
Labellings for Assumption-Based and Abstract Argumentation

Claudia Schulz, Francesca Toni

Department of Computing, Imperial College London, London SW7 2AZ, UK

Abstract

The semantics of Assumption-Based Argumentation (ABA) frameworks are traditionally
characterised as assumption extensions, i.e. sets of accepted assumptions. Assumption la-
bellings are an alternative way to express the semantics of flat ABA frameworks, where one
of the labels in, out, or undec is assigned to each assumption. They are beneficial for ap-
plications where it is important to distinguish not only between accepted and non-accepted
assumptions, but further divide the non-accepted assumptions into those which are clearly
rejected and those which are neither accepted nor rejected and thus undecided. We prove
one-to-one correspondences between assumption labellings and extensions for the admissible,
grounded, complete, preferred, ideal, semi-stable and stable semantics. We also show how
the definition of assumption labellings for flat ABA frameworks can be extended to assump-
tion labellings for any (flat and non-flat) ABA framework, enabling reasoning with a wider
range of scenarios. Since flat ABA frameworks are structured instances of Abstract Argu-
mentation (AA) frameworks, we furthermore investigate the relation between assumption
labellings for flat ABA frameworks and argument labellings for AA frameworks. Build-
ing upon prior work on complete assumption and argument labellings, we prove one-to-one
correspondences between grounded, preferred, ideal, and stable assumption and argument
labellings, and a one-to-many correspondence between admissible assumption and argument
labellings. Inspired by the notion of admissible assumption labellings we introduce commit-
ted admissible argument labellings for AA frameworks, which correspond more closely to
admissible assumption labellings of ABA frameworks than admissible argument labellings
do.

Keywords: Assumption-Based Argumentation, Labelling Semantics, Abstract
Argumentation

1. Introduction

Argumentation provides an intuitive way of modelling human reasoning and decision
making and has thus received considerable attention in AI research [1, 2]. Argumentation
frameworks formalise the notions of arguments and conflicts between them, and specify se-
mantics to determine which arguments are accepted in a debate of conflicting arguments.5

Two main types of argumentation frameworks can be distinguished: In Abstract Argumen-
tation (AA) frameworks [3] a set of abstract entities, called arguments, is given along with

Email addresses: claudia.schulz@imperial.ac.uk (Claudia Schulz), f.toni@imperial.ac.uk
(Francesca Toni)

Preprint submitted to International Journal of Approximate Reasoning February 21, 2017

an attack relation between these arguments. In structured argumentation frameworks (e.g.
[4, 5, 6, 7], see [8] for an overview) structured knowledge is given from which arguments are
constructed and attacks are derived.10

Here, we deal with a certain type of structured argumentation frameworks, namely
Assumption-Based Argumentation (ABA) frameworks [4, 9, 10], which have proven useful
in a variety of applications including agent negotiation and dialogue [11, 12, 13, 14, 15, 16],
decision making [17, 18, 19], web reasoning [20], and explanation [21, 22]. In an ABA frame-
work structured knowledge is given in terms of inference rules expressed in an underlying15

logical language. A subset of sentences is defined to be the set of assumptions, each of which
has a contrary sentence in the language. As an example, consider an ABA framework with
the following inference rules1 about the excellence of Imperial College London (ICL) and
the withdrawal of the UK from the EU, where assumptions are indicated in italic:

ICL is an excellent university← ICL takes many international students and staff20

Fewer EU citizens apply to ICL ← EU citizens need a visa to move to the UK
EU citizens can move to the UK without a visa ← The UK remains in the EU

The contraries of the assumptions are as follows:

• contrary of ICL takes many international students and staff : Fewer EU citizens apply
to ICL;25

• contrary of EU citizens need a visa to move to the UK : EU citizens can move to the
UK without a visa;

• contrary of The UK remains in the EU : The UK leaves the EU.

The semantics of ABA frameworks are defined in terms of sets of accepted assumptions,
called assumption extensions, which are determined based on the contraries of assumptions30

and derivations from assumptions using the inference rules [4]. In the above example, one of
the assumption extensions is {The UK remains in the EU}, expressing that the assumption
The UK remains in the EU is accepted and all other assumptions are not.

Given a flat ABA framework, where assumptions do not occur on the left-hand side
of inference rules, arguments and attacks between them can be constructed. A flat ABA35

framework can thus instantiate an AA framework comprising all arguments and attacks
constructable from the flat ABA framework [23]. It follows that the semantics of a flat ABA
framework can also be expressed in terms of the semantics of AA frameworks [23], i.e. as
sets of accepted arguments called argument extensions [3]. Importantly, the assumption and
argument extensions of a flat ABA framework correspond for nearly all semantics defined40

for flat ABA frameworks2: an argument extension contains all arguments supported by the
assumptions in an assumption extension, and conversely an assumption extension contains
all assumptions supporting arguments in an argument extension [23, 20, 24].

The semantics of AA frameworks can be alternatively formulated as argument labellings,
which assign one of the labels in (accepted), out (rejected), or undec (undecided) to each45

argument [25, 26]. This notion of semantics has the advantage over argument extensions

1Rules are adapted from www.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news 13-
1-2016-18-10-57 and www.independent.co.uk/student/news/eu-referendum-result-brexit-leave-remain-
higher-education-sector-students-a7100106.html

2The only exception is the semi-stable semantics [24].

2

complete/grounded/

preferred/stable/

ideal arg. ext.
[3,23]

complete/grounded/

preferred/stable/

ideal arg. lab.
[25,26]

complete asm. lab.
[27] Sec. 3.2

grounded/preferred/

stable/ideal asm. lab.
[29] Sec. 3.3

complete/grounded/

preferred/stable/

ideal asm. ext.
[4,23]

[25,26]

[23,20,24]

complete

[27] Sec. 3.2

grounded/

preferred/

stable/ideal

Sec. 3.3

complete

Sec. 5.2 (extends

results of [27])

grounded/

preferred/

stable/ideal

Sec. 5.3

ABA

as AA

ABA

as AA

AA

ABA
complete/grounded/

preferred/stable/

ideal asm. lab. wrt.

arg.-supp. sets
Sec. 4.1

ABA

complete/

grounded/

preferred/

stable/ideal

Sec. 4.1

Figure 1: A summary of results concerning the complete, grounded, preferred, stable, and ideal semantics in
the different sections of this paper, where applicable, in the context of previous work. Bidirectional arrows
indicate semantic correspondence, and bold indicates novel work in this paper.

that it does not only distinguish between accepted and non-accepted arguments, but further
divides the non-accepted arguments into rejected and undecided ones. Since argument la-
bellings and argument extensions correspond [25, 26], argument labellings can also be used
to characterise the semantics for flat ABA frameworks in terms of arguments. Recently,50

the idea of argument labellings was transferred to assumptions [27], yielding a new char-
acterisation of the semantics of flat ABA frameworks. In contrast to argument labellings
which label whole arguments, assumption labellings label each assumption as in (accepted),
out (rejected), or undec (undecided). Assumption labellings have the advantage over as-
sumption extensions that rejected (out) assumptions and assumptions which are neither55

accepted nor rejected (undec) are distinguished.
This distinction can be important in applications such as decision making: undecided

assumptions can for example provide an indication that further information from an expert
is required in order to decide their acceptability for sure. For instance, in the ICL example
one of the assumption labellings labels The UK remains in the EU as in, EU citizens need60

a visa to move to the UK as out, and ICL takes many international students and staff as
undec. This expresses that it is not certain whether or not ICL takes many international
students and staff and thus provides a more detailed interpretation than the previously
given assumption extension.

This work considerably extends [27, 28], where we considered only two semantics of flat65

ABA frameworks3. Here, we investigate all semantics defined for flat ABA frameworks, i.e.
admissible, grounded, complete, preferred, ideal, semi-stable, and stable semantics, making

3Caminada and Schulz [29] introduce grounded, preferred, ideal, and stable assumption labellings for
ABA but do neither prove correspondence with the respective assumption extensions nor investigate their
relation with argument labellings.

3

semi-stable arg. ext.
[30]

semi-stable arg. lab.
[25,26]

semi-stable asm. lab.
[28] Sec.3.3

semi-stable asm. ext.
[24]

[25,26]

[24]

[28] Sec.3.3

semi-stable asm. lab.

wrt. arg.-supp. sets
Sec. 4.1

ABA

Sec. 4.1

Sec. 5.4

ABA

AA

ABA

as AA

ABA

as AA

Figure 2: Results concerning the semi-stable semantics in the different sections of this paper, where appli-
cable, in the context of previous work. Bidirectional arrows indicate semantic correspondence, crossed out
arrows denote non-correspondence, and bold indicates novel work in this paper.

this paper a self-contained reference for assumption labellings and their relation with both
assumption extensions and argument labellings. We prove that there is a one-to-one corre-
spondence between assumption labellings and extensions for all aforementioned semantics.70

We also investigate the relation between assumption and argument labellings for flat ABA
frameworks, showing a one-to-one correspondence for the grounded, complete, preferred,
ideal, and stable semantics, as summarised in Figure 1. Since semi-stable argument and as-
sumption extensions do not correspond [24], it is unsurprising that the respective labellings
do not correspond either, as shown in Figure 2. Concerning the admissible semantics we75

prove a one-to-many correspondence between assumption and argument labellings. Based
on this dissimilarity, we introduce a variant of admissible argument labellings for AA frame-
works, called committed admissible argument labellings, which correspond more closely to
admissible assumption labellings than the original admissible argument labellings, as illus-
trated in Figure 3. We furthermore extend [27, 28], where only flat ABA frameworks have80

been considered, by introducing assumption labellings for any ABA framework. Our results
are summarised in Figure 4. In ABA frameworks which may not be flat, assumptions can
occur on the left-hand side of an inference rule and can thus constitute facts, expressing
statements such as “I firmly believe that ICL will always be an excellent university”.

The paper is organised as follows. In Section 2 we give background on flat ABA frame-85

works and AA frameworks. In Section 3 we introduce assumption labellings for the different
semantics of flat ABA frameworks and prove their correspondence with assumption exten-
sions of flat ABA frameworks, building upon prior work in [27, 28]. In Section 4 we simplify
the definition of assumption labellings for flat ABA frameworks by considering only certain
sets of assumptions as attackers of assumptions. We furthermore introduce a graphical rep-90

resentation of flat ABA frameworks and illustrate how assumption labellings can be easily
determined and represented using these graphs. In Section 5 we investigate the correspon-
dence between assumption and argument labellings of flat ABA frameworks (considerably
extending preliminary work in [27]) and introduce committed admissible argument labellings
as a variant of admissible argument labellings for AA frameworks. In Section 6 we extend95

the definition of assumption labellings from flat ABA frameworks to any ABA framework,
and in Section 7 we conclude and discuss future research.

4

admissible

arg. ext.
[3]

committed

admissible

arg. lab.
Sec. 5.5.1

admissible

asm. lab.
Sec. 3.1

admissible

asm. ext.
[4]

[25]

[23]

admissible

arg. lab.
[25]

Sec. 5.5.1

Sec. 5.5

Sec. 5.5.1

Sec. 3.1

Sec. 5.5.1

admissible asm. lab.

wrt. arg.-supp. sets
Sec. 4.1

ABA

Sec. 4.1

AA
AA

ABA

ABA

as AA

ABA

as AA

ABA

as AA

…
…

…

…

Figure 3: Results concerning the admissible semantics in the different sections of this paper, where applicable,
in the context of previous work. Bidirectional arrows indicate semantic correspondence (arrows with the
same starting point but different end points indicate one-to-many correspondence), and bold indicates novel
work in this paper.

For possibly non-flat ABA:

admissible/complete/

grounded/preferred/

stable/ideal/semi-stable

asm. lab.
Sec. 6

For possibly non-flat ABA:

admissible/complete/

grounded/preferred/

stable asm. ext. [4]

ideal/semi-stable asm. ext.
Sec. 6.3.4, Sec. 6.3.5

possibly non-flat ABA

Sec. 6

For flat ABA:

admissible/complete/

grounded/preferred/

stable/ideal/semi-stable

asm. ext.
[4,23,24]

flat ABA

flat ABA

flat ABA Sec. 6

admissible/complete/

grounded/preferred/stable [4]

ideal Sec. 6.3.4

semi-stable Sec. 6.3.5

For flat ABA:

complete asm. lab.
[27] Sec. 3.2

grounded/preferred/

stable/ideal asm. lab.
[29] Sec. 3.3

semi-stable asm. lab.
[28] Sec.3.3

admissible asm. lab.
Sec. 3.1

complete

[27] Sec. 3.2

semi-stable

[28] Sec.3.3

grounded/

preferred/

stable/ideal

Sec. 3.3

Figure 4: Results for any (possibly non-flat) ABA framework in the different sections of this paper, where
applicable, in the context of previous work. Bidirectional arrows indicate semantic correspondence, and
bold indicates novel work in this paper.

5

2. Background

2.1. Abstract Argumentation

An Abstract Argumentation (AA) framework [3] is a pair 〈Ar,Att〉, where Ar is a set100

of arguments and Att ⊆ Ar × Ar is a binary attack relation between arguments. A pair
(A,B) ∈ Att expresses that argument A attacks argument B, or equivalently that B is
attacked by A. A set of arguments Args ⊆ Ar attacks an argument B ∈ Ar if and only if
there is A ∈ Args such that A attacks B. Args+ = {A ∈ Ar | Args attacks A} denotes the
set of all arguments attacked by Args [26].105

Let Args ⊆ Ar be a set of arguments.

• Args is conflict-free if and only if Args ∩Args+ = ∅.

• Args defends A ∈ Ar if and only if Args attacks every B ∈ Ar attacking A.

The semantics of an AA framework are defined in terms of argument extensions, i.e. sets of
accepted arguments [3, 23, 30]. A set of arguments Args ⊆ Ar is110

• an admissible argument extension if and only if Args is conflict-free and defends all
arguments A ∈ Args;

• a complete argument extension if and only if Args is conflict-free and consists of all
arguments it defends;

• a grounded argument extension if and only if Args is a minimal (w.r.t. ⊆) complete115

argument extension;

• a preferred argument extension if and only if Args is a maximal (w.r.t. ⊆) complete
argument extension;

• an ideal argument extension if and only if Args is a maximal (w.r.t. ⊆) admissi-
ble argument extension satisfying that for all preferred argument extensions Args′,120

Args ⊆ Args′;

• a semi-stable argument extension if and only if Args is a complete argument extension
and for all complete argument extensions Args′, Args ∪Args+ 6⊂ Args′ ∪Args′+;

• a stable argument extension if and only if Args is a complete argument extension and
Args ∪Args+ = Ar.125

Note that these definitions of argument extensions are not the original ones introduced
in [3] but are equivalent formulations [26].

Another way of expressing the semantics of an AA framework is in terms of argument la-
bellings [31, 25]. An argument labelling is a total function LabArg : Ar → {in, out, undec}.
The set of arguments labelled in by LabArg is in(LabArg) = {A ∈ Ar | LabArg(A) = in};130

the sets of arguments labelled out and undec are denoted out(LabArg) and undec(LabArg),
respectively.

An argument labelling LabArg is an admissible argument labelling if and only if for each
argument A ∈ Ar it holds that:

• if LabArg(A) = in then for each B ∈ Ar attacking A, LabArg(B) = out;135

6

• if LabArg(A) = out then there exists someB ∈ Ar attackingA such that LabArg(B) =
in.

An argument labelling LabArg is a complete argument labelling if and only if it is an
admissible argument labelling and for each argument A ∈ Ar it holds that:

• if LabArg(A) = undec then there exists someB ∈ Ar attackingA such that LabArg(B) =140

undec and there exists no C ∈ Ar attacking A such that LabArg(C) = in.

In order to define argument labellings according to other semantics, we first recall how
to compare the commitment of argument labellings [26].

Let LabArg1 and LabArg2 be argument labellings. LabArg2 is more or equally
committed than LabArg1, denoted LabArg1 v LabArg2, if and only if in(LabArg1) ⊆145

in(LabArg2) and out(LabArg1) ⊆ out(LabArg2).

A complete argument labelling LabArg is [25, 32]

• a grounded argument labelling if and only if in(LabArg) is minimal (w.r.t. ⊆) among
all complete argument labellings;

• a preferred argument labelling if and only if in(LabArg) is maximal (w.r.t. ⊆) among150

all complete argument labellings;

• an ideal argument labelling if and only if LabArg is a maximal (w.r.t. v) admissible
argument labelling which satisfies that for all preferred argument labellings LabArg′,
LabArg v LabArg′;

• a semi-stable argument labelling if and only if undec(LabArg) is minimal (w.r.t. ⊆)155

among all complete argument labellings;

• a stable argument labelling if and only if undec(LabArg) = ∅.

Complete, grounded, preferred, ideal, semi-stable, and stable argument extensions corre-
spond one-to-one to the sets of arguments labelled in by the complete, grounded, preferred,
ideal, semi-stable, and stable argument labellings, respectively [25, 32]. In contrast, an160

admissible argument extension may correspond to various admissible argument labellings
[25].

2.2. Assumption-Based Argumentation

An Assumption-Based Argumentation (ABA) framework [4, 9, 10] is a tuple 〈L,R,A, ¯〉,
where165

• (L,R) is a deductive system, with L a language of countably many sentences and R
a set of inference rules of the form s0 ← s1, . . . , sn (n ≥ 0) where s0, . . . , sn ∈ L;
s0 is the head of the inference rule and s1, . . . , sn is its body ;

• A ⊆ L is a non-empty set of assumptions;

• ¯ is a total mapping from A into L defining the contrary of assumptions, where α170

denotes the contrary of α ∈ A.

7

An ABA framework is flat if assumptions only occur in the body of inference rules [33].
From here onwards, until Section 6, we assume as given a flat ABA framework 〈L,R,A, ¯〉.

An argument [9] with conclusion s ∈ L and premises Asms ⊆ A, denoted Asms ` s, is
a finite tree where every node holds a sentence in L or the sentence τ (where τ /∈ L stands175

for “true”), such that

• the root node holds s;

• for every node N

– if N is a leaf then N holds either an assumption or τ ;

– if N is not a leaf and N holds the sentence s0, then there is an inference rule180

s0 ← s1, . . . , sm ∈ R and either m = 0 and the only child node of N holds τ or
m > 0 and N has m children holding s1, . . . , sm;

• Asms is the set of all assumptions held by leaf nodes.

We sometimes name arguments with capital letters, e.g. A :Asms ` s is an argument with
name A. With an abuse of notation, the name of an argument is also used to refer to the185

whole argument. Note that for every assumption α ∈ A there exists an assumption-argument
{α} ` α.

Let Asms,Asms1, Asms2 ⊆ A be sets of assumptions and let α ∈ A be an assumption.

• Asms attacks α if and only if there exists an argument Asms′ ` α such that Asms′ ⊆
Asms. Equivalently, we say that α is attacked by Asms.190

• Asms1 attacks Asms2 if and only if Asms1 attacks some α ∈ Asms2.

• Asms+ = {α ∈ A | Asms attacks α}.

• Asms defends α if and only if Asms attacks all sets of assumptions attacking α.

• Asms is conflict-free if and only if Asms ∩Asms+ = ∅.

The semantics of an ABA framework are defined as assumption extensions, i.e. sets of195

accepted assumptions [4, 23, 24]. A set of assumptions Asms ⊆ A is

• an admissible assumption extension if and only if Asms is conflict-free and defends
every α ∈ Asms;

• a complete assumption extension if and only if Asms is conflict-free and consists of all
assumptions it defends;200

• a grounded assumption extension if and only if Asms is a minimal (w.r.t. ⊆) complete
assumption extension;

• a preferred assumption extension if and only if Asms is a maximal (w.r.t. ⊆) complete
assumption extension;

• an ideal assumption extension if and only if Asms is a maximal (w.r.t. ⊆) complete205

assumption extension satisfying that for all preferred assumption extensions Asms′,
Asms ⊆ Asms′;

8

• a semi-stable assumption extension if and only if Asms is a complete assumption
extension and for all complete assumption extensions Asms′, Asms ∪ Asms+ 6⊂
Asms′ ∪Asms′+;210

• a stable assumption extension if and only if Asms is a complete assumption extension
and Asms ∪Asms+ = A.

Note that some of these definitions are not the original ones introduced in [4, 23] but are
equivalent formulations as proven in [24].

2.3. Correspondence between ABA and AA215

A flat ABA framework 〈L,R,A, ¯〉 can be mapped onto a corresponding AA framework
〈ArABA, AttABA〉 [23], where

• ArABA is the set of all arguments Asms ` s;

• (Asms1 ` s1, Asms2 ` s2) ∈ AttABA if and only if ∃α ∈ Asms2 such that s1 = α.

Given an admissible/complete/grounded/preferred/ideal/stable assumption extension220

Asms of 〈L,R,A, ¯〉, the set of all arguments whose premises are a subset of Asms is an ad-
missible/complete/grounded/preferred/ideal/stable argument extension of 〈ArABA, AttABA〉
[23, 20, 24]. Conversely, given an admissible/complete/grounded/preferred/ideal/stable ar-
gument extension Args of 〈ArABA, AttABA〉, the union of all premises of arguments in
Args is an admissible/complete/grounded/preferred/ideal/stable assumption extension of225

〈L,R,A, ¯〉 [23, 20, 24]. Note that this correspondence does not hold for semi-stable as-
sumption and argument extensions.

3. Assumption Labellings

Inspired by argument labellings for AA frameworks, we build upon recently introduced
labellings for ABA frameworks [27]. In contrast to labellings in AA, which assign labels230

to whole arguments, assumption labellings assign labels to single assumptions. The three
labels used throughout this paper are in, indicating that an assumption is accepted, out,
indicating that an assumption is rejected, and undec, indicating that an assumption is
neither accepted nor rejected and thus undecided.

Definition 1. An assumption labelling is a total function LabAsm : A → {in,out,undec}.235

If LabAsm(α) = in, we say that α is labelled in by LabAsm, or equivalently that LabAsm
labels α (as) in. Analogous terminology is used for assumptions labelled out and undec.
The set of all assumptions labelled in by LabAsm is in(LabAsm) = {α ∈ A | LabAsm(α) =
in}, and the sets of all assumptions labelled out and undec are denoted out(LabAsm)
and undec(LabAsm), respectively.240

We frequently represent an assumption labelling as a set of ordered pairs, for example for
an ABA framework with A = {φ, ψ, χ} and the labelling LabAsm such that LabAsm(φ) =
in, LabAsm(ψ) = out, and LabAsm(χ) = undec, we equivalently represent LabAsm as
{(φ, in), (ψ,out), (χ,undec)}.

9

3.1. Admissible Semantics245

An admissible assumption extension is a set of accepted assumptions which is able to
defend itself. In other words, if an assumption α is contained in an admissible assumption
extension, then all sets of assumptions attacking α contain some assumption attacked by
this admissible assumption extension. In an admissible assumption labelling the concept of
defence is mirrored by requiring that if an assumption α is accepted (labelled in) then all250

sets of assumptions attacking α contain a rejected assumption (labelled out), which in turn
is attacked by a set of accepted assumptions (all labelled in). In addition, we require that
an undecided assumption (labelled undec) is not attacked by a set of accepted assumptions
(all labelled in), since an assumption attacked by accepted assumptions can clearly not be
accepted (due to the conflict-freeness property of the admissible semantics) and should thus255

be rejected rather than undecided.

Definition 2. Let LabAsm be an assumption labelling. LabAsm is an admissible assump-
tion labelling if and only if for each assumption α ∈ A it holds that:

• if LabAsm(α) = in then for each set of assumptions Asms attacking α there exists
some β ∈ Asms such that LabAsm(β) = out;260

• if LabAsm(α) = out then there exists a set of assumptions Asms attacking α such
that for all β ∈ Asms, LabAsm(β) = in;

• if LabAsm(α) = undec then for each set of assumptions Asms attacking α there
exists some β ∈ Asms such that LabAsm(β) 6= in.

Example 1. Consider the following ABA framework, which we call ABA1:265

L = {r, p, x, ρ, ψ, χ},
R = {p← ρ;x← ψ},
A = {ρ, ψ, χ},
ρ = r , ψ = p , χ = x.

ABA1 has three admissible assumption labellings:270

• LabAsm1 = {(ρ,undec), (ψ,undec), (χ,undec)},

• LabAsm2 = {(ρ, in), (ψ,out), (χ,undec)}, and

• LabAsm3 = {(ρ, in), (ψ,out), (χ, in)}.

These assumption labellings demonstrate two important points: first, an assumption which
is not attacked by any set of assumption (ρ in ABA1) cannot be labelled out; second, an275

assumption attacked by a set of assumptions containing only in labelled assumptions (ψ in
LabAsm2 and LabAsm3) is always labelled out.

It is important to note that the empty set of assumptions has a special role as an
attacking set of assumptions: any assumption attacked by the empty set is labelled out by
all admissible assumption labellings since the empty set stands for a (non-refutable) fact,280

so the attacked assumption clearly has to be rejected, as illustrated in Example 2.

Example 2. Let ABA2 be ABA1 from Example 1 with the additional sentences φ and f
in L, where φ is an assumption with φ = f , and with the additional inference rule f ←.

10

Since {} ` f is an argument, φ is attacked by the empty set of assumptions as well as
by all other sets of assumptions. Thus, φ cannot be labelled in since the attacking empty285

set does not contain an assumption labelled out, and φ cannot be labelled undec since
the attacking empty set does not contain an assumption not labelled in. Consequently, φ is
labelled out by all admissible assumption labellings.

ABA2 has thus three admissible assumption labellings:

• LabAsm1 = {(φ,out), (ρ,undec), (ψ,undec), (χ,undec)}290

• LabAsm2 = {(φ,out), (ρ, in), (ψ,out), (χ,undec)}

• LabAsm3 = {(φ,out), (ρ, in), (ψ,out), (χ, in)}

Note that these are the same admissible assumption labellings as for ABA1, but with the
additional assumption φ which is always labelled out. The number of admissible assumption
labellings is thus not influenced by assumptions attacked by the empty set since these295

assumptions do not have alternative labels in different admissible assumption labellings.

The following theorem shows that there is a one-to-one correspondence between the
admissible semantics in terms of assumption labellings and extensions.

Theorem 1.

1. Let Asms be an admissible assumption extension. Then LabAsm with in(LabAsm) =300

Asms, out(LabAsm) = Asms+, and undec(LabAsm) = A \ (Asms ∪ Asms+) is
an admissible assumption labelling.

2. Let LabAsm be an admissible assumption labelling. Then Asms = in(LabAsm) is
an admissible assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪
Asms+) = undec(LabAsm).305

The proof of Theorem 1 as well as all other results can be found in the Appendix.

Example 3. ABA2 from Example 2 has three admissible assumption extensions: Asms1 =
{}, Asms2 = {ρ}, and Asms3 = {ρ, χ}, corresponding to the three admissible assumption
labellings LabAsm1, LabAsm2, and LabAsm3, respectively.

Note that without the third condition in Definition 2, the second item in Theorem 1310

would not hold. For example, LabAsm4 = {(φ,out), (ρ, in), (ψ,undec), (χ,undec)} would
be an admissible assumption labelling of ABA2 (see Example 2), but even though Asms4 =
in(LabAsm4) = {ρ} is an admissible assumption extension of ABA2, it does not hold that
Asms+4 = out(LabAsm4) as stated in the second item of Theorem 1 since ψ ∈ Asms+4 but
ψ /∈ out(LabAsm4).315

If an assumption is defended by an admissible assumption extension then adding this
assumption to the extension yields another admissible assumption extension [4] (similar
to the Fundamental Lemma in AA [3]). Due to the one-to-one correspondence between
admissible assumption labellings and extensions, an analogue property holds for admissible
assumption labellings.320

Lemma 2. Let LabAsm be an admissible assumption labelling and let α be such that
for each set of assumptions Asms attacking α there exists some β ∈ Asms such that
LabAsm(β) = out. Let α? = {γ ∈ A | ∃Asms ⊆ A such that α ∈ Asms,Asms attacks γ,
∀δ ∈ Asms : δ 6= α→ LabAsm(δ) = in}. Then LabAsm′ with in(LabAsm′) = in(LabAsm)∪
{α}, out(LabAsm′) = out(LabAsm) ∪ α? and undec(LabAsm′) = undec(LabAsm) \325

({α} ∪ α?) is an admissible assumption labelling.

11

The lemma states that if an assumption α is defended by an admissible assumption
labelling, i.e. all attacking sets of assumptions Asms contain an assumption β labelled
out, then changing the label of α to in and changing the label of all assumptions γ which
now need to be rejected (due to the change of label of α) to out yields another admissible330

assumption labelling.

Example 4. Let ABA3 be an ABA framework with:

L = {f, p, r, x, φ, ψ, ρ, χ},
R = {r ← φ, χ; p← ρ},
A = {φ, ψ, ρ, χ},335

φ = f , ψ = p, ρ = r, χ = x.

LabAsm1 = {(φ,undec), (ψ,undec), (ρ,undec), (χ, in)} is an admissible assumption la-
bellings of ABA3. Since φ is not attacked by any set of assumptions, it holds that each
set of assumptions attacking φ contains an assumption labelled out, and φ+ = {ρ}. As
stated in Lemma 2, LabAsm2 with in(LabAsm2) = {χ, φ}, out(LabAsm2) = {ρ}, and340

undec(LabAsm2) = {ψ} is an admissible assumption labelling of ABA3. Since with re-
spect to LabAsm2 it holds that each set of assumptions attacking ψ contains an assump-
tion labelled out, LabAsm3 with in(LabAsm3) = {χ, φ, ψ}, out(LabAsm3) = {ρ}, and
undec(LabAsm3) = {} is also an admissible assumption labelling of ABA3.

3.2. Complete Semantics345

In addition to defending itself against attackers, a complete assumption extension con-
tains every assumption it defends. This additional condition is mirrored in complete as-
sumption labellings by requiring that an assumption which is defended has to be labelled
in. This can be achieved by modifying the definition of admissible assumption labellings in
various ways.350

In an admissible assumption labelling a defended assumption may be labelled in or
undec. Thus, one way of modifying the definition of admissible assumption labellings is to
prohibit labelling defended assumptions as undec. In other words, an assumption labelled
undec has to be attacked by at least one set of assumptions which does not contain any
assumption labelled out.355

Definition 3. Let LabAsm be an assumption labelling. LabAsm is a complete assumption
labelling if and only if LabAsm is an admissible assumption labelling and for each assumption
α ∈ A it holds that:

• if LabAsm(α) = undec then there exists a set of assumptions Asms attacking α such
that for all γ ∈ Asms, LabAsm(γ) 6= out.360

Note that the new condition for undec assumptions implies that there exists a set of
assumptions Asms attacking α such that for some γ ∈ Asms, LabAsm(γ) = undec, since
by the definition of admissible assumption labellings some β ∈ Asms is not labelled in and
by the new condition no γ ∈ Asms is labelled out. However, the fact that there exists a set
of assumptions Asms attacking α such that for some γ ∈ Asms, LabAsm(γ) = undec, is365

not a sufficient condition for characterising admissible assumption labellings which are also
complete assumption labellings.

12

Example 5. Consider again ABA1 from Example 1 and its three admissible assumption
labellings. In LabAsm1, ρ does not satisfy the new condition for undec assumptions, and in
LabAsm2, χ does not satisfy the new condition. The only admissible assumption labelling370

satisfying the new condition is LabAsm3, which is thus the only complete assumption la-
belling of ABA1.

The second way to modify the definition of admissible assumption labellings to express
the complete semantics is to add a condition which explicitly states that if an assumption
α is defended, i.e. if all sets of assumptions attacking α contain some assumption labelled375

out, then α has to be labelled in. This condition adds the “opposite direction” of the first
condition of an admissible assumption labelling. To make this way of defining complete
assumption labellings more uniform, the “opposite direction” of the second condition of
an admissible assumption labelling is added, too. This renders the third condition of an
admissible assumption labelling superfluous and thus leaves two “if and only if” conditions380

to be satisfied by each α ∈ A:

• LabAsm(α) = in if and only if for each set of assumptions Asms attacking α there
exists some β ∈ Asms such that LabAsm(β) = out;

• LabAsm(α) = out if and only if there exists a set of assumptions Asms attacking α
such that for all β ∈ Asms, LabAsm(β) = in.385

Since LabAsm is an assumption labelling and thus labels each assumption in an ABA
framework, assumptions which do not satisfy the right hand side of either of the above
conditions are “automatically” labelled undec by LabAsm.

A third way to define complete assumption labellings reverses all three conditions of
Definition 3, thus specifying which label an assumption satisfying a certain condition should390

have.

Theorem 3. Let LabAsm be an assumption labelling. The following statements are equiv-
alent:

1. LabAsm is a complete assumption labelling.

2. LabAsm is such that for each α ∈ A it holds that:395

• LabAsm(α) = in if and only if for each set of assumptions Asms attacking α
there exists some β ∈ Asms such that LabAsm(β) = out;

• LabAsm(α) = out if and only if there exists a set of assumptions Asms attacking
α such that for all β ∈ Asms, LabAsm(β) = in.

3. LabAsm is such that for each α ∈ A it holds that:400

• if for each set of assumptions Asms attacking α there exists some β ∈ Asms
such that LabAsm(β) = out, then LabAsm(α) = in;

• if there exists a set of assumptions Asms attacking α such that for all β ∈ Asms,
LabAsm(β) = in, then LabAsm(α) = out;

• if for each set of assumptions Asms1 attacking α there exists some β ∈ Asms1405

such that LabAsm(β) 6= in, and there exists a set of assumptions Asms2 attacking
α such that for all γ ∈ Asms2, LabAsm(γ) 6= out, then LabAsm(α) = undec.

13

Example 6. Consider again ABA1 from Example 1 and its three admissible assumption
labellings. LabAsm1 does not satisfy the second item in Theorem 3 since ρ violates the first
condition. Similarly, LabAsm1 does not satisfy the third item in Theorem 3 since ρ violates410

the first condition. LabAsm2 does not satisfy the second or third item in Theorem 3 since
χ violates the first condition of both items. Only LabAsm3 satisfies the second as well as
the third item in Theorem 3, and is thus the only complete assumption labelling of ABA1.

All three ways of defining complete assumption labellings are useful in their own rights.
Definition 3 is particularly suitable to verify whether a given assumption labelling is indeed a415

complete assumption labelling. In contrast, the third item in Theorem 3 is more suitable for
determining which assumptions should have which label. Since the second item in Theorem 3
can be considered as the “union” of the two other definitions, it lends itself to either of the
two tasks.

Note that the definition of admissible assumption labellings cannot be equivalently ex-420

pressed by reversing of the conditions in Definition 2 since they are not mutually exclusive.
In particular, an unattacked assumption would satisfy both the condition to be labelled
in and to be labelled undec, so not matter which of the two labels was assigned to the
assumption, one of the two conditions would be violated.

The following theorem proves that there is a one-to-one correspondence between complete425

assumption labellings and extensions, just as between admissible assumption labellings and
extensions.

Theorem 4.

1. Let Asms be a complete assumption extension. Then LabAsm with in(LabAsm) =
Asms, out(LabAsm) = Asms+, and undec(LabAsm) = A \ (Asms ∪ Asms+) is a430

complete assumption labelling.

2. Let LabAsm be a complete assumption labelling. Then Asms = in(LabAsm) is a com-
plete assumption extension with Asms+ = out(LabAsm) and A\(Asms∪Asms+) =
undec(LabAsm).

3.3. Grounded, preferred, ideal, semi-stable, and stable semantics435

Based on the notion of complete assumption labellings, the grounded, preferred, ideal,
semi-stable, and stable semantics can be defined in terms of assumption labellings.

Definition 4. A complete assumption labelling LabAsm is:

• a grounded assumption labelling if and only if in(LabAsm) is minimal (w.r.t. ⊆)
among all complete assumption labellings;440

• a preferred assumption labelling if and only if in(LabAsm) is maximal (w.r.t. ⊆)
among all complete assumption labellings;

• an ideal assumption labelling if and only if in(LabAsm) is maximal (w.r.t. ⊆) among
all complete assumption labellings satisfying that for all preferred assumption la-
bellings LabAsm′, in(LabAsm) ⊆ in(LabAsm′);445

• a semi-stable assumption labelling if and only if undec(LabAsm) is minimal (w.r.t.
⊆) among all complete assumption labellings;

• a stable assumption labelling if and only if undec(LabAsm) = ∅.

14

Example 7. Let ABA4 be the ABA framework with:

L = {r, p, x, ρ, ψ, χ},450

R = {r ← ψ ; p← ρ ; p← χ ; x← ψ ; x← χ},
A = {ρ, ψ, χ},
ρ = r , ψ = p , χ = x.

ABA4 has three complete assumption labellings:

• LabAsm1 = {(ρ,undec), (ψ,undec), (χ,undec)},455

• LabAsm2 = {(ρ,out), (ψ, in), (χ,out)}, and

• LabAsm3 = {(ρ, in), (ψ,out), (χ,undec)}.
LabAsm1 is the grounded assumption labelling, LabAsm2 and LabAsm3 are both preferred
assumption labellings, LabAsm1 is the ideal assumption labelling, and LabAsm2 is the only
stable as well as the only semi-stable assumption labelling.460

The following theorem proves that the grounded, preferred, ideal, semi-stable, and stable
assumption labellings correspond one-to-one to the respective assumption extensions.

Theorem 5.

1. Let Asms be a grounded/preferred/ideal/semi-stable/stable assumption extension. Then
LabAsm with in(LabAsm) = Asms, out(LabAsm) = Asms+, and undec(LabAsm) =465

A\ (Asms ∪ Asms+) is a grounded/preferred/ideal/semi-stable/stable assumption la-
belling.

2. Let LabAsm be a grounded/preferred/ideal/semi-stable/stable assumption labelling.
Then Asms = in(LabAsm) is a grounded/preferred/ideal/semi-stable/stable assump-
tion extension with Asms+ = out(LabAsm) and A\(Asms∪Asms+) = undec(LabAsm).470

Corollary 6 follows straightaway from the correspondence of grounded and ideal as-
sumption labellings and extensions and the uniqueness of grounded and ideal assumption
extensions [4, 23].

Corollary 6. The grounded and ideal assumption labelling are both unique.

We now show that preferred, ideal, semi-stable, and stable assumption labellings can be475

redefined in terms of admissible (rather than complete) assumption labellings.

Proposition 7. Let LabAsm be an admissible assumption labelling.

• LabAsm is a preferred assumption labelling if and only if in(LabAsm) is maximal
(w.r.t. ⊆) among all admissible assumption labellings.

• LabAsm is an ideal assumption labelling if and only if in(LabAsm) is maximal (w.r.t.480

⊆) among all admissible assumption labellings satisfying that for all preferred assump-
tion labellings LabAsm′, in(LabAsm) ⊆ in(LabAsm′).

• LabAsm is a semi-stable assumption labelling if and only if undec(LabAsm) is min-
imal (w.r.t. ⊆) among all admissible assumption labellings.

• LabAsm is a stable assumption labelling if and only if undec(LabAsm) = ∅.485

Example 8. The results from Proposition 7 are illustrated by ABA1 (see Examples 1
and 5). For example, the only maximal admissible assumption labelling ofABA1 is LabAsm3,
which is also the only maximal complete, and thus preferred, assumption labelling of ABA1.

15

4. Argument-supporting sets of assumptions

Determining admissible or complete assumption labellings of an ABA framework as well490

as checking whether an assumption labelling is admissible or complete can be cumbersome
since some conditions specifying the label of an assumption α require to consider every set
of assumptions attacking α. In particular, not only the set of premises of an argument whose
conclusion is the contrary of α attacks α, but also every superset thereof.

Example 9. To verify whether χ is correctly labelled in the admissible assumption la-495

belling LabAsm3 = {(ρ, in), (ψ,out), (χ, in)} of ABA1 (see Example 1), not only the set of
assumptions {ψ}, which forms the premises of an argument with conclusion x (the contrary
of χ), but also every superset thereof, i.e. {ρ, ψ}, {ψ, χ}, and {ρ, ψ, χ}, has to be checked.

In this section, we show that considering only sets of assumptions which form the
premises of some argument, which we call argument-supporting sets of assumptions, when500

determining or checking assumption labellings is equivalent to considering all sets of as-
sumptions. This is inspired by the fact that assumption extensions can be determined and
checked by considering either all or only argument-supporting sets of assumptions [33].

4.1. Assumption labellings with respect to argument-supporting sets of assumptions

A set of assumptions is argument-supporting if it forms the premises of some argument.505

Definition 5. Let Asms ⊆ A be a set of assumptions. Asms is an argument-supporting
set of assumptions if and only if there exists some s ∈ L such that Asms ` s is an argument.

Note that all singleton sets of assumptions are argument-supporting, i.e. for every as-
sumption α ∈ A, {α} is an argument-supporting set of assumptions since {α} ` α is an
argument.510

Notation 6. The set of all argument-supporting sets of assumptions is Sarg = {Asms ⊆
A | Asms is an argument-supporting set of assumptions}.

We define a variant of admissible assumption labellings where only argument-supporting,
rather than all, sets of assumptions attacking an assumption are taken into account.

Definition 7. Let LabAsm be an assumption labelling. LabAsm is an admissible assump-515

tion labelling with respect to argument-supporting sets if and only if for each assumption
α ∈ A it holds that:

• if LabAsm(α) = in then for each argument-supporting set of assumptions Asms at-
tacking α there exists some β ∈ Asms such that LabAsm(β) = out;

• if LabAsm(α) = out then there exists an argument-supporting set of assumptions520

Asms attacking α such that for all β ∈ Asms, LabAsm(β) = in;

• if LabAsm(α) = undec then for each argument-supporting set of assumptions Asms
attacking α there exists some β ∈ Asms such that LabAsm(β) 6= in.

16

To check whether χ in ABA1 is correctly labelled according to admissible assumption
labellings with respect to argument-supporting sets, only the set {ψ} has to be taken into525

account (compare Example 9).
The following Lemma shows that the original definition of admissible assumption la-

bellings (Definition 2) and the new definition of admissible assumption labellings with re-
spect to argument-supporting sets can be used interchangeably. This extends the result of
[33] that admissible assumption extensions can be equivalently defined in terms of all sets530

of assumptions or argument-supporting sets of assumptions.

Lemma 8. Let LabAsm be an assumption labelling. LabAsm is an admissible assump-
tion labelling if and only if LabAsm is an admissible assumption labelling with respect to
argument-supporting sets.

Analogously to admissible assumption labellings, we define a variant of complete as-535

sumption labellings, where only argument-supporting sets of assumptions attacking an as-
sumption in question are taken into account.

Definition 8. Let LabAsm be an assumption labelling. LabAsm is a complete assumption
labelling with respect to argument-supporting sets if and only if LabAsm is an admissible
assumption labelling with respect to argument-supporting sets and for each assumption540

α ∈ A it holds that:

• if LabAsm(α) = undec then there exists an argument-supporting set of assumptions
Asms attacking α such that for all γ ∈ Asms, LabAsm(γ) 6= out.

As for admissible assumption labellings, the notions of complete assumption labellings
and complete assumption labellings with respect to argument-supporting sets are equivalent.545

Proposition 9. Let LabAsm be an assumption labelling. LabAsm is a complete assumption
labelling if and only if LabAsm is a complete assumption labelling with respect to argument-
supporting sets.

Since the grounded, preferred, ideal, semi-stable, and stable assumption labellings are
based on complete/admissible assumption labellings, it follows that they can be equivalently550

defined in terms of complete/admissible assumption labellings with respect to argument-
supporting sets.

Note that here we do not address the issue of computing argument-supporting sets of
assumptions, as this is beyond the scope of this paper. However, we note that in order to
determine complete assumption labellings, arguments have to be constructed when consid-555

ering argument-supporting sets as well as when considering all sets of assumptions. Once
arguments have been constructed for all sets of assumptions or argument-supporting sets,
using argument-supporting sets may be beneficial for determining complete assumption la-
bellings. The reason is that, depending on the ABA framework and in particular on the
set of inference rules R, the set of all argument-supporting sets of assumptions Sarg may560

be much smaller than or equal to the set of all sets of assumptions ℘(A). For example,
in ABA1 from Example 1 the set of all argument-supporting sets of assumptions consists
only of the singleton sets, i.e. {{ρ}, {ψ}, {χ}}, whereas the set of all sets of assumptions
is ℘({ρ, ψ, χ}) = {{}, {ρ}, {ψ}, {χ}, {ρ, ψ}, {ρ, χ}, {ψ, χ}, {ρ, ψ, χ}}. Therefore, considering
only argument-supporting sets of assumptions when determining complete assumption la-565

bellings may in the best case require to check only a fraction of all sets of assumptions, but
in the worst case it is exactly the same.

17

Observation 10. Let Sall = ℘(A) be the set of all sets of assumptions, so |Sall| = 2|A|.

• In the best case, |Sarg| = |A|. This is for example the case if R = ∅, since the only
argument-supporting sets of assumptions are the singleton sets.570

• In the worst case, |Sarg| = |Sall| = 2|A|. This is for example the case if R is such that
for each Asmsi ∈ Sall there exists some inference rule si ← si1 , . . . , sin ∈ R such that
Asmsi = {si1 , . . . , sin}.

Example 10. Let ABA5 be the ABA framework with:

L = {p, r, ψ, ρ},575

R = {p← ; p← ρ; r ← ψ; r ← ψ, ρ},
A = {ψ, ρ},
ψ = p , ρ = r.

Here, the set of all argument-supporting sets of assumptions is Sarg = {{}, {ψ}, {ρ}, {ψ, ρ}},
which is the same as the set of all sets of assumptions.580

4.2. ABA graphs

In most of the ABA literature (e.g. [33, 23, 12, 34, 10, 35]), ABA frameworks are not
displayed graphically; they are simply given as tuples, as done in the Examples presented so
far. We introduce ABA graphs, where nodes are argument-supporting sets of assumptions
and edges are attacks between these argument-supporting sets of assumptions.585

{ρ} {ψ} {χ}

{ρ, ψ} {ψ, χ} {ρ, χ}

{ρ} {ψ} {χ}

{ρ, ψ, χ}

{ }

Figure 5: Left: the ABA graph of ABA1. Right: the graph illustrating all sets of assumptions of ABA1

and all attacks between them.

Definition 9. The ABA graph G = (V,E) is a directed graph with V = Sarg and E =
{(Asms1, Asms2) | Asms1, Asms2 ∈ V and Asms1 attacks Asms2}.

The ABA graph of ABA1 from Example 1 has only three nodes, namely the singleton
sets of assumptions, as shown on the left of Figure 5. As a comparison, the right of Figure 5
illustrates the graph of all sets of assumptions and attacks between them. Since an ABA590

graph illustrates all argument-supporting sets of assumptions and attacks between them, an
ABA graph can be used to determine the semantics of an ABA framework.

18

Example 11. The ABA graph of ABA4 (see Example 7) is displayed on the left of Figure 6.
It illustrates which (argument-supporting) sets of assumptions have to be taken into account
when determining complete or admissible assumption labellings (with respect to argument-595

supporting sets). For example, for ρ to be labelled in by a complete assumption labelling
(with respect to argument-supporting sets), all (argument-supporting) sets of assumptions
attacking ρ have to contain an assumption labelled out. Since the only set of assumptions
attacking ρ in the ABA graph is {ψ}, we deduce that ψ has to be labelled out by any
complete assumption labelling that labels ρ as in. It is then easy to verify, based on the two600

sets of assumptions attacking χ, that with ψ labelled out, χ can only be labelled undec.
This complete assumption labelling of ABA4 is illustrated in the ABA graph on the right
of Figure 6.

{ρ} {ψ} {χ} {ρin} {ψout} {χundec}

Figure 6: The ABA graph of ABA4 (see Example 11). The right version also indicates one of the complete
assumption labellings of ABA4.

Another graphical representation of an ABA framework is the attack relationship graph
[4], which was introduced to characterise different types of ABA frameworks. The question605

thus arises whether attack relationship graphs can also be used to determine the semantics,
in particular the assumption labellings, of an ABA framework.

The attack relationship graph Gatt = (V,E) is a directed graph with V = A and
E = {(α, β) | α, β ∈ V and α ∈ Asms such that Asms attacks β and @Asms′ ⊂
Asms such that Asms′ attacks β}.610

The main difference between an ABA graph and an attack relationship graph is that
the vertices of an ABA graph are sets of assumptions, including all the singleton sets,
whereas the vertices of an attack relationship graph are single assumptions. The following
example demonstrates that attack relationship graphs do not capture enough information
to determine the semantics of an ABA framework.615

Example 12. Let ABA6 be the ABA framework with:

L = {ρ, ψ, χ, φ, ω, r, p, x},
R = {r ← φ ; r ← ω ; r ← ψ, χ},
A = {ρ, ψ, χ, φ, ω},
ρ = r, ψ = p, χ = x, φ = ψ, ω = ψ.620

Furthermore, let ABA7 have the same L, A, and contraries as ABA6, but with R = {r ←
φ ; r ← ψ, ω ; r ← χ, ω}. The ABA graphs of ABA6 and ABA7, which are structurally
different, are displayed in Figure 7. In contrast, the attack relationship graphs of ABA6

and ABA7 are the same, as illustrated in Figure 8. Thus, based on the attack relationship
graph it is impossible to distinguish ABA6 and ABA7. However, the two ABA frameworks625

have different complete labellings, as indicated in Figure 7. It is therefore not possible to
determine the complete or admissible assumption labellings of ABA6 and ABA7, and more
generally of any ABA framework, based on their attack relationship graphs.

19

{ρout} {ψin, χin} {χin}

{ωout}

{ψin}{φout}

{ρin} {χin, ωout}

{ψin, ωout}

{χin}

{ωout}

{ψin}{φout}

Figure 7: The ABA graphs of ABA6 (left) and ABA7 (right) from Example 12, each with their only complete
assumption labelling.

ρ χ

ω

ψφ

Figure 8: The attack relationship graph of both ABA6 and ABA7 from Example 12.

Conversely, ABA graphs cannot be (straightforwardly) used for the purpose of attack
relationship graphs, i.e. to characterise different types of ABA frameworks. For example,630

an ABA framework is stratified if and only if its attack relationship graph does not have an
infinite sequence of edges [4]. However, ABA graphs may have an infinite sequence of edges
even if the attack relationship graph does not, as demonstrated in Example 13.

Example 13. Let ABA8 be the following ABA framework:

L = {p, r, x, ψ, ρ, χ},635

R = {r ← ψ ; x← ρ ; r ← ψ, χ},
A = {ψ, ρ, χ},
ψ = p , ρ = r , χ = x.

The attack relationship graph and the ABA graph of ABA8 are displayed in Figure 9. Since
the attack relationship graph does not have any infinite sequence of edges, ABA8 is stratified.640

However, the ABA graph does have an infinite sequence of edges since it comprises a cycle.

ψ ρ χ

{ψ} {ρ} {χ}

{ψ, χ}

Figure 9: The attack relationship graph (left) and the ABA graph (right) of ABA8 from Example 13.

20

{ρ} ` ρ

{ρ} ` p

{ψ} ` ψ

{ψ} ` r

{ψ} ` x

{χ} ` χ

{χ} ` p

{χ} ` x

Figure 10: AA graph of the corresponding AA framework of ABA4.

The example illustrates that an infinite sequence of edges in an ABA graph does not
indicate that the ABA framework is not stratified.

Proposition 11. Let 〈L,R,A, ¯〉 be an ABA framework and let G be its ABA graph and
Gatt its attack relationship graph. If Gatt has an infinite sequence of edges then G has an645

infinite sequence of edges, but not vice versa.

Another way to graphically represent an ABA framework is in terms of the AA graph of
its corresponding AA framework, as for example done in [24, 22]. Interestingly, even though
nodes in an ABA graph are argument-supporting sets of assumptions, an ABA graph does
not generally have the same number of nodes as the AA graph of the corresponding AA650

framework, where nodes are arguments. In particular, an AA graph may have more nodes
than an ABA graph since the same set of assumptions may form the set of premises of
various arguments. As an example, compare the ABA graph of ABA4 shown in Figure 6
with the AA graph of its corresponding AA framework illustrated in Figure 10.

Recently a new way to represent arguments of an ABA framework has been introduced655

with the purpose of eliminating redundancies in arguments [36], namely as argument graphs
rather than tree-structured arguments. Various argument graphs can furthermore be com-
bined to form a larger argument graph, which represents a set of arguments without redun-
dancies. Since the semantics of ABA frameworks in terms of argument graphs is slightly
different from the semantics of ABA frameworks in terms of assumption and argument ex-660

tensions [36], a detailed comparison between argument graphs and ABA graphs goes beyond
the scope of this paper.

5. Assumption labellings versus argument labellings

In this section, we examine the relationship between assumption labellings of an ABA
framework and argument labellings of its corresponding AA framework. In the remainder,665

and if clear from the context, we assume as given a flat ABA framework 〈L,R,A, ¯〉 and
its corresponding AA framework 〈ArABA, AttABA〉 (see Section 2).

21

5.1. Translating between assumption and argument labellings

Before going into detail about the (non-) correspondence between assumption and ar-
gument labellings according to the various semantics, we examine the relationship between670

assumption and argument labellings in general.

Notation 10. LAsm denotes the set of all assumption labellings of 〈L,R,A, ¯〉 and LArg

the set of all argument labellings of 〈ArABA, AttABA〉.

First, we observe that the number of all possible assumption labellings of an ABA frame-
work is smaller than or equal to the number of all possible argument labellings of its cor-675

responding AA framework since an assumption labelling labels only assumptions, i.e. |A|
elements, whereas an argument labelling labels every assumption-argument as well as every
argument constructed using inference rules in R.

Observation 12. Since assumption labellings assign one of three labels to each assumption,
|LAsm| = 3|A|. Since argument labellings assign one of three labels to each argument,680

|LArg| = 3|ArABA|.

• In the best case |LArg| = |LAsm| = 3|A|. This is the case if the only arguments are
assumption-arguments, so |ArABA| = |A|, for example if R = ∅.

• In all other cases |LArg| > |LAsm|. This is the case if there exists at least one
argument which is not an assumption-argument, so |ArABA| > |A|, for example if685

there exists an inference rule s← ∈ R.

As an example, ABA4 from Example 7 has three assumptions, so there are |LAsm| =
33 = 27 possible assumption labellings. In contrast, the corresponding AA framework of
ABA4 has eight arguments (see Figure 10), so there are |LArg| = 38 = 6561 possible
argument labellings. We will see in the following sections that even though the number690

of possible assumption labellings of an ABA framework may be less than the number of
possible argument labellings of its corresponding AA framework, the number of assumption
and argument labellings according to various semantics is the same.

In order to compare assumption and argument labellings, we define two functions for
translating between the two types of labellings. The first translation, LabAsm2LabArg, de-695

termines the labels of arguments based on the given labels of premises of these arguments.

Definition 11. LabAsm2LabArg : LAsm → LArg maps an assumption labelling LabAsm
to an argument labelling LabArg such that:

• in(LabArg) = {Asms ` s ∈ ArABA | Asms ⊆ in(LabAsm)},

• out(LabArg) = {Asms ` s ∈ ArABA | ∃α ∈ Asms : α ∈ out(LabAsm)},700

• undec(LabArg) = {Asms ` s ∈ ArABA | ∃α ∈ Asms : α ∈ undec(LabAsm),
Asms ∩ out(LabAsm) = ∅}.

LabAsm2LabArg mirrors the correspondence between assumption and argument exten-
sions (see Section 2.3) through the mapping from in labelled assumption to in labelled
arguments. In addition, LabAsm2LabArg maps out and undec labelled assumptions to705

out and undec labelled arguments, respectively. An argument is labelled out if one of its
premises is labelled out, independently of the labels of its other premises. The intuition

22

of this translation is that an assumption α which is labelled out is attacked by a set of
assumptions labelled in. Since this set gives rise to an in labelled argument, any argument
which has α as its premise is attacked by an in labelled argument and should thus be la-710

belled out. Arguments labelled undec are simply those whose premises fulfil neither the
condition for in nor for out labelled arguments.

Lemma 13. LabAsm2LabArg is an injective function but not generally a surjective function.

The second translation, LabArg2LabAsm, determines the labels of assumptions based on
the given labels of assumption-arguments.715

Definition 12. LabArg2LabAsm : LArg → LAsm maps an argument labelling LabArg to
an assumption labelling LabAsm such that:

• in(LabAsm) = {α ∈ A | {α} ` α ∈ in(LabArg)},

• out(LabAsm) = {α ∈ A | {α} ` α ∈ out(LabArg)},

• undec(LabAsm) = {α ∈ A | {α} ` α ∈ undec(LabArg)}.720

In contrast to LabAsm2LabArg, the translation from in labelled arguments to in la-
belled assumptions in terms of LabArg2LabAsm does not mirror the correspondence between
argument and assumption extensions (see Section 2). In particular, the set of in labelled
assumptions consists of all assumptions whose assumption-arguments are labelled in, rather
than of all assumptions occurring as the premise of any argument labelled in (which would725

mirror the correspondence between argument and assumption extensions). This is to ensure
that the translation of any argument labelling results in a well-defined assumption labelling.

Example 14. Let ABA9 be the ABA framework with:

L = {ρ, ψ, r, p},
R = {r ← ρ},730

A = {ρ, ψ},
ρ = ψ, ψ = p.

The corresponding AA framework of ABA9 has three arguments, A1 : {ρ} ` ρ, A2 : {ψ} ` ψ,
and A3 : {ρ} ` r. Let LabArg be the argument labelling {(A1, out), (A2, out), (A3, in)}.
Then LabArg2LabAsm(LabArg) = {(ψ, in), (ρ,out)} is a well-defined assumption labelling.735

However, if the set of assumptions labelled in was defined in such a way that it mirrors
the correspondence between argument and assumption extensions, i.e. in(LabAsm) = {α ∈
A | ∃Asms ` s ∈ in(LabArg), α ∈ Asms}, then ρ ∈ in because A3 ∈ in(LabArg) but also
ρ ∈ out because A1 ∈ out(LabArg).

Note that if LabArg2LabAsm was a function between admissible or complete, rather than740

arbitrary, argument and assumption labellings, the translation from in labelled arguments to
in labelled assumptions could mirror the correspondence between argument and assumption
extensions [27].

Lemma 14. LabArg2LabAsm is a surjective function but not generally an injective function.

23

5.2. Complete semantics745

Due to the one-to-one correspondence between complete assumption labellings and ex-
tensions (Theorem 4), between complete assumption and argument extensions [20, 24], and
between complete argument extensions and labellings [25], there is also a one-to-one cor-
respondence between complete assumption labellings and complete argument labellings.
Theorem 15 below characterises the complete argument labelling corresponding to a given750

complete assumption labelling in terms of the mapping LabAsm2LabArg.

Theorem 15. Let LabAsm be an assumption labelling. LabAsm is a complete assumption
labelling if and only if LabAsm2LabArg(LabAsm) is a complete argument labelling.

Note that in addition to proving that every complete assumption labelling is trans-
lated to a corresponding complete argument labelling by LabAsm2LabArg, analogous to the755

correspondence between complete assumption and argument extensions [24], Theorem 15
also proves that for every complete argument labelling which is the translation of some as-
sumption labelling LabAsm in terms of LabAsm2LabArg, LabAsm is a complete assumption
labelling.

Since LabAsm2LabArg is injective but not generally surjective (see Lemma 13), there may760

be an argument labelling LabArg which is not the translation of any assumption labelling
in terms of LabAsm2LabArg, so a natural question is whether LabArg may be a complete
argument labelling. The following Proposition shows that this is not the case, i.e. every
complete argument labelling is the translation of some assumption labelling in terms of
LabAsm2LabArg.765

Proposition 16. Let LabArg be a complete argument labelling. Then there exists a unique
assumption labelling LabAsm such that LabAsm2LabArg(LabAsm) = LabArg.

It follows directly from Theorem 15 that LabAsm is a complete assumption labelling.
We now examine the translation from argument to assumption labellings in terms of

LabArg2LabAsm. Theorem 17 below shows that the translation of a complete argument770

labelling yields a complete assumption labelling.

Theorem 17. Let LabArg be an argument labelling. If LabArg is a complete argument
labelling then LabArg2LabAsm(LabArg) is a complete assumption labelling.

Note that since LabArg2LabAsm is surjective (see Lemma 14) the converse of Theorem 17
does not hold, i.e. a complete assumption labelling LabAsm may be the translation of some775

argument labelling in terms of LabArg2LabAsm which is not a complete argument labelling,
as illustrated by the following example.

Example 15. ABA9 from Example 14 has only one complete assumption labelling LabAsm1 =
{(ρ,out), (ψ, in)}. The corresponding AA framework of ABA9 has three arguments, A1 :
{ρ} ` ρ, A2 : {ψ} ` ψ, and A3 : {ρ} ` r, and one complete argument labelling, LabArg1 =780

{(A1, out), (A2, in), (A3, out)}. It holds that LabArg2LabAsm(LabArg1) = LabAsm1, but
also that for LabArg2 = {(A1, out),
(A2, in), (A3, undec)} LabArg2LabAsm(LabArg2) = LabAsm1, where LabArg2 is not a com-
plete argument labelling.

However, a weaker version of the converse of Theorem 17 holds: Every complete as-785

sumption labelling is the translation of some complete argument labelling in terms of
LabArg2LabAsm.

24

Lemma 18. Let LabAsm be a complete assumption labelling. Then there exists a complete
argument labelling LabArg such that LabArg2LabAsm(LabArg) = LabAsm.

Even though there may be multiple argument labellings which are translated to the790

same complete assumption labelling in terms of LabArg2LabAsm, there are no two complete
argument labellings which are translated to the same assumption labelling.

Lemma 19. Let LabArg1 6= LabArg2 be two complete argument labellings.
Then LabArg2LabAsm(LabArg1) 6= LabArg2LabAsm(LabArg2).

Lemmas 18 and 19 imply that every complete assumption labelling is the translation of795

a unique complete argument labelling in terms of LabArg2LabAsm.

Corollary 20. Let LabAsm be a complete assumption labelling. Then there exists a unique
complete argument labelling LabArg such that LabArg2LabAsm(LabArg) = LabAsm.

From Theorems 15 and 17, and Proposition 16, and Lemmas 18, and 19 it follows that
there is a one-to-one correspondence between complete argument labellings and complete800

assumption labellings in terms of both LabArg2LabAsm and LabAsm2LabArg. Thus, when
restricting LabArg2LabAsm and LabAsm2LabArg to complete argument and assumption la-
bellings, they are bijective functions as well as the inverse of one another (see [24] for the
analogous result about complete argument and assumption extensions).

Corollary 21. Let LAsmComp be the set of all complete assumption labellings of 〈L,R,A, ¯〉805

and LArgComp the set of all complete argument labellings of 〈ArABA, AttABA〉. Let

• LabArg2LabAsm′ : LArgComp → LAsmComp such that ∀LabArg ∈ LArgComp :
LabArg2LabAsm′(LabArg) = LabArg2LabAsm(LabArg)

• LabAsm2LabArg′ : LAsmComp → LArgComp such that ∀LabAsm ∈ LAsmComp :
LabAsm2LabArg′(LabAsm) = LabAsm2LabArg(LabAsm).810

LabArg2LabAsm′ and LabAsm2LabArg′ are bijective functions and each other’s inverse.

5.3. Grounded, preferred, ideal, and stable semantics

Due to existing correspondence results between grounded, preferred, ideal, and stable
argument labellings and extensions [25, 32], argument and assumption extensions [23, 20, 24],
and assumption extensions and labellings (see Section 3.3), the one-to-one correspondence815

between grounded, preferred, ideal, and stable assumption and argument labellings can be
proven in a similar way as for complete assumption and argument labellings.

Theorem 22 states the relationship between a given grounded/preferred/ideal/stable
assumption labelling and a grounded/preferred/ideal/stable argument labelling in terms of
LabAsm2LabArg.820

Theorem 22. Let LabAsm be an assumption labelling. LabAsm is a grounded/preferred/
ideal/stable assumption labelling if and only if LabAsm2LabArg(LabAsm) is a grounded/
preferred/ideal/stable argument labelling.

Theorem 23 states the relationship between a given grounded/preferred/ideal/stable
argument labelling and a grounded/preferred/ideal/stable assumption labelling in terms of825

LabArg2LabAsm.

25

Theorem 23. Let LabArg be an argument labelling. If LabArg is a grounded/preferred/
ideal/stable argument labelling then LabArg2LabAsm(LabArg) is a grounded/preferred/ideal/
stable assumption labelling.

Note that as for the complete semantics the converse of Theorem 23 does not hold.830

A counter-example is ABA9 from Example 15 whose only grounded/preferred/ideal/stable
assumption labelling is LabAsm1, which is the translation of the argument labelling LabArg2
in terms of LabArg2LabAsm, but LabArg2 is not a grounded/preferred/ideal/stable argument
labelling.

Due to the one-to-one correspondence between complete assumption and argument835

labellings (see Corollary 21), it is straightforward that there is also a one-to-one corre-
spondence between grounded/preferred/ideal/stable argument and assumption labellings in
terms of LabAsm2LabArg and LabArg2LabAsm.

5.4. Semi-stable semantics

In contrast to the grounded, preferred, ideal, and stable semantics, semi-stable assump-840

tion and argument extensions are not in a one-to-one correspondence [24]. Since semi-stable
assumption labellings correspond to semi-stable assumption extensions (Theorem 5) and
semi-stable argument labellings to semi-stable argument extensions [25], it follows that there
is no one-to-one correspondence between semi-stable assumption and argument labellings
in terms of LabAsm2LabArg and LabArg2LabAsm. However, since semi-stable assumption845

and argument labellings are complete labellings, the translation of a semi-stable assumption
labelling in terms of LabAsm2LabArg is of course a complete argument labelling and the
translation of a semi-stable argument labelling in terms of LabArg2LabAsm is a complete
assumption labelling.

The following example illustrates an ABA framework where all semi-stable argument850

labellings are translated to semi-stable assumption labellings by LabArg2LabAsm, but not
all semi-stable assumption labellings are translated to semi-stable argument labellings by
LabAsm2LabArg.

Example 16. Let ABA10 be the ABA framework with:

L = {ρ, ψ, χ, x},855

R = {x← ψ, χ},
A = {ρ, ψ, χ},
ρ = ψ, ψ = ρ, χ = χ.

ABA10 has three complete assumption labellings: LabAsm1 labels all assumptions as un-
dec, and LabAsm2 and LabAsm3 are as illustrated in the ABA graphs in Figure 11. Both860

LabAsm2 and LabAsm3 are semi-stable assumption labellings of ABA10.
The corresponding AA framework of ABA10 is shown in Figure 12, along with two

of its complete argument labellings LabArg2 and LabArg3. The third complete argument
labelling LabArg1 labels all arguments as undec. Only LabArg2 is a semi-stable argument
labelling. Thus, LabArg2LabAsm translates all semi-stable argument labellings to semi-stable865

assumption labellings, namely LabArg2LabAsm(LabArg2) = LabAsm2, but LabAsm2LabArg

does not translate all semi-stable assumption labellings to semi-stable argument labellings
since LabAsm2LabArg(LabAsm3) = LabArg3.

26

{ρin}

{ψout}

{χundec}

{ψout, χundec}

{ρout}

{ψin}

{χundec}

{ψin, χundec}

Figure 11: The ABA graph of ABA10 with two of its complete assumption labellings LabAsm2 (left) and
LabAsm3 (right), which are both semi-stable assumption labellings (see Example 16).

{ρ} ` ρ
in

{ψ} ` ψ
out

{χ} ` χ
undec

{ψ, χ} ` x
out

{ρ} ` ρ
out

{ψ} ` ψ
in

{χ} ` χ
undec

{ψ, χ} ` x
undec

Figure 12: The AA graph of the corresponding AA framework of ABA10 with two of its complete argument
labellings LabArg2 (left) and LabArg3 (right). Only LabArg2 is a semi-stable argument labelling (see
Example 16).

The next example illustrates an ABA framework where all semi-stable assumption la-
bellings are translated to semi-stable argument labellings by LabAsm2LabArg, but not all870

semi-stable argument labellings are translated to semi-stable assumption labellings by
LabArg2LabAsm.

Example 17. Let ABA11 be the following ABA framework:

L = {ρ, ψ, χ, ω, x, w},
R = {x← ψ, χ;w ← ω;w ← ψ},875

A = {ρ, ψ, χ, ω},
ρ = ψ, ψ = ρ, χ = χ, ω = w.

ABA11 has three complete assumption labellings: LabAsm1 labels all assumptions as un-
dec, and LabAsm2 and LabAsm3 are as illustrated in the ABA graphs in Figure 13. Only
LabAsm3 is a semi-stable assumption labelling.880

The corresponding AA framework of ABA11 is shown in Figure 14, along with two
of its complete argument labellings LabArg2 and LabArg3. The third complete argument
labelling LabArg1 labels all arguments as undec. Both LabArg2 and LabArg3 are semi-
stable argument labellings. Thus, LabAsm2LabArg translates all semi-stable assumption la-
bellings to semi-stable argument labellings, namely LabAsm2LabArg(LabAsm3) = LabArg3,885

but LabArg2LabAsm does not translate all semi-stable argument labellings to semi-stable
assumption labellings since LabArg2LabAsm(LabArg2) = LabAsm2.

27

{ρin}

{ψout}

{χundec}

{ψout, χundec}

{ωundec}

{ρout}

{ψin}

{χundec}

{ψin, χundec}

{ωout}

Figure 13: The ABA graph of ABA11 with two of its complete assumption labellings LabAsm2 (left) and
LabAsm3 (right). Only LabAsm3 is a semi-stable assumption labelling (see Example 17).

Note that ABA10 and ABA11 are special cases illustrating that semi-stable assump-
tion and argument labellings do not correspond in general. However, there are also cases
where semi-stable argument and assumption labellings correspond as demonstrated by the890

following example.

Example 18. Let ABA12 be the same as ABA11 but with χ = x. Then LabAsm1 and
LabAsm3 are complete assumption labellings as before, but in LabAsm2 χ is labelled in
rather than undec, so both LabAsm2 and LabAsm3 are semi-stable assumption labellings.
The corresponding AA framework of ABA12 has the same complete argument labellings895

LabArg1 and LabArg3 as he corresponding AA framework of ABA11, but in LabArg2 the
argument {χ} ` χ is labelled in rather than undec. Thus, both LabArg2 and LabArg3 are
semi-stable argument labellings, corresponding to the two semi-stable assumption labellings
of ABA12 in terms of LabAsm2LabArg and LabArg2LabAsm.

5.5. Admissible semantics900

We have shown in Theorem 1 that admissible assumption extensions and labellings are
in a one-to-one correspondence. Furthermore, we know that admissible assumption and
argument extensions correspond [23], but this correspondence is not one-to-one as for the
complete, grounded, preferred, ideal, and stable semantics, but one-to-many as illustrated
by the following example.905

Example 19. Let ABA13 be the ABA framework with

L = {ρ, ψ, p},
R = {p← ψ},
A = {ρ, ψ},
ρ = ψ, ψ = ρ.910

The admissible assumption extensions of ABA13 are Asms1 = {}, Asms2 = {ρ} and
Asms3 = {ψ}. The corresponding AA framework has three arguments, A1 : {ρ} ` ρ,
A2 : {ψ} ` ψ, and A3 : {ψ} ` p, and four admissible argument extensions, Args1 = {},
Args2 = {A1}, Args3 = {A2}, and Args4 = {A2, A3}. Args3 and Args4 both correspond
to the admissible assumption extension Asms3 in the sense that Asms3 is the set of all915

28

{ρ} ` ρ
in

{ψ} ` ψ
out

{χ} ` χ
undec

{ψ, χ} ` x
out

{ψ} ` w
out

{ω} ` ω
undec

{ω} ` w
undec

{ρ} ` ρ
out

{ψ} ` ψ
in

{χ} ` χ
undec

{ψ, χ} ` x
undec

{ψ} ` w
in

{ω} ` ω
out

{ω} ` w
out

Figure 14: The AA graph of the corresponding AA framework of ABA11 with two of its complete argu-
ment labellings LabArg2 (top) and LabArg3 (bottom), which are both semi-stable argument labellings (see
Example 17).

assumptions occurring in the premises of arguments in both Args3 and Args4 [23]. Con-
versely, only Args4 corresponds to Asms3 in the sense that it is the set of all arguments
whose premises are contained in Asms3 [23].

In addition, the correspondence between admissible argument extensions and labellings is
one-to-many rather than one-to-one [25]. This implies that the correspondence between ad-920

missible assumption and argument labellings is one-to-many rather than one-to-one. Thus,
only some of the correspondence results analogous to those for complete semantics hold for
admissible semantics.

Theorem 24. Let LabAsm be an assumption labelling. If LabAsm is an admissible as-
sumption labelling then LabAsm2LabArg(LabAsm) is an admissible argument labelling.925

Example 20. Consider again ABA13 from Example 19. ABA13 has the same number of
admissible assumption labellings and extensions, which correspond one-to-one:

• LabAsm1 = {(ρ,undec), (ψ,undec)} corresponds to Asms1;

29

• LabAsm2 = {(ρ, in), (ψ,out)} corresponds to Asms2; and

• LabAsm3 = {(ρ,out), (ψ, in)} corresponds to Asms3.930

In contrast, the corresponding AA framework of ABA13 has eight admissible argument
labellings, even though it has only four admissible argument extensions:

• LabArg11 = {(A1, undec), (A2, undec), (A3, undec)} corresponds to Args1;

• LabArg21 = {(A1, in), (A2, undec), (A3, undec)},
LabArg22 = {(A1, in), (A2, undec), (A3, out)},935

LabArg23 = {(A1, in), (A2, out), (A3, undec)}, and
LabArg24 = {(A1, in), (A2, out), (A3, out)} all correspond to Args2;

• LabArg31 = {(A1, undec), (A2, in), (A3, undec)}, and
LabArg32 = {(A1, out), (A2, in), (A3, undec)} both correspond to Args3; and

• LabArg41 = {(A1, out), (A2, in), (A3, in)} corresponds to Args4.940

The translation of each admissible assumption labelling in terms of LabAsm2LabArg is an
admissible argument labelling, i.e. LabAsm2LabArg(LabAsm1) = LabArg11,
LabAsm2LabArg(LabAsm2) = LabArg24, and LabAsm2LabArg(LabAsm3) = LabArg41.

The following example shows that the converse of Theorem 24 does however not hold.

Example 21. In ABA13 from Example 20 LabAsm2LabArg({(ρ, in), (ψ,undec)}) =945

LabArg21, which is an admissible argument labelling, but {(ρ, in), (ψ,undec)} is not an
admissible assumption labelling.

It is furthermore not the case that every admissible argument labelling is the translation
of some admissible assumption labelling in terms of LabAsm2LabArg (i.e. the analogous
result of Proposition 16 for the admissible semantics does not hold).950

Example 22. Consider the admissible argument labelling LabArg22 of ABA13 (see Ex-
ample 20). There exists no admissible assumption labelling such that LabArg22 is the
translation in terms of LabAsm2LabArg since the arguments A2 and A3 have different labels
even though their premises are the same.

Concerning LabArg2LabAsm, it is surprisingly not the case that the translation of every955

admissible argument labelling in terms of LabArg2LabAsm is an admissible assumption la-
belling (i.e. the analogous result of Theorem 17 for admissible semantics does not hold), as
illustrated by the following example.

Example 23. Consider the admissible argument labelling LabArg31 of ABA13 (see Ex-
ample 20). LabArg2LabAsm(LabArg31) = {(ρ,undec), (ψ, in)}, which is not an admissible960

assumption labelling.

However, it holds that every admissible assumption labelling is the translation of some
admissible argument labelling in terms of LabArg2LabAsm.

Proposition 25. Let LabAsm be an admissible assumption labelling. Then there exists an
admissible argument labelling LabArg such that LabArg2LabAsm(LabArg) = LabAsm.965

30

As in the case of complete assumption and argument labellings, an admissible assumption
labelling may also be the translation of some argument labelling in terms of LabArg2LabAsm
which is not an admissible argument labelling. For example, LabArg2LabAsm({(A1, undec),
(A2, undec), (A3, in)}) = LabAsm2, where LabAsm2 is an admissible assumption labelling
but {(A1, undec), (A2, undec), (A3, in)} is not an admissible argument labelling of ABA13970

(see Example 20).

5.5.1. Committed admissible argument labellings

One of the reasons for the one-to-many correspondence between admissible assumption
and argument labellings is the one-to-many correspondence between admissible argument
extensions and labellings. This arises since admissible argument labellings make no restric-975

tion on arguments labelled undec, so any argument can be labelled undec in an admissible
argument labelling. In contrast, admissible assumption labellings and extensions are in
a one-to-one correspondence since admissible assumption labellings make restrictions on
assumptions labelled undec (see Section 3.1). We now introduce a variant of admissible ar-
gument labellings, which follows the spirit of admissible assumption labellings by restricting980

undec arguments to arguments which are not attacked by any in labelled arguments.

Definition 13. Let 〈Ar,Att〉 be an AA framework and let LabArg be an argument labelling
of 〈Ar,Att〉. LabArg is a committed admissible argument labelling of 〈Ar,Att〉 if and only
if for each argument A ∈ Ar it holds that:

• if LabArg(A) = in then for each B ∈ Ar attacking A, LabArg(B) = out;985

• if LabArg(A) = out then there exists someB ∈ Ar attackingA such that LabArg(B) =
in;

• if LabArg(A) = undec then there exists noB ∈ Ar attackingA such that LabArg(B) =
in.

From Definition 13 it follows directly that each committed admissible argument labelling990

is an admissible argument labelling.

Corollary 26. Let 〈Ar,Att〉 be an AA framework and let LabArg be an argument labelling
of 〈Ar,Att〉. If LabArg is a committed admissible argument labelling of 〈Ar,Att〉 then it is
an admissible argument labelling of 〈Ar,Att〉, but not vice versa.

Example 24. The AA framework 〈ArABA13 , AttABA13〉 (see Examples 19 and 20) has four995

committed admissible argument labellings, namely LabArg11, LabArg24, LabArg32, and
LabArg41. The other admissible argument labellings are not committed admissible since
they violate the third condition in Definition 13. For example, LabArg21 is not a committed
admissible argument labelling since argument A2 is labelled undec, but there exists an
argument attacking A2 which is labelled in, namely A1.1000

Differently from admissible argument labellings, committed admissible argument la-
bellings are in a one-to-one correspondence with admissible argument extensions.

Theorem 27. Let 〈Ar,Att〉 be an AA framework.

1. Let Args ⊆ Ar be an admissible argument extension of 〈Ar,Att〉. Then LabArg with
in(LabArg) = Args, out(LabArg) = Args+, and undec(LabArg) = Ar \ (Args ∪1005

Args+) is a committed admissible argument labelling of 〈Ar,Att〉.

31

2. Let LabArg be a committed admissible argument labelling of 〈Ar,Att〉. Then Args =
in(LabArg) is an admissible argument extension of 〈Ar,Att〉 with Args+ = out(LabArg),
and Ar \ (Args ∪Args+) = undec(LabArg).

Note that the way arguments are labelled in, out, and undec in the first item of The-1010

orem 27 mirrors the Ext2Lab operator in [25]. On the other hand, the second item of
Theorem 27 extends the Lab2Ext operator from [25] as it not only defines an argument
extension based on an argument labelling, but also the set of arguments attacked by the
argument extension and the set of arguments which are neither contained in nor attacked
by the argument extension.1015

Note also that committed admissible argument labellings are different from other vari-
ations of the admissible semantics such as strongly admissible argument labellings (and
extensions) [37, 38], which require that an accepted argument is defended by accepted ar-
guments other than itself, and related admissible argument extensions [16], which require
that all accepted arguments are “relevant” for defending some accepted argument.1020

Given this one-to-one correspondence between committed admissible argument labellings
and admissible argument labellings, we now show that there is a “more refined” one-to-
many correspondence between admissible assumption labellings and committed admissible
argument labellings as compared to admissible argument labellings, i.e. some additional
correspondence results hold. Firstly, the converse of Theorem 24 is satisfied for committed1025

admissible argument labellings.

Theorem 28. Let LabAsm be an assumption labelling. LabAsm is an admissible assump-
tion labelling if and only if LabAsm2LabArg(LabAsm) is a committed admissible argument
labelling.

Secondly, the translation of a committed admissible argument labelling in terms of1030

LabArg2LabAsm is an admissible assumption labelling.

Theorem 29. Let LabArg be an argument labelling. If LabArg is a committed admissible
argument labelling then LabArg2LabAsm(LabArg) is an admissible assumption labelling.

Furthermore, Proposition 25 also holds for committed admissible argument labellings.

Proposition 30. Let LabAsm be an admissible assumption labelling. Then there exists1035

a committed admissible argument labelling LabArg such that LabArg2LabAsm(LabArg) =
LabAsm.

The following example illustrates that due to the additional correspondence results, the
one-to-many correspondence of admissible assumption labellings with committed admissible
argument labellings is a “more refined” than with admissible argument labellings.1040

Example 25. Consider again ABA13 from Examples 19, 20, and 24. LabAsm2 is the
translation of only one committed admissible argument labelling in terms of LabArg2LabAsm,
namely LabArg24, rather than of two different admissible argument labellings LabArg23 and
LabArg24. Furthermore, the translations of all committed admissible argument labellings in
terms of LabArg2LabAsm are admissible assumption labellings. In contrast, the translations1045

of the three admissible argument labellings LabArg21, LabArg22, and LabArg31 in terms of
LabArg2LabAsm are not admissible assumption labellings.

32

The reason that despite the additional correspondence results there is no one-to-one cor-
respondence between admissible assumption labellings and committed admissible argument
labellings is that a committed admissible argument labelling may not be the translation of1050

any admissible assumption labelling in terms of LabAsm2LabArg. For example, the com-
mitted admissible argument labelling LabArg32 of ABA13 is not the translation of any
admissible assumption labelling in terms of LabAsm2LabArg (see Examples 19, 20, and 24).

Note that it would be straightforward to define a new notion of admissible assumption
labellings, which corresponds more closely to admissible argument labellings. This can be1055

achieved by deleting the restriction on undec assumptions from the definition of admissible
assumption labellings. However, we do not examine this possible variation further since
we believe that the restriction on undec assumptions is intuitive: it seems reasonable that
any assumption attacked by accepted assumptions cannot be accepted and should thus be
rejected (out) rather than neither accepted nor rejected (undec).1060

6. Non-flat ABA frameworks

So far, we only considered flat ABA frameworks. In general however, ABA frameworks
may not be flat, for example the instance of ABA corresponding to auto-epistemic logic [39]
is never flat [4]. For possibly non-flat ABA frameworks assumption extensions are defined
more generally than for flat ABA frameworks: they are closed sets of assumptions and they1065

are based on a more general notion of defence [4]. A set of assumption Asms ⊆ A

• is closed if and only if Asms = {α ∈ A | ∃Asms′ ⊆ Asms : Asms′ ` α};

• defends α ∈ A if and only if Asms attacks all closed sets of assumptions attacking α.

Note that in flat ABA frameworks every set of assumptions is closed since in these
frameworks assumptions do not occur as the head of inference rules and therefore the more1070

general notion of defence coincides with the notion of defence introduced in Section 2. For
flat ABA frameworks, the general definition of assumption extensions for possibly non-flat
ABA frameworks (introduced in the following) thus coincides with the definitions given in
Section 2.

From here onwards, and if not specified otherwise, we assume as given a possibly non-flat1075

ABA framework 〈L,R,A, ¯〉. Furthermore, “defence” refers to the more general notion.

6.1. Admissible semantics

We recall the definition of admissible assumption extensions for possibly non-flat ABA
frameworks.

A set of assumption Asms ⊆ A is an admissible assumption extension if and1080

only if Asms is closed, conflict-free, and defends every α ∈ Asms.

We first illustrate that admissible assumption labellings as introduced for flat ABA
frameworks (Definition 2) do not correctly express the semantics of non-flat ABA frame-
works.

Example 26. Let ABA14 be the non-flat ABA framework with:1085

L = {ρ, ψ, χ, p, x},
R = {ρ← χ},
A = {ρ, ψ, χ},
ρ = ψ, ψ = p, χ = x.

33

According to Definition 2, ABA14 has four admissible assumption labellings:1090

• LabAsm1 = {(ρ,undec), (ψ,undec), (χ,undec)},

• LabAsm2 = {(ρ,out), (ψ, in), (χ,undec)},

• LabAsm3 = {(ρ,undec), (ψ,undec), (χ, in)}, and

• LabAsm4 = {(ρ,out), (ψ, in), (χ, in)}.

However, ABA14 has only two admissible assumption extensions (according to the definition1095

for possibly non-flat ABA frameworks): Asms1 = {}, and Asms2 = {ψ}. Asms1 corre-
sponds to LabAsm1 and Asms2 to LabAsm2 (in terms of Theorem 1). The corresponding
sets of assumptions (in terms of Theorem 1) of LabAsm3 and LabAsm4 are Asms3 = {χ}
and Asms4 = {ψ, χ}, respectively. Neither of them is an admissible assumption extension of
ABA14, since neither of them is a closed set of assumptions. Thus, LabAsm3 and LabAsm41100

should not be admissible assumption labellings of ABA14.

As illustrated in Example 26, a reason that the definition of admissible assumption
labellings of flat ABA frameworks does not correctly express the semantics of non-flat ABA
frameworks is that the set of in labelled assumptions may not be closed. A straightforward
way of revising the definition of admissible assumption labellings is thus to explicitly add the1105

condition “in(LabAsm) is a closed set of assumptions”. However, this condition expresses
a restriction on the whole set of in labelled assumptions, rather than on the label of one
assumption, as done by the three conditions of admissible assumption labellings.

To adhere to the structure of the conditions of admissible assumption labellings, we
instead add an additional restriction to the conditions of undec and out labelled assump-1110

tions, which ensures that an assumption can only be labelled undec or out if it is not
derivable from the set of in labelled assumptions using the inference rules. To express this
new restriction, we introduce the notion of a set of assumptions supporting an assumption.

Definition 14. Let Asms ⊆ A and α ∈ A. Asms supports α if and only if there exists
an argument Asms′ ` α and Asms′ ⊆ Asms. Equivalently, we say that α is supported by1115

Asms.

The following definition extends Definition 2 to admissible assumption labellings of pos-
sibly non-flat ABA frameworks.

Definition 15. Let LabAsm be an assumption labelling. LabAsm is an admissible assump-
tion labelling if and only if for each assumption α ∈ A it holds that:1120

• if LabAsm(α) = in then for each closed set of assumptions Asms attacking α there
exists some β ∈ Asms such that LabAsm(β) = out;

• if LabAsm(α) = out then there exists a closed set of assumptions Asms1 attacking α
such that for all β ∈ Asms1, LabAsm(β) = in, and there exists no set of assumptions
Asms2 supporting α such that for all γ ∈ Asms2, LabAsm(γ) = in;1125

• if LabAsm(α) = undec then for each closed set of assumptions Asms1 attacking α
there exists some β ∈ Asms1 such that LabAsm(β) 6= in, and there exists no set of
assumptions Asms2 supporting α such that for all γ ∈ Asms2, LabAsm(γ) = in.

34

According to the revised definition only LabAsm1 and LabAsm2 of ABA14 from Ex-
ample 26 are admissible assumption labellings. LabAsm3 and LabAsm4 are not admissible1130

assumption labellings since ρviolates the new restriction on undec/out labelled assump-
tions as ρ is supported by {χ} and χ is labelled in.

Note that we also incorporated the more general notion of defence into Definition 15 by
only considering closed sets of assumptions attacking an assumption in question.

Observation 31. Let LabAsm be an assumption labelling of a flat ABA framework. Then1135

LabAsm is an admissible assumption labelling according to Definition 2 if and only if it is
an admissible assumption labelling according to Definition 15.

The following theorem states that Definition 15 correctly expresses the admissible se-
mantics of possibly non-flat ABA frameworks, i.e. that there is a one-to-one correspondence
between admissible assumption extensions and labellings of possibly non-flat ABA frame-1140

works.

Theorem 32.

1. Let Asms be an admissible assumption extension. Then LabAsm with in(LabAsm) =
Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A\ (Asms ∪ Asms+) is an
admissible assumption labelling.1145

2. Let LabAsm be an admissible assumption labelling. Then Asms = in(LabAsm) is
an admissible assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪
Asms+) = undec(LabAsm).

6.2. Complete semantics

We first recall the definition of complete assumption extensions for possibly non-flat1150

ABA frameworks.

A set of assumption Asms ⊆ A is a complete assumption extension if and only
if Asms is closed, conflict-free, and consists of all assumptions it defends.

For flat ABA frameworks, complete assumption labellings are defined as admissible as-
sumption labellings satisfying an additional condition. Analogously, we define complete1155

assumption labellings of possibly non-flat ABA frameworks.

Definition 16. Let LabAsm be an assumption labelling. LabAsm is a complete assumption
labelling if and only if LabAsm is an admissible assumption labelling and for each assumption
α ∈ A it holds that:

• if LabAsm(α) = undec then there exists a closed set of assumptions Asms3 attacking1160

α such that for all δ ∈ Asms3, LabAsm(δ) 6= out.

Analogously to the definition of admissible assumption labellings of possibly non-flat
ABA frameworks, the additional condition of complete assumption labellings only takes
into account attacking sets of assumptions which are closed. Without this restriction, the
definition would yield different assumption labellings.1165

Observation 33. Let LabAsm be an assumption labelling of a flat ABA framework. Then
LabAsm is a complete assumption labelling according to Definition 3 if and only if it is a
complete assumption labelling according to Definition 16.

35

As intended, complete assumption labellings and extensions of possibly non-flat ABA
frameworks are in one-to-one correspondence.1170

Theorem 34.

1. Let Asms be a complete assumption extension. Then LabAsm with in(LabAsm) =
Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is a
complete assumption labelling.

2. Let LabAsm be a complete assumption labelling. Then Asms = in(LabAsm) is a com-1175

plete assumption extension with Asms+ = out(LabAsm) and A\(Asms∪Asms+) =
undec(LabAsm).

For flat ABA frameworks we identified two equivalent variations to the definition of
complete assumption labellings. One of them used the converse of each condition in the
definition of a complete assumption labellings (see Lemma 3). Extending this alternative1180

definition of complete assumption labellings of flat ABA frameworks with an additional
condition ensuring that the set of in labelled assumptions is closed and considering only
attacking sets of assumptions which are closed, makes it equivalent to the definition of
complete assumption labellings for possibly non-flat ABA frameworks.

Proposition 35. Let LabAsm be an assumption labelling. The following statements are1185

equivalent:

1. LabAsm is a complete assumption labelling.

2. LabAsm is such that for each α ∈ A it holds that:

• if there exists a set of assumptions Asms supporting α such that for all β ∈ Asms,
LabAsm(β) = in, then LabAsm(α) = in;1190

• if for each closed set of assumptions Asms attacking α there exists some β ∈
Asms such that LabAsm(β) = out, then LabAsm(α) = in;

• if there exists a closed set of assumptions Asms attacking α such that for all
β ∈ Asms, LabAsm(β) = in, then LabAsm(α) = out;

• if for each closed set of assumptions Asms1 attacking α there exists some β ∈1195

Asms1 such that LabAsm(β) 6= in, and there exists a closed set of assump-
tions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out, then
LabAsm(α) = undec.

Note that reversing the conditions in Definition 16 does not result in an equivalent
definition of complete assumption labellings for possibly non-flat ABA frameworks. For1200

example, the assumption labelling LabAsm = {(ρ,undec), (ψ, in), (χ, in)} of ABA14 (see
Example 26) satisfies the converse of each condition in Definition 16: for both ψ and χ the
converse of the first condition applies and is satisfied, and for ρ none of the converses of the
three conditions applies, so ρ trivially satisfies the converse conditions. However, LabAsm
is not a complete assumption labelling of ABA14 since ABA14 has no complete assumption1205

labellings.
The other equivalent definition of complete assumption labellings for flat ABA frame-

works we identified was the “if and only if” version of the first and second conditions of a
complete assumption labelling for flat ABA frameworks (see Lemma 3). The analogue for
complete assumption labellings of possibly non-flat ABA frameworks does however not re-1210

sult in an equivalent definition. That is, an assumption labelling satisfying the the following
conditions

36

• LabAsm(α) = in if and only if for each closed set of assumptions Asms attacking α
there exists some β ∈ Asms such that LabAsm(β) = out;

• LabAsm(α) = out if and only if there exists a closed set of assumptions Asms11215

attacking α such that for all β ∈ Asms1, LabAsm(β) = in, and there exists no set of
assumptions Asms2 supporting α such that for all γ ∈ Asms2, LabAsm(γ) = in;

is not generally a complete assumption labelling of a possibly non-flat ABA framework since
for instance LabAsm = {(ρ,undec), (ψ, in), (χ, in)} of ABA14 (see Example 26) satisfies
both conditions, but LabAsm is not a complete assumption labelling of ABA14.1220

6.3. Grounded, preferred, ideal, semi-stable, and stable semantics

Originally, the grounded, preferred, and stable assumption extensions of possibly non-
flat ABA frameworks were defined as specific admissible rather than complete assumption
extensions. For flat ABA frameworks these two definitions are equivalent, bus as we will
show in this section for non-flat ABA frameworks they are not.1225

We first recall the definitions of grounded, preferred, and stable assumption extensions
for possibly non-flat ABA frameworks [4]. A set of assumptions Asms ⊆ A is

• a grounded assumption extension if and only if Asms is the intersection of all complete
assumption extensions;

• a preferred assumption extension if and only if Asms is a maximal (w.r.t. ⊆) admis-1230

sible assumption extension;

• a stable assumption extension if and only if Asms is closed, conflict-free, and for all
α ∈ A it holds that if α /∈ Asms then Asms attacks α.

Since ideal and semi-stable semantics have only been defined for flat ABA frameworks
so far, we will investigate these semantics after dealing with the grounded, preferred, and1235

stable semantics.

6.3.1. Grounded semantics

The following example illustrates that for possibly non-flat ABA frameworks, the mini-
mally complete assumption extensions do not generally coincide with the grounded assump-
tion extensions.1240

Example 27. Let ABA15 be the non-flat ABA framework with:

L = {ρ, ψ, χ, ω, x},
R = {x← ρ; x← ψ; χ←},
A = {ρ, ψ, χ, ω},
ρ = ψ, ψ = ρ, χ = ω, ω = x.1245

ABA15 has two complete assumption extensions: Asms1 = {ρ, χ} and Asms2 = {ψ, χ}.
Asms1 and Asms2 are both minimally complete, but the grounded assumption extension
is Asms3 = {χ}.

In order to express the grounded semantics of possibly non-flat ABA frameworks in terms
of assumption labellings, the set of in labelled assumptions has to be the intersection of the1250

sets of in labelled assumptions of all complete assumption labellings.

37

Definition 17. Let LabAsm be an assumption labelling. LabAsm is a grounded assumption
labelling if and only if for all α ∈ A it holds that:

• LabAsm(α) = in if and only if for all complete assumption labellings LabAsm′,
LabAsm′(α) = in;1255

• LabAsm(α) = out if and only if there exists a closed set of assumptions Asms
attacking α such that for all β ∈ Asms, LabAsm(β) = in.

The second condition ensures the one-to-one correspondence between grounded assump-
tion labellings and extensions of possibly non-flat ABA frameworks.

Theorem 36.1260

1. Let Asms be a grounded assumption extension. Then LabAsm with in(LabAsm) =
Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is a
grounded assumption labelling.

2. Let LabAsm be a grounded assumption labelling. Then Asms = in(LabAsm) is a
grounded assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪1265

Asms+) = undec(LabAsm).

Based on the correspondence between grounded assumption labellings and extensions
of possibly non-flat ABA frameworks and results from [4], we prove that for flat ABA
frameworks Definition 17 is equivalent to the definition of grounded assumption labellings
for flat ABA frameworks.1270

Proposition 37. Let LabAsm be an assumption labelling of a flat ABA framework. Then
LabAsm is a grounded assumption labelling according to Definition 4 if and only if it is a
grounded assumption labelling according to Definition 17.

6.3.2. Preferred semantics

The non-flat ABA framework ABA14 from Example 26 illustrates that maximally com-1275

plete assumption extensions do not generally coincide with preferred assumption extensions:
ABA14 has no complete assumption extensions, but {ψ} is its preferred assumption exten-
sion. We thus define preferred assumption labellings of possibly non-flat ABA frameworks
as admissible, rather than complete, assumption labellings with a maximal set of in labelled
assumptions.1280

Definition 18. Let LabAsm be an assumption labelling. LabAsm is a preferred assumption
labelling if and only if LabAsm is an admissible assumption labelling and in(LabAsm) is
maximal (w.r.t. ⊆) among all admissible assumption labellings.

Since preferred assumption labellings for flat ABA frameworks can be equivalently de-
fined as admissible assumption labellings with a maximal set of in labelled assumptions1285

(see Proposition 7) and since for flat ABA frameworks Definition 15 coincides with Defini-
tion 2, it follows that for flat ABA frameworks Definition 18 coincides with the definition
of preferred assumption labellings of flat ABA frameworks.

Proposition 38. Let LabAsm be an assumption labelling of a flat ABA framework. Then
LabAsm is a preferred assumption labelling according to Definition 4 if and only if it is a1290

preferred assumption labelling of according to Definition 18.

38

As desired, preferred assumption labellings correctly express the preferred semantics of
possibly non-flat ABA frameworks.

Theorem 39.

1. Let Asms be a preferred assumption extension. Then LabAsm with in(LabAsm) =1295

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is a
preferred assumption labelling.

2. Let LabAsm be a preferred assumption labelling. Then Asms = in(LabAsm) is a pre-
ferred assumption extension with Asms+ = out(LabAsm) and A\(Asms∪Asms+) =
undec(LabAsm).1300

6.3.3. Stable semantics

Even though stable assumption extensions of possibly non-flat ABA frameworks are not
defined as specific admissible or complete assumption extensions, it was shown in [4] that
stable assumption extensions are always complete assumption extensions. Therefore, we
define stable assumption labellings of possibly non-flat ABA frameworks in the same way as1305

for flat ABA frameworks, i.e. as complete assumption labellings which label no assumptions
as undec.

Definition 19. Let LabAsm be an assumption labelling. LabAsm is a stable assumption
labelling if and only if LabAsm is a complete assumption labelling and undec(LabAsm) = ∅.

From Observation 33 and Definition 19 it follows straightaway that for flat ABA frame-1310

works Definition 19 is equivalent to the definition of stable assumption labellings of flat
ABA frameworks.

Observation 40. Let LabAsm be an assumption labelling of a flat ABA framework. Then
LabAsm is a stable assumption labelling according to Definition 4 if and only if it is a stable
assumption labelling according to Definition 19.1315

Furthermore, there is a one-to-one correspondence between stable assumption labellings
and extensions of possibly non-flat ABA frameworks.

Theorem 41.

1. Let Asms be a stable assumption extension. Then LabAsm with in(LabAsm) = Asms,
out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is a stable1320

assumption labelling.

2. Let LabAsm be a stable assumption labelling. Then Asms = in(LabAsm) is a stable
assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) =
undec(LabAsm).

6.3.4. Ideal semantics1325

Since the ideal semantics has so far only been defined in the context of flat ABA frame-
works, we define ideal assumption extensions of possibly non-flat ABA frameworks, following
the original definition for flat ABA frameworks where ideal assumption extensions are de-
fined as specific admissible rather than complete assumption extensions [23].

Definition 20. A set of assumptions Asms ⊆ A is an ideal assumption extension if and1330

only if Asms is a maximal (w.r.t. ⊆) admissible assumption extension satisfying that for
all preferred assumption extensions Asms′, Asms ⊆ Asms′.

39

Just as for preferred assumption extensions, ideal assumption extensions of possibly
non-flat ABA frameworks do not generally coincide with maximally complete assumption
extensions which are a subset of each preferred assumption extension. We thus define ideal1335

assumption labellings of possibly non-flat ABA frameworks in terms of admissible rather
than complete assumption labellings.

Definition 21. Let LabAsm be an assumption labelling. LabAsm is an ideal assumption
labelling if and only if LabAsm is an admissible assumption labelling and in(LabAsm)
is maximal (w.r.t. ⊆) among all admissible assumption labellings satisfying that for all1340

preferred assumption labellings LabAsm′, in(LabAsm) ⊆ in(LabAsm′).

From Proposition 7 and Observation 31 it follows that for flat ABA frameworks Defini-
tion 21 coincides with the definition of ideal assumption labellings of flat ABA frameworks.

Proposition 42. Let LabAsm be an assumption labelling of a flat ABA framework. Then
LabAsm is an ideal assumption labelling according to Definition 4 if and only if it is an1345

ideal assumption labelling according to Definition 21.

Furthermore, as desired there is a one-to-one correspondence between ideal assumption
extensions and labellings of possibly non-flat ABA frameworks.

Theorem 43.

1. Let Asms be an ideal assumption extension. Then LabAsm with in(LabAsm) =1350

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+)
is an ideal assumption labelling.

2. Let LabAsm be an ideal assumption labelling. Then Asms = in(LabAsm) is an ideal
assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) =
undec(LabAsm).1355

6.3.5. Semi-stable semantics

Just like the ideal semantics, the semi-stable semantics has so far only been defined for
flat ABA frameworks. Semi-stable assumption extensions are originally defined as specific
complete assumption extensions, but for flat ABA frameworks they can be equivalently
defined as specific admissible assumption extensions. For non-flat ABA frameworks this is1360

not the case.

Example 28. Let ABA16 be the non-flat ABA framework with:

L = {ρ, ψ, χ, ω, p},
R = {p← ρ; p← χ; p← ψ; ψ ← ρ, χ},
A = {ρ, ψ, χ, ω},1365

ρ = ψ, ψ = p, χ = ψ, ω = χ.

The only complete assumption extension of ABA16 is Asms1 = {}, and thus Asms1 ∪
Asms+1 is maximal among all complete assumption extensions. In contrast, there are three
admissible assumption extensions: Asms1, Asms2 = {ρ}, and Asms3 = {χ}. Among these,
Asms3 ∪Asms+3 is maximal.1370

One of the defining properties of semi-stable assumption extensions of flat ABA frame-
works is that they are preferred assumption extensions [24]. To retain this property, we
define semi-stable assumption extensions and labellings of possibly non-flat ABA frame-
works in terms of admissible rather than complete assumption extensions and labellings.

40

Definition 22. A set of assumptions Asms ⊆ A is a semi-stable assumption extension if1375

and only if Asms is an admissible assumption extension and for all admissible assumption
extensions Asms′, Asms ∪Asms+ 6⊂ Asms′ ∪Asms′+.

Definition 23. Let LabAsm be an assumption labelling . LabAsm is a semi-stable assump-
tion labelling if and only if LabAsm is an admissible assumption labelling and undec(LabAsm)
is minimal (w.r.t. ⊆) among all admissible assumption labellings.1380

By Proposition 7, for flat ABA frameworks Definition 23 coincides with the definition of
semi-stable assumption labellings of flat ABA frameworks.

Proposition 44. Let LabAsm be an assumption labelling of a flat ABA framework. Then
LabAsm is a semi-stable assumption labelling according to Definition 4 if and only if it is a
semi-stable assumption labelling according to Definition 23.1385

As desired, there is a one-to-one correspondence between semi-stable assumption exten-
sions and labellings of possibly non-flat ABA frameworks.

Theorem 45.

1. Let Asms be a semi-stable assumption extension. Then LabAsm with in(LabAsm) =
Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is a1390

semi-stable assumption labelling.

2. Let LabAsm be a semi-stable assumption labelling. Then Asms = in(LabAsm) is a
semi-stable assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪
Asms+) = undec(LabAsm).

Finally, we prove that semi-stable assumption labellings of possibly non-flat ABA frame-1395

works satisfy the property we desired, namely that they are preferred assumption labellings.

Proposition 46. Let LabAsm be a semi-stable assumption labelling. Then LabAsm is a
preferred assumption labelling.

7. Conclusion

We studied assumption labellings of flat as well as possibly non-flat ABA frameworks for1400

the admissible, grounded, complete, preferred, ideal, semi-stable, and stable semantics and
proved that there is a one-to-one correspondence with the respective assumption extensions.
Even though some of the definitions of assumption labellings for possibly non-flat ABA
frameworks are (considerably) different from the definitions of assumption labellings for flat
ABA frameworks, in particular those for the grounded, preferred, ideal, and semi-stable1405

semantics, we proved that applying the definitions of assumption labellings for possibly
non-flat ABA frameworks to flat ABA frameworks yields the correct assumption labellings
(as defined for flat ABA frameworks). Furthermore, we showed that assumption labellings
of flat ABA frameworks can be equivalently defined based on attacks between all sets of
assumptions and attacks between argument-supporting sets of assumptions. Using the latter1410

notion, we demonstrated how argument-supporting sets of assumptions and attacks between
them can be naturally represented as a graph, which expresses sufficient information to
determine the assumption labellings of a flat ABA framework.

41

We also investigated the relationship of assumption labellings of flat ABA frameworks
and argument labellings of their corresponding AA frameworks and found that grounded,1415

complete, preferred, ideal, and stable assumption and argument labellings are in a one-to-one
correspondence, whereas semi-stable assumption labellings and extensions do not generally
correspond. Admissible assumption and argument labellings are in a one-to-many correspon-
dence. Based on this finding, we defined a variant of admissible argument labellings, which
we call committed admissible argument labellings and which mirrors admissible assumption1420

labellings by requiring that arguments which are attacked by in labelled arguments are
labelled out, rather than undec. We proved that admissible assumption labellings and com-
mitted admissible argument labellings are in a “more refined” one-to-many correspondence
as compared to admissible argument labellings, i.e. an admissible assumption labelling may
correspond to fewer committed admissible argument labellings than admissible argument1425

labellings. In contrast to admissible argument labellings, committed admissible argument
labellings are furthermore in one-to-one correspondence with admissible argument exten-
sions.

In this paper, we did not focus on any particular instance of ABA. For example, logic
programs are special instances of flat ABA frameworks [4], so the results presented here1430

for flat ABA frameworks also apply to the instance of ABA which corresponds to logic
programs. Caminada and Schulz [29] show that, conversely, a specific fragment of (flat) ABA
frameworks is as an instance of logic programs, where the models of the logic program and
the assumption labellings of the ABA framework coincide. Furthermore, Dung [3] as well as
Caminada et al. [40] study logic programs as an instance of AA frameworks, proving that the1435

models of the logic program and the argument labellings of the AA framework correspond. In
Section 5, we investigated (flat) ABA as a direct instance of AA (as for example in [23, 24])
and analysed the (non-)correspondence between assumption and argument labellings in
more detail than previously done for assumption and argument extensions [23, 24], without
restricting to any fragment or instance of flat ABA.1440

Since the stable semantics of ABA, both in terms of assumption and argument exten-
sions, corresponds to the stable model semantics for logic programs [4, 22], ABA has proven
useful to argumentatively explain the truth value (true or false) of literals with respect
to stable models of logic programs [22]. Other logic programming semantics such as 3-
valued stable models [41], well-founded models [42], and regular models [43] also include a1445

third truth value (undefined) for literals. Since these 3-valued logic programming models
correspond to assumption labellings [28, 29], assumption labellings could be used to argu-
mentatively explain the truth value of literals with respect to 3-valued logic programming
models. Furthermore, assumption labellings may prove useful for explaining inconsistencies
in logic programs under the stable model semantics since some inconsistency scenarios can1450

be attributed to the “undefined” truth value of literals [44], which corresponds to undec
assumptions in ABA frameworks [22, 29].

The ABA graphs introduced here are fundamentally different from previous graphical
representations of ABA frameworks, notably the attack relationship graphs in [4] and the
argument graphs in [36]. As logic programs are special instances of ABA frameworks, ABA1455

graphs can also be used to represent logic programs [28]. For logic programs, various other
graphical representations have been proposed, which can be compared to ABA graphs of
ABA frameworks instantiated by logic programs. Dimopoulos and Torres [45] introduce
minimal attack graphs of logic programs, which are very similar to ABA graphs when used
on ABA frameworks which are instantiated by a logic program. The difference is that1460

ABA graphs may have more nodes since all argument-supporting sets of assumptions form

42

nodes, rather than only minimal ones. Costantini [46] introduces Extended Dependency
Graphs to represent a special type of logic programs. The graphs have one node for every
rule, holding the rule’s head atom. The representation is thus rather different from ABA
graphs, even when considering ABA frameworks which are instantiated by logic programs.1465

Graphical representations of logic programs have also been used to compute the semantics
of logic programs [47, 48]. In future work, we will study the suitability of ABA graphs for
computing assumption labellings of ABA frameworks.

In future work we are planning to investigate the role of distinguishing between rejected
and undecided assumptions in dispute derivations [34]. Currently, dispute derivations focus1470

on determining whether an assumption is accepted with respect to some extension. If no
dispute derivation can be constructed, the assumption in question is deemed non-accepted.
We will explore whether assumption labellings can help to further differentiate between
rejected and undecided assumptions in dispute derivations.

Furthermore, ABA frameworks have recently been extended to incorporate preferences1475

[49, 50]. Future work will reveal whether assumption labellings can be directly applied to
these extended ABA frameworks. Another recent development regarding ABA frameworks
is the definition of semantics for ABA frameworks in terms of argument graphs rather than
argument extensions [36]. It will be interesting to investigate if argument or assumption la-
bellings can be directly applied to argument graphs or if a completely new labelling approach1480

is needed.
Argument labellings have inspired efficient algorithms for computing the semantics of an

AA framework [51, 52, 53]. Assumption labellings may thus prove useful for algorithms to
compute ABA semantics in terms of assumptions, which is another line of future research.

Appendix A. Proofs1485

Proof of Theorem 1

1. First note that Asms ∩ Asms+ = ∅ since Asms does not attack itself. Thus each
α ∈ A is either contained in in(LabAsm), in out(LabAsm), or in undec(LabAsm).

• Let LabAsm(α) = in. Then α ∈ Asms, so Asms defends α, i.e. for all sets of
assumptions Asms1 attacking α there exists some β ∈ Asms1 such that Asms1490

attacks β. Thus, β ∈ Asms+ and consequently LabAsm(β) = out.

• Let LabAsm(α) = out. Then α ∈ Asms+, so Asms attacks α. Since Asms =
in(LabAsm), there exists a set of assumptions Asms1 attacking α such that for
all β ∈ Asms1, LabAsm(β) = in.

• Let LabAsm(α) = undec. Then α /∈ Asms and α /∈ Asms+, so α is not1495

attacked and not defended by Asms. Since α is not attacked by Asms, for each
set of assumptions Asms1 attacking α there exists some β ∈ Asms1 such that
β /∈ Asms, and thus LabAsm(β) 6= in.

2. We first prove that in(LabAsm) is an admissible assumption extension.

• in(LabAsm) is conflict-free: Assume in(LabAsm) is not conflict-free. Then1500

in(LabAsm) attacks some α ∈ in(LabAsm). By Definition 2, for each set
of assumptions Asms1 attacking α there exists some β ∈ Asms1 such that
LabAsm(β) = out. Hence, in(LabAsm) contains some β such that LabAsm(β) =
out. Contradiction.

43

• in(LabAsm) defends all α ∈ in(LabAsm): Let α ∈ in(LabAsm). Then by1505

Definition 2, for each set of assumptions Asms1 attacking α there exists some
β ∈ Asms1 such that LabAsm(β) = out. Furthermore, for each such β there
exists a set of assumptions Asms2 attacking β such that for all γ ∈ Asms2,
LabAsm(γ) = in so Asms2 ⊆ in(LabAsm). Hence, in(LabAsm) attacks all sets
of assumptions attacking α.1510

Asms+ = {α ∈ A | Asms attacks α} = {α ∈ A | in(LabAsm) attacks α}
= {α ∈ A | α ∈ out(LabAsm)} = out(LabAsm)
A \ (Asms ∪ Asms+) = {α ∈ A | α /∈ in(LabAsm), α /∈ out(LabAsm)}
= {α ∈ A | α ∈ undec(LabAsm)} = undec(LabAsm)

Proof of Lemma 21515

Since each set of assumptions attacking α contains some β such that LabAsm(β) = out,
LabAsm(α) 6= out. If LabAsm(α) = in, then ∀γ ∈ α? : LabAsm(γ) = out and there-
fore LabAsm′ = LabAsm, so trivially LabAsm′ is an admissible assumption labelling. If
LabAsm(α) = undec, then ∀γ ∈ α? : LabAsm(γ) = undec or LabAsm(γ) = out. Fur-
thermore, α /∈ α? since each set of assumptions attacking α contains some β such that1520

LabAsm(β) = out, so if α ∈ α? then ∃Asms attacking α such that LabAsm(α) = out
(since all ∀δ ∈ Asms : δ 6= α → LabAsm(δ) = in), which is a contradiction. Therefore,
LabAsm′ is an assumption labelling.

• Let LabAsm′(ε) = in. If LabAsm(ε) = in, then for each set of assumption Asms1
attacking ε there exists some η ∈ Asms1 such that LabAsm(η) = out and therefore1525

LabAsm′(η) = out. If LabAsm(ε) 6= in then ε = α, so for each set of assumptions
Asms2 attacking α there exists some β ∈ Asms such that LabAsm(β) = out and
thus LabAsm′(β) = out.

• Let LabAsm′(ε) = out. If LabAsm(ε) = out then there exists a set of assump-
tions Asms1 attacking ε such that for all η ∈ Asms1, LabAsm(η) = in and there-1530

fore LabAsm′(η) = in. If LabAsm(ε) 6= out then ε ∈ α?, so there exists a set of
assumptions Asms2 attacking ε such that ∀δ ∈ Asms2 with δ 6= α it holds that
LabAsm(δ) = in and thus LabAsm′(δ) = in. Since LabAsm′(α) = in the set of
assumptions Asms2 attacking ε is such that for all η ∈ Asms3, LabAsm′(η) = in.

• Let LabAsm′(ε) = undec. Then LabAsm(ε) = undec. Thus, for each set of assump-1535

tions Asms1 attacking ε there exists some η ∈ Asms1 such that LabAsm(η) 6= in.
Since ε /∈ α?, for each such set of assumptions Asms1 attacking ε either α /∈ Asms1
or there exists some κ ∈ Asms1 such that κ 6= α and LabAsm(κ) 6= in. In the first
case η 6= α, so LabAsm′(η) 6= in. In the second case, LabAsm′(κ) 6= in. Thus, for
each set of assumptions Asms1 attacking ε there exists some λ ∈ Asms1 such that1540

LabAsm′(λ) 6= in.

Proof of Theorem 3

Equivalence of first and second item:

• First item implies second item: Let LabAsm be a complete assumption labelling. Then
clearly the “only if” part of both conditions of the second item are satisfied since they1545

are the same as the conditions in Definition 3. To prove that the “if” part of the
conditions in the second item holds:

44

– Let α be an assumption such that for each set of assumptions Asms attacking α
there exists some β ∈ Asms such that LabAsm(β) = out. Then LabAsm(α) 6=
out because there exists no set of assumptions Asms1 attacking α such that for1550

all β ∈ Asms1, LabAsm(β) = in. Furthermore, LabAsm(α) 6= undec because
there exists no set of assumptions Asms2 attacking α such that for all γ ∈ Asms2,
LabAsm(γ) 6= out. Hence, LabAsm(α) = in.

– Let α be an assumption such that there exists a set of assumptions Asms at-
tacking α such that for all β ∈ Asms, LabAsm(β) = in. Then LabAsm(α) 6= in1555

because not for each set of assumptions Asms1 attacking α there exists some
β ∈ Asms1 such that LabAsm(β) = out. Furthermore, LabAsm(α) 6= undec
because not for each set of assumptions Asms2 attacking α there exists some
γ ∈ Asms2 such that LabAsm(γ) 6= in. Hence, LabAsm(α) = out.

• Second item implies first item: Let LabAsm be such that the second item holds.1560

We prove that LabAsm is a complete assumption labelling. Clearly the first two
conditions of complete assumption labellings are satisfied since they are the same as
the “only if” part of the conditions in the second item. To prove the third condition
of complete assumption labellings, let LabAsm(α) = undec. From the first condition
of the second item we know that not for each set of assumptions Asms1 attacking1565

α there exists some β ∈ Asms1 such that LabAsm(β) = out, so there exists a set
of assumptions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out.
From the second condition of the second item we know that there exists no set of
assumptions Asms3 attacking α such that for all δ ∈ Asms3, LabAsm(δ) = in, so for
each set of assumptions Asms4 attacking α there exists some ε ∈ Asms4 such that1570

LabAsm(ε) 6= in.

Equivalence of second and third item:

• Second item implies third item: Let LabAsm be such that the second item holds. Then
clearly the first two conditions of the third item are satisfied since they are the same as
the “if” part of the second item. To prove the third condition of the third item, let α be1575

such that for each set of assumptions Asms1 attacking α there exists some β ∈ Asms1
such that LabAsm(β) 6= in, and there exists a set of assumptions Asms2 attacking
α such that for all γ ∈ Asms2, LabAsm(γ) 6= out. Then LabAsm(α) 6= in because
not for each set of assumptions Asms3 attacking α there exists some δ ∈ Asms3
such that LabAsm(δ) = out, and LabAsm(α) 6= out because there exists no set of1580

assumptions Asms4 attacking α such that for all ε ∈ Asms4, LabAsm(ε) = in. Hence,
LabAsm(α) = undec.

• Third item implies second item: Assume that LabAsm is such that the third item
holds. Then clearly the “if” part of both conditions in the second item are satisfied
since they the same as the conditions in the third item. To prove that the “only if”1585

parts of the conditions in the second item are satisfied, first note that for every α ∈ A
exactly one of the “if” parts of the three conditions in the third item is satisfied.
Thus, if LabAsm(α) = in the “if” part of the second and third condition in the third
item are not satisfied. It follows that the “if” part of the first condition is satisfied,
so for each set of assumptions Asms1 attacking α there exists some β ∈ Asms1 such1590

that LabAsm(β) = out. Analogously, if LabAsm(α) = out only the “if” part of the
second condition in the third item applies, so there exists a set of assumptions Asms2
attacking α such that for all β ∈ Asms2, LabAsm(β) = in.

45

Proof of Theorem 4

1. Since Asms is a complete assumption extension it is by definition also an admissible1595

assumption extension. By Theorem 1, LabAsm is an admissible assumption labelling.
It remains to prove that the additional condition of complete assumption labellings is
satisfied. Let LabAsm(α) = undec. Then α /∈ Asms and α /∈ Asms+, so α is not
attacked and not defended by Asms. Since α is not defended by Asms, there exists
a set of assumption Asms1 attacking α such that Asms1 is not attacked by Asms.1600

Thus, for all γ ∈ Asms1 it holds that γ /∈ Asms+. Consequently, LabAsm(γ) 6= out.

2. Since LabAsm is a complete assumption labelling it is by Definition 3 also an admis-
sible assumption labelling. Thus, by Theorem 1 Asms is an admissible assumption
extension with Asms+ = out(LabAsm) andA\(Asms∪Asms+) = undec(LabAsm).
It remains to prove that all assumptions defended by Asms are contained in Asms.1605

Let α be defended by Asms and thus by in(LabAsm). Then for each set of as-
sumptions Asms1 attacking α, in(LabAsm) attacks Asms1. Thus, for each such
Asms1 there exists some β ∈ Asms1 which is attacked by in(LabAsm), and therefore
LabAsm(β) = out. Since this holds for each Asms1 attacking α, LabAsm(α) = in.

Proof of Theorem 51610

1. Let Asms be a 1) grounded 2) preferred 3) ideal 4) semi-stable 5) stable assumption ex-
tension. By definition Asms is a complete assumption extension. Furthermore, for all
complete assumption extensions Asms′ it holds that 1) Asms′ 6⊂ Asms 2) Asms′ 6⊃
Asms 3) if for all preferred assumption extensions Asms′′ it holds that Asms′ ⊆
Asms′′ then Asms′ 6⊃ Asms 4) Asms′∪Asms′+ 6⊃ Asms∪Asms+ 5) Asms∪Asms+ =1615

A. By Theorem 4 LabAsm is a complete assumption labelling. Furthermore, from
the above and Theorem 4, for all complete assumption labellings LabAsm′ it holds
that 1) in(LabAsm′) 6⊂ in(LabAsm) 2) in(LabAsm′) 6⊃ in(LabAsm) 3) if for all pre-
ferred assumption labellings LabAsm′′ it holds that in(LabAsm′) ⊆ in(LabAsm′′)
then in(LabAsm′) 6⊃ in(LabAsm) 4) in(LabAsm′)∪out(LabAsm′) 6⊃ in(LabAsm)∪1620

out(LabAsm), and consequently undec(LabAsm′) 6⊂ undec(LabAsm) 5) in(LabAsm)∪
out(LabAsm) = A, and consequently undec(LabAsm) = ∅. Therefore, LabAsm is a
1) grounded 2) preferred 3) ideal 4) semi-stable 5) stable assumption labelling.

2. Let LabAsm be a 1) grounded 2) preferred 3) ideal 4) semi-stable 5) stable assump-
tion labelling. By definition LabAsm is a complete assumption labelling. Further-1625

more, for all complete assumption labellings LabAsm′ it holds that 1) in(LabAsm′) 6⊂
in(LabAsm) 2) in(LabAsm′) 6⊃ in(LabAsm) 3) if for all preferred assumption la-
bellings LabAsm′′ it holds that in(LabAsm′) ⊆ in(LabAsm′′) then in(LabAsm′) 6⊃
in(LabAsm) 4) undec(LabAsm′) 6⊂ undec(LabAsm), or equivalently in(LabAsm′)∪
out(LabAsm′) 6⊃ in(LabAsm) ∪ out(LabAsm) 5) undec(LabAsm) = ∅, or equiva-1630

lently in(LabAsm) ∪ out(LabAsm) = A. By Theorem 4 Asms = in(LabAsm) is
a complete assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪
Asms+) = undec(LabAsm). Furthermore, from the above and by Theorem 4,
for all complete assumption extensions Asms′ it holds that 1) Asms′ 6⊂ Asms 2)
Asms′ 6⊃ Asms 3) if for all preferred assumption extensions Asms′′ it holds that1635

Asms′ ⊆ Asms′′ then Asms′ 6⊃ Asms 4) Asms′ ∪ Asms′+ 6⊃ Asms ∪ Asms+ 5)
Asms ∪ Asms+ = A. Therefore, Asms is a 1) grounded 2) preferred 3) ideal 4)
semi-stable 5) stable assumption extension.

46

Proof of Proposition 7

• Preferred: Follows from the one-to-one correspondence between complete assumption1640

labellings and extensions (Theorem 4) and between admissible assumption labellings
and extensions (Theorem 1) together with Theorem 8 in [24].

• Ideal: Follows from the one-to-one correspondence between complete assumption la-
bellings and extensions (Theorem 4) and between admissible assumption labellings
and extensions (Theorem 1) together with Theorem 10 in [24].1645

• Semi-stable: From left to right: Let LabAsm be a semi-stable assumption labelling,
i.e. a complete assumption labelling such that undec(LabAsm) is minimal among
all complete assumption labellings. By definition, LabAsm is an admissible assump-
tion labelling. Assume undec(LabAsm) is not minimal among all admissible as-
sumptions labellings, i.e. ∃LabAsm′ with undec(LabAsm′) ⊂ undec(LabAsm)1650

and LabAsm′ is an admissible assumption labelling but not a complete assump-
tion labelling. Thus LabAsm′ satisfies Definition 2 but not Definition 3, so ∃α ∈
undec(LabAsm′) such that for all sets of assumptions Asms attacking α there ex-
ists some β ∈ Asms such that LabAsm′(β) = out. By Lemma 2, LabAsm′′ with
in(LabAsm′′) = in(LabAsm′) ∪ {α}, out(LabAsm′′) = out(LabAsm′) ∪ α?, and1655

undec(LabAsm′′) = undec(LabAsm′) \ ({α} ∪ α?) is an admissible assumption la-
belling. Clearly, undec(LabAsm′′) ⊂ undec(LabAsm′), so undec(LabAsm′) is not
minimal among all admissible assumption labellings. Contradiction.
From right to left: Let LabAsm be an admissible assumption labelling such that
undec(LabAsm) is minimal (w.r.t. ⊆) among all admissible assumption labellings.1660

Assume that LabAsm is not a complete assumption labelling. By the same reasoning
as above, ∃α ∈ undec(LabAsm) such that for all sets of assumptions Asms attack-
ing α there exists some β ∈ Asms such that LabAsm(β) = out. It follows that
there exists an admissible assumption labelling LabAsm′′ with undec(LabAsm′′) ⊂
undec(LabAsm). Contradiction. Thus, LabAsm is a complete assumption labelling.1665

Furthermore, since for all admissible assumption labellings LabAsm′, undec(LabAsm′)
6⊂ undec(LabAsm) and since every complete assumption labelling is an admissible
assumption labelling, it follows that for all complete assumption labellings LabAsm′,
undec(LabAsm′) 6⊂ undec(LabAsm). Thus, undec(LabAsm) is minimal (w.r.t. ⊆)
among all complete assumption labellings.1670

• Stable: From left to right: Let LabAsm be a complete assumption labelling such that
undec(LabAsm) = ∅. By definition, LabAsm is admissible.
From right to left: Let LabAsm be an admissible assumption labelling such that
undec(LabAsm) = ∅. Then LabAsm is also a complete assumption labelling since
the conditions for in and out assumptions are the same for admissible and complete1675

assumption labellings (see Definitions 2 and 3).

Proof of Lemma 8

Follows from Theorem 1 and Theorem 4.2 in [33].

Proof of Proposition 9

• From left to right: Let LabAsm be a complete assumption labelling. By definition,1680

LabAsm is an admissible assumption labelling and by Lemma 8 an admissible as-
sumption labelling with respect to argument-supporting sets. It remains to prove that

47

the additional condition of complete assumption labellings with respect to argument-
supporting sets is satisfied. Let LabAsm(α) = undec. Then there exists a set of
assumptions Asms attacking α such that for all β ∈ Asms, LabAsm(β) 6= out.1685

Thus, there exists an argument Asms′ ` α such that Asms′ ⊆ Asms. Therefore,
Asms′ is an argument-supporting set of assumptions attacking α such that for all
γ ∈ Asms′, LabAsm(γ) 6= out.

• From right to left: Let LabAsm be a complete assumption labelling with respect
to argument-supporting sets. By definition, LabAsm is and admissible assumption1690

labelling with respect to argument-supporting sets and by Lemma 8 an admissible
assumption labelling. It remains to prove that the additional condition of complete
assumption labellings is satisfied. Let LabAsm(α) = undec. Then there exists an
argument-supporting set of assumptions Asms attacking α such that for all γ ∈ Asms,
LabAsm(γ) 6= out.1695

Proof of Proposition 11

Let there be an infinite sequence of edges (α1, α2), (α2, α3), . . . in Gatt. Then there exists
a set of assumptions Asmsα1

attacking α2 such that α1 ∈ Asmsα1
, a set of assumptions

Asmsα2
attacking α3 such that α2 ∈ Asmsα2

, and so on. Thus, in G there exists an edge
from Asmsα1 to {α2} as well as to every other set of assumptions containing α2, in particular1700

an edge to Asmsα2 . Furthermore, there is an edge from Asmsα2 to {α3} as well as every
set of assumptions containing α3, and so on. Thus, there is an infinite sequence of edges
(Asmsα1

, Asmsα2
), (Asmsα2

, Asmsα3
), . . . in G.

Example 13 proves that the converse does not hold.

Proof of Lemma 131705

Note first that LabAsm2LabArg is clearly a function.

• Injective: We prove that no two different assumption labellings LabAsm1 and LabAsm2

are mapped to the same argument labelling by LabAsm2LabArg. Let LabAsm1 6=
LabAsm2. Thus, ∃α ∈ A such that LabAsm1(α) 6= LabAsm2(α). If α ∈ in(LabAsm1)
then α /∈ in(LabAsm2), so {α} ` α ∈ in(LabAsm2LabArg(LabAsm1)) but {α} ` α /∈1710

in(LabAsm2LabArg(LabAsm2)). Analogous results are reached assuming that α ∈
out(LabAsm1) and that α ∈ undec(LabAsm1). Thus, LabAsm2LabArg(LabAsm1) 6=
LabAsm2LabArg(LabAsm2).

• Not generally surjective: The following ABA framework illustrates that there may be
some LabArg ∈ LArg such that there exists no LabAsm ∈ LAsm with LabArg =1715

LabAsm2LabArg(LabAsm): L = {r, ρ}, R = {r ← }, A = {ρ}, ρ = r. There are
three possible assumption labellings: LabAsm1 = {(ρ, in)}, LabAsm2 = {(ρ,out)},
and LabAsm3 = {(ρ,undec)}. The corresponding AA framework has two arguments:
ArABA = {A1 : {ρ} ` ρ,A2 : {} ` r}. In the translations of all three assump-
tion labellings in terms of LabAsm2LabArg, A2 is labelled in. Thus, for instance1720

for the argument labelling {(A1, in), (A2, out)} there exists no LabAsm such that
LabAsm2LabArg(LabAsm) = {(A1, in), (A2, out)}.

48

Proof of Lemma 14

Note first that LabArg2LabAsm is clearly a function.

• Surjective: We prove that for every LabAsm ∈ LAsm there exists some LabArg ∈1725

LArg such that LabArg2LabAsm(LabArg) = LabAsm. Let LabAsm ∈ LAsm. Further-
more, let LabArg be an argument labelling which satisfies that for all α ∈ A, {α} ` α ∈
in(LabArg) if α ∈ in(LabAsm), {α} ` α ∈ out(LabArg) if α ∈ out(LabAsm), and
{α} ` α ∈ undec(LabArg) if α∈undec(LabAsm). Then LabArg2LabAsm(LabArg)=
LabAsm. Clearly LabArg∈LArg.1730

• Not generally injective: Consider the ABA framework from the proof of Lemma 13
and the two argument labellings LabArg1 = {(A1, in), (A2, out)} and LabArg2 =
{(A1, in), (A2, in)}. Then LabArg2LabAsm(LabArg1) = LabArg2LabAsm(LabArg2) =
{(ρ, in)}.1735

Lemma 47. Let Asms ⊆ A and Args = {Asms′ ` s ∈ ArABA | Asms′ ⊆ Asms}.

• Args+ = {Asms′ ` s ∈ ArABA | ∃α ∈ Asms′ : α ∈ Asms+};

• ArABA \ (Args ∪ Args+) = {Asms′ ` s ∈ ArABA | Asms′ * Asms,@α ∈ Asms′ :
α ∈ Asms+}.

Proof. We prove both statements:1740

• Args+ = {Asms′ ` s ∈ ArABA | Args attacks Asms′ ` s}
= {Asms′ ` s ∈ ArABA | ∃α ∈ Asms′ : ∃Asms′′ ` α ∈ Args}
= {Asms′ ` s ∈ ArABA | ∃α ∈ Asms′ : ∃Asms′′ ` α and Asms′′ ⊆ Asms}
= {Asms′ ` s ∈ ArABA | ∃α ∈ Asms′ : Asms attacks α}
= {Asms′ ` s ∈ ArABA | ∃α ∈ Asms′ : α ∈ Asms+}1745

• ArABA \ (Args ∪ Args+) = {Asms′ ` s ∈ ArABA | Asms′ ` s /∈ Args,Asms′ ` s /∈
Args+} = {Asms′ ` s ∈ ArABA | Asms′ * Asms,@α ∈ Asms′ : α ∈ Asms+}

Lemma 48. Let Args ⊆ ArABA and let Asms = {α ∈ A | ∃Asms′ : α ∈ Asms′ and Asms′ `
s ∈ Args}. Then

• Asms+ = {α ∈ A | {α} ` α ∈ Args+};1750

• A \ (Asms ∪Asms+) = {α ∈ A | {α} ` α /∈ Args, {α} ` α /∈ Args+}.

Proof. We prove both statements:

• Asms+ = {α ∈ A | Asms attacks α} = {α ∈ A | ∃Asms′ ` α : Asms′ ⊆ Asms}
= {α ∈ A | ∃Asms′ ` α ∈ Args} = {α ∈ A | Args attacks {α} ` α}
= {α ∈ A | {α} ` α ∈ Args+}1755

• A \ (Asms ∪Asms+) = {α ∈ A | α /∈ Asms, α /∈ Asms+}
= {α ∈ A | @Asms′ : α ∈ Asms′ and Asms′ ` s ∈ Args, {α} ` α /∈ Args+}
= {α ∈ A | {α} ` α /∈ Args, {α} ` α /∈ Args+}

49

Proof of Theorem 15
• From left to right: Let LabAsm be a complete assumption labelling. Firstly note1760

that for all Asms ` s ∈ ArABA exactly one of the three conditions in the defini-
tion of LabAsm2LabArg applies, so all Asms ` s are in exactly one of in(LabArg),
out(LabArg), or undec(LabArg).

By Theorem 4: Asms = in(LabAsm) is a complete assumption extension withAsms+ =
out(LabAsm) and A \ (Asms ∪ Asms+) = undec(LabAsm).1765

By Theorem 6.1 in [24]: Args = {Asms′ ` s | Asms′ ⊆ in(LabAsm)} is a complete
argument extension.

By Lemma 47: Args+ = {Asms′ ` s | ∃α ∈ Asms′ : α ∈ out(LabAsm)} and
ArABA \ (Args ∪ Args+) = {Asms′ ` s | Asms′ * in(LabAsm),@α ∈ Asms′ :
α ∈ out(LabAsm)} = {Asms′ ` s | ∃α ∈ Asms′ : α ∈ undec(LabAsm), Asms′ ∩1770

out(LabAsm) = ∅}.
By Theorem 10 in [25]: LabArg with in(LabArg) = Args, out(LabArg) = Args+,
undec(LabArg) = ArABA \ (Args ∪ Args+) is a complete argument labelling.

• From right to left: Let LabArg = LabAsm2LabArg(LabAsm) be a complete argument
labelling where LabAsm is an assumption labelling. Since LabAsm2LabArg is injective1775

by Lemma 13, LabAsm is unique.

By Theorems 9 and 11 in [25]: Args = in(LabArg) = {Asms′ ` s | Asms′ ⊆
in(LabAsm)} is a complete argument extension withArgs+ = out(LabArg) = {Asms′ `
s | ∃α ∈ Asms′ : α ∈ out(LabAsm)} andArABA\(Args∪Args+) = undec(LabArg) =
{Asms′ ` s | ∃α ∈ Asms′ : α ∈ undec(LabAsm), Asms′ ∩ out(LabAsm) = ∅}.1780

By Theorem 6.1 in [24]: Asms = {α ∈ A | ∃Asms′ : α ∈ Asms′ and Asms′ ` s ∈
Args} = in(LabAsm) is a complete assumption extension.

By Lemma 48: Asms+ = {α | {α} ` α ∈ Args+} = {α | α ∈ out(LabAsm)} =
out(LabAsm) and A\(Asms∪Asms+) = {α | {α} ` α /∈ Args, {α} ` α /∈ Args+} =
{α | {α} ` α ∈ undec(LabArg)} = {α | α ∈ undec(LabAsm)} = undec(LabAsm).1785

By Theorem 4: LabAsm is a complete assumption labelling.

Proof of Proposition 16
By Theorem 9 in [25], Args = in(LabArg) is a complete argument extension.
By Theorem 11 in [25], Args+ = out(LabArg) andArABA\(Args∪Args+) = undec(LabArg).
By Theorem 6.1 in [24], Asms = {α | ∃Asms′ : α ∈ Asms′, Asms′ ` s ∈ Args} is a com-1790

plete assumption extension.
From Theorem 6.1 and Proposition 1 in [24] it also follows that Args = {Asms′ ` s |
Asms′ ⊆ Asms}. By Lemma 47, Args+ = {Asms′ ` s | ∃α ∈ Asms′ : α ∈ Asms+}, and
ArABA \ (Args ∪Args+) = {Asms′ ` s | Asms′ * Asms,@α ∈ Asms′ : α ∈ Asms+}.
By Theorem 4, LabAsm with in(LabAsm) = Asms, out(LabAsm) = Asms+, and1795

undec(LabAsm) = A \ (Asms ∪Asms+) is a complete assumption labelling.
It follows that, Args = {Asms′ ` s | Asms′ ⊆ in(LabAsm)} = in(LabArg). Further-
more, Args+ = {Asms′ ` s | ∃α ∈ Asms′ : α ∈ out(LabAsm)} = out(LabArg),
and ArABA \ (Args ∪ Args+) = {Asms′ ` s | Asms′ * in(LabAsm),@α ∈ Asms′ :
α ∈ out(LabAsm)} = {Asms′ ` s | ∃α ∈ Asms′ : α ∈ undec(LabAsm), Asms′ ∩1800

out(LabAsm) = ∅} = undec(LabArg).
Thus, LabAsm2LabArg(LabAsm) = LabArg. Since LabAsm2LabArg is injective by Lemma 13,
LabAsm is unique.

50

Proof of Theorem 17
By Theorems 9 and 11 in [25], Args = in(LabArg) is a complete argument extension with1805

Args+ = out(LabArg) and ArABA \ (Args ∪Args+) = undec(LabArg).
By Theorem 6.1 in [24], Asms = {α | ∃Asms′ : α ∈ Asms′ and Asms′ ` s ∈ in(LabArg)}
is a complete assumption extension.
By Lemma 48, Asms+ = {α | {α} ` α ∈ Args+} = {α | {α} ` α ∈ out(LabArg)} and
A \ (Asms ∪ Asms+) = {α | {α} ` α /∈ Args, {α} ` α /∈ Args+} = {α | {α} ` α ∈1810

undec(LabArg)}.
Since for an argument Asms′ ` s ∈ in(LabArg) it holds that all attackers are labelled out,
it follows that ∀α ∈ Asms′: all attackers of {α} ` α are labelled out, so by the definition
of complete argument labellings {α} ` α ∈ in(LabArg). Thus, Asms = {α | {α} ` α ∈
in(LabArg)}.1815

By Theorem 4, LabAsm with in(LabAsm) = Asms, out(LabAsm) = Asms+ and
undec(LabAsm) = A \ (Asms ∪Asms+) is a complete assumption labelling.

Proof of Lemma 18
Let LabArg = LabAsm2LabArg(LabAsm), so by Theorem 15 LabArg is a complete argu-
ment labelling. Now let LabAsm′ = LabArg2LabAsm(LabArg), so in(LabAsm′) = {α |1820

{α} ⊆ in(LabAsm)} = in(LabAsm), out(LabAsm′) = {α | α ∈ out(LabAsm)} =
out(LabAsm), undec(LabAsm′) = {α | α ∈ undec(LabAsm), {α} ∩ out(LabAsm) =
∅} = undec(LabAsm). Thus, LabAsm = LabAsm′, so there exists a complete argument
labelling LabArg such that LabArg2LabAsm(LabArg) = LabAsm.

Proof of Lemma 191825

Let LabArg2LabAsm(LabArg1) = LabAsm1 and LabArg2LabAsm(LabArg2) = LabAsm2. As-
sume by contradiction that LabAsm1 = LabAsm2. Since LabArg1 6= LabArg2, ∃Asms1 ` s1 ∈
ArABA such that LabArg1(Asms1 ` s1) 6= LabArg2(Asms1 ` s1).

• Let Asms1 ` s1 ∈ in(LabArg1), so Asms1 ` s1 /∈ in(LabArg2). Then there ex-
ists some Asms2 ` α attacking Asms1 ` s1 where α ∈ Asms1 and Asms2 `1830

α /∈ out(LabArg2). However, Asms2 ` α ∈ out(LabArg1) since all attackers of
Asms1 ` s1 are labelled out by LabArg1. Thus, {α} ` α /∈ in(LabArg2) but
{α} ` α∈in(LabArg1), so α∈in(LabAsm1) but α /∈in(LabAsm2). Contradiction.

• Let Asms1 ` s1 ∈ out(LabArg1), so Asms1 ` s1 /∈ out(LabArg2). Then there
exists some Asms2 ` α attacking Asms1 ` s1 where α ∈ Asms1 and Asms2 ` α ∈1835

in(LabArg1). However, Asms2 ` α /∈ in(LabArg2) since no attacker of Asms1 ` s1 is
labelled in by LabArg2. Thus, {α} ` α ∈ out(LabArg1) but {α} ` α /∈ out(LabArg2),
so LabArg2LabAsm that α ∈ out(LabAsm1) but α /∈ out(LabAsm2). Contradiction.

• Let Asms1 ` s1 ∈ undec(LabArg1), so Asms1 ` s1 /∈ undec(LabArg2). Then either
for all Asms2 ` α attacking Asms1 ` s1 where α ∈ Asms1 it holds that Asms2 `1840

α ∈ out(LabArg2) or there exists some Asms3 ` β attacking Asms1 ` s1 where
β ∈ Asms1 and Asms3 ` β ∈ in(LabArg2). In the first case for all {α} ` α,
{α} ` α ∈ in(LabArg2) but some {α} ` α ∈ undec(LabArg1) since there exists
an attacker Asms2 ` α of Asms1 ` s1 such that Asms2 ` α /∈ out(LabArg1). It
follows that α ∈ undec(LabAsm1) but α /∈ undec(LabAsm2). Contradiction. In1845

the second case, {β} ` β ∈ out(LabArg2) but {β} ` β /∈ out(LabArg1) since no
attacker of Asms1 ` s1 is labelled in by LabArg1. Thus, β ∈ out(LabAsm2) but
β /∈ out(LabAsm1). Contradiction.

51

Proof of Theorem 22

Analogous to the proof of Theorem 15 but using Theorem 5 instead of Theorem 4, Theorem1850

6.2/6.3/6.4/6.5 in [24] instead of Theorem 6.1 in [24], the analogues of Theorems 10 and 11
in [25] for the grounded/preferred/stable semantics (only informally given in [25]) instead
of Theorems 9, 10, and 11 in [25], and Theorem 3.7 in [32] for the ideal semantics instead
of Theorems 9, 10, and 11 in [25].

Proof of Theorem 231855

Analogous to the proof of Theorem 17 but using Theorem 5 instead of Theorem 4, Theorem
6.2/6.3/6.4/6.5 in [24] instead of Theorem 6.1 in [24], the analogues of Theorems 9 and 11
in [25] for the grounded/preferred/stable semantics (only informally given in [25]) instead
of Theorems 9 and 11 in [25], and Theorem 3.7 in [32] for the ideal semantics instead of
Theorems 9 and 11 in [25].1860

Proof of Theorem 24

Analogous to the “from left to right” part of the proof of Theorem 15 but using Theorem 1
instead of Theorem 4, Theorem 2.2 in [23] instead of Theorem 6.1 in [24], and Theorem 21
in [25] instead of Theorem 10 in [25].

Proof of Proposition 251865

Analogous to the proof of Lemma 18 but using Theorem 24 instead of Theorem 15.

Proof of Theorem 27

1. First note that Args∩Args+ = ∅ since Args does not attack itself. Thus each A ∈ Ar
is either contained in in(LabArg), out(LabArg), or undec(LabArg), so LabArg is an
argument labelling. We prove that LabArg satisfies Definition 13.1870

• Let LabArg(A) = in. Then A ∈ Args. Thus, all attackers B of A are attacked
by some C ∈ Args, so B ∈ Args+. Consequently, for each attacker B of A,
LabArg(B) = out.

• Let LabArg(A) = out. Then A ∈ Args+. Thus, A is attacked by some B ∈ Args,
and therefore there exists some B attacking A such that LabArg(B) = in.1875

• Let LabArg(A) = undec. Then A /∈ Args+. Thus, A is not attacked by any B ∈
Args and consequently there exists no B attacking A such that LabArg(B) = in.

2. We prove that in(LabArg) is an admissible argument extension.

• in(LabArg) is conflict-free: Assume in(LabArg) is not conflict-free. Then there
exist A,B ∈ in(LabArg) such that A attacks B, so B is attacked by an argument1880

which is not labelled out. Contradiction.

• All arguments in in(LabArg) are defended by in(LabArg): Let A ∈ in(LabArg).
Then for each attacker B of A, LabArg(B) = out and therefore for each B there
exists an attacker C such that LabArg(C) = in. Thus, each attacker of A is
attacked by in(LabArg), i.e. in(LabArg) defends A.1885

Args+ = {A | Args attacks A} = {A | in(LabArg) attacks A}
= {A | A ∈ out(LabArg)} = out(LabArg)
Ar \ (Args ∪Args+) = {A | A /∈ Args,A /∈ Args+}
= {A | A /∈ in(LabArg), A /∈ out(LabArg)} = {A | A ∈ undec(LabArg)} =
undec(LabArg)1890

52

Proof of Theorem 28

Analogous to the proof of Theorem 15, but using Theorem 1 instead of Theorem 4, Theo-
rem 27 instead of Theorems 10 and 11 in [25], and Theorem 2.2 in [23] instead of Theorem
6.1 in [24].

Proof of Theorem 291895

Analogous to the proof of Theorem 17 but using Theorem 27 instead of Theorems 9 and 11
in [25], Theorem 2.2 in [23] instead of Theorem 6.1 in [24], and Theorem 1 instead of
Theorem 4.

Proof of Proposition 30

Analogous to the proof of Lemma 18 but using Theorem 28 instead of Theorem 15.1900

Proof of Theorem 32

1. First note that Asms ∩ Asms+ = ∅ since Asms does not attack itself. Thus each
α ∈ A is either contained in in(LabAsm), in out(LabAsm), or in undec(LabAsm).
We prove that LabAsm satisfies Definition 15.

• Let LabAsm(α) = in. Then α ∈ Asms, so Asms defends α, i.e. for all closed sets1905

of assumptions Asms1 attacking α there exists some β ∈ Asms1 such that Asms
attacks β. Thus, β ∈ Asms+ and consequently LabAsm(β) = out. Therefore,
for each closed set of assumptions Asms1 attacking α there exists some β ∈
Asms1 such that LabAsm(β) = out.

• Let LabAsm(α) = out. Then α ∈ Asms+, so Asms attacks α. Since Asms =1910

in(LabAsm) and since Asms is a closed set of assumptions, there exists a closed
set of assumptions Asms1 attacking α such that for all β ∈ Asms1, LabAsm(β) =
in. Furthermore, since Asms is a closed set of assumptions, for all δ supported by
Asms it holds that δ ∈ Asms. Since α ∈ Asms+ and since Asms ∩Asms+ = ∅,
it follows that α /∈ Asms and therefore α is not supported by Asms. Thus there1915

exists no set of assumptions Asms2 supporting α such that for all γ ∈ Asms2,
LabAsm(γ) = in.

• Let LabAsm(α) = undec. Then α /∈ Asms and α /∈ Asms+, so α is not attacked
and not defended by Asms. Since α is not attacked by Asms, for each closed
set of assumptions Asms1 attacking α there exists some β ∈ Asms1 such that1920

β /∈ Asms, and thus LabAsm(β) 6= in. Furthermore, since Asms is a closed
set of assumptions, it follows from the same reasoning as in the previous item
that there exists no set of assumptions Asms2 supporting α such that for all
γ ∈ Asms2, LabAsm(γ) = in.

2. We first prove that in(LabAsm) is an admissible assumption extension.1925

• in(LabAsm) is closed: Assume in(LabAsm) is not closed. Then ∃α /∈ in(LabAsm)
such that in(LabAsm) supports α. Thus, LabAsm(α) = out or LabAsm(α) =
undec. Contradiction since in either case there exists no set of assumptions
Asms1 supporting α such that for all γ ∈ Asms1, LabAsm(γ) = in.

• in(LabAsm) is conflict-free: Assume in(LabAsm) is not conflict-free. Then1930

in(LabAsm) attacks some α ∈ in(LabAsm). By Definition 15, for each closed
set of assumptions Asms1 attacking α there exists some β ∈ Asms1 such that
LabAsm(β) = out. Since in(LabAsm) is a closed set of assumptions, there exists
some β ∈ in(LabAsm) such that LabAsm(β) = out. Contradiction.

53

• in(LabAsm) defends all α ∈ in(LabAsm): Let α ∈ in(LabAsm). Then by Def-1935

inition 15, for each closed set of assumptions Asms1 attacking α there exists
some β ∈ Asms1 such that LabAsm(β) = out. Furthermore, for each such
β there exists a closed set of assumptions Asms2 attacking β such that for all
γ ∈ Asms2, LabAsm(γ) = in so Asms2 ⊆ in(LabAsm). Hence, in(LabAsm)
attacks all closed sets of assumptions attacking α.1940

Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) = undec(LabAsm) as in the
proof of Theorem 1.

Proof of Theorem 34

1. Since Asms is a complete assumption extension it is by definition also an admissi-
ble assumption extension [4]. By Theorem 32, LabAsm is an admissible assumption1945

labelling. It remains to prove that the additional condition of complete assumption
labellings is satisfied. Let LabAsm(α) = undec. Then α /∈ Asms and α /∈ Asms+,
so α is not attacked and not defended by Asms. Since α is not defended by Asms,
there exists a closed set of assumption Asms1 attacking α such that Asms1 is not
attacked by Asms. Thus, for all γ ∈ Asms1 it holds that γ /∈ Asms+. Consequently,1950

LabAsm(γ) 6= out.

2. Since LabAsm is a complete assumption labelling it is by Definition 16 also an admis-
sible assumption labelling. Thus, by Theorem 32 Asms is an admissible assumption
extension with Asms+ = out(LabAsm) andA\(Asms∪Asms+) = undec(LabAsm).
It remains to prove that all assumptions defended by Asms are contained in Asms.1955

Let α be defended by Asms and thus by in(LabAsm). Then for each closed set of
assumptions Asms1 attacking α, in(LabAsm) attacks Asms1. Thus, for each such
Asms1 there exists some β ∈ Asms1 which is attacked by in(LabAsm), and therefore
LabAsm(β) = out. Since this holds for each Asms1 attacking α, LabAsm(α) = in.

Proof of Proposition 351960

First item implies second item:

• Let α be such that there exists a set of assumptions Asms supporting α such that
for all β ∈ Asms, LabAsm(β) = in. If LabAsm(α) = out or LabAsm(α) = undec
then the second or third, respectively, condition of complete assumption labellings is
violated. Thus LabAsm(α) = in since it satisfies the first condition.1965

• Let α be such that for each closed set of assumptions Asms attacking α there exists
some β ∈ Asms such that LabAsm(β) = out. If LabAsm(α) = out or LabAsm(α) =
undec then the second or third, respectively, condition of complete assumption la-
bellings is violated. Thus LabAsm(α) = in since it satisfies the first condition.

• Let α be such that there exists a closed set of assumptions Asms attacking α such that1970

for all β ∈ Asms, LabAsm(β) = in. If LabAsm(α) = in or LabAsm(α) = undec then
the first or third, respectively, condition of complete assumption labellings is violated.
Thus LabAsm(α) = out since it satisfies the second condition.

• Let α be such that for each closed set of assumptions Asms1 attacking α there ex-
ists some β ∈ Asms1 such that LabAsm(β) 6= in, and there exists a closed set of1975

assumptions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out. If

54

LabAsm(α) = in or LabAsm(α) = out then the first or second, respectively, condi-
tion of complete assumption labellings is violated. Thus LabAsm(α) = undec since
it satisfies the third condition.

Second item implies first item.1980

• Let LabAsm(α) = in. Then for each closed set of assumptions Asms1 attacking α
there exists some β ∈ Asms1 such that LabAsm(β) 6= in. Furthermore, it either holds
that there exists a closed set of assumptions Asms2 attacking α such that for all γ ∈
Asms2, LabAsm(γ) = in, (contradiction) or that for each closed set of assumptions
Asms3 attacking α there exists some δ ∈ Asms3 such that LabAsm(δ) = out. Thus,1985

the second part of the or-statement applies.

• Let LabAsm(α) = out. Then there exists no set of assumptions Asms1 supporting
α such that for all β ∈ Asms1, LabAsm(β) = in. Furthermore, there exists a closed
set of assumptions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6=
out. Furthermore, it either holds that there exists a closed set of assumptions Asms31990

attacking α such that for all δ ∈ Asms3, LabAsm(δ) = in, or that for each closed set of
assumptions Asms4 attacking α there exists some ε ∈ Asms4 such that LabAsm(ε) =
out (contradiction). Thus, the first part of the or-statement applies.

• Let LabAsm(α) = undec. Then there exists no set of assumptions Asms1 supporting
α such that for all β ∈ Asms1, LabAsm(β) = in. Furthermore, there exists a closed set1995

of assumptions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out.
Furthermore, for each closed set of assumptions Asms3 attacking α there exists some
δ ∈ Asms3 such that LabAsm(δ) 6= in.

Proof of Theorem 36

1. First note that since Asms is the intersection of all complete assumption labellings,2000

which are all conflict-free, it follows that Asms ∩Asms+ = ∅ and thus each α ∈ A is
either contained in in(LabAsm), out(LabAsm), or undec(LabAsm), so LabAsm is
an assumption labelling. Furthermore, note that grounded assumption extensions are
always closed, even though this is not explicitly required in their definition. Since the
grounded assumption extension is a subset of every complete assumption extension,2005

any assumption α supported by the grounded assumption extension is also supported
by each complete assumption extension. Since complete assumption extensions are
closed, α is thus in each complete assumption extension and consequently part of the
grounded assumption extension. We prove that LabAsm satisfies Definition 17.

• From left to right: Let LabAsm(α) = in. Then α ∈ Asms. Therefore, for all2010

complete assumption extensions Asms′, α ∈ Asms′. By Theorem 34, for each
Asms′ it holds that LabAsm′ with in(LabAsm′) = Asms′, out(LabAsm′) =
Asms′+, and undec(LabAsm′) = A\(Asms′∪Asms′+) is a complete assumption
labelling and there are no other complete assumption labellings. Thus, for all
complete assumption labellings LabAsm′, LabAsm′(α) = in.2015

From right to left: Let α be such that for all complete assumption labellings
LabAsm′, LabAsm′(α) = in. Then by Theorem 34, for each LabAsm′ it holds
that Asms′ = in(LabAsm′) is a complete assumption extension and there are
no other complete assumption extensions. Thus, for all complete assumption
extensions Asms′, α ∈ Asms′. Therefore, α ∈ Asms and thus LabAsm(α) = in.2020

55

• From left to right: Let LabAsm(α) = out. Then α ∈ Asms+. Thus, α
is attacked by Asms. Assume Asms is not closed. Then ∃β /∈ Asms and
Asms1 ⊆ Asms such that Asms1 ` β. Since for all complete assumption ex-
tensions Asms′ it holds that Asms ⊆ Asms′ and Asms′ is closed, it follows that
β ∈ Asms′. Thus, β ∈ Asms, which is a contradiction. Thus, Asms is closed, so2025

α is attacked by by a closed set of assumptions all labelled in by LabAsm.
From right to left: Let α be such that there exists a closed set of assump-
tions Asms1 attacking α such that for all β ∈ Asms1, LabAsm(β) = in. Then
Asms1 ⊆ Asms, so α is attacked by Asms. Therefore, α ∈ Asms+ and thus
LabAsm(α) = out.2030

2. Since LabAsm is a grounded assumption labelling, it holds that for all α ∈ A:
LabAsm(α) = in if and only if for all complete assumption labellings LabAsm′,
LabAsm′(α) = in. By Theorem 34, for each LabAsm′ it holds that Asms′ =
in(LabAsm′) withAsms′+ = out(LabAsm′) andA\(Asms′∪Asms′+) = undec(LabAsm′)
is a complete assumption extension and there are no other complete assumption ex-2035

tensions. Thus, for all α ∈ A: α ∈ Asms if and only if for all complete assumption
extensions Asms′, α ∈ Asms′. Therefore, Asms is the intersection of all complete
assumption extensions.
Asms+ = {α ∈ A | Asms attacks α} = {α ∈ A | in(LabAsm) attacks α}
= {α ∈ A | α ∈ out(LabAsm)} = out(LabAsm)2040

A \ (Asms ∪ Asms+) = {α ∈ A | α /∈ in(LabAsm), α /∈ out(LabAsm)}
= {α ∈ A | α ∈ undec(LabAsm)} = undec(LabAsm)

Proof of Proposition 37

• From right to left: Let LabAsm be a grounded assumption labelling according to
Definition 17. By Theorem 36 Asms = in(LabAsm) is a grounded assumption ex-2045

tension of possibly non-flat ABA frameworks with Asms+ = out(LabAsm) and
A \ (Asms ∪ Asms+) = undec(LabAsm). By Theorem 6.2 in [4], for flat ABA
frameworks Asms is a minimal (w.r.t. ⊆) complete assumption extension, and thus
Asms is a grounded assumption extension as defined for flat ABA frameworks. By
Theorem 5, LabAsm is a grounded assumption labelling according to Definition 4.2050

• From left to right: Let LabAsm be a grounded assumption labelling according to
Definition 4. By Theorem 5 Asms = in(LabAsm) is a grounded assumption extension
as defined for flat ABA frameworks with Asms+ = out(LabAsm) and A \ (Asms ∪
Asms+) = undec(LabAsm), i.e. Asms is a minimal (w.r.t. ⊆) complete assumption
extension. Let Asms′ be the intersection of all complete assumption extensions, i.e.2055

a grounded assumption extension of possibly non-flat ABA frameworks. Since the
grounded extension of a flat ABA framework is unique, Asms is unique and so is
Asms′. Thus, by Theorem 6.2 in [4] Asms′ = Asms. Then by Theorem 36 LabAsm
is a grounded assumption labelling according to Definition 17.

Proof of Theorem 392060

Analogous to the proof of Theorem 5, but using the definition of admissible assumption
extensions and labellings of possibly non-flat ABA frameworks instead of complete assump-
tion extensions and labellings of flat ABA frameworks, as well as Theorem 32 instead of
Theorem 4.

56

Proof of Theorem 412065

1. By Theorem 5.5 in [4], Asms is a complete assumption extension. By Theorem 34,
LabAsm is a complete assumption labelling. Furthermore, since for all α ∈ A it holds
that if α /∈ Asms then Asms attacks α, it follows that Asms ∪ Asms+ = A. Then
in(LabAsm) ∪ out(LabAsm) = A, so undec(LabAsm) = ∅. Thus, LabAsm is a
stable assumption labelling.2070

2. By definition LabAsm is a complete assumption labelling. By Theorem 34, Asms is
a complete assumption extension. Since undec(LabAsm) = ∅ it follows that for all
α ∈ A, α ∈ in(LabAsm) of α ∈ out(LabAsm). And thus α ∈ Asms or α ∈ Asms+.
Thus, if α /∈ Asms then Asms attacks α.

Proof of Theorem 432075

Analogous to the proof of Theorem 5, but using the definition of admissible assumption ex-
tensions and labellings of possibly non-flat ABA frameworks instead of complete assumption
extensions of flat ABA frameworks, as well as the definition of preferred assumption exten-
sions and labellings of possibly non-flat ABA frameworks instead of preferred assumption
extensions and labellings of flat ABA frameworks, and Theorem 32 instead of Theorem 4.2080

Proof of Theorem 45

Analogous to the proof of Theorem 5, but using the definition of admissible assumption ex-
tensions and labellings of possibly non-flat ABA frameworks instead of complete assumption
extensions and labellings of flat ABA frameworks, and Theorem 32 instead of Theorem 4.

Proof of Proposition 462085

Since undec(LabAsm) is minimal it follows that in(LabAsm) ∪ out(LabAsm) is maxi-
mal among all admissible assumption labellings. Assume by contradiction that there ex-
ists an admissible assumption labelling LabAsm′ such that in(LabAsm) ⊂ in(LabAsm′).
Then for all α ∈ A such that in(LabAsm) attacks α, in(LabAsm′) also attacks α. Thus,
out(LabAsm) ⊆ out(LabAsm′). It follows that in(LabAsm)∪out(LabAsm) ⊂ in(LabAsm′)∪2090

out(LabAsm′). Contradiction.

References

[1] T. J. M. Bench-Capon, P. E. Dunne, Argumentation in Artificial Intelligence, Artificial
Intelligence 171 (10-15) (2007) 619–641.

[2] I. Rahwan, G. R. Simari, Argumentation in Artificial Intelligence, Springer US, 2009.2095

[3] P. M. Dung, On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning, Logic Programming and n-Person Games, Artificial Intelligence
77 (2) (1995) 321–357.

[4] A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An Abstract, Argumentation-
Theoretic Approach to Default Reasoning, Artificial Intelligence 93 (1-2) (1997) 63–101.2100

[5] P. Besnard, A. Hunter, A Logic-Based Theory of Deductive Arguments, Artificial In-
telligence 128 (1-2) (2001) 203–235.

57

[6] A. J. Garćıa, G. R. Simari, Defeasible Logic Programming: An Argumentative Ap-
proach, Theory and Practice of Logic Programming 4 (1-2) (2004) 95–138.

[7] S. Modgil, H. Prakken, A General Account of Argumentation with Preferences, Artifi-2105

cial Intelligence 195 (2013) 361–397.

[8] P. Besnard, A. J. Garćıa, A. Hunter, S. Modgil, H. Prakken, G. R. Simari, F. Toni,
Introduction to Structured Argumentation, Argument & Computation 5 (1) (2014) 1–4.

[9] P. M. Dung, R. A. Kowalski, F. Toni, Assumption-Based Argumentation, in: G. R.
Simari, I. Rahwan (Eds.), Argumentation in Artificial Intelligence, Springer US, 2009,2110

pp. 199–218.

[10] F. Toni, A Tutorial on Assumption-Based Argumentation, Argument & Computation
5 (1) (2014) 89–117.

[11] D. Gaertner, F. Toni, Preferences and Assumption-Based Argumentation for Conflict-
Free Normative Agents, in: Revised Selected and Invited Papers of the 4th International2115

Workshop on Argumentation in Multi-Agent Systems (ArgMAS’07), 2007, pp. 94–113.

[12] M. Morge, P. Mancarella, Assumption-Based Argumentation for the Minimal Conces-
sion Strategy, in: Revised Selected and Invited Papers of the 6th International Work-
shop on Argumentation in Multi-Agent Systems (ArgMAS’09), 2009, pp. 114–133.

[13] A. Hussain, F. Toni, Assumption-Based Argumentation for Communicating Agents, in:2120

Papers from the 2009 AAAI Fall Symposium on the Uses of Computational Argumen-
tation, 2009.

[14] X. Fan, F. Toni, A. Hussain, Two-Agent Conflict Resolution with Assumption-Based
Argumentation, in: Proceedings of the 3rd International Conference on Computational
Models of Argument (COMMA’10), 2010, pp. 231–242.2125

[15] M. Morge, P. Mancarella, Arguing over Goals for Negotiation: Adopting an
Assumption-Based Argumentation Decision Support System, Group Decision and Ne-
gotiation 23 (5) (2012) 979–1012.

[16] X. Fan, F. Toni, A General Framework for Sound Assumption-Based Argumentation
Dialogues, Artificial Intelligence 216 (2014) 20–54.2130

[17] X. Fan, F. Toni, Decision Making with Assumption-Based Argumentation, in: Revised
Selected Papers of the 2nd International Workshop on Theory and Applications of
Formal Argumentation (TAFA’ 13), 2013, pp. 127–142.

[18] X. Fan, R. Craven, R. Singer, F. Toni, M. Williams, Assumption-Based Argumenta-
tion for Decision-Making with Preferences: A Medical Case Study, in: Proceedings2135

of the 14th International Workshop on Computational Logic in Multi-Agent Systems
(CLIMA’13), 2013, pp. 374–390.

[19] X. Fan, F. Toni, A. Mocanu, M. Williams, Dialogical Two-Agent Decision Making with
Assumption-Based Argumentation, in: Proceedings of the 13th International Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS’14), 2014, pp. 533–2140

540.

58

[20] F. Toni, Reasoning on the Web with Assumption-Based Argumentation, in: Proceed-
ings of the 8th International Summer School on Reasoning Web, 2012, pp. 370–386.

[21] X. Fan, F. Toni, On Computing Explanations in Argumentation, in: Proceedings of
the 29th AAAI Conference on Artificial Intelligence (AAAI’15), 2015, pp. 1496–1502.2145

[22] C. Schulz, F. Toni, Justifying Answer Sets using Argumentation, Theory and Practice
of Logic Programming 16 (01) (2016) 59–110.

[23] P. M. Dung, P. Mancarella, F. Toni, Computing Ideal Sceptical Argumentation, Arti-
ficial Intelligence 171 (10-15) (2007) 642–674.

[24] M. Caminada, S. Sá, J. Alcântara, W. Dvořák, On the Difference between Assumption-2150

Based Argumentation and Abstract Argumentation, The IfCoLog Journal of Logics and
their Applications 2 (1) (2015) 16–34.

[25] M. Caminada, D. M. Gabbay, A Logical Account of Formal Argumentation, Studia
Logica 93 (2-3) (2009) 109–145.

[26] P. Baroni, M. Caminada, M. Giacomin, An Introduction to Argumentation Semantics,2155

The Knowledge Engineering Review 26 (04) (2011) 365–410.

[27] C. Schulz, F. Toni, Complete Assumption Labellings, in: Proceedings of the 5th Inter-
national Conference on Computational Models of Argument (COMMA’14), 2014, pp.
405–412.

[28] C. Schulz, F. Toni, Logic Programming in Assumption-Based Argumentation Revisited2160

- Semantics and Graphical Representation, in: Proceedings of the 29th AAAI Confer-
ence on Artificial Intelligence (AAAI’15), 2015, pp. 1569–1575.

[29] M. Caminada, C. Schulz, On the Equivalence between Assumption-Based Argumen-
tation and Logic Programming, in: Proceedings of the 1st International Workshop on
Argumentation and Logic Programming (ArgLP’15), 2015.2165

[30] M. Caminada, Semi-Stable Semantics, in: Proceedings of the 1st International Confer-
ence on Computational Models of Argument (COMMA’06), 2006, pp. 121–130.

[31] M. Caminada, On the Issue of Reinstatement in Argumentation, in: Proceedings of the
10th European Conference on Logics in Artificial Intelligence (JELIA’06), 2006, pp.
111–123.2170

[32] M. Caminada, A Labelling Approach for Ideal and Stage Semantics, Argument & Com-
putation 2 (1) (2011) 1–21.

[33] P. M. Dung, R. A. Kowalski, F. Toni, Dialectic Proof Procedures for Assumption-Based,
Admissible Argumentation, Artificial Intelligence 170 (2) (2006) 114–159.

[34] F. Toni, A Generalised Framework for Dispute Derivations in Assumption-Based Ar-2175

gumentation, Artificial Intelligence 195 (2013) 1–43.

[35] J. Heyninck, C. Straßer, Relations between Assumption-Based Approaches in Non-
monotonic Logic and Formal Argumentation, in: Proceedings of the 16th International
Workshop on Non-Monotonic Reasoning (NMR’16), 2016.

59

[36] R. Craven, F. Toni, Argument Graphs and Assumption-Based Argumentation, Artifi-2180

cial Intelligence 233 (2016) 1–59.

[37] P. Baroni, M. Giacomin, On Principle-Based Evaluation of Extension-Based Argumen-
tation Semantics, Artificial Intelligence 171 (10-15) (2007) 675–700.

[38] M. Caminada, Strong Admissibility Revisited, in: Proceedings of the 5th International
Conference on Computational Models of Argument (COMMA’14), 2014, pp. 197–208.2185

[39] R. C. Moore, Semantical Considerations on Nonmonotonic Logic, Artificial Intelligence
25 (1) (1985) 75 – 94.

[40] M. Caminada, S. Sá, J. Alcântara, W. Dvoák, On the Equivalence between Logic
Programming Semantics and Argumentation Semantics, International Journal of Ap-
proximate Reasoning 58 (2015) 87–111.2190

[41] T. C. Przymusinski, Stable Semantics for Disjunctive Programs, New Generation Com-
puting 9 (3/4) (1991) 401–424.

[42] A. V. Gelder, K. A. Ross, J. S. Schlipf, The Well-Founded Semantics for General Logic
Programs, Journal of the ACM 38 (3) (1991) 620–650.

[43] J.-H. You, L. Y. Yuan, Three-Valued Formalization of Logic Programming: Is It2195

Needed?, in: Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’90), 1990, pp. 172–182.

[44] C. Schulz, K. Satoh, F. Toni, Characterising and Explaining Inconsistency in Logic
Programs, in: Proceedings of the 13th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’15), 2015, pp. 467–479.2200

[45] Y. Dimopoulos, A. Torres, Graph Theoretical Structures in Logic Programs and Default
Theories, Theoretical Computer Science 170 (1-2) (1996) 209–244.

[46] S. Costantini, Comparing Different Graph Representations of Logic Programs under
the Answer Set Semantics, in: Proceedings of the 1st International Workshop on An-
swer Set Programming: Towards Efficient and Scalable Knowledge Representation and2205

Reasoning (ASP’01), 2001.

[47] T. Linke, V. Sarsakov, Suitable Graphs for Answer Set Programming, in: Proceedings
of the 11th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’04), 2004, pp. 154–168.

[48] K. Konczak, T. Linke, T. Schaub, Graphs and Colorings for Answer Set Programming,2210

Theory and Practice of Logic Programming 6 (1-2) (2006) 61–106.

[49] T. Wakaki, Assumption-Based Argumentation Equipped with Preferences, in: Proceed-
ings of the 17th International Conference on Principles and Practice of Multi-Agent
Systems (PRIMA’14), 2014, pp. 116–132.

[50] K. Cyras, F. Toni, ABA+: Assumption-Based Argumentation with Preferences, in:2215

Proceedings of the15th International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’16), 2016, pp. 553–556.

60

[51] S. Modgil, M. Caminada, Proof Theories and Algorithms for Abstract Argumentation
Frameworks, in: G. Simari, I. Rahwan (Eds.), Argumentation in Artificial Intelligence,
Springer US, 2009, pp. 105–129.2220

[52] T. Wakaki, K. Nitta, Computing Argumentation Semantics in Answer Set Program-
ming, in: Revised Selected Papers of the 22st Anual Conference of the Japanese Society
for Artificial Intelligence (JSAI’08), 2008, pp. 254–269.

[53] G. Charwat, W. Dvořák, S. A. Gaggl, J. P. Wallner, S. Woltran, Methods for Solving
Reasoning Problems in Abstract Argumentation - A Survey, Artificial intelligence 2202225

(2015) 28–63.

61

	Introduction
	Background
	Abstract Argumentation
	Assumption-Based Argumentation
	Correspondence between ABA and AA

	Assumption Labellings
	Admissible Semantics
	Complete Semantics
	Grounded, preferred, ideal, semi-stable, and stable semantics

	Argument-supporting sets of assumptions
	Assumption labellings with respect to argument-supporting sets of assumptions
	ABA graphs

	Assumption labellings versus argument labellings
	Translating between assumption and argument labellings
	Complete semantics
	Grounded, preferred, ideal, and stable semantics
	Semi-stable semantics
	Admissible semantics
	Committed admissible argument labellings

	Non-flat ABA frameworks
	Admissible semantics
	Complete semantics
	Grounded, preferred, ideal, semi-stable, and stable semantics
	Grounded semantics
	Preferred semantics
	Stable semantics
	Ideal semantics
	Semi-stable semantics

	Conclusion
	Proofs

