1∑
j=0

2E2m0j

j + 1
. (3.5)

The coefficient array Enij is given in BM and we have calculated the coefficients up to
a98. Another reference quantity used is Ω, the total vorticity in the upper semicircle, or
equivalently the integral of the velocity along y = 0.

We now use the the high-order Hermite-Padé approximant method of Drazin & Tourigny
(1996) to find multiple solutions of the Dean equations and to analytically continue the
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series beyond its radius of convergence. Truncating (3.5) to N terms, the idea is to con-
struct polynomial expressions in Q and K of increasing order, d, which have (3.5) as
one of their roots. Sometimes other roots of these polynomials appear and persist as d
increases. These are identified as other possible solution branches.

We define the function S(K) = Q(K) − a0, so that S(0) = 0. From (3.5), S(K) has
the truncated series representation:

SN (K) =

N∑
n=1

an
(
K2
)n

= S(K) +O(K2N+2) as K → 0. (3.6)

We then assume that S(K) is an algebraic function of K and so seek a polynomial of
degree d > 2 in two variables Fd (K, s), which we write as

Fd(K, s) =

d∑
l=1

l∑
m=0

fl−m,m
(
K2
)l−m

sm. (3.7)

We find the coefficients fi,j by imposing that s = SN (K) be an approximate solution,

Fd (K,SN (K)) = O
(
K2N+2

)
as K → 0. (3.8)

For definiteness, we fix f0,1 = 1 and set N = (d2 + 3d− 2)/2 to ensure the same number
of unknown coefficients as defining equations in (3.8).

The polynomial equation Fd = 0, will have d solutions for s. These are found and traced
as K varies using standard path continuation techniques in MAPLE. By construction,
one branch approximates an analytic continuation of the known solution s = SN (K) in
the classical manner of Hermite-Padé approximants. Some of the remaining d−1 branches
will be spurious, as identified by their transient nature as d is increased. However, those
solution branches which persist as d increases are assumed to approximate new solutions
which somewhere bifurcate from the main branch s = S(K) (Drazin & Tourigny 1996).
Thus even though we start with a series representation of a single-valued function, the
HOA continuation method can predict the emergence of multiple solutions, as well as
extending the main solution beyond its circle of convergence. An identical process may
be performed with Ω and, more laboriously, with the series representations of the entire
flow (ψ, w) at every grid point. Once the existence of a new solution branch is indicated
by the HOA, it can be confirmed using DNS, which requires a good initial estimate
to converge. Continuation techniques within DNS are then used to follow the solution
branches outside the region where the HOA is reliable.

4. Constructing complex solution branches

We will soon find that for K 6= 0 there are multiple complex solutions, even when
K is real and positive. The solution space is difficult to visualise. Even when we repre-
sent the flow with the single parameter Q, the solutions Q(K) form hypersurfaces in a
4-dimensional space when we permit K and Q to be complex. If two solutions lie on the
same hypersurface, then it should be possible to move from one to another by contin-
uously varying K. We are naturally most interested in real K > 0 and real solutions.
New real solutions can be sought on a solution hypersurface by seeking to minimize the
imaginary component. For Dean flow there are the main ‘two-vortex’ and ‘4-vortex’ so-
lution branches which are believed not to bifurcate from each other for any real K. We
shall now investigate whether it is possible to locate the 4-vortex solution from the main
solution branch by continuously varying complex K.
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Figure 2. Schematic representation of bifurcation diagram for Q(K2), where the dashed lines
represent a pair of complex solutions and the solid lines a single purely real solution. To four
significant figures K1 = 585.8, K2 = 5.712 × 104 and K3 = 3.888 × 105. On branches 1b, 2, 9
and 15 the imaginary part of w and the real part of ψ are left-right anti-symmetric. Branches
1–4 & 14 are predicted by HOA, the others by continuation and DNS. The dotted lines denote
smooth linkage in complex K, keeping |K| constant.

To aid visualisation, bearing in mind the known bifurcation at imaginary K (see BM),
we shall usually consider real values of K2 and plot Re(Q). Sometimes, we will wish to
move through complex K-space. Then, we shall keep |K| constant, to limit the discussion
to three dimensions.

In figure 2 we show schematically a portion of the bifurcation diagram found. It in-
corporates branches 1-8 which are solutions found in previous studies (Boshier & Mestel
2014; Machane 2010; Daskopoulos & Lenhoff 1989; McConalogue & Srivastava 1968) and
reproduced here and branches 9-15 which are found for the first time in the current work.
To ease visualisation, the diagram represents branches projected onto the real K2 axis.
The solid lines denote fully real solutions. The branches with dashed lines are complex
solutions, although for symmetry reasons the integral Q is in fact real on branches 1b,
2, 9 and 15. The HOA technique predicts branches 1–4 and 14, which are then extended
using DNS and continuation in the complex parameter K. Each complex branch may in
fact represent up to four solutions in the fully complex K-space related by invariances
(2.6) and (2.7). The dotted lines in the figure represent solution paths along circles of
constant |K| as described below.

Branches 1a & 1b correspond to the characteristic two-vortex solution found from
the analytic Dean series (3.5). Branches 5-8 are the well-known four-vortex solutions,
with 5-6 corresponding to those first reported by McConalogue & Srivastava (1968),
and 7-8 those given by Daskopoulos & Lenhoff (1989). The four-vortex solutions can be
constructed numerically for large K by using an O(1) perturbation off branch 1 as a
starting point – until now, they have not been locatable in a continuous manner. Once
such a solution is found, the branch can be followed down to the bifurcation points at
K = K2 or K3, below which they become complex. Branches 2-4 bifurcate from branch
1 at the square root singularity at K2 = −K2

1 which limits the radius of convergence
of the Dean series. Notably, branch 2 is a complex solution, with real flux, on which w
scales as |K|−1/2 as K → 0 (BM). It follows that as K → 0 along branch 2, the forcing
term −4 in equation (2.3) becomes negligible, and the solution approaches an unforced
complex solution, which we call an eigensolution.
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Branch (κ,M) K Q Ω

2 (225,28) 0.576i 61 + 0i 0 + 5.9i
9 (325,28) 0.576i −59 + 0i 0 + 5.9i
10 (350,28) 0.576 43 + 42i 0.0019 + 5.9i
11 (225,28) 0.576 −41− 42i −0.0020 + 5.9i

Table 1. Flux Q and upper vorticity Ω for solutions near K = 0, as in figure 3.

We now discuss the properties of the new branches and the means by which they were
found.

4.1. Eigensolutions of the unforced Dean equations

In BM we concluded that a solution of the form of branch 2 exists provided that there
is a complex solution to the unforced Dean equations

∇4ψ = J
(
∇2ψ, ψ

)
− Kw (cos θ wθ/r + sin θ wr) , (4.1)

∇2w = J (w, ψ) . (4.2)

Here we observe that in addition to invariances (2.6) and (2.7) the unforced equations
(4.1) and (4.2) have the following invariance

I3 : K 7→ K

α2
, w 7→ αw, ψ → ψ. (4.3)

where α ∈ C is a constant. It is clear that by choosing a suitable constant α, the eigen-
solution for K2 < 0 can be transformed to a complex solution for real and positive K.
The forced solution is a perturbation of this scaled eigensolution. We therefore infer the
existence of solution branches 9, 10 & 11, from their known asymptotic forms as K → 0.
Good initial estimates to the solutions near K = 0 on branches 9–11 can be found by
scaling the branch-2 solution, and all 4 branches closely approximate the unforced solu-
tion. As K → 0, the solution hypersurface resembles a funnel about K = 0, along which
|Q| ∼ Q0/|K|1/2.

Explicitly, we construct close initial approximations to solutions of the full Dean equa-
tions (2.2) and (2.3) by applying (4.3) to solutions on branch 2, (w,ψ,K) = (w2, ψ2, ik),
where |k| � 1. Specifically, branch 9 is found with an initial approximation (−w2, ψ2, ik),
branch 10 is constructed from the initial estimate (

√
iw2, ψ2, k) and branch 11 from

(−
√

iw2, ψ2, k). The iteration procedure then locates precise solutions for the full prob-
lem. The contour plots of w on these branches are shown in figure 3a-d. For small |K|
the solutions are almost images of each other. The corresponding plots for ψ are virtually
indistinguishable across these branches and so only that of branch 11 is shown in figure
3e. Corresponding values of Q and Ω are given in table 1. The solution patterns diverge
as |K| increases.

As expected, on branch 9 the imaginary part of w and the real part of ψ are left-
right anti-symmetric. This is not the case for branches 10 and 11. A common feature
of all the branches is that as K varies, they may develop a localized structure. On
branch 9, the localization is symmetric about the origin and is well resolved by our
polar decomposition, but this is less so for the solutions on branches 10–14 where the
symmetry is broken. The development of these structures means that following solutions
can become computationally expensive. For example, a converged solution at K = 10−3
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Figure 3. Contour plots of w near K = 0, which approximate the ‘eigensolution’: (a) branch
2, (κ,M) = (28, 225) and (b) branch 9, (κ,M) = (28, 325) both at K = 0.576i; (c) branch 10
(κ,M) = (28, 350), and (d) branch 11 (κ,M) = (28, 350), at K = 0.576. (e) The streamfunction
ψ on branch 11, which is indistinguishable from ψ on the other branches. The numbers in
brackets denote the contour interval, I/O indicate the inside/outside of the bend.
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Branch (κ,M) K Q Ω

10 (525,24) 5.184× 104 0.65 + 0.061i 7.4 + 7.0i
11 (450,28) 5.184× 104 0.49− 0.016i −8.7 + 0.57i
12 (250,28) 5.184× 104 0.66− 0.031i 3.4 + 2.4i
13 (250,48) 5.184× 104 0.66− 0.037i 6.1 + 0.26i
14 (225,24) 5.184× 104 0.63 + 0.054i 8.9 + 5.6i

Table 2. Flux Q and upper vorticity Ω for solutions at K = 5.184× 104, corresponding to
figure 4.

on branch 10 requires a typical resolution (κ,M) = (28, 325) whilst for K = 5.184× 104

we need (κ,M) = (24, 525) and increasing K is laborious. As we shall see, it is more
fruitful to follow paths for complex K-values.

4.2. Path continuation in real K

In light of complex bifurcation theory (Henderson & Keller 1990), we expect complex
solutions to bifurcate from the four-vortex solutions at K2 = 5.712 × 104 and K3 =
3.888 × 105. As these are simple turning points for complex K, branches 12 and 13 are
found by branch-switching at K2 and K3 respectively. Two complex solution branches
which exist at K < K2 and K < K3 coalesce and become real at these points.

Five different complex solutions are plotted for K = 5.184 × 104 in figure 4. They
exhibit great differences in structure. The relative sizes of the real and imaginary parts
suggest that branch 12 is closest to hitting a real solution, as is indeed the case. The
double-dipole structure exhibited in w on branch 13 is quite distinct from all other
solutions found and it is possible that this solution lies on a separate hypersurface from
the others. The values of Q and Ω pertaining to these 5 flows are given in table 2.

Ideally, we would like to be able to follow the complex solutions on branches 12 and
13 to K = 0, or connect them to any of the other branches which stem from the singular
eigensolution. Unfortunately, we find that as K is kept real and reduced, the solutions
develop a localized structure, making them computationally difficult to resolve. Thus for
example, branch 12 is troublesome for K < 1.152×104. Investigation in complex K-space
reveals the proximity of another, more structured complex solution branch, which can
be circumvented by choosing a different path. This characteristic is visible in figure 4(e).
Accordingly, we turn our attention to constructing paths for fully complex K.

4.3. Path continuation in complex K

Selecting the best path to follow in complex K-space to connect known branches is not
trivial. In practice, we have limited our consideration to arcs of constant |K| which
are chosen so as to avoid regions where the solutions are difficult to resolve. Such arcs
are indicated by dotted lines in figure 2. The direction we take on these paths, anti-
clockwise or clockwise round the imaginary K-axis, is also chosen to avoid any solution
which develops localized structures. In this manner, we have been able to identify new
branches for real K as well as joining already identified branches in complex K-space.
Thus, for example, moving round the K = 0 axis connects branch 9 to branch 11 in a
straightforward manner, while branches 3 & 4 join with the real branch 1a. The behaviour
from branch 2 is less obvious and may result in either branch 10 or 14 because of the
proximity to a highly structured branch.
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Figure 4. Contour plots of the azimuthal velocity w and the streamfunction ψ at
K = 5.184×104: (a) branch 10 (κ,M) = (24, 525), (b) branch 11 (κ,M) = (28, 450), (c) branch
12 (κ,M) = (28, 250), (d) branch 13 (κ,M) = (48, 250) and (e) branch 14 (κ,M) = (24, 225).
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Figure 5. Branch 15 at K = −5.76× 104i, (κ,M) = (125, 16).

We now construct a continuous solution path joining the complex eigensolution branch
10 with branch 12. This path includes two circular arcs in complex K-space. We start on
branch 10 at K = 5.76× 103, a point chosen to lie well within the region where branch
10 is easy to resolve. The circle |K| = 5.76 × 104 is then followed anti-clockwise up to
K = −5.76 × 103i. Here we find a new solution branch 15. This branch has the same
symmetry characteristics as branches 1, 2 and 9, in that the flux is real and the total
vorticity in the upper semicircle is imaginary, as can be inferred from figure 5. Were we to
continue anti-clockwise further on this circle, we would encounter a region where solutions
become difficult to resolve before reaching real K again. Instead, we follow branch 15
to K = −1.44 × 104i. At this point we follow the circle |K| = 1.44 × 104 in a clockwise
manner. We find this path has no difficulty in constructing solutions up to K = 1.44×104,
where we reach branch 12, a safe distance from the value near K = 1.152 × 104 which
causes trouble. Hence, with these two arcs, we form a continuous path which joins our
eigensolution branch 10 to branch 12, the complex solution which bifurcates from the
four-vortex solutions at K = K2. Sample solutions along this path are shown in figure
6. Panels (a)–(c) link onto figure 5 along |K| = 5.76 × 103, while panels (e)–(g) link
branches 12 & 15 along |K| = 1.44× 104.

We have thus achieved our goal of linking the real 4-vortex solution branches 5 & 6
to the main solution branch 1. A continuous solution path runs respectively through
the complex branches 2, 10, 15 and 12, joining via semicircles in complex values of K2.
Despite some effort, we have been unable to link branches 7 & 8 via branch 13 to the
main solution tree in this manner, and it is possible that the second ‘4-vortex’ solution
branch in fact lies on a disjoint complex hypersurface. The double dipole nature of figure
6(e) is quite different from the structures seen on the other branches.

Despite this success, we can not really claim that our branch-tracking procedure pro-
vides for this problem a cost-effective way to predict the real multi-vortex solutions.
Nevertheless, the existence of such a path provides encouragement regarding the value
of studying the Navier–Stokes equations in the full complex domain. Other problems
with more solution branches have provided a more fruitful application of the procedures
employed in this paper, for example Vaz et al. (2017).

5. Pipes of elliptic cross-section

Dean flows in circular pipes have received by far the most attention in the literature,
although rectangular and triangular ducts have also been considered. We now briefly
report on Dean flow in pipes of elliptic cross-section with various aspect ratios. As ex-
pected, this problem is found to exhibit many features similar to that of the circular
pipe. Machane (2010) found multi-vortex solutions for elliptic cross-sections of aspect
ratio λ = 1.45, though his bifurcation diagram differs from that found for the circular
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(d) See figure 5.

Figure 6. Contours of w and ψ for (a) K = 10 (κ,M) = (225, 40) (b) K = 8.8889 − 4.5812i
(κ,M) = (325, 16), (c) K = 3.3333 − 9.4281i (κ,M) = (150, 16), (d) K = −10i
(κ,M) = (125, 16), see figure 5, (e) K = 8.3333 − 13.761i (κ,M) = (125, 16) (f)
K = 19.444 − 10.547i (κ,M) = (125, 16) and (g) K = 25i (κ,M) = (125, 16). (a)-(d) link
branches 10 & 15 along |K| = 10, (e)-(g) link branches 15 & 12 along |K| = 25.
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R

0

Figure 7. Coordinate system for curved pipe with elliptic cross-section. Foci at F1 = R− a
and F2 = R+ a and radius of centre-line R.

cross-section. Interestingly, in his study he concluded that the number of vortices on a
particular branch may gradually change without running through a singular point, sug-
gesting that ‘number of vortices’ is not a robust diagnostic for distinguishing between
solutions in the elliptic case.

We take local coordinates at the pipe centre as shown in figure 7, where the superscript
∗ denotes a dimensional variable. The Cartesian and elliptic coordinates are related by
x∗ = a cosh η cos θ, y∗ = a sinh η sin θ. The boundary at η = η0 is an ellipse with foci
at x∗ = ±a and corresponding aspect ratio λ = tanh η0. We note that as η0 → ∞,
λ → 1, and in this limit the cross-section is a circle of infinite radius. Thus our scaling
keeps a fixed distance between the two foci, rather than, say, fixing the perimeter or the
area of the ellipse. The velocity components in the η, θ and φ-directions are u∗, v∗ and
w∗ respectively and for fully-developed flow these are independent of φ. We adopt the
non-dimensional variables

γ =
γ∗

a cosh η0
, u =

νu∗

a cosh2 η0
, v =

νv∗

a cosh2 η0
, w =

w∗
w0

(5.1)

where the scale-factor γ∗ = a
√

cosh 2η − cos 2θ, w0 is the maximal azimuthal velocity
driven in a straight pipe by the same pressure gradient and ν is the kinematic viscosity.
The continuity equation is satisfied by introducing a streamfunction ψ such that u = ψθ/γ
and v = −ψη/γ. The dimensionless Dean equations are then

∇2w = J (ψ,w)− 2
(
1 + coth2 η0

)
(5.2a)

∇4ψ = J (ψ,∇2ψ)−K w

γ2

(
cosh η sin θ

cosh η0

∂w

∂η
+

sinh η cos θ

cosh η0

∂w

∂θ

)
. (5.2b)

where

∇2f =
1

γ2

(
∂2f

∂η2
+
∂2f

∂θ2

)
and J (f, g) =

1

γ2

(
∂f

∂θ

∂g

∂η
− ∂f

∂η

∂g

∂θ

)
. (5.3)

The Dean number now takes the form K = 2a3w2
0 cosh3 η0/(ν

2R). Finally we impose the
solid wall boundary condition and require that at η = η0

w =
∂ψ

∂η
= ψ = 0. (5.4)
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We can also use the above equations to consider pipes with aspect ratio λ > 1 by applying
the transformation

η → η + i
π

2
and a→ −ia. (5.5)

We are therefore able to examine flows in ducts varying continuously between very squat
(λ→ 0) and very tall (λ→∞) cross-sections. The solutions pass smoothly through the
circular case λ = 1.

5.1. Small and large λ

For small λ, the top and bottom boundaries are close and almost parallel, so that ψ and
w are expected to be independent of x near the centre of the pipe. To leading order in λ
the Dean equations (5.2a) and (5.2b) reduce to:

d2w

dy2
= − 2

λ2
+O(1),

d4ψ

dy4
= −K

2
w
dw

dy
. (5.6)

with solution

w = 1− y2

λ2
and ψ =

Kλ3

840

(
1− y2

λ2

)2(
5− y2

λ2

)
y

λ
. (5.7)

This solution is in accordance with the rectangular Dean-Hele-Shaw flow considered
by Mestel & Zabielski (2012), in the context of dynamo theory. It was shown that at
moderately high Reynolds number the above flow was prone to an inflection-point type
of instability, but that does not concern us here.

For large λ, we approach the thin-gap limit of Taylor-Couette flow. To leading order,
ψ and w are expected to be independent of y near the centre of the pipe. In this case the
Dean equations (5.2a) and (5.2b) are solved to leading order by plane Poiseuille flow

w = 1− x2 and ψ = 0. (5.8)

The secondary cross-pipe flow is driven by the distant horizontal boundaries, and is small
in the main body of the pipe.

5.2. Numerical Methods

We use a similar method as for the circular cross-section, which is adaptable for real or
complex solutions. We use a spectral decomposition in θ and finite differences on the grid
η = ηj ≡ jη0/J for j = 1 . . . J .

ψ(ηj , θ) =

κ∑
k=−κ

fj,k e
ikθ w(ηj , θ) =

κ∑
k=−κ

wj,k e
ikθ (5.9)

When constructing the numerical scheme for equations (5.2a), (5.2b), we must be careful
near the two coordinate singularities at the foci F1 and F2 or η = 0, θ = 0, π, where
γ = 0. Care is also required on the line η = 0 joining the foci, providing a boundary
condition on the finite differencing. We require continuity of w, ψ & ∇2ψ across this line.
We ensure this by introducing fictitious points at j = −1 and note that w is top-bottom
symmetric while ψ and ∇2ψ are top-bottom anti-symmetric. For λ < 1 this requires,
for instance, that w−1,k = w1,−k, which we build into the finite difference scheme. In
contrast, for λ > 1, after using the transformation (5.5), the appropriate condition is
w−1,k = (−1)kw1,−k.

Path continuation techniques are used as before to follow solution branches.
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5.3. Extended series solution & higher-order approximants

Analogously to the circular pipe, we construct the Dean series

w(η, θ) =

∞∑
n=0

wn(η, θ)Kn and ψ(η, θ) =

∞∑
n=0

ψn(η, θ)Kn. (5.10)

and find that wn and ψn take the forms

wn =

In∑
i=0

In∑
j=0

Enij (η0)

{
cosh(2jη) cos(2iθ) n even

cosh((2j + 1)η) cos((2i+ 1)θ) n odd
(5.11)

ψn =

Jn∑
i=0

Jn∑
j=0

Cnij (η0)

{
sinh(2jη) sin(2iθ) n even

sinh((2j + 1)η) sin((2i+ 1)θ) n odd
(5.12)

where Jn = 7n/2 for even n, Jn = (7n− 1)/2 for odd n and In = Jn + 1. The coefficients
Enij and Cnij are constant for a given ellipse and can once more be found precisely to
all orders. The leading term solves (5.2a), (5.2b) when K = 0 and is Poiseuille flow in a
straight, elliptic pipe

w0(η, θ) =
(cosh 2η0 − cosh 2η)(cosh 2η0 − cos 2θ)

sinh2 2η0
, (5.13)

ψ0(η, θ) = 0. (5.14)

Subsequent terms for a given value of n can be expressed as recurrence relations involving
the known coefficients for smaller values of n. While the series could be constructed for
general λ, in practice the storage required by the coefficients is prohibitive, and it is best
to obtain new series for particular values of λ. Using an arbitrary precision GMP package
in C++, coefficients up to n = 100 have been found for λ = 0.4, 0.5, 0.75, 0.80 and, by
applying transformation (5.5), for λ = 1.25, 1.5, 1.75, 2.

As before, we use as a diagnostic the flux ratio Q defined as the integral of w over the
cross-section divided by the flux down a straight pipe with the same cross-section. We
derive its series from (5.10) and find it involves only even powers of K,

Q(K) =

∞∑
n=0

an
a0
K2n, (5.15)

where

an =

Jn∑
j 6=1

π

2

(
sinh(2(j − 1)η0)

2(j − 1)
+

sinh(2(j + 1)η)

2(j + 1)

)
En0j −

Jn∑
j=1

π

4j
sinh(2jη0)En1j

+
π

2

(
η0 +

sinh 4η0
4

)
En01 −

π

2
η0En10. (5.16)

For more details see Tettamanti (2012). Using Domb-Sykes analysis on the series for the
flux Q as in Van Dyke (1974), we have found that for every λ the circle of convergence is
limited by square-root singularities at the imaginary values K = ±iKc. The behaviour of
Kc(λ) is shown in table 3. The value of the singularity varies with λ, as one might expect,
but while as λ → 0 the radius of convergence of the series increases without bound, it
appears to plateau as λ increases beyond 1. In interpreting this, it should be borne in
mind that K has been defined to keep the focal separation a constant.

The HOA up to d = 7 have been constructed for each of the above λ values. This is a
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Figure 8. The real and imaginary parts of the unforced complex flow between two parallel
plates, the limit of a high aspect-ratio ellipse. The streamfunction is ψ = yf(x) or ψ = xf(y).

lower order approximant than we had available for the circular cross-section. Neverthe-
less, we find that these approximants are able to identify reliably a bifurcation diagram
equivalent to branches (1a,b 2-4) found for the circular cross-section. We can conclude
that the square root singularities at K = ±iKc are also of the symmetry-breaking type
found for the circular case and discussed in BM. This leads to a branch 2 which asymp-
totes towards K = 0, with the resultant complex eigenfunction. This, in turn, implies
the existence of complex solutions for real K > 0. Complex solutions are believed to
exist in all cases for K > 0, although unlike for the circle, we have calculated insufficient
coefficients for the HOA to predict these explicitly. Nevertheless, the DNS locates them
without trouble based on the scaled branch 2 solution.

The eigenfunction takes a fairly simple form for high aspect-ratio ellipses. As λ→∞,
the shape approaches an unbounded pipe with walls at x = ±1, for which we can find
an unforced complex solution to the problem

J(ψ, ∇2ψ) = ∇4ψ, with ∇ψ = 0 on x = ±1. (5.17)

As the unforced streamfunction has left/right symmetry, we seek a solution of the form
ψ = yf(x) where

f ′f ′′ − ff ′′′ = f ′′′′ with f(±1) = 0 = f ′(±1). (5.18)

The solution to this homogeneous problem is shown in figure 8. As w = 0 for this solution,
it is an example of an unforced complex solution to the two-dimensional Navier–Stokes
equation. An essentially identical unforced solution can be found as λ→ 0.

In summary, so far as we are able to discern, the solution structure for ellipses of
moderate aspect-ratio appears to resemble closely that of the circle. Unforced solutions
exist, as do complex solutions for real K.

6. Concluding Remarks

In this paper we have demonstrated that the unforced solution for small but imaginary
Dean number found in BM automatically leads to complex solutions for real positive K.
The existence of such extra complex solution branches has not previously been reported,
but has now been found in other simple problems. Indeed, we conjecture that such solu-
tions are usually, if not always, present for the Navier–Stokes equations. With hindsight,
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λ Kc λ Kc

0.40 5416.767583 1.25 412.6356614
0.50 2952.430888 1.50 341.7175227
0.75 1069.355151 1.75 313.2575625
0.80 923.7600 2.00 305.5389223
1.00 585.7887750 (circle)

Table 3. Radius of convergence Kc for different aspect ratios λ.

their existence is very plausible. A complex velocity field does not have the same ener-
getic limitations as does a physical real flow, and need not require a forcing term. An
unforced flow, whose magnitude is proportional to the viscosity, satisfies a fully nonlinear
PDE effectively at intermediate Reynolds number.

u · ∇u = −∇p +∇2u, ∇ · u = 0. (6.1)

That such a nonlinear problem should possess a complex solution is no great surprise. A
further plausibility argument can be advanced for domains with a symmetry plane, say
at x = 0. If we introduce an imaginary coordinate ξ = ix, then the elliptic Laplacian
operator becomes hyperbolic in terms of (ξ, y, z) and a real, unforced solution to that
problem would raise no eyebrows, though mathematically it corresponds to a complex
unforced solution to the Navier–Stokes in real space.

Granted that extra complex solutions to the forced Navier–Stokes equations exist, one
can nevertheless question the practical worth of finding and studying them. Leaving
aside any insight which might in time derive from a better understanding of the full
complex solution space, our intended justification is to understand and perhaps predict
bifurcations to new physical solutions, which may come into being at the junction of two
complex solution branches. In this paper, we have demonstrated that the first pair of
4-vortex solutions to the Dean equations can be continuously linked onto the unforced
eigensolution at K = 0, and thence onto the main solution branch and its analytic
continuation. Reversing the process, the 4-vortex solution branch could have been located
continuously, rather than by using slightly arbitrary initial conditions for DNS.

And yet, the authors would be the first to admit that for this problem at least, the effort
required to locate and predict the 4-vortex solution was disproportionately intensive. If
K and the diagnostic parameter Q are regarded as complex, the solution space for Q(K)
may “only” be 4-dimensional, but it is nevertheless difficult to navigate and comprehend,
partly because it conceals much of the structure of the full PDE solution. We have
not presented here all the complex solutions found and have indeed, in our numerical
investigations, sometimes striven to avoid those with more intricate structure.

A natural question to ask is whether the techniques described here; the pioneering
work of Van Dyke, computationally extended 100-fold and viewed through the prismatic
HOA lens of Drazin & Tourigny (1996), can be recommended for other problems?

Inevitably, that is hard to answer. The HOA method is very good at locating bifurca-
tions off the main solution branch, but could not predict sub-critical bifurcations from
infinity, such as the 4-vortex solutions. It was natural to expect for our problem that the
complex solution branches known to exist for K slightly positive would merge directly as
K increased with the complex branches known to exist for K < K2. But the behaviour
was more complex in our study and it is difficult to predict what will happen in general.
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The techniques have, however, already been applied with some success to problems in
convection and planetary dynamics which are known to possess more prominent bifur-
cations. In the former case, the singularity limiting the convergence of the Stokes series
was found to correspond to a physical hysteresis at real Grashof number. The method led
directly to the discovery of other real solution branches (Vaz et al. 2017). Calculations
have also been performed for the flow between concentric rotating spheres.

It is, of course, also possible to investigate complex solutions without going through
the Stokes series/HOA route. An unforced solution to (6.1) depends only on geometry
and once it is known, it can be used as the same numerical starting point for path-
continuation of complex solutions to problems with varied physical forcing. Whether or
not as the Reynolds number is increased these complex solutions will end in coalescence
at real bifurcations will depend on the forcing in the particular problem, but in our view
it is certainly worth investigating.

The authors would like to thank Andrew Thomas for his help with setting up the
numerical infrastructure for this work.
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