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Abstract

Systems biology takes a mechanistic, relational approach to the study of
biological processes, commonly �nding expression in mathematical models.
Hypotheses about systems can be tested when formulated as models, and
promising avenues for further study identi�ed. A model su�ciently faithful
to the system under study can be used to guide experiments, to probe the
system in silico, and to learn about emergent features not evident from the
static picture of the system.

In this work, three contributions to the modelling community are pro�ered.
First, a computational package is presented that implements an algorithm
for the validation and parametrisation of a model. In validation, we are
asking how likely we were to make some observation, given the model, or,
equivalently, how able the model is to explain the data.

The subsequent two contributions concern noise in biological systems. Bi-
ological systems display inherent variability, or noise, due to the stochastic
mechanisms through which biochemical processes occur. This variability
can be critical to the behaviour of a system and to the fates of individual
cells.

With this in mind, the second contribution is the development of a method-
ology to model protein-dependent population dynamics. The idea is to
model cell population dynamics that result of noisy intracellular protein
dynamics. The method's application is demonstrated in population-level
models of a protein-dependent cell cycle and yeast antibiotic resistance.

Given an appreciation of the pivotal e�ects of noise, the third and �nal
contribution is a study of the mechanism of noise propagation. I present
an analysis of the contributions of biochemical reaction motifs to the cre-
ation and transmission of noise that ultimately manifest in observations of
biological systems. This study points to speci�c processes that enhance
or attenuate noise, with the aim of beginning to unravel the �ow of noise
through a system.
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1

Introduction

When taking a systems approach to biology, we commonly summarise our

current understanding of or hypothesis about a biological system with a

model (Kitano, 2002). This is a mathematical abstraction that aims to

capture characteristic behaviours of the system under study. The choice of

model requires �ne balancing between realism and manageability, aiming

to hit the sweet spot of precisely su�cient detail that the desired behaviour

is exhibited (Kirk et al., 2013).

In this work, three contributions are made to the modelling community.

First, a computational package is presented that aids in validating and

parametrising models. Second, a method is presented for modelling popu-

lation dynamics driven by molecular dynamics. Finally, a method is pre-

sented for analysing motifs that constitute models in order to determine

how a reaction network's structure gives rise to noise.

1
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1.1 Using models

When we have a model, we routinely wish to a) validate it, using exper-

imental data, i.e. ask the question `how well does our model explain the

data?' (Kirk et al., 2013), b) inform it, using experimental data, i.e. learn

about the parameters that determine the system (Toni et al., 2009), and c)

exploit it to learn more about the structure and behaviours of the system

(Silk et al., 2014).

To aid in answering questions (a) and (b), an accelerated computational

package is �rst presented that implements nested sampling, a Bayesian

model selection and parameter inference algorithm (Skilling, 2006).

1.2 Modelling noisy systems

Of particular interest to the present work is the modelling of noisy systems.

Biological processes are inherently random (or noisy), resulting in variability

of phenotype that may be seen over time or across a population of cells

(Elowitz et al., 2002). This heterogeneity may ultimately result in di�erent

cell fates within a clonal cell population, for example (MacArthur et al.,

2009; Balázsi et al., 2011).

Many modelling methods have been presented in the literature that aim to

capture noisy dynamics (Gillespie, 2007; Munsky & Khammash, 2006; Ale

et al., 2013; van Kampen, 1981). The distributions that result from these

models correspond to what the models predict would be seen in a survey of

a number of cells, or over a time period (Nevozhay et al., 2012).
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A particular challenge is to model a population in which a cell divides at a

rate depending on the value of a noisy variable. The most faithful way of

doing so is to use the method of stochastic simulation, in which very many

simulations of a process are generated (Gillespie, 2007). However, the com-

putation required to generate a full distribution over both cell and molecule

number can be prohibitively expensive (Wilkinson, 2009). Therefore, a new

development of the �nite state projection (Munsky & Khammash, 2006) is

presented that can model protein-dependent cell population dynamics with-

out resorting to exhaustive simulations.

1.3 Understanding noise

The extent of noise present in a biological system is pivotal to cell population

dynamics, as well as to many ubiquitous cellular processes, such as the

faithfulness with which a system may respond to a signal (Raser & O'Shea,

2005). It might be assumed, therefore, that variability is itself a regulated

process, and, in order to fully understand the system, it becomes pertinent

to understand how the variability arises (Paulsson, 2004).

To address this question, I use the methodology of Toni & Tidor (2013) as a

basis to unpick the sources of noise and present some new �ndings into the

propagation of noise in dynamical systems. I identify the interactions that

amplify or attenuate variability in certain conditions, shedding light on the

mechanistic reason for cell-to-cell variability and suggesting principles for

designs of synthetic gene circuits.
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1.4 Overview

In Chapter 2, concepts, methods and terminology relevant to this work are

presented. In Section 2.1, the concept of modelling is introduced, followed

by some commonly used modelling methods. In Section 2.2, model selec-

tion and parameter inference are explained, and some methods for these

processes are surveyed. In Section 2.3, the notion of �noise� in a biological

context is discussed. Two types of noise are presented: intrinsic noise, as

that which arises inherently as a product of a system; and extrinsic noise,

as that which is imposed from the outside (Elowitz et al., 2002). The mod-

elling methods introduced in Section 2.1 are revisited and assessed for their

ability to capture the di�erent types of noise.

In Chapter 3, I present a computational tool I have developed for the biolog-

ical community to perform model selection and parameter inference using

an accelerated version of the nested sampling method of Skilling (2006). Its

performance is demonstrated through application to two questions posed in

the literature and assessed via a comparison with some other methods.

In Chapter 4, I present a new method for modelling a population of cells in

which the individual cells have di�erent rates of division, the rate of division

depending on the level of some de�ned protein. The methodology is applied

to two biological systems: to models of cell division in Chapter 5 (Spencer

et al., 2013; Overton et al., 2014) and to a model of antibiotic resistance in

Chapter 6 (Nevozhay et al., 2012).

In Chapter 7, I present a study into the decomposition of noise, demon-
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strating through some simple examples how di�erent reaction mechanisms

result in di�erent levels of cell-to-cell variability.

Finally, in Chapter 8, a summary and discussion of the work presented is

given.



2

Theoretical background

In this chapter, material and literature relevant to the results chapters to

follow will be introduced. To begin, I will give an overview of modelling

methods, parameter inference and model selection in systems biology. These

overviews will highlight the modelling methods that will be used in later

chapters, and the parameter inference and model selection method that will

be implemented in Chapter 3.

Thereafter, the terminology surrounding noise will be discussed in order to

clarify the scope of and the assumptions made in Chapter 7, in which a

method is presented for modelling intrinsic and extrinsic noise arising in

biochemical processes.

6
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2.1 Modelling methods

A model is a mathematical abstraction of a system. It is the formulation,

in mathematical terms, of a hypothesis about the relationships between

variables that compose the system. In a systems-biology setting, these

variables might include cells, organelles, biomolecules such as DNA and

proteins, time, and space. A useful model is one that accurately captures

some hypothesis, and permits critique of the hypothesis through comparison

with an observation of a realisation of the system (Kirk et al., 2015). A

good model is one that is found to accurately capture or explain some

behaviour of a biological system, and can be used to make predictions of

future observations, or identify experiments that will be informative (Silk

et al., 2014).

Various methods are used routinely in the systems biology community to re-

alise models, such as stochastic simulations (Gillespie, 2007), the �nite state

projection (Munsky & Khammash, 2006), moment-expansion approxima-

tions (Ale et al., 2013), and the linear noise approximation (van Kampen,

1981). These are introduced in Sections 2.1.2�2.1.5, with some discussion of

the scope of their application and their resultant strengths and limitations.

With a model, we describe the state of a system, given the reactions that

change it and the rate at which these reactions occur (Szallasi et al., 2010).

The state, x(t), of the system at time t typically refers to the number or

concentration of one or more species. The possible reactions that occur

that change the state of the system de�ne the stoichiometry of the system,
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S. S is a matrix of dimension (nS, n), where nS is the number of species

(the dimension of x(t)) and n is the number of reactions. The system is

parametrised by the reaction rate vector, a(x(t)).

Species evolve over time according to the equation

x(t+ dt) = x(t) + S · F(a(x(t)), dt), (2.1)

where F(a(x(t)), dt) is the update rule that depends on the reaction rates

and the time step (Gillespie, 2007). If we take a view that a reaction event

�res randomly according to its propensity to occur, then the state x(t) is not

a deterministic function of t, S and a(x(t)), but a probability distribution

over a number of possible states (Munsky & Khammash, 2006). Di�erent

considerations of this principle have given rise to a number of di�erent

methods that aim to learn something about the state x = x(t) given t, a(x)

and S. Some such methods are discussed below, with those employed later

in the document highlighted.

2.1.1 The chemical master equation

A biological system, seen as a chemical reaction network, can be described

by the chemical master equation (CME), which gives an exact expression

for the evolution of the system's state over time (Gillespie, 1992). The de-

scription assumes �xed volume and temperature, and that the components

of the system freely mix.
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From Equation 2.1, with

F(aj(x(t)), dt) =

 1 if reaction j occurs in time [t, t+ dt)

0 otherwise,
(2.2)

the probability to be in state x at time t+ dt is de�ned

p(x; t+dt) = p(x; t)

(
1−

n∑
j=1

aj(x)dt

)
+

n∑
j=1

p(x−Sj; t)aj(x−Sj)dt, (2.3)

leading to the de�nition of the CME as (Gillespie, 1992)

p(x; t)

dt
= −p(x; t)

n∑
j=1

aj(x) +
n∑
j=1

p(x− Sj; t)aj(x− Sj). (2.4)

For some examples, the CME can be solved exactly to give the probability

distribution over all possible states x at time t:

p(x; t) = p(x; 0) exp(At), (2.5)

where A is a time-independent transition matrix enumerating the probabil-

ity for each state to transition to every other state. However, for any system

with non-�nite state space, the CME is not directly solvable (Jahnke, 2011),

and an alternative method is required.

2.1.2 Stochastic simulation

By simulating the system de�ned in Equations 2.1 and 2.2, one is e�ec-

tively sampling from the distribution p(x; t). An e�cient means to do so

was presented by Gillespie, referred to as the stochastic simulation algo-

rithm (SSA) (Gillespie, 1992). Many simulations are required to generate a

good estimate of the distribution and, though a number of developments to
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Gillespie's original algorithm have been presented that accelerate the com-

putation (Gillespie, 2007; Gillespie et al., 2013), this expense remains in

general prohibitively high, with no guarantee that the full distribution has

been sampled. These shortcomings motivate the analytic approximations

outlined below.

2.1.3 The �nite state projection

The �nite state projection (FSP) is an approximation to the CME (Munsky

& Khammash, 2006). It functions by arti�cially truncating the state space,

rendering Equation 2.4 solvable. Further, the loss of probability mass that

results from the truncation is measured. Unlike the SSA, then, the FSP

gives a direct read-out of the extent of divergence of the approximate dis-

tribution from the true distribution.

The FSP forms the basis for the method developed in Chapter 4, where it

is fully expounded, and developed for application to a growing population

of cells in which the protein content determines the rate of division. The

SSA is used as a benchmark for its accuracy in Chapters 4�6.

2.1.4 Moment-expansion approximations

A probability distribution can be described by its sequence of moments,

where the �rst moment is the mean, the second is the variance, the third

the skewness and so on. Expressions for moments for components of a

chemically interacting system can be generated directly from Equations 2.1
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and 2.2 (Ale et al., 2013). Each moment is expressed as a sum including

both lower- and higher-order moments.

For the majority of cases (in which there is no reason to expect that mo-

ments beyond a certain order are equal to zero), it is common practice

to terminate the sum at some pre-determined point, either neglecting or

approximating the higher-order terms. At present, there is no way of know-

ing a priori for a given system and a given number of moments what the

divergence will be between the resulting approximation and the true dis-

tribution. There are thus two key considerations in the implementation of

this method: one is the choice of number of moments to calculate; the other

is how to approximate the moments that are not calculated (Lakatos et al.,

2015). These can a�ect substantially the �delity of the approximation to

the true distribution of the model.

2.1.5 The linear noise approximation

The linear noise approximation (LNA) is an approximation to the CME

(Equations 2.1 and 2.2) that provides the �rst two moments via a linearisa-

tion of the system. It derives from the system-size expansion, in which the

dynamics of a system are separated according to the size over which they

operate; namely, it employs an ansatz based on �uctuations scaling as the

square root of the system size (van Kampen, 1981).

Its validity and its applicability have been widely discussed (Thomas et al.,

2013; Grima, 2015). It is exact for linear systems (those that consist of

at highest �rst-order reactions), up to the �rst two moments. For nonlin-
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ear systems, the solution converges to the true �rst two moments in the

limit of large molecule numbers; at other scales, its validity depends on the

speci�cs of the system (Grima, 2015). Its applicability is limited compared

to the moment-expansion approximation, which lends itself more naturally

to multimodality and nonlinear e�ects (Ale et al., 2013). Multimodality in

a biomolecule (i.e. the existence of more than one mode in the dynamic

system) leads to phenotypic heterogeneity. The LNA cannot capture more

than one mode, and therefore no behaviour that rests on multimodality can

be described by the LNA.

The LNA is combined with the unscented transform (Wan & Van Der Merwe,

2000) in Chapter 7, where both methods are fully expounded along the lines

of Toni & Tidor (2013). This machinery is then applied to archetypal mo-

tifs in order to understand how noise arises and is transmitted through a

biochemical pathway.

2.2 Parameter inference and model selection

The particular choice of modelling method will depend on many criteria,

including the size of the system, time and computation concerns, and expec-

tations around the resultant dynamics (Wilkinson, 2009). The construction

of a particular model, i.e. how a system is to be concretely represented in

a mathematical abstraction, involves choices around which species and re-

actions to include (Kirk et al., 2015), and how reactions are realised math-

ematically. Each realisation corresponds to a di�erent model of the system

(Vyshemirsky & Girolami, 2008a).
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When di�erent models are proposed for a single system (Vyshemirsky &

Girolami, 2008a), it is pertinent to ask if one model is `better' than another

� better able to explain data representative of the behaviour we are trying

to model. Additionally, we are concerned that the data are not over�t,

i.e. that the model is not so complex that it is has the capacity to �nd

a parametrisation to �t any seen data (Kirk et al., 2013). Such models

capture the observed data well, but fail to model unseen data due to the

entrainment of the parameters to the seen data. The task of choosing

between models is known as model selection (see Section 2.2.2).

We are simultaneously interested in inferring the posterior distributions

of parameters that give rise to the behaviour observed, a task known as

parameter inference (see Section 2.2.1) (Toni et al., 2009). Both these tasks

require data with which to compare the outcome predicted from the model,

and the aim is to �nd models, or parametrisations of models, that minimise

the di�erence between the data and the prediction.

In Chapter 3, an existing algorithm for model selection and parameter infer-

ence, nested sampling (Skilling, 2006), will be developed and implemented

as software package.

2.2.1 Parameter inference

Parameter inference denotes the task of learning the parametrisation of a

model given some data. Bayesian methods for parameter inference rely on

a guided exploration of the parameter space in order to construct a picture

of how a model's prediction deviates from its target across the parameter
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space (Toni et al., 2009). In the Bayesian formalism, this picture is known as

the posterior parameter distribution, commonly referred to as the posterior.

The posterior of a model indicates likely values taken by parameters, the

extent of variability that preserves the output, and putative relationships

betweens parameters (Gutenkunst et al., 2007).

Bayesian methods for parameter inference include Markov chain Monte

Carlo (MCMC) and sequential Monte Carlo (SMC) methods. The Metropolis�

Hastings algorithm, an implementation of MCMC, samples the parameter

space sequentially by generating a new point from the last. The accep-

tance criteria for the points result in eventual convergence to the desired

distribution (Hastings, 1970; Metropolis et al., 1953).

SMC methods sample from a series of related distributions that evolve to-

wards the desired distribution via importance sampling. Each distribution

is approximated by a weighted population of points from which the next

generation is sampled (Del Moral et al., 2006; Toni et al., 2009).

Nested sampling (Skilling, 2006) generates samples from the posterior in

the course of validating the model itself. This method therefore combines

the processes of parameter inference and model selection.

2.2.2 Model selection

Numerous methods and criteria have been proposed to choose between mod-

els quantitatively and consistently according to some data. These methods

have been reviewed in Calderhead & Girolami (2009); Kirk et al. (2013);
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Vyshemirsky & Girolami (2008a). Model validation is primarily used in

justifying a choice to retain or reject one model when compared to another.

More interestingly, it can be used to demonstrate uncertainty in the choice

of model with respect to the data (Babtie et al., 2014).

The key considerations in model validation are (i) the �t of the model to the

data and (ii) the complexity of the model, where the ideal solution max-

imises the former and minimises the latter. There are two broad classes

of methods: Bayesian approaches, which have a framework that automat-

ically accounts for both; and likelihood-based approaches, which account

for model complexity latterly. Some examples of the methods are outlined

below.

Likelihood-based methods

Likelihood-based methods de�ne a likelihood function, typically a function

of the distance between the model prediction and the data, and identify the

parameter set that minimises the distance (or, equivalently, maximises the

likelihood). These maximum likelihoods are the means by which models

are compared, and the methods rely on being able to identify them by nav-

igating the (a priori unknown) likelihood surface (Burnham & Anderson,

2010; Cover & Thomas, 2012; Grueber et al., 2011).

Bayesian methods

Bayesian model selection methods, grounded in the formalism of assigning

uncertainty to all unknown quantities, avoid the reliance on the identi�ca-
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tion of maximum-likelihood parameters. The question of model selection

from this viewpoint has been addressed in two ways: via model indicators

and via the evidence.

Model indicators To choose between a number of models, a model in-

dicator can be introduced, and is inferred in the same way as other pa-

rameters. The posterior distribution over this indicator assigns to each

model some probability, quantifying how models are preferred relative to

one another. The algorithm must be re-run each time new models are to

be compared. Such a method was applied in Carlin & Chib (1995), where

an MCMC algorithm was extended to allow for transitions between mod-

els. The approximate Bayesian computation (ABC) package of Liepe et al.

(2010) similarly performs both model selection and parameter inference, in

this case using sequential Monte Carlo (Toni et al., 2009).

The evidence In the Bayesian framework, we have a formulation for

independently quantifying the support a�orded to a model by some data.

This score we call the evidence, Z, and is also known as the integrated or

marginal likelihood. It appears as the normalising factor in Bayes' theorem,

p(θ|D,M) =
π(θ|M)`(θ|M)

Z
, (2.6)

where we de�ne a prior distribution π over the parameter space Θ 3 θ and a

likelihood function ` that depends on the parameters and the data D given

a model M .

It is ratios of evidences, or Bayes factors (Je�reys, 1961), that indicate

relative support for one model over another. For two models, M1 and M2,
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the Bayes factor K1,2 is

K1,2 =
Z1

Z2

, (2.7)

where Zi = p(D|Mi) is the marginal likelihood associated with observing

the data given the model Mi. If K1,2 ≈ 1, neither model is clearly better.

A very large K1,2 indicates that M1 is much preferred to M2, with the

magnitude of K1,2 indicating the strength of the support (Je�reys, 1961).

The evidence is the integrated likelihood over all prior space. More formally,

Z =

∫
Θ

`(θ|M)π(θ|M) dθ. (2.8)

The integral is, in general, analytically intractable. However, a number of

methods has been proposed to estimate the evidence, thus allowing direct

comparisons between models.

Estimating the evidence Methods to estimate the evidence generally

sample from the parameter space and construct the evidence according how

the sample was taken. Using Bayes theorem directly, for any θ,

Z =
π(θ|M)`(θ|M)

p(θ|D,M)
. (2.9)

Therefore, if p(θ|D,M) can be evaluated (e.g. by MCMC), Z can be esti-

mated by calculating the likelihood and prior for some θ (Chib, 1995; Chib

& Jeliazkov, 2001).

De�ning it as the integrated likelihood (Equation 2.8), the evidence can

be approximated through a weighted sum of points sampled from the pa-

rameter space. This class of methods makes use of importance weights that
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correct for the discrepancy between the target distribution and the proposal

distribution from which samples are taken (Friel & Wyse, 2012).

Importance sampling estimators include the prior arithmetic mean estima-

tor (McCulloch & Rossi, 1992) and the posterior harmonic mean estimator

(Newton & Raftery, 1994), which use the prior and from the posterior,

respectively, as the proposal distribution. Annealed importance sampling

�nds a path from the prior to the posterior by evolving a point through a

Markov chain transition kernel. Many iterations yield many samples from

the posterior (Neal, 2001). A related approach is taken by Calderhead &

Girolami (2009), in which population MCMC is used to generate multiple

samples across all `temperatures' whose thermodynamic integrals go from

the integrated prior to the evidence.

Nested sampling Nested sampling is a method for estimating a model's

evidence, while simultaneously inferring the posterior parameter distribu-

tion (Skilling, 2006). It is similar to importance sampling estimators in that

each point sampled contributes to the evidence with a weighting dependent

upon the sampling procedure. It has the advantage of employing more �ne-

grained sampling in parameter regions with higher likelihood, yielding more

stable, accurate results.

Nested sampling will be the focus of Chapter 3, where it will be fully ex-

pounded and developed, and its implementation in a software package will

be presented.
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2.3 Variability in biological systems

Biological systems are inherently noisy (Elowitz et al., 2002). Molecules

move, collide and interact unpredictably, resulting in random occurrences

of reactions and random numbers of biochemical species within a cell. Such

�uctuations lead to variability in cells, which might be seen across a pop-

ulation of genetically identical cells, or in a single cell viewed over time.

Such noisiness ultimately has consequences for the fate of a cell (Rao et al.,

2002; Wilkinson, 2009; Ruess et al., 2013).

A useful model of a biological system must have a meaningful grasp of the

noise in the dynamics, or the e�ects of noise in the dynamics, for any sys-

tem in which variability has a role. Each of the modelling methods outlined

in Section 2.1 captures variability that arises from within the system: the

chemical master equation, stochastic simulations and the �nite state pro-

jection all have within their remit the full distribution over reaction species;

the moment-expansion approximation includes as many moments as is de-

sired and feasible; and the linear noise approximation gives the �rst two

moments: the mean and the variance.

Variability that arises from within a system, due to the inherently random

nature of biochemical processes, is termed intrinsic noise. Conversely, noise

that arises from outside the system is termed extrinsic noise (Elowitz et al.,

2002). It is thought that these two classes of noise have di�erent mechanisms

and, perhaps, consequences (Mc Mahon et al., 2015; Filippi et al., 2016).

The canonical illustration of the di�erence between intrinsic noise and ex-
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trinsic noise is the dual-reporter experiment of Elowitz et al. (2002). In

this study, two reporter genes are embedded within a plasmid and are con-

structed so as to have identical expression patterns. One expresses a cyan

�uorescent protein, the other a yellow �uorescent protein. Both protein

contents in a sample of cells are measured: the covariance between the two

is indicative of variability in the shared environment (extrinsic noise); any

additional variance is due to independent �uctuations in the expression of

each gene (intrinsic noise). An illustration of this experiment is given in

Figure D.1, panels A and B.

The appraisal given in Hil�nger & Paulsson (2011) on the uses of the terms

intrinsic and extrinsic in discussion, modelling and interpreting data is ex-

tremely helpful in understanding the literature concerning extrinsic noise.

Importantly for this discussion and the following work, a clear de�nition of

extrinsic noise is presented: whatever is external to the system is extrin-

sic, and whatever is internal is intrinsic, which depends on the perimeter

of the `system' (Hil�nger & Paulsson, 2011; Scott et al., 2006). It is not

necessarily the case that the perimeter drawn in a model will be biologically

meaningful, or realisable in an experimental setting.

In the following sections, we discuss how intrinsic and extrinsic noise have

been studied and presented in the literature. Much of the literature focuses

on how to interpret intrinsic noise and extrinsic noise from experiments.

Here, I focus on studies that use models to understand the e�ects of noise,

and studies of how noise is transmitted in models. Chapters 4�6 add to

the former, in which the combined e�ect of intrinsic and extrinsic noise is
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behind the modelling method and results presented. Chapter 7 adds to

the latter, in which a mechanistic study of the propagation of intrinsic and

extrinsic noise is presented.

2.3.1 Intrinsic noise

Analytic studies of intrinsic noise have aimed to characterise the properties

and functions of stochasticity in biological networks. These studies often

assume a Gaussian model of noise, considering only the �rst two moments

in their analyses.

Studies have queried how noise is propagated through biological systems,

typically considering representative motifs. Komorowski et al. (2013) sought

to identify how much reaction mechanisms in network motifs contributed

to output noise through a decomposition of the linear noise approximation

(LNA), concluding that the mechanism of decay of the molecule of interest

was the greatest contributor to noise. Ozbudak et al. (2002) investigated

the contributions of the rates of transcription and translation to phenotypic

noise, concluding that transcriptional bursting, in which transcription oc-

curs in pulses with multiple copies of mRNA being created in each pulse,

drives the heterogeneity observed. In their two-moment model, Pedraza

& Paulsson (2008) identi�ed gestation and senescence as noise-attenuating

mechanisms.

A di�erent approach was taken by T nase-Nicola et al. (2006), who used

the power spectra resulting from the LNA to analyse how network motifs in-

corporate noise in external signals: whether the noise correlates, or whether
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the components operate in a modular fashion and could therefore be mod-

elled separately. A similar approach was taken by Tka£ik et al. (2008) to

quantify the e�ects of noise in transcription factor dynamics on noise in

the activated protein, highlighting how upstream noise will manifest in a

measured output.

2.3.2 Extrinsic noise

Studies of extrinsic noise comprise those that aim to infer it (Hil�nger &

Paulsson, 2011; Hil�nger et al., 2012; Schwabe & Bruggeman, 2014; Pedraza

& van Oudenaarden, 2005; Bowsher & Swain, 2012) and those that aim

to model it, with the ultimate aim of combining the two. It is in the

combination that the de�nition of extrinsic noise becomes critical (Hil�nger

& Paulsson, 2011).

Modelling studies typically express extrinsic noise mathematically as vari-

ability in reaction rates. This variability is purported to correspond to var-

ied availability of some machinery, for example ribosomes, in di�erent cells,

which aligns with interpretations of dual-reporter experiments in which ex-

trinsic noise corresponds to any factor that is shared by the measured quan-

tities (Elowitz et al., 2002).

E�ects of noise

Stochastic simulations have been used both to study the e�ects of extrinsic

noise on biological processes and to explore which of its aspects are most

pivotal to the output. It has been shown through simulations and experi-
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mentation that extrinsic noise has the capacity to degrade the information-

processing capacity of biochemical signalling networks, but viewing the

molecule as a time-separated multivariate response can recover it (Selimkhanov

et al., 2014). In showcasing the great power and �exibility in biological

systems, this study highlights the huge loss in explanatory power that is

possible when these systems are oversimpli�ed in models.

Stochastic simulation is clearly the most �exible and generalisable of the

methods, but the computational expense is great (Wilkinson, 2009). For

this reason, approximative methods are popularly used to study extrinsic

noise. For example, two moments alone were used to quantify the robustness

of oscillatory systems to extrinsic noise (Scott et al., 2006). Here, the LNA

was used with one parameter perturbed at a time.

In Chapter 4, a multi-level modelling method that combines protein dynam-

ics and population dynamics will be presented. This method is based on the

�nite state projection and is validated using stochastic simulations. In this

formulation, the protein dynamics serve as �uctuating extrinsic noise for

the population-level dynamics, and some emergent behaviours of systems

modelled with this method are given in Chapters 5 and 6.

Drivers of noise

In terms of the mechanisms through which extrinsic noise acts, stochastic

simulations have been used to study the e�ects of various aspects of extrin-

sic noise on variability in an output. Examples include noise in inheritance

(Schwabe & Bruggeman, 2014), and the e�ects of nuances in extrinsic �uc-
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tuations, including their relative timescales, and patterns of interference as

constructive or destructive, depending on the reaction network architecture

(Shahrezaei et al., 2008).

Two-moment approximations have been used to study the magnitudes of

e�ects of cell-to-cell variability on output noise (Zechner et al., 2012). For

example, cell-to-cell variability in transcription rate and burst size combine

constructively with intrinsic noise (Singh & Soltani, 2013).

A similar method to incorporate cell-to-cell variability in all parameters

simultaneously combined the LNA (for intrinsic noise) and the unscented

transform (for extrinsic noise) (Toni & Tidor, 2013). With this method, it

was shown that extrinsic factors were primarily responsible for cell-to-cell

variability in a mechanistic model of ERK phosphorylation (Filippi et al.,

2016).

In Chapter 7, a study into noise propagation will be presented using the

method of Toni & Tidor (2013). This method assumes static extrinsic noise;

that is, noise that operates on a timescale much slower than that of intrinsic

�uctuations. The method will be used to identify how much reactions and

motifs in a pathway contribute to output noise. Its similarities with the

method of Zechner et al. (2012) will be drawn out.



3

Nested sampling for Bayesian

model selection and parameter

inference

In this chapter, I will introduce a new computational implementation for

parameter inference and model selection using the nested sampling method

of Skilling (2006). First, the algorithm is explained, and a method for its

acceleration derived. Then a new package, Sysbions (Johnson et al., 2015),

is introduced, following which some parameter inference and model selection

results are presented. The chapter concludes with a comparison of Sysbions

with two other available model selection software packages.

25
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3.1 Background

Nested sampling is an algorithm for parameter inference and model selec-

tion. Model selection in the Bayesian framework relies on comparison of

evidence values for di�erent models, where the evidence is the probability

of observing the data given the model. The algorithm iteratively samples

from the prior subject to nested likelihood constraints. Through knowl-

edge of the sampling method, the evidence is accumulated as the algorithm

progresses (Skilling, 2006).

3.1.1 The theory of nested sampling

The evidence, Z, is de�ned as the integrated likelihood over the prior pa-

rameter space. The key to nested sampling is the transformation of the

space over which we integrate. Given a prior π(θ) over a parameter space

θ ∈ Θ, we de�ne dX(θ) = π(θ)dθ. By considering elements (dX(θ)) rather

than areas (π(θ)dθ) of prior mass, the integral is transformed to a one-

dimensional space:

Z =

∫
Θ

`(θ)π(θ) dθ (3.1)

=

∫ 1

0

`(θ) dX(θ), (3.2)

where `(θ) is the likelihood of the point θ. By the de�nition of X(θ),

X(θ̃) =

∫
`(θ)>`(θ̃)

π(θ) dθ (3.3)

is the proportion of prior mass with likelihood greater than that of θ̃.
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By the probability integral transform (Angus, 1994), X(θ) is uniformly

distributed on [0, 1]. Therefore, for a sample of N points, θi ∼ π(θ), i =

1, ..., N , ordered according to increasing likelihood values `i = `(θi), we can

estimate the values Xi = X(θi). We can then write Equation 3.2 as a sum:

Z ≈
N∑
i=1

`iWi, (3.4)

whereWi = Xi−1−Xi is the proportion of prior mass with likelihood greater

than that of point θi−1 and less than that of θi.

As the algorithm proceeds, low-likelihood points are discarded and replaced

by higher-likelihood points, so that there are always N points. Using the

probability integral transform, Xi is de�ned as the expected largest value

of N points uniformly distributed on [0, Xi−1], and X0 as the largest of N

points uniformly distributed on [0, 1]. Further, we can �nd the expected

variance of these random variables, which informs the expected variance of

the �nal value for the evidence (Skilling, 2006) (see Appendix A).

Nested sampling is a method for generating a collection of points θi with

likelihood `i, and associating to them the proportion of prior mass they

represent, Wi.

3.1.2 The algorithm

The algorithm proceeds by discarding low-likelihood points and replacing

them with higher-likelihood points. Thus in the sequence of {`i,Wi} pairs,

as the algorithm continues, we collect increasing values of `i and decreasing
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values ofWi. This allows for the low-likelihood regions to be coarse-grained

while the high-likelihood regions are explored in �ner detail.

The general algorithm, as set out by Skilling (2006), proceeds as follows:

1. Initialise Z = 0

2. Generate N points from π(θ)

3. for i = 1 : T

a) Find θ∗ with lowest likelihood, `∗

b) Calculate Wi = exp
(
− i−1

N

)
− exp

(
− i
N

)
c) Set Z = Z + `∗Wi

d) Resample θ∗ ∼ π(θ)|`(θ)>`∗

4. end for

5. Set Z = Z +
∑N

j=1 `j exp
(
− T
N

)
/N

The algorithm terminates either when it has completed a pre-speci�ed num-

ber of iterations T , or when the rate of accumulation of the evidence falls

below some pre-speci�ed tolerance value.

3.1.3 Nested sampling in the literature

Nested sampling has been applied in biology to problems of identifying op-

timal protein-folding solutions from polypeptide sequences (Burko� et al.,

2012), and has been applied in systems biology to questions of model selec-

tion and of topological sensitivity in �model space� (Kirk et al., 2013; Aitken

& Akman, 2013; Dybowski et al., 2013; Pullen & Morris, 2014; Babtie et al.,
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2014). MultiNest is a nested sampling tool designed for and used in the as-

trophysics community (Feroz et al., 2009). It is written primarily in Fortran

with the possibility of supplying the likelihood function in C. It samples pa-

rameters by sampling from ellipsoids de�ned about the current population

of live points, with the possibility of de�ning a single ellipsoid or more than

one in order to capture multiple modes of the likelihood surface.

MultiNest has a �nite capacity in that the number of live points is limited,

depending on the architecture of the model: for example, a six-parameter

model with single-mode sampling is limited to around 15,000 points. The

ellipsoidal sampling method increases the acceptance rate of points relative

to samples from the full prior, but the construction of the ellipsoids risks

excluding areas of genuine interest by virtue of the limited coverage of the

present population.

With these considerations in mind, I have created a nested sampling tool

speci�cally for systems biologists, presented in Section 3.2. I have used

MultiNest to test some models and as a benchmark for my own programme.

3.2 Sysbions

I have created a command-line tool for systems biologists to perform nested

sampling (Johnson et al., 2015). It includes an SBML (Systems Biology

Markup Language, Rodriguez et al. (2007)) parser to create likelihood

functions directly (Liepe et al., 2010). Written primarily in C, it is also

adaptable and accessible to the computational biology community.
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I have added further functionality to the package. First, I have included

di�erent methods for sampling from the prior subject to the likelihood con-

straint. Second, I have included a CUDA option for GPU-capable comput-

ers. Third, I have included the possibility of skipping multiple points in

a single iteration to accelerate the algorithm, and, �nally, I have enabled

easy plotting of the results of the algorithm, demonstrated in Figures 3.2

and 3.3.

3.2.1 Sampling methods

The accuracy of the approximation in Step 3b of the algorithm in Section

3.1.2 relies on the precision in Step 3d : the live points must be distributed

as the prior parameter distribution subject to the likelihood constraint

(Skilling, 2006). I have explored four methods for sampling from this dis-

tribution. In general, the algorithm samples from a space larger than that

of interest, and accept the point sampled if it has likelihood greater than

the lowest likelihood, `∗, and reject it otherwise. The aim is to be able

to sample from the full space (π(θ)|`(θ)>`∗), whose boundaries are typically

unknown, with maximum e�ciency.

Rejection

In the rejection sampling method, the full prior is sampled. This method

always satis�es the requirement of Step 3d. However, the acceptance rate

decreases as the lowest likelihood among the population increases: if the

areas of interest are con�ned to small regions of the prior, most samples
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will be rejected. This makes the method prohibitively slow.

Random walk

In the random-walk sampling method, a point is randomly chosen from

among the current live points, duplicated, and perturbed. The perturbation

consists of a walk of 20 steps that are scaled according to the variances of

the parameters in the current population. Each step is accepted or rejected

based on the likelihood criterion, and subsequent steps are further scaled

in order to converge to an acceptance rate of 0.5 (Sivia & Skilling, 2006).

Ellipsoidal

In the ellipsoidal sampling method (Mukherjee et al., 2006), an ellipsoid

is de�ned to surround the current population of live points, from which

samples are taken. This method is only compatible with uniform prior

parameter distributions. Restriction of the sampling space to the ellipsoid

increases the acceptance rate, but it is possible for relevant regions of the

prior to be precluded entirely from sampling. In such cases it no longer

holds that the points are samples from the prior subject to the likelihood

constraint. This is the method used in MultiNest (Feroz et al., 2009).

Population Monte Carlo

Population Monte Carlo (Cappé et al., 2004), or sampling importance re-

sampling, uses the current population of live points to de�ne a proposal

distribution, from which a superpopulation of points are sampled, as in se-

quential importance sampling. From this population, weighted according
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to its divergence from the prior, a new population of live points is sampled.

These two steps mean that the algorithm is sampling from the correct dis-

tribution, and no regions are outrightly excluded.

In this method, points cannot be re-used as they were previously, when

the algorithm discarded just one point and replaced it upon each iteration.

Here, all points, rather than just one, must be re-sampled on each iteration,

which makes it very computationally intensive. To mitigate the e�ects of

this cost, the programme can be run in parallel on graphical processing

units, and points can be skipped in order to cover the prior space more

quickly.

3.2.2 Skipping points

For likelihood surfaces with vast low-lying regions that contribute little to

the evidence, it is advantageous to leap multiple points in each iteration in

order to reach the area(s) of interest more quickly. Points that are discarded

together (Step 3a below) contribute to Z with equal weights Wi (Steps 3b

and 3c) and are resampled simultaneously (Step 3d). For this I propose the

following algorithm:

1. Initialise Z = 0

2. Generate N points from π(θ)

3. for i = 1 : T

a) Find the L points θ∗(1), ..., θ
∗
(L) with lowest likelihoods, `∗(1) < ... <

`∗(L)
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b) CalculateWi =
(

log(1− L(1− e− 1
n ))
)i−1

−
(

log(1− L(1− e− 1
n ))
)i

c) Set Z = Z +
∑L

j=1 `
∗
(j)Wi

d) Resample θ∗(1), ..., θ
∗
(L) : θ∗(j) ∼ π(θ)|`(θ)>`∗

(L)

4. end for

5. Add the likelihoods of the remaining points:

Z = Z + 1
N

∑N
j=1 `j

(
log(1− L(1− e− 1

n ))
)T

.

To leap points adaptively, so that uninteresting regions are traversed quickly

and interesting ones explored in detail, I employ a tolerance tol. At each

iteration the algorithm calculates how many of the lowest-likelihood points

together contribute less than tol to the evidence given all of the current live

points. Formally, for N live points and a current value Z for the evidence,

L is maximised such that ∑L
i=1 `iWi

Z +
∑N

i=1 `iWi

< tol. (3.5)

When points are leaped, a new method is required to calculate the variance

associated with the estimate of Z, given in Appendix A.

Graphical processing units can be used to perform calculations in parallel.

More points than are required can be sampled simultaneously and the num-

ber required selected from among them. This is particularly advantageous

when the rejection rate of sampled points is high (e.g. with the rejection

sampling method) or when leaping schemes are used.
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3.2.3 Output

A summary �le of input and output information is created, documenting the

number of live points, the number of iterations, the tolerance, the sampling

method and the parameter ranges, followed by the evidence with standard

deviation, the information and the means of all parameters and their stan-

dard deviations.

Restart �les are created, one documenting input values that must persist

upon restart (such as the number of live points) and one listing all points,

live and discarded. These �les can be used to restart the program from

where it terminated. It is also possible to specify the path to where the

restart �les are written.

Posterior distributions of the parameters can be plotted individually as his-

tograms and in pair-wise scatterplots using the data stored in the posterior

�le (see Figure 3.2 for an example). Finally, a �le of trajectories is created

that can be read or visualised with any plotting software and compared with

the input data (see Figure 3.3 for an example). Full documentation can be

found at http://www.theosysbio.bio.ic.ac.uk/resources/sysbions/.

3.3 Results

I demonstrate the functionality of Sysbions �rst in inferring the parameters

for a model constructed to explain real data and second in choosing between

competing models. Finally, I stay with the model selection question and

compare the results of a number of methods.

http://www.theosysbio.bio.ic.ac.uk/resources/sysbions/
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3.3.1 Parameter inference

I demonstrate parameter inference using the model and data of Swameye

et al. (2003) concerning the JAK-STAT signalling pathway. This model,

shown in Figure 3.1, was proposed to explain STAT5 dynamics on activation

by JAK2. Speci�cally, they propose inclusion in the model of translocation

and recycling of nuclear STAT5 instead of its degradation.

STAT5

STAT5p

(STAT5p)2

n(STAT5p)2

Ek1

k2k3

k4

Figure 3.1: Model of the JAK-STAT pathway. STAT5 is phosphorylated by
EpoRA (E), dimerises, enters the nucleus, and is recycled back into the cytoplasm.
Parameters are de�ned in Table 3.1.

Seven parameters make up the model. The �rst four (k1, k2, k3, k4) cor-

respond to reaction rates (Figure 3.1) and the �nal three correspond to

scaling parameters that relate the experimental measurements to concen-

trations (Swameye et al., 2003). The quantities measured relate to the total

concentration of phosphorylated cytosolic STAT5 (y1), the total concentra-

tion of cytosolic STAT5 (y2), and the concentration of EpoRA (y3):

y1 = k5(STAT5p + 2(STAT5p)2), (3.6)

y2 = k6(STAT5 + STAT5p + 2(STAT5p)2), (3.7)

y3 = k7E. (3.8)

Parameters to infer are de�ned in Table 3.1. Using 10,000 live points,

300,000 iterations and the random-walk sampling method, I �nd an evidence
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of log(Z) = 22.722± 0.048.

Table 3.1: Prior and posterior parameter distributions for the JAK-STAT sig-
nalling pathway.

Parameter Meaning Lower bound Upper bound Posterior
p1 [STAT5]t=0 0 10 0.373±0.084
p2 Variance 0 1 0.0038± 0.001
p3 k5/k2 0 10 3.944± 0.806
p4 k6/k2 0 10 2.736± 0.661
p5 k1/k7 0 10 2.295± 0.344
p6 k3 0 10 5.801± 2.329
p7 k4 0 10 0.365± 0.085

p1 p2 p3 p4 p5 p6 p7

p
7

p
6

p
5

p
4

p
3

p
2

p
1

Figure 3.2: Inferred posterior parameter distributions for the JAK-STAT model
and data of Swameye et al. (2003). Each scatterplot shows pairwise posterior
parameter distributions where colour indicates likelihood (red being the highest
likelihood), and histograms show the inferred marginal distributions of individual
parameters. Parameters correspond to those of the model in Figure 3.1 and Table
3.1.
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Data

Simulations

Figure 3.3: Trajectories simulated using parameter sets sampled from the pos-
terior parameter distribution of Figure 3.2 are shown in grey. The data to which
they were �t (Swameye et al., 2003) are shown in blue. Left: cytosolic phospho-
rylated STAT5 concentration. Right: total cytosolic STAT5 concentration.

Scatterplots and histograms of the posterior parameter distributions are

shown in Figure 3.2 (a direct output of the Sysbions package). Histograms

demonstrate the ranges of parameters that give rise to a good approxi-

mation to the data; pairwise scatterplots show any relationships between

the parameters. A sample from this distribution can be used to simulate

trajectories (Figure 3.3).

3.3.2 Model selection

To demonstrate model selection, I use the arti�cial signalling system of

Vyshemirsky & Girolami (2008a). The authors construct four models (M1,

M2, M3 and M4) and compare them to some arti�cial data: M1 is used to

generate the data, M2 is a simpli�cation of M1, M3 is incorrect, and M4 is

an overcomplication of M1 (see Figure 3.4). I test the models using 1,000

live points and a tolerance of 1e-06, once following the standard routine and
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once skipping 50 points.

M1

S ∅

RS

R Rpp

M2

S ∅

R Rpp

M3

S

R Rpp

M4

S ∅

RS

R Rpp

RppPha

Pha

Figure 3.4: The four models proposed in Vyshemirsky & Girolami (2008a). S is
a signalling molecule, ∅ its degradation, R its target, RS the heterodimer, Rpp
the phosphorylated form of R, Pha a phosphatase, and RppPha the phosphatase
bound to Rpp. Full arrows indicate consuming reactions and dashed arrows indi-
cate non-consuming activation.

Table 3.2: Sysbions model selection results for the signalling system of
Vyshemirsky & Girolami (2008a). The program is run natively (L = 1) and
leaping 50 points at a time (L = 50).

Model log(Z) (L = 1) log(Z) (L = 50)
M1 −0.510± 0.084 −0.556± 0.085
M2 −1.304± 0.088 −1.363± 0.088
M3 −6.708± 0.045 −6.792± 0.051
M4 0.102± 0.077 0.0718± 0.079

Our results, shown in Table 3.2, are consistent and in agreement with each

other but not with those of Vyshemirsky & Girolami (2008a) in terms of
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model ranking. They rank the models as follows: M1 > M4 > M2 > M3

(see Table 3.3), whereas I �nd M4 to be the preferred model. The Bayes

factors for M4 in preference to M1 are 1.8441 and 1.8725, respectively, for

L = 1 and L = 50. Although M4 seems preferred, it does not conclusively

outperform M1 as it does the other two models, as Bayes factors between 0

and 5 are considered `barely worth mentioning' (Je�reys, 1961)

To see if the rankings are dependent on the data, I simulated ten more

datasets (each consisting of seven data points) and computed each model's

evidence �ve times for each dataset using our nested sampling implemen-

tation with parameters as detailed above. The results are shown in Figure

3.5.
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Figure 3.5: Model comparison using simulated datasets. Ten datasets are simu-
lated from M1. The evidence of each model given each dataset is computed �ve
times with Sysbions. Bars show the relative probability for each model to be the
true model based on the dataset.
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M4 outranks all other models for eight out of the ten datasets. The Bayes

factor the preference of M4 over M1 does not exceed 5 for any dataset. Were

we to understand these results to imply a rejection of M1 in favour of M4,

then the results of the nested sampling algorithm would contradict Occam's

razor, the principle that a more complicated model should be selected only

if it provides a substantial improvement over the simpler model. Further, we

would have rejected the true, data-generating model in favour of another

model. This concerning conclusion is avoided only by asserting a Bayes

factor of 5 as a threshold below which a realised value is not considered

signi�cant.

3.3.3 Comparison of Sysbions with other packages

The results in Table 3.2 di�er considerably from those of Vyshemirsky &

Girolami (2008a). I use the BioBayes package (Vyshemirsky & Girolami,

2008b) to see if it is possible to replicate their results using their settings.

BioBayes is a software package that implements annealing�melting integra-

tion for estimating the evidence for a model given some data.

With the settings and prior parameter distributions quoted in Vyshemirsky

& Girolami (2008a), I �nd the same ranking as before. Table 3.3 summarises

some results, and Figure 3.6 demonstrates graphically a comparison between

a number of methods. Each method �nds M4 to be the best model to

explain the data, despite the penalty it incurs for having extra parameters.

However, unlike Vyshemirsky & Girolami (2008a), I do not �nd the Bayes

factors to be so convincing as to rule out three models in light of one model.
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Table 3.3: BioBayes model selection results for the signalling system of
Vyshemirsky & Girolami (2008a). The �rst column shows the published results
of Vyshemirsky & Girolami (2008a). The following columns show results of the
present study. For all studies, the convergence threshold is 1.21.

Study 2008 Present Present Present (8 runs)
Priors Γ(1, 3) Γ(1, 3) Γ(1, 3) U(0, 1)
Chains 20 20 3 3
Samplers 40 40 20 20

Model 1 45.8± 0.2 −3.3± 0.25 −3.06± 0.01 −0.64± 0.19
Model 2 29.2± 0.1 −3.38± 0.05 −3.15± 0.27 −1.29± 0.25
Model 3 −1.1± 0.1 −7.23± 0.01 −7.34± 0.004 −6.7± 0.02
Model 4 34.8± 0.1 −3.06± 0.05 −2.77± 0.03 0.32± 0.08

In this case, the principle that the least complicated model capable of ex-

plaining the data should be ranked highest is not met. The conclusion must

be that the data are insu�cient to distinguish between the two models.

Figure 3.6 shows that, in general, the ellipsoidal methods estimate slightly

larger evidences. It was expected that the evidence would fall as the size

of the ellipsoid increases, which has not been conclusively shown with the

tests run. However, as the size increases, the program becomes prohibitively

slow. We see also that results are quite consistent as the number of live

points changes (for MultiNest and Sysbions with random-walk sampling).

The greatest agreement seems to be between BioBayes and Sysbions random

walk.

3.4 Summary

To conclude, Sysbions was created for easy application of nested sampling

by the systems biology community (Johnson et al., 2015). It is proposed as
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Figure 3.6: A comparison of MutliNest and Sysbions applied to the model selec-
tion problem of Vyshemirsky & Girolami (2008a). Points correspond to the means
and error bars the standard deviations of �ve runs. My results from the BioBayes
package are shown for reference in the black dashed line. The annealing�melting
algorithm was used with 20 chains, three simultaneous samplers, a convergence
threshold of 1.21, a posterior sample size of 20,000 and a thinning rate of 5. For
all tests, all models' parameters had uniform prior distributions over [0,1] and the
data had associated Gaussian noise with variance 0.01, as was used its generation.
Left-hand plots show the e�ect of the number of live points used on the evidence,
Z. In blue are the results of MultiNest, with standard (default) input. In red
are the results of Sysbions using a random-walk (RW) sampling method and exit
tolerances of [1e-4,1e-4,e-6,1e-7]. Right-hand plots show the e�ect of the ellipsoid
expansion factor on Z. 2,000 live points and a tolerance of 1e-5 were used for
each test.

an alternative to MultiNest (Feroz et al., 2009), where the key di�erences

are: the accessibility to the biological community via SBML integration,

the choice of language (C being more used that Fortran), and the outputs

produced; its computational capacity and GPU support; the development

of methods (speci�cally, the sampling schemes and the leaping scheme);

and the modularity of the programme, allowing easy manipulation and
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adaptation.

Sysbions has been applied to a large-scale model ranking study. The abil-

ity to calculate evidences quickly allows for the sensitivity of a model to its

topology to be studied, wherein a model's structure is permuted and the re-

sulting e�ects on the model's ability to explain some data can be quanti�ed

(Babtie et al., 2014).

The studies presented in Sections 3.3.2 and 3.3.3 suggest a need for care

in interpreting evidence values. Among four competing models, one was

the true, data-generating model, and another was an over-complication of

that model. All nested sampling applications used in the above studies

found a preference for the over-complicated model in terms of evidence

values. Only through the assertion that Bayes factors must exceed 5 to be

considered signi�cant do we avoid rejection of the true model in favour of

the over-complicated one.



4

Finite state projection for

protein-dependent cell

population growth

In this chapter, two methods are presented to model a population of dividing

cells, where the rate of division is dependent on internal protein dynamics.

The methodology is set out in a general format here and applied to speci�c

biological questions in Chapters 5 and 6.

In Section 4.1, the biological motivation for the development of the method-

ology is outlined, followed by the method on which it is based. Two conver-

gent methods are presented in Sections 4.2 and 4.3, and are validated and

evaluated in Section 4.4.

44
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4.1 Introduction

Cell populations arise through a sequence of cell divisions that give rise to a

growing number of (nominally) genetically identical cells. The behaviours

at the macro or population level emerge in part as a result of the conditions

driving cell divisions at the micro or individual level. These conditions

are heterogeneous due to the inherent stochasticity of biological systems.

Therefore, in order to understand the mechanisms of growth at the macro

level, it is necessary to understand the variability at the micro level, and how

each conceivable realisation at the micro level informs cellular behaviour

(Shahrezaei & Marguerat, 2015).

For example, antimicrobial resistance is becoming an increasing public-

health threat (The review on antimicrobial resistance, 2016). In order to

design e�ective strategies to prevent or avert it, it is necessary to understand

how microbial populations respond to toxic conditions. Variability within

the population is crucial to these dynamics, underlying the emergence of

persister populations (Allen & Waclaw, 2016) and support of mutability

(Tadrowski et al., 2016). There is therefore much to be gained from mod-

elling how internal factors (which might depend on external conditions) lead

to population-level dynamics (Shahrezaei & Marguerat, 2015).

In this chapter, following an overview of previous advances in modelling

population dynamics, a new contribution will be presented: an adaptation

of the �nite state projection that allows dynamics at the protein level to

drive population dynamics. This will be applied to biological questions in
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the subsequent two chapters: the dynamics of a protein-dependent cell cycle

in Chapter 5, and yeast population �tness in the presence of antibiotic in

Chapter 6.

4.1.1 Modelling cell population growth

Numerous methods have been presented to model cell population growth.

They each aim to capture something of population dynamics by employ-

ing rules around cell division. Delay di�erential equations impose a time

lag for a newly born cell to mature before it is able to divide, and are of-

ten cited as a proxy for cell-cycle stages that are not explicitly modelled

(Villasana & Radunskaya, 2003). Branching processes are used to derive

analytically the existence of a stable birth-type distribution, where new cells

inherit some `type' from their mother that determines their propensities to

reproduce (Taib, 1999; Alexandersson, 2001). These processes lend them-

selves to questions of cell di�erentiation (Nordon et al., 2011), for example,

and take account of the type as a random variable, but do not allow for

a mechanistic underpinning for this variability. Where analytic models are

undesirable or inde�nable, stochastic simulations, agent-based models and

cellular automata have been used to emulate what populations might re-

sult from a model of growth (Charlebois & Kaern, 2013; Murphy & Walshe,

2011; Nevozhay et al., 2012; Schwabe & Bruggeman, 2014; Tadrowski et al.,

2016; Altinok et al., 2011).

Physiologically structured population models de�ne the populations to be

structured according to one or several physiological attribute(s) (Banasiak
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et al., 2012), such as age (Dyson et al., 2002), size (Ellermeyer & Pilyugin,

2012), stage (Massie et al., 2013), DNA content (Basse et al., 2003) and

protein. In these models, the growth rate for each individual depends on

their realisation of the quality under consideration. For example, in age-

or size-structured models, older (or larger, respectively) cells have a greater

propensity to divide. This prevents the artefact of newly born cells imme-

diately dividing. Such models can also be used with label structuring to

infer rates of death and division from �uorescence data (Luzyanina et al.,

2007).

The present work most closely relates to protein-structured models, in which

division depends upon protein (e.g. cyclin) content (Borges et al., 2014;

Bekkal Brikci et al., 2007). In Bekkal Brikci et al. (2007), the population

is structured additionally by age, whereas in Borges et al. (2014), delay

di�erential equations are employed to prevent immediate re-entry into the

cell cycle. These models typically de�ne two stages, proliferative and qui-

escent. Propensities to divide and transition to quiescence depend on age

and cyclin content, whereas transition to proliferation depends on popula-

tion density. The result is a system of two partial di�erential equations,

one for each sub-population.

These studies recognise the role of cell stages in population dynamics:

growth dynamics fundamentally depend on which cells are dividing, and

their daughters' propensities to divide. A promising development would

therefore be to include many cell-cycle stages, as proteins leverage control

at checkpoints throughout the cell cycle (Altinok et al., 2011) (rather than
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just two: Massie et al. (2013); Borges et al. (2014); Bekkal Brikci et al.

(2007)). Therefore inclusion of stages allows �ne-grained modelling of the

control of the protein.

Here, I present a general formulation for modelling cell population growth

allowing for any number of stages. Protein dynamics can be de�ned for

each stage, which may parametrise transition rates between stages. What

is returned is a full probability distribution over stage and protein content.

4.1.2 The �nite state projection

We model cell population dynamics by �rst modelling the noisy protein

dynamics that drive it, via the �nite state projection (FSP) (Munsky &

Khammash, 2006). In the FSP, the chemical master equation (CME) is

approximately solved by truncating the state space of interest. There is

often an in�nite number of states available to a Markov process describing a

system that counts protein content. In reality, most of the probability mass

is contained within a space bounded by some �nite number of proteins. By

excluding a small proportion of total probability mass, we retain a precise,

tractable di�erential equation for the probability distribution of cell state.

For a model comprising NS cell stages and a single protein with a maximum

content of NP , there are NT = NS(NP + 1) possible states a cell can be

in. A vector P denotes the probability of being in each state. Transition

probability matrix A operates on P to give the rate of change: Ṗ = AP .

Value Aij is the rate of transition from state j to state i. The sum of P is

1, and the sums of the columns of A are 0 (ensuring that probability mass
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that leaves one state enters another state).

The di�erential equation Ṗ = AP is easily solved to give the distribution

over P at some time t. The solution for P = P (t) has the form P (t) =

P (0) exp(At).

4.1.3 The �nite state projection and cell division

In a mitosis event, one cell becomes two cells. The FSP as described above

cannot capture the increase in probability for divided cells relative to divid-

ing cells without compromising conservation of probability. We present two

methods for circumventing this problem. The �rst, presented in Section

4.2, assumes a steady state and recycle cells (and therefore probability).

The second, presented in Section 4.3, keeps track of the total population,

and therefore the proportions of all cells.

4.2 Method 1: cell recycling

A possible solution to the problem of probability conservation is to assume

a steady-state population. This might be assumed if a) the population has

reached a natural steady state, or b) the population is kept arti�cially at a

steady state through continual removal of cells at random to maintain the

same overall number.

A steady state is one in which the state variable is unchanging over time.

Stationarity of cell number in a population of cells requires that the rate of

mitosis is matched by the overall rate of death of all cells, so that for every
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cell that is created, one is destroyed. Equivalently, to supply probability

mass to cells that are created into new states, probability is drawn from all

states. This recycling is represented by ∆(P ), where ∆(P ) is the amount

to be recycled. The dependence on the state probability vector P breaks

the linearity of the CME: rather than Ṗ = AP , we now have Ṗ = A(P )P .

4.2.1 The A matrix

The matrix A contains the transition rates between all states. For a general

model, transitions out of a state in stage i with n proteins are: protein cre-

ation (with rate αi(n)), protein decay (with rate γi(n)), transition through

the cell cycle stages (with rate ki(n)), and apoptosis (with rate ∆(P )). Mi-

tosis events result in daughter cells with protein content n∗ from cells with

n proteins according to some function g0(n, n∗).

Consider a system with NS stages, labelled {0, 1, ..., NS−1}, where G,M ⊆

{0, 1, ..., NS − 1} are the indices of daughter and mitosing stages, respec-

tively. To implement cell recycling, we supply the total �ux into daughter

states from mitosing states, and then refund half of the �ux out of mitos-

ing cells from all states. The net result is that one mitosing cell goes to

two daughter cells, and one random cell dies to maintain the population

number.

The amount to refund a mitosing state with n proteins is

δn(P ) =
1

2
kM(n)PM,n, (4.1)

where kM(n) is the rate of exit from that state, and PM,n denotes the
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probability of being in a mitosing state with n proteins. Assuming one of

the NS stages is mitosing, there are NP +1 mitosing states to refund, which

require a total mass of

∆(P ) =

NP∑
n=0

δn(P ) (4.2)

=
1

2

NP∑
n=0

kM(n)PM,n. (4.3)

This probability mass is drawn from all states in the system, and represents

that each state has equal probability to die.

For a cell in state j, we de�ne the number of proteins jp = b j−1
NS
c and its

stage jS = (j−1) mod NS. For clarity, an enumeration is given up to j = 8

in Table 4.1.

Table 4.1: Enumeration of state labels in the construction of the A matrix. The
top row gives the �rst eight indices j. The jS are the state indices, with the state
labels in brackets. The jp are the protein values given the indices j.

j 1 2 3 4 5 6 7 8
jS 0 (G1) 1 (S) 2 (G2) 3 (M) 0 (G1) 1 (S) 2 (G2) 3 (M)
jp 0 0 0 0 1 1 1 1

Then the matrix A is de�ned:

Aij =



−kjS(jp)− αjS(jp)− γjS(jp)−∆(P ) i = j, i 6= NT + 1

kjS(jp) i = j + 1, jS 6= M

kM(jp)g0(jp, ip) jS = M, iS = G, ip ≤ jp

αjS i = j +NS

γjS(jp) i = j −NS

−∆(P ) i = j = NT + 1

δip(P ) j = NT + 1, iS = M

∆(P ) i = NT + 1, i 6= j

(4.4)
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An illustration of the construction of the A matrix will be given in the next

subsection.

4.2.2 Four-stage cell-cycle model

G1 S G2 M

Figure 4.1: Four-stage cell-cycle model. Cells begin in stage G1, progress
through stages S and G2 to M, and divide, giving rise to two cells in stage
G1.

We demonstrate the method with a four-stage, protein-dependent cell cycle,

which will be later developed in Chapter 5. The full A matrix for the four-

stage system shown in Figure 4.1, where the stages are {S0, S1, S2, S3} =

{G1, S, G2, M}, is given by:

A =



A0 −B0 A0,1 +D1 · · · A0,NP b0(P )

B0 A1 −B1 −D1 · · · A1,NP b1(P )

0 B1 · · · A2,NP b2(P )

0 0 · · · A3,NP b3(P )

...
...

. . .
...

...

0 0 · · · ANP −BNP −DNP bNP (P )

c∆(P ) c∆(P ) · · · c∆(P ) −∆(P )



,

(4.5)



4.2. Method 1: cell recycling 53

where c∆(P ) = [∆(P ) ∆(P ) ∆(P ) ∆(P )], bn(P ) = [0 0 0 δn(P )]T ,

Bn =



α0 0 0 0

0 α1 0 0

0 0 α2 0

0 0 0 α3


, (4.6)

Dn =



γ0(n) 0 0 0

0 γ1(n) 0 0

0 0 γ2(n) 0

0 0 0 γ3(n)


, (4.7)

An =



−k0(n) 0 0 k3(n)g0(n, n)

k0(n) −k1(n) 0 0

0 k1(n) −k2(n) 0

0 0 k2(n) −k3(n)


− diag(∆(P )) (4.8)

and

An∗,n =



0 0 0 k3(n)g0(n, n∗)

0 0 0 0

0 0 0 0

0 0 0 0


. (4.9)

Equations 4.6 and 4.7 correspond to protein creation and degradation, re-

spectively. Equation 4.8 represents the diagonal units of the matrix corre-

sponding to four stages with n proteins. It shows forward transitions that

occur at rate ki(n), and mitosis events that occur at rate k3(n) and result in

stage 0 and n∗ proteins with probability g0(n, n∗) (also shown in Equation

4.9).
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Refunding of mitosing states is shown in the far-right column of Equation

4.5. This is drawn from the `null state' in the bottom-right corner. The

null state is fed by all states, shown in the bottom row. Note that the �ux

into the null state (cell death) is equal to the �ux out of it (cell birth), so it

should neither accumulate nor lose probability mass (the death rate equals

the birth rate and we have a steady state).

We use a null state rather than transferring mass directly from all states to

mitosing states as it is computationally more e�cient but mathematically

equivalent. We refund mitosing states rather than daughter cells as it is

more tractable, as there may be multiple possible destinations for mitosing

cells.

4.3 Method 2: growth and probability

redistribution

In this section a di�erent approach to modelling population dynamics with

the FSP is presented, and in Section 4.4.1 it is shown that the two methods

converge.

To model the cell cycle whilst allowing for mitosis (necessitating probabil-

ity redistribution) as well as the possibility of growth, we keep track of the

overall population size and use the FSP architecture to track the propor-

tions. At each time step, for each state, we are interested not only in which

reactions occurred that a�ect that state, but also in all other reactions that

occurred, as any change in cell number a�ects the proportions of all states.
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Therefore, the rate of change of P depends on itself and the overall number

of cells, N :

Ṗ = A(N,P )P. (4.10)

Suppose we have NT = NS(NP + 1) states indexed by j = {1, 2, ..., NT}.

Let Rj denote the number of cells in each state, and Pj the proportion of

N that is in state j. So
∑
Pj = 1,

∑
Rj = N , and R = NP . Usually, we

express the result of reactions occurring over some time step as

R
(t+1)
i = R

(t)
i + ui(R

(t)),

where ui is the change to Ri as a function of all the states.

In order to model the evolution of probabilities, we need to know what

happens to all cells at each time point. A state's proportion Pi can change

even when there has been no change in Ri. What we seek is the change in

proportion, which we call vi:

P
(t+1)
i = P

(t)
i + vi(N

(t), P (t)). (4.11)

The function vi can be expressed in terms of N and P at time t:

vi(N,P ) =
ui(NP )− Pi

∑
uj(NP )

N +
∑
uj(NP )

. (4.12)

Here, vi is the change in proportion, ui is the change in number, N is the

total number of cells, and
∑
uj(NP ) is the change in total cell number

going to the next time step. The derivation is shown in Appendix B and

applies for any N . In the next subsection the equation is illustrated with a

small system.
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4.3.1 Illustrative example

Consider two cell types (NT = 2) with initial conditions P1 = P2 = 0.5,

N = 2 (i.e. we begin with two cells, one of each type). There is one reaction,

in which one cell type increases its population by one: R(t+1)
1 = R

(t)
1 + 1, so

u1(R) = 1. The other cell type is inactive: u2(R) = 0.

Table 4.2 charts the progress of the two states at each time point, t. Note

that each state contributes probability mass x/y at each time step, where x

is the number of cells in that state and y is the total number of cells at this

time point multiplied by the number at the next time point. These two con-

tributions are added together and supplied to the state that is accumulating

probability, state R1.

Table 4.2: Probability evolution for a simple two�cell-type system. Columns
Pi show the probability of cells to be in state i at time t. The subsequent two
columns show how vi(N,P ) is calculated: the �rst shows the probability mass it
gains due to any reactions a�ecting it that occur over the next time step. The
second shows the probability mass that it loses due to all reactions that occur.

The probability at the next time step, P
(t+1)
i , is calculated using these columns

according to Equation 4.11.

Time P1
u1(NP )

N+
∑
uj(NP )

− P1
∑
uj(NP )

N+
∑
uj(NP )

P2
u2(NP )

N+
∑
uj(NP )

− P2
∑
uj(NP )

N+
∑
uj(NP )

0 1/2 1/3 −1/6 1/2 0 −1/6

1 2/3 1/4 −2/12 1/3 0 −1/12

2 3/4 1/5 −3/20 1/4 0 −1/20

3 4/5 1/6 −4/36 1/5 0 −1/36

This demonstrates the general principle of the method: probability is drawn

from each state according to its proportion and supplied to states accumu-

lating mass.
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4.3.2 Probability redistribution

In Equation 4.12, probability mass is drawn from all states into all other

states in the term
∑
uj =

∑
uj(NP ). Many of the terms in

∑
uj cancel

out, and it is only necessary to consider probability mass into states whose

changes (uj) e�ect change in the total number of cells, N (t+1)−N (t). There-

fore, we can disregard most of the uj and consider only residual changes,

which we denote ũj. By de�nition,
∑

j uj =
∑

j ũj. States j that are cre-

ated via mitosis will have ũj > 0, and all other states, for which all terms

in
∑
uj cancel out, will have ũj = 0.

For a state j that results of cell division and inherits n∗ proteins, we have

ũj =

NP∑
n=0

kM(n)g0(n, n∗)NPM,n (4.13)

as the total �ux into that state due to mitosis. This allows the total cell

number N to be tracked, which can be done via a readout of mitosis and

death events. We have that N (t+1) = N (t) +
∑
uj, so

N (t+1) −N (t) =

NS(NP+1)∑
j=1

ũj (4.14)

=

NP∑
n∗=0

NP∑
n=0

kM(n)g0(n, n∗)N (t)PM,n (4.15)

= N (t)

NP∑
n=0

kM(n)PM,n

NP∑
n∗=0

g0(n, n∗) (4.16)

= N (t)

NP∑
n=0

kM(n)PM,n (4.17)

= 2N (t)∆(P ), (4.18)

using Equations 4.13 and 4.3, and the requirement
∑NP

n∗=0 g0(n, n∗) = 1.
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As with the recycling method, this quantity is drawn from all states and

delivered into states that result of mitosis.

4.3.3 The A matrix

We de�ne again the number of stages NS, G,M ⊆ {0, 1, ..., NS − 1} the

indices of daughter and mitosing stages, respectively, and jp = b j−1
NS
c the

number of proteins and jS = (j − 1) mod NS the stage for a cell in state j.

Then the matrix A, analogously to Equation 4.4 for the recycling method,

is de�ned:

(1+2∆(P ))Aij =



−kjS − αjS(jp)− γjS(jp)− 2∆(P ) i = j

kjS i = j + 1, jS 6= M

kMg0(jp, ip) jS = M, iS = G, ip ≤ jp

αjS i = j +NS

γjS(jp) i = j −NS

ũi/N iS = G

(4.19)

where 2∆(P ) = N (t+1)/N (t) − 1 from Equation 4.18.

To make the model the same as the recycling model in terms of reaction

rates, we can simply scale kM by 1/2; then, we are redistributing exactly

the same amount of probability. The only di�erences are that the recycling

method uses a null state that acts as the recycler, whereas this method has

all states contributing directly to daughter states, and that this method

tracks the total cell number.

In summary, the method requires:
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1. Every state to contribute probability mass to mitosing states;

2. The total number of cells to be tracked and updated based on the �ux

out of mitosing states;

3. The transition matrix to be corrected by N(t)/N(t+1), where N (t) is the

number of cells in the current time step and N (t+1) the number of cells

in the next time step.

4.3.4 Four-stage cell-cycle model

The A matrix for a cell-cycle model (analogous to Equation 4.5) can be

written

A =
1

N +
∑
uj



A0 −B0 A0,1 +D1 · · · A0,NP

A1,0 +B0 A1 −B1 −D1 · · · A1,NP

A2,0 A2,1 +B1 · · · A2,NP

...
...

. . .
...

ANP ,0 ANP ,1 · · · ANP −BNP −DNP


(4.20)

where Bn and Dn are de�ned as before in Equations 4.6 and 4.7.

For a system with up to NP proteins and four stages, there are 4(NP + 1)

possible states, which we index by ni, where n is the number of proteins

and i the stage. Thus un0 refers to the changes to the state with n proteins

in stage 0.

Then we have, for a four-stage model with stage 0 the daughter cell and
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stage 3 the mitosing cell,

An =



−k0N + ũn0 ũn0 ũn0 k3Ng0(n, n) + ũn0

k0N −k1N 0 0

0 k1N −k2N 0

0 0 k2N −k3N


− diag

(∑
uj

)

(4.21)

and

An∗,n =



ũn0 ũn0 ũn0 ũn0 + k3Ng0(n, n∗)

0 0 0 0

0 0 0 0

0 0 0 0


, (4.22)

where, again, g0(n, n∗) is some function that determines protein allocation

upon partition (and is equal to zero when n∗ > n).

On each row of the A matrix corresponding to a daughter cell, every entry

has in it some ũj, which is equal to the sum total of all �ux into that

state from all mitosing states. This is seen in Equations 4.21 and 4.22 and

performs the same function as the recycler, ∆(P ), in Equations 4.8 and 4.9.

4.4 Method evaluation

In this section, the methods for modelling protein-dependent population

dynamics are �rst compared to each other and then validated via compari-

son with stochastic simulation. This uses for demonstration the four-stage

cell-cycle model previously introduced. Then the methods' scope is dis-

cussed: �rst it is shown how they can be applied to a system in which
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cells can die at di�erent rates; and, �nally, their inability to incorporate

population-density e�ects is demonstrated.

4.4.1 Comparison of the methods

The A matrix for recycling (Equation 4.4) is very similar to that for re-

distribution (Equation 4.19); it di�ers only in that Equation 4.19 has a

factor of 1 + 2∆(P ) = N(t+1)/N(t). In recycling, a steady state is assumed,

so that N (t+1) = N (t) ∀t. Applied to the four-stage cell-cycle model, there

is a very small discrepancy in the transition to steady-state proportions,

shown in Figure 4.2. The methods are equivalent when, for the redistribu-

tion model, N (t+1) = N (t) (at small t, when there is no �ux through mitosis)

and converge when N is large relative to �ux through mitosis.
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Figure 4.2: Comparison of recycling method and redistribution method, using
the four-stage model of Figure 4.1. Their predicted proportions di�er only very
slightly in the transition to steady proportions.
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Having established the near equivalence of the methods, in what follows we

use recycling as representative of both methods, unless otherwise speci�ed.

4.4.2 Validation

To validate the methods, we compare their result to many stochastic sim-

ulations. We implement the stochastic simulation algorithm (SSA) for the

protein-dependent cell cycle by simulating one cell at a time. For the four-

stage system, a cell has six possible reactions: the four stage transitions (of

which only one at a time can be realisable), protein creation, and protein

degradation. When a cell exits from M to G1, its protein content is chosen

via the binomial distribution and the simulation continues. Then the sister

cell is also simulated, starting at the time of the mitosis event, and with

the complement protein content. This process is illustrated in Figure 4.3.
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Figure 4.3: Stochastic simulation of the four-stage model. Left: results of a
simulation that started with two cells, where each line represents a cell. Cells go
through four stages, G1, S, G2, and M. Upon division, a new cell is started from
that time point with the appropriate protein complement. E.g., at time t ≈ 5.5,
cell 1 exits mitosis, and at the same time, cell 3 begins in G1. At the end, there
were 36 cells. Right: protein-content trajectory of one cell, with cell stage shown
below.
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Comparison of the methods with the SSA is shown in Figures 4.4 and 4.5.

Parametrisation of this model is discussed in full in Chapter 5 but, for the

purposes of comparison, the following parametrisation is used, following

Overton et al. (2014):

k(n) =

{
352

352 + n2
, 1, 1, 2

}
,

g0(n, n∗) =

(
n

n∗

)
1

2n
,

α = {80, 20, 40, 80},

γi(n) = n for i 6= 0,

γ0(n) = n

(
1 +

8C4
G

1 + C4
G

)
,

and

CG(n) =
1.75

10n4/(354+n4) + 0.75
.

0 50 100 150
0

0.02

0.04

0.06

G1

P
ro

b
ab

il
it

y

0 50 100 150
0

0.02

0.04

0.06
S

0 50 100 150
0

0.01

0.02

0.03

G2

Protein count

P
ro

b
ab

il
it

y

0 50 100 150
0

0.005

0.01

0.015

0.02

M

Protein count

0 50 100 150
0

0.01

0.02

0.03

P
ro

b
ab

il
it

y

Protein count

FSP

Simulation

0.04

Figure 4.4: Protein distributions in each cell stage resulting of the four-stage
model with protein bifurcation in stage G1. Left: protein distribution in each
stage. Right: overall protein distribution. Black dashed: recycling FSP model.
Blue: SSA results, starting with 500 cells and ending at time t = 30 with ∼84,000
cells.
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Figure 4.5: The evolution of cell number over time for the four-stage model,
starting with 10 cells. Left: FSP with probability redistribution. Right: SSA.

Figures 4.4 and 4.5 demonstrate that the cell-population FSP methods ac-

curately capture the protein and cell-stage dynamics for this population-

growth model, where the SSA results are taken to represent a true account

of the model's behaviours.

4.4.3 Cell death

Both methods support models in which cells in di�erent states die at dif-

ferent rates. This is captured automatically by the ũj of the redistribution

method but requires a di�erent usage of ∆(P ) in the recycling method. If

each state has a uniquely de�ned rate of death depending on its stage i and

protein content n, zi(n), then the total �ux through cell death is

Z(P ) =

NP∑
n=0

NS∑
i=0

zi(n)Pi,n.

Each state then dies with a corrected rate

z̃i(P, n) = zi(n) + ∆(P )− Z(P ),
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which is subtracted from the diagonal of the A matrix (replacing ∆(P ) in

Equation 4.8), and refunded to the null state through the bottom row in

Equation 4.5. The A matrix otherwise remains the same.

This type of adaptation would be necessary for modelling the e�ects of bac-

tericidal antibiotics on bacterial population growth, for example, where the

e�ect of the toxin is to kill susceptible cells. Bacteriostatic antibiotics, on

the other hand, prevent cell progression, growth, or division, and therefore

could be modelled (at least in principle) without di�erential rates of cell

death.

4.4.4 Cell-number distribution

The FSP methods presented are limited to models that can be written

as Ṗ = A(P )P ; they could not implement a model of the form Ṗ =

A(PN , P )P , where dynamics depend on the population size, which has some

distribution described by PN .

As an illustration, we construct a version of the four-stage cell-cycle model

in which transcription diminishes as the total number of cells, N , increases:

αi(N) = 10
404

404 +N4
∀ i. (4.23)

The resulting protein dynamics are shown in Figure 4.6 (top, bottom left).

Both the ODE and FSP models fail to capture protein dynamics due to

averaging of the cell-number distribution. They predict a �nal cell number

of 227; the simulations have �nal cell counts that range from 34 to 559

(Figure 4.6, bottom right).
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Therefore, the methodology will need to be developed before it can be ap-

plied to a system in which cell number impacts dynamics. Such e�ects might

be observed in a homeostatic system (Foley et al., 2006) or a population in

which local cell density impacts growth rates, through higher-order organ-

isation (Volfson et al., 2008), quorum sensing (Whitehead et al., 2001), or

space or resource restriction (Shraiman, 2005).
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Figure 4.6: Results from a four-stage model in which protein dynamics depend
on the total number of cells, N . All transition rates are 1 (ki = 1 ∀i); protein
decay is linear in n (γi(n) = n ∀i); and the rate of protein transcription declines
as total cell number increases (see main text). Top: Total protein number. Left:
ODE and SSA (150 trajectories). Right: redistribution FSP. Bottom left: protein
number distribution at time t = 30. Black dashed: FSP. Blue: SSA, distribution
over 20,000 simulations. The FSP mean is 4.1126 with standard deviation 2.2453,
whereas the SSA mean is 17.1435 with standard deviation 31.019. Bottom right:
Cell number over time. Black dashed: ODE and FSP. Blue: SSA results, 20
trajectories.
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4.5 Summary

In summary, two methods have been presented that allow us to model

population growth that depends on protein dynamics. They use the FSP

(Munsky & Khammash, 2006), which captures noisy protein dynamics, al-

lowing for complicated behaviours such as bimodality, which would be lost

in a mean-value model. The methods are considerably quicker than per-

forming a large number of simulations, as they require solving only a system

of ODEs. Furthermore, a readout is directly given of the accuracy of the

output (Munsky & Khammash, 2006).

Characterising growth rates for cells in di�erent states, underwritten by a

molecular basis for transitions between the states, will allow for a fuller pic-

ture of the range of possible growth dynamics that are driven by noisy pro-

tein dynamics. This method would �nd application in questions concerned

with growth rates, �tness, and the e�ects of switching between states on

population growth. In the following two chapters, the method will be ap-

plied to models of the cell cycle (Chapter 5) and a model of yeast population

�tness in a toxic environment (Chapter 6).



5

Modelling p21-dependent cell

cycling

In this chapter, the �nite state projection method presented in Chapter 4

will be used to implement models of a protein-dependent cell cycle. Section

5.1 outlines the motivation for modelling the cell cycle with a dependence on

protein, and Section 5.2 describes the biology behind the modelling choices

made. Models are de�ned in Section 5.3 and implemented in Section 5.4.

A summary and directions for future work are given in Section 5.5.

5.1 Introduction

The eukaryotic cell cycle is a fundamental determiner of cell population

growth, and its dynamics are crucial to understanding various processes

that operate at a cell-population level (Altinok et al., 2011). The cell cycle

68
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is the regulated progression of a cell from its birth to division. The process

has characteristic stages: a cell begins in stage G1, progresses to stage S, in

which DNA is replicated, continues to stage G2, and then reaches stage M,

at whose end it divides, giving rise to two cells in stage G1, and the cycle

recommences (Figure 4.1) (Schafer, 1998). At division, proteins and cell

organelles are partitioned randomly between the two daughter cells (Huh

& Paulsson, 2011).

Transitions between stages are tightly controlled and unidirectional (Schafer,

1998). It is proposed that there exist checkpoints, beyond which a cell is

committed to enter into the next stage of the cycle (Barnum & O'Connell,

2014). These checkpoints are governed by protein content and their mecha-

nisms have not been fully elucidated to date (Barnum & O'Connell, 2014).

Abnormal cell cycle regulation and uncontrolled division are features of

cancerous cells (Vermeulen et al., 2003; Malumbres & Barbacid, 2009), and

population dynamics underpin the mechanism by which a cancerous cell

establishes a neoplasm within a tissue (Bravo & Axelrod, 2013; MacLean

et al., 2014). Thus models of the cell cycle are of particular relevance to

cancer development (Bellomo et al., 2008) and tumour growth (Alarcón &

Jensen, 2011).

Much work has been done to unify knowledge of cell-cycle progression

into models (Tyson et al., 1995; Chiorino & Lupi, 2002; Altinok et al.,

2011). Further, some have married models at the molecular level with

those at the cellular level to model protein-dependent cell population growth

(Bekkal Brikci et al., 2007, 2008, 2009; Borges et al., 2014).
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Here, I will use the �nite state projection method presented in Chapter 4

to model the full distribution over states for a protein-dependent cell cycle.

Within this framework, I will make comparisons between two proposed

models: one consisting of four states, and the other including a �fth state,

G0, a quiescent equivalent of G1, reachable from stage M. In G0, the cell

pauses its cycling, which recommences only via state G1. The four-stage

model was introduced in Section 4.2.2 (Figure 4.1); the corresponding �ve-

stage model is shown in Figure 5.1.

G1 S G2 M G0

Figure 5.1: Five-stage cell-cycle model. Cells begin in stage G1, progress through
stages S and G2 to M, and divide, giving rise to two cells that can be in either
stage G1 or stage G0. G0 is the quiescent stage. From G0, cells transition into
stage G1.

5.2 Biological background

Cell cycle progression is regulated by cyclin-dependent kinases (CDKs)

(Malumbres & Barbacid, 2009). CDK2 activity was found to bifurcate

at mitotic exit, marking cells for either quiescence or re-entry into the cell

cycle (corresponding to G0 and G1, respectively) (Spencer et al., 2013).

In a follow-up study, it was established that this mechanism, and therefore

cell fate, is determined by a CDK inhibitor, p21 (Overton et al., 2014). Low

p21 (and increasing CDK2 activity) after mitosis is associated with re-entry
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into the cell cycle, and high p21 (and low CDK2 activity) is associated with

entry into a quiescent state (Spencer et al., 2013; Overton et al., 2014).

For the models developed in Section 5.3, p21 is chosen as the protein

to model that determines cell cycle dynamics. The results presented by

Spencer et al. (2013) and Overton et al. (2014) will underpin the construc-

tion and parametrisation of the models.

5.2.1 Protein dynamics

The amount of p21 in a cell varies over the course of the cell cycle (Amador

et al., 2007). The dynamics result of the interplay between gene expression

rate, protein decay rate and inheritance, and due to reaction rates varying

across the di�erent stages (Abbas & Dutta, 2009).

The models developed in Section 5.3 will employ constant p21 expression

rates that are unique to each stage. The �ne details of its regulation will be

subsumed into overall expression levels characteristic of each stage (Abbas

& Dutta, 2009). These rates will ultimately be �t to the data presented by

Spencer et al. (2013).

In G1, p21 degradation is facilitated by SCF/Skp2 via CDK2 activity (Ab-

bas & Dutta, 2009; Overton et al., 2014). The complementary inactivation

of CDK2 by p21 results in bistability. Spencer et al. (2013) suggest that

bifurcation occurs in stage M, as protein content appears to `mark' cells

out for a certain fate. A mechanism is not given, and the SCF/Skp2 com-

plex is restricted to stage G1 (Amador et al., 2007). Instead, in stage M,
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p21 degradation is facilitated by APC/CCdc20; this complex, activated by

CDK1, ubiquitinates p21 (Amador et al., 2007; Abbas & Dutta, 2009), and

p21 suppresses CDK1 (Kidokoro et al., 2008; Satyanarayana et al., 2008).

Therefore, the models will use two mechanisms for protein decay. The

�rst is a linear protein decay rate, which occurs in all stages (Abbas &

Dutta, 2009). The second emulates the mutual inhibition between CDK2

(or CDK1) activity and p21 that permits a bistable solution: low CDK

activity and high p21, and high CDK activity and low p21 (Amador et al.,

2007). This decay rate will be employed in stages M, G1 and G0, and is

de�ned in Section 5.3.1.

5.2.2 Stage transitions

Duration in G1/0 correlates with cell-cycle duration (Spencer et al., 2013).

This motivates the decision to model only stage transitions concerning G1

or G0 as dependent on protein, and all other transitions as protein indepen-

dent, following precedents for a focus on the G1/S transition (Bekkal Brikci

et al., 2009).

For a four-stage model (Figure 4.1), consisting of stages G1, S, G2 and M,

the transition from G1 to S is protein dependent, where p21 slows transition,

allowing for long sojourns in G1 that resemble quiescence. For a �ve-stage

model (Figure 5.1), which includes the quiescent stage G0, the choice of

fate at mitosis is protein dependent (as suggested by Spencer et al. (2013)),

and the rate of transition from G0 to G1 is protein dependent. All other

transitions are protein independent.
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Other studies have considered transitions between G1 and G0 (Bekkal Brikci

et al., 2009), and others still have limited these transitions to occur only

once in a cell's lifetime (Borges et al., 2014). Here we implement a model of

G0 being attainable only from phase M following insights from Spencer et al.

(2013) and Overton et al. (2014), though to implement and compare another

stage-transition structure within this framework would be a straightforward

matter.

5.2.3 Mitosis

The model uses a binomial distribution to implement protein partition at

mitosis (Huh & Paulsson, 2011). Given that protein content determines

cell fate, and that 98% of sister cells share their fate (Spencer et al., 2013),

then the number of proteins inherited will need to be on the same side

of a dividing line in 98% of cases. The bimodal distribution over p21, as

described above, in stage M would allow for this, as cells with high (low)

p21 would likely divide to produce two cells with high (low) p21.

5.3 Models

Here I delineate the construction of the two models, one with four stages

(Figure 4.1) and one with �ve (Figure 5.1). Protein dynamics depend on the

cell stage and, in turn, determine cell-cycle transitions. Motivated by the

biology outlined in Section 5.2, the mathematical formulation is presented

below.
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5.3.1 Four-stage model

For this model, the four stages are {S0, S1, S2, S3} = {G1, S, G2, M}, and

the possible stage transitions are shown in Figure 4.1.

Protein dynamics

Protein production and degradation are parametrised by rates α(n) and

γ(n) respectively, where n is the protein count:

Si,n
αi(n)−−−→ Si,n+1 i = 0, 1, 2, 3, (5.1)

Si,n+1
γi(n+1)−−−−→ Si,n i = 0, 1, 2, 3. (5.2)

Whilst α and γ may be functions of both cell stage and protein number, I

choose α(n) = [α0, α1, α2, α3] as a vector of constants so that each stage has

its own rate of protein production. Noting the behaviour of p21 throughout

the cell cycle (Amador et al., 2007), one expects its transcription rate to be

highest in M and G1 and lowest in S and G2.

Decay rates γ(n) are set as linear functions of protein number in stages S

and G2: γi(n) = n for i ∈ {1, 2}. For stage S0 = G1, following Overton

et al. (2014), facilitated degradation is de�ned as:

γ0(n) = n

(
1 +

κ2C
η2
G

λη22 + Cη2
G

)
, (5.3)

where CG = CG(n) is the expected CDK2 activity in stage G1 given p21

(Overton et al., 2014):

CG(n) =
κ1F

κ3nη1/((βλ1)η1+nη1 ) + ξc − κ4

(5.4)
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Parameter meanings and values are given in Table 5.1.

For stage S3 = M, I use the same functional form as in Equation 5.3:

γ3(n) = n

(
1 +

κ2C
η2
M

λη22 + Cη2
M

)
, (5.5)

where CM = CM(n) is the expected CDK1 activity given p21, following

Overton et al. (2014):

CM(n) =
κ1F

κ3nη1/((βλM )η1+nη1 ) + ξc − κ4

, (5.6)

where λM = 2λ1, as in stage M there is approximately twice the protein

complement as in stage G1.

Stage transitions

Cell-cycle progression is dependent on protein number. Spencer et al. (2013)

report that the majority of variability in cell-cycle duration is attributable

to variability in M-to-S duration. Therefore, in these models, all transitions

are protein independent with the exception of the G1/S transition. As G1

exit depends on high CDK2 activity, and CDK2 activity is inhibited by

p21, the model requires low p21 for transition from G1 to S.

The rates are de�ned as follows:

k0(n) = KG1→S =
βh

βh + nh
Vmax, (5.7)

k1 = KS→G2 = Vmax, (5.8)

k2 = KG2→M = Vmax, (5.9)

k3 = KM→G1 = 2Vmax. (5.10)
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Mitosis

Upon division, proteins are partitioned between the two daughter cells ac-

cording to the binomial distribution. Then, the rate of exit from cells in

stage M with n proteins is k3, and the rate of entry into stage G1 with n∗

proteins is

g0(n, n∗) =

(
n

n∗

)
1

2n
. (5.11)

The A matrix

Using the recycling FSP method, the Amatrix has the form given in Section

4.2.2. Parameter values and de�nitions are given in Table 5.1.

5.3.2 Five-stage model

A �fth stage, G0, is introduced, which is the quiescent equivalent of stage

G1. Possible transitions are shown in Figure 5.1. The new stage, G0, can

be attained from mitosis of cells in stage M. Cells in stage G0 transition

into stage G1. The stages are denoted {S0, S1, S2, S3, S4} = {G1, S, G2, M,

G0}.

Protein dynamics

Protein dynamics depend on the stage of the cell, i, as in Equations 5.1 and

5.2. For transcription, again α = [α0, α1, α2, α3, α4] is a vector of constants,

and γi(n) = n for i ∈ {1, 2}. Rates for degradation in stages G1 and G0

(γ0(n) and γ4(n)) are as in Equation 5.3, and Equation 5.5 for stage M

(γ3(n)).
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Table 5.1: Parameters and functions governing cell stage transitions and the
relationships between CDK activity and p21 content for the four-stage and �ve-
stage models of the cell cycle.

Symbol Description Value
n p21 Equation 5.1
CG CDK2 activity in stage G1/0 Equation 5.4
CM CDK1 activity in stage M Equation 5.6
F Growth factor concentration 1.75
α Rate of p21 transcription See text
γ Rate of p21 decay See text
κ1 Rate of CDK activation 1 s−1

κ2 Rate of p21 inhibition by CDK 8 s−1

κ3 Rate of p21 inhibition of CDK 10 s−1

κ4 CDK positive feedback rate 0.25 s−1

η1 Hill coe�cient for p21 inhibition by CDK 4
η2 Hill coe�cient for p21 inhibition of CDK 4
λ1 E�ective a�nity constant for the inhibition 1 nM

of CDK2 by p21 in G stages
λM E�ective a�nity constant for the inhibition 2 nM

of CDK1 by p21 in M stage
λ2 E�ective a�nity constant for the inhibition 1 nM

of p21 by CDK
ξc Inactivation rate of CDK 1 s−1

β Position of bifurcation 35
g0 Rate of transition from stage M to stage G1 Equation 5.11

or 5.23
g4 Rate of transition from stage M to stage G0 Equation 5.24
h Hill coe�cient for p21-dependent stage 2

transition
ki Rate of transition from cell stage i See text
Vmax Maximum rate of stage transition 1 s−1

Stage transitions

The possible stage transitions, not including division, are:

Si
ki(n)−−−→ Si+1 i = 0, 1, 2 (5.12)

S4
k4(n)−−−→ S0. (5.13)
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They are parametrised, as before, as

k0 = KG1→S = Vmax, (5.14)

k1 = KS→G2 = Vmax, (5.15)

k2 = KG2→M = Vmax, (5.16)

k3 = KM→G1/0 = 2Vmax, (5.17)

k4(n) = KG0→G1 =
βh

βh + nh
Vmax, (5.18)

where the last rate function re�ects that high p21 holds the cell in the

quiescent stage.

Mitosis

Upon mitosis, cells exit stage M at rate k3 and enter stage G1 or the qui-

escent stage G0:

S3
k3−→ Si i = 0, 4. (5.19)

The destination state depends on some function of the amount of protein

of the parent, n, and the amount they receive at partitioning, n∗:

S3,n
k3gi(n,n

∗)−−−−−−→ Si,n∗ i = 0, 4. (5.20)

The functions gi must sum to 1 (so that all cells that leave M enter either

G0 or G1) and their sum must be symmetric (so that for each cell with n

proteins, the resultant cells with n∗ and n − n∗ proteins respectively have

equal probability): ∑
i=0,4

n∑
n∗=0

gi(n, n
∗) = 1, (5.21)

g0(n, n∗) + g4(n, n∗) = g0(n, n− n∗) + g4(n, n− n∗). (5.22)
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Following the principle that, at division, daughter cells enter a stage based

on protein number, the functions gi are de�ned according to the expectation

that low-p21 cells enter stage G1 and high-p21 cells enter stage G0 (Spencer

et al., 2013). A simple implementation would be that any daughters with

n∗ > β go into G0 and all others go into G1:

g0(n, n∗) =


(
n
n∗

)
1

2n
n∗ ≤ β

0 n∗ > β
(5.23)

g4(n, n∗) =

 0 n∗ ≤ β(
n
n∗

)
1

2n
n∗ > β.

(5.24)

The A matrix

The matrix A is as shown in Equation 4.5, with bn(P ) = [0 0 0 δn(P ) 0]T ,

c∆(P ) = [∆(P ) ∆(P ) ∆(P ) ∆(P ) ∆(P )], and Bn and Dn equivalent �ve-

by-�ve matrices. Its component parts, Equations 5.25 and 5.26, show cell

transitions for a �ve-stage system: forward transitions that occur at rate ki,

and mitosis events that occur at rate k3 and result in stage i with probability

gi.

An =



−k0 0 0 k3g0(n, n) k4

k0 −k1 0 0 0

0 k1 −k2 0 0

0 0 k2 −k3 0

0 0 0 k3g4(n, n) −k4


− diag(∆(P )) (5.25)
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and

An∗,n =



0 0 0 k3g0(n, n∗) 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 k3g4(n, n∗) 0


. (5.26)

5.4 Results

The cell cycle is modelled using the recycling method of Chapter 4. Expres-

sion rates (α) are �t for both the four-stage and the �ve-stage models to

the data reported by Spencer et al. (2013), demonstrating that these simple

models are su�cient to capture the dynamic behaviour of this population

of cells.

5.4.1 Four-stage model

The model given in Section 5.3.1 and parameters in Table 5.1 were used

to �t values for α. The parameter space over α was searched in order to

minimise the L1 distance between its predicted metrics and the data. The

values that minimised this distance were α = [129.7, 22.8, 1.76, 204.2]. The

results of the �tting are given in Table 5.2. The proportions of cells in each

stage are given in Table 5.3. While only point estimates, the values for α

align with the expectation in Section 5.3.1 that expression should be higher

in stages G1 and M.

Bifurcation of p21 in G1 and M leads to some cells with high p21 content
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in stage G1, which corresponds to being arrested (Figure 5.2, left). Due to

the bifurcation in stage M, there is a correlation between daughter cells in

terms of p21 content as they exit mitosis (Figure 5.3, left).
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Figure 5.2: Protein distributions in each stage for the four-stage model (left)
and the �ve-stage model (right) with bifurcations in stages G1, G0 and M.

5.4.2 Five-stage model

For the �ve-stage model, distance minimisation yields optimal values for

expression as α = [215.8, 1.020, 0.797, 179.9, 103.3]. The results of the

�tting are given in Table 5.2.

The resulting protein distributions as shown in Figure 5.2 (right) and stage

distributions in Table 5.3. The correlation between daughter cells in terms

of p21 content as they exit mitosis is shown in Figure 5.3 (right).

5.4.3 Discussion

The results show that the four-stage model results in the G1 stage being

highly occupied; more so than stages G1 and G0 combined for the �ve-stage
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Table 5.2: Cell-division distributions for models with bifurcations in stages G0,
G1 and M. The columns show the percentage of daughter pairs in each class at
time t = 30, where the classes are `low p21' and `high p21', and two daughter
cells can be in the same class or in di�erent classes. Data are from Spencer et al.
(2013).

Di�erent
Class Low p21, % High p21, % Same class, % classes, %
Four stages 75.0822 24.9178 97.8572 2.1428
Five stages 74.9972 25.0028 98.0033 1.9967
Data 75.00 25.00 98.00 2.00

Table 5.3: Cell-stage occupations for models with bifurcations in stages G0, G1
and M. The columns show the proportion of cells in each state at time t = 30.

Cell stage G1 S G2 M G0
Four stages 0.7319 0.0965 0.0892 0.0824 �
Five stages 0.2220 0.1936 0.1687 0.1471 0.2686

model (Table 5.3). The distributions show that the high rate of expression

of p21 in M stage (Figure 5.2) gives rise to a broad distribution over high-

p21 levels in daughter cells for both models (Figure 5.3).

The results presented are point estimates for values of α that minimise the

distance between the data and the predictions. No information is gained

on the distribution of values that would support a similarly good �t to

the data; nor is there any con�rmation that the minimum obtained is a

global, rather than local, minimum. In fact, many values for α give rise to

similarly good �ts to the data. The optimal values given above are not to

be understood as `true' sets of values, but rather demonstrate that a set of

values exist to provide a good �t. A full exploration of the posterior, using
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Figure 5.3: p21 distributions for daughter-cell pairs resulting of the four-stage
model (left) and the �ve-stage model (right) with bifurcations in stages G1, G0
and M.

a likelihood-based method, would elucidate the spread of support for the

model, and allow more concrete statements to be made about parameter

sets.

Raw data concerning cell-stage durations and protein counts at cell divi-

sion, rather than summary statistics, would allow for the de�nition of a

likelihood function. From this it would be possible to infer a distribution

over parameters that �t the data well, and therefore indicate a distribution

over likely behaviours that an experimentalist might observe.

With more de�nition in data, it would also be possible to infer other param-

eters in the model. For example, it might be the case that the four-stage

model favours the G1 state due to the transition rates chosen, and that

other choices would �nd similarly good �ts to the data alongside di�erent

distributions over stage occupations.
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5.5 Summary & future work

The method of Chapter 4 has been applied to the cell cycle, where p21

dynamics are bimodal and determine re-entry into the cell cycle. Bifurcation

of p21 due to CDK2 activity has been implemented in stages G1 and G0,

and that between p21 and CDK1 in stage M.

Following a number of practical and qualitative assumptions, the model was

able to �t the data. One such simpli�cation is the assumption that CDK

activity reacts spontaneously to p21 content, as implemented in Equations

5.4 and 5.6. The distribution that results, according to the p21 distributions

in Figure 5.3, is bimodal, whereas data suggest that the spectrum of activity

is continuous (Spencer et al., 2013). An improvement to the model might be

to include CDK dynamics explicitly, or to model CDK activity in Equations

5.4 and 5.6 as random variables.

Additional information on the expression and degradation patterns of p21

throughout the cell cycle would assist the functional parametrisation of

the model (Abbas & Dutta, 2009). For simplicity, zero-th order reactions

were employed for protein expression, and �rst-order reactions for base-level

degradation. These functions yielded satisfactory results without super�u-

ous complexity.

The observation that bifurcation occurs in stage M (Spencer et al., 2013)

prompts the question of how to implement the mechanism. Here, it has

been assumed that CDK1 performs this function (Amador et al., 2007;

Satyanarayana et al., 2008; Abbas & Dutta, 2009). The mechanism em-
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ployed was the same as that for stage G1, but should be expounded with

its own unique form and dynamics that re�ect the biology. A model includ-

ing this mechanism in stage G2 should also be considered (Abbas & Dutta,

2009).

In terms of model development, it may become pertinent to employ dif-

ferential cell-death rates. For example, in their cellular automaton model,

Altinok et al. (2011) de�ne stages G1 and G2 as those that can commit to

apoptosis.

In this chapter, the data to which the parameters were �t were cumulative

densities (Spencer et al., 2013). With raw data, it would be possible to

de�ne a likelihood function, allowing parameters to be inferred and models

to be compared via their evidences using Sysbions (Chapter 3). It would

then be possible to ask which models of the cell cycle are best supported

by the data.



6

Modelling antibiotic resistance in

yeast

In this chapter, the �nite state projection method presented in Chapter 4

will be used to implement a model of antibiotic resistance in a population

of yeast cells. Section 6.1 outlines the motivation for modelling antibiotic

resistance in a population, and Section 6.2 describes the biological results

behind the modelling choices made. The model is de�ned in Section 6.3

and implemented in Section 6.4. A summary and directions for future work

are given in Section 6.5.

6.1 Introduction

Antimicrobial resistance is the evolution in microbial species of an ability to

withstand toxins that previously inhibited their growth, division or survival

86
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(The review on antimicrobial resistance, 2016). Resistance emerges in an

individual through mutation or horizontal gene transfer and spreads in a

population through cell divisions (Allen & Waclaw, 2016).

How a gene within a genetically heterogeneous population comes to pre-

dominate in the population is a question for population genetics (MacLean

et al., 2010). An important component of these dynamics is how variability

within an isogenic population in�uences the emergence of resistance and

the durability of a resistant population (de Jong et al., 2011). The ability

of noisy protein dynamics to give rise to di�erent states of resistance can

be exploited by populations to survive and adapt to unfavourable environ-

ments, by resorting to persister populations (Allen & Waclaw, 2016) that

support genetic mutability (Tadrowski et al., 2016).

The existence of multiple phenotypic states within isogenic populations

is attributed to evolutionary adaptations to unpredictable environments

(Thattai & van Oudenaarden, 2004; de Jong et al., 2011; Shahrezaei & Mar-

guerat, 2015). The heritable trait is multimodality in protein dynamics, and

the �tness associated with the trait belongs to (e.g. is averaged over) the

whole population (Nevozhay et al., 2012). Theoretical and experimental

studies have suggested that the rates of switching between states, driven by

gene expression, optimise the population's �tness when they match the rate

of environmental switching (Thattai & van Oudenaarden, 2004; Kussell &

Leibler, 2005; Acar et al., 2008).

A contrasting view is presented by Nevozhay et al. (2012), who show that

the optimal survival strategy of a population of yeast cells depends on the
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interplay between protein dynamics and the �tness landscape, regardless of

�uctuations in the environment. In their study, the authors engineer yeast

cells capable of transitioning between distinct states of antibiotic resistance,

where resistance allows cell division to proceed in the presence of antibiotic.

However, the authors show that there is also a cost to antibiotic resistance:

in the absence of antibiotic, occupying the resistant state leads to a decrease

in �tness relative to the non-resistant state.

In their experimental set-up, resistance is conferred by expression of a resis-

tance gene, which can be either `high' or `low'. High expression corresponds

to resistance and low expression to vulnerability to antibiotic. Their syn-

thetic gene circuit was constructed to permit the experimenters to induce

occupation of the higher expression level and explore what level of induction

maximises population �tness. Their �nding was that the cell population as

a whole had greatest �tness in antibiotic not when the gene was constitu-

tively expressed, but at the lowest level of induction that allows the high

expression state to be occupied, which they term the �sweet spot� (Nevozhay

et al., 2012).

The authors presented a molecular model intended to capture the �tness

costs associated with the antibiotic and expression of the resistance gene,

and found that it was unable to reproduce the �sweet spot� of induction.

Here, I show that a molecular description similar to that presented in

Nevozhay et al. (2012), implemented using the population-growth mod-

elling method presented in Chapter 4, may permit the observed behaviour

giving rise to a �sweet spot� at a low level of induction and a penalty at
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higher levels.

6.2 Biological background

In this section, material from Nevozhay et al. (2012) relevant to the math-

ematical model constructed in Section 6.3 is presented. It concerns an

isogenic population of yeast cells containing a synthetic gene circuit.

The �tness of the population was measured in di�erent conditions, where

the �tness is the overall rate of population division, constructed as the sum

over the �tnesses of all individuals in the population. Each individual's

�tness is a function of their protein level and their environment (Nevozhay

et al., 2012). The model therefore aims to capture how protein dynamics

and their dependent cell division rates cause the population to develop.

6.2.1 Protein dynamics

The synthetic gene circuit consists of an rtTA gene and a ZeoR gene with

identical promoters. These genes have the same base level of expression

and are both activated by an external inducer, ATc, interacting with the

rtTA protein. Their rate of expression is thus the same, with the inducer

leading to high expression of both genes when the rtTA level crosses some

threshold. The rate of protein decay and dilution of rtTA far exceeds that

of ZeoR (Nevozhay et al., 2012).

Together, these dynamics result in bimodal distributions of rtTA and ZeoR.

The two stable steady states have either low expression of both genes or
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high expression of both genes. The amount of inducer provided by the

experimenter determines the propensity for an individual cell to be in a

given state and, therefore, viewed over the population, the proportions of

cells in each state.

The ZeoR protein confers resistance to the antibiotic, Zeocin, and is labelled

with green �uorescent protein. Measurements of its intensity form the basis

for the analysis in Nevozhay et al. (2012). A schematic of the interactions

between ATc, rtTA, ZeoR and Zeocin are shown in Figure 6.1.

rtTA

+ATc

+ATc

ZeoR Zeocin

Figure 6.1: Model of interactions between inducer ATc, proteins rtTA and ZeoR,
and antibiotic Zeocin. The genes for proteins rtTA and ZeoR are both activated
by the action of rtTA with ATc. ZeoR confers resistance to the antibiotic Zeocin.

6.2.2 Cell population growth

Nevozhay et al. (2012) use the synthetic gene circuit to study the �tness

of yeast populations in di�erent conditions. In the absence of inducer,

�tness decreases in the presence of increasing antibiotic. Similarly, in the

absence of antibiotic, �tness decreases as the amount of inducer increases,

which is attributed to a number of factors, including the sequestration of

transcriptional machinery by rtTA (Baron et al., 1997).

Note that the e�ects of both the antibiotic, which is bacteriostatic, and the
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inducer are to reduce the rate of cell division. Neither causes cells to die,

but to become less likely to divide, almost entirely in the case of excess

antibiotic (Nevozhay et al., 2012).

6.2.3 Cellular memory

The observations of �tness in antibiotic alone and inducer alone form the

basis of the expectation that in the presence of antibiotic, increased in-

ducer will increase �tness. However, the authors �nd that the optimal

level of induction to maximise �tness in the presence of antibiotic is not

high expression in every cell. Instead, the optimal level of induction is the

minimum at which bimodality occurs (Nevozhay et al., 2012).

The fundamental insight of Nevozhay et al. (2012) is that the observed

�tness behaviour is made possible by the mechanism of cellular memory.

Cellular memory is here de�ned as the duration for which a particular phe-

notypic state is retained in a constant environment. Concerning gene ex-

pression states, it is the inverse of the spontaneous switching rate (Acar

et al., 2008). This mechanism is not present in their molecular model and

explains its failure to capture the observed behaviour. The model considers

one variable (ZeoR), which is responsible for both antibiotic resistance and

the �tness cost to the cell.

In this work, I will model these two factors separately. The cost to �tness is

due to the activator, rtTA. Resistance is given by ZeoR. It is the resistance

protein that holds memory. By having a much longer half life than rtTA,

ZeoR is able to continue to confer resistance once in a high expression state
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even when rtTA has dropped to a low expression level.

This is the sweet spot at low inducer concentrations: rtTA is low, and thus

the �tness cost is low, because it has a propensity to be in the low state

due to low inducer concentration. ZeoR can simultaneously be high due

to rare �uctuations in rtTA that lift its expression level and its slow decay

rate that causes it to remain there. In this transient position, the division

rate is high. This mechanism is displayed graphically in Figure 6.2.
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Figure 6.2: The relationships between the proteins rtTA and ZeoR and �tness.
When rtTA and ZeoR are low, the cost to �tness due to rtTA transcription is
low, but so is antibiotic resistance. With expression of the rtTA and ZeoR genes,
the high-rtTA, high-ZeoR state is reached. This has high resistance to antibiotic,
but a high cost due to rtTA. Through fast decay of rtTA and slow decay of ZeoR,
the cell transiently visits the site of maximal �tness.

6.2.4 Data

The data to which the model is �t in Section 6.4 are taken from Nevozhay

et al. (2012). The measurements are of population �tness and of the pro-

portion of the cells in the low-expressing state in terms of �uorescence.
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The populations were maintained at an exponential rate of growth and

measurements were taken once a steady state was reached. The data are

summarised in Table 6.1.

Table 6.1: Yeast �tness data from Nevozhay et al. (2012). The inducer, ATc,
and the antibiotic Zeocin, Z, are the experimental inputs. Fitness is the average
number of cell divisions per hour for the whole population. NL is the proportion
of cells in the low-expression state.

ATc, ng/ml Z, mg/ml Fitness, h−1 NL

Z = 0

1.0 0.0 0.2181
2.5 0.0 0.2174
5.0 0.0 0.2115 0.8707
10.0 0.0 0.1846 0.6041
15.0 0.0 0.3638
20.0 0.0 0.1527 0.2268
25.0 0.0 0.1457
30.0 0.0 0.1069
50.0 0.0 0.0294

Z = 2

1.0 2.0 0.1885
2.5 2.0 0.1739
5.0 2.0 0.1502
10.0 2.0 0.1346
20.0 2.0 0.1247

ATc=0

0.0 0.25 0.2371
0.0 0.5 0.2215
0.0 1.0 0.1806
0.0 2.0 0.0571

6.3 Mathematical model

Given the motivations outlined above, this section enumerates how the

model is formulated mathematically. The two state variables are rtTA

number, x, and ZeoR number, y. The external conditions are the amounts
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of inducer and antibiotic supplied.

6.3.1 Protein dynamics

In the synthetic gene circuit, the genes have identical promoters. They

have base-level expression l. Upon binding the inducer ATc, the rtTA pro-

tein activates its own gene's expression and that of the Zeocin resistance

gene, following a function F (x). Thus both genes have the same pattern of

expression (Nevozhay et al., 2012).

Both proteins have �rst-order decay rates, with that of rtTA (dP ) exceeding

that of ZeoR (dR) (Nevozhay et al., 2012). Function de�nitions, parameter

values and their meanings are given in Table 6.2.

6.3.2 Cell population growth

Cell population growth is modelled exponentially (i.e. without stages or

delays). Dynamics of cell growth are also excluded, and thus so is parti-

tioning: each state divides to give rise to two of itself (rather than two cells

with half the protein content).

There is a base-level �tness for cell replication, g0, and this value is corrected

according to protein content and environmental conditions (Nevozhay et al.,

2012). The rate of division for a cell is de�ned as

m(x, y, C, Z) = g0γ1(y, Z)γ2(x,C), (6.1)

where x is the count of rtTA, y is the count of ZeoR, C is a multiple of

inducer ATc concentration, and Z is extracellular Zeocin concentration.
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Table 6.2: Parameters and functions governing cell growth and transition be-
tween phenotypes. Superscripts in the descriptions indicate the source of the
value of the parameter: whether they were �t from data or taken from Nevozhay
et al. (2012).

Symbol Description Value
x rtTA
y ZeoR
ATc Inducer 0�20 ng/ml
C Measure of ATc1 43.5845[ATc]
Z Extracellular Zeocin 0�2 mg/ml
dP Rate of rtTA decay2 2.3404 h−1

dR Rate of ZeoR decay2 0.25 h−1

k(x) Rate of rtTA and ZeoR aF (x) + l
transcription

a Rate of activation2 180 h−1

l Base rate of transcription2 2.5 h−1

F (x) Activation of transcription v(x)n

v(x)n+ϕn

with ATc
n Hill coe�cient2 2
ϕ rtTA activation point1 22.6281

v(x) Amount of ATc-bound rtTA 1
2

(
C
dP

+ h
b

+ x
)

−1
2

√(
C
dP

+ h
b

+ x
)2

− 4Cx
dP

h Inducer escape2 1 h−1

b Inducer�repressor 3 h−1

association rate2

g0 Maximum �tness2 0.2473 h−1

m(x, y, C, Z) Corrected �tness g0γ1(y, Z)γ2(x,C)
γ1(y, Z) Fitness cost due to Zeocin χ

Zi(y,Z)+χ

γ2(x,C) Fitness cost due to rtTA α
α+ xC

C+β

Zi(y, Z) Intracellular Zeocin κsZ−dRhz−dRsy
2hzs

+√
(κsZ−dRhz−dRsy)2+4hzκsdRZ

2hzs

χ DNA repair rate over 3.383e-5 mg/ml
damage accumulation3

α Rate of �tness loss1 62.0266
β Binding e�ciency1 154.41 ng/ml
κ Zeocin di�usion into cell3 1.323 mg/ml h−1

hz Zeocin di�usion out of cell2 0.5 mg/ml h−1

s Binding a�nity3 1.0301/χ h−1

1 Fit from ATc>0 data; 2Nevozhay et al. (2012);
3 Fit from ATc=0 data
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The �tness cost associated with the antibiotic is given by γ1(y, Z) and that

with induction by γ2(x,C). In Nevozhay et al. (2012), both γ1 and γ2

are functions of �uorescence, and therefore ZeoR. Here, these functions are

instead de�ned as

γ1(y, Z) =
χ

Zi(y, Z) + χ
(6.2)

and

γ2(x,C) =
α

α + xC
C+β

(6.3)

where

Zi(y, Z) =
sZ − dRhz − dRsy +

√
(sZ − dRhz − dRsy)2 + 4hzsdRZ

2hzs
(6.4)

is intracellular Zeocin that is not bound by ZeoR. Parameter values and

meanings are given in Table 6.2.

6.3.3 Implementation with the FSP

The recycling method of Chapter 4 is used to model cell population growth

dynamics that depend on protein. All cells divide to reproduce themselves,

and mitosis is implemented by refunding each state the total mass that goes

through division. This amount is

δx,y(P ) = m(x, y, C, Z)Px,y, (6.5)

where Px,y the probability to be in state (x, y). Then the total amount to

refund is

∆(P ) =

NP∑
x=0

NR∑
y=0

δx,y(P ) (6.6)

=

NP∑
x=0

NR∑
y=0

m(x, y, C, Z)Px,y, (6.7)
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where there are up to NP rtTA proteins and NR ZeoR proteins.

The total number of states is NT = (NP + 1)(NR + 1). For a cell in state

j, the number of ZeoR proteins is jR = b j−1
NR+1

c and the number of rtTA

proteins jP = (j − 1) mod (NR + 1). Then the matrix A is de�ned:

Aij =



−2k(jP )− dP jP − dRjR −∆(P ) i = j, i 6= NT + 1

k(jP ) i = j + 1, jP 6= NP

k(jP ) i = j +NP + 1, jR 6= NR

dP jP i = j − 1, jP 6= 0

dRjR i = j −NP − 1, jR 6= 0

−∆(P ) i = j = NT + 1

δiP ,iR(P ) j = NT + 1, i 6= j

∆(P ) i = NT + 1, i 6= j

(6.8)

or, equivalently,

A =



A0 −B0 D1 · · · 0 b0(P )

B0 A1 −B1 −D1 · · · 0 b1(P )

0 B1 · · · 0 b2(P )

...
...

. . .
...

...

0 0 · · · ANR −BNR −DNR bNR(P )

c∆(P ) c∆(P ) · · · c∆(P ) −∆(P )


,

(6.9)

where c∆(P ) = 1∆(P ) and 1 is a vector of ones of length NP + 1, by(P ) =

[δ0,y(P ) δ1,y(P ) · · · δNP ,y(P )]T , and each Ay is an NP + 1 by NP + 1 matrix
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de�ned as

Ay =



−2k(0)− dRy dP · · · 0

k(0) −2k(1)− dP − dRy · · · 0

0 k(1) · · · 0

...
...

. . .
...

0 0 · · · −2k(NP )−NPdP − dRy


− diag(∆(P )). (6.10)

Finally,

By =



k(0) 0 0 · · · 0

0 k(1) 0 · · · 0

0 0 k(2) · · · 0

...
...

...
. . .

...

0 0 0 · · · k(NP )


, (6.11)

and

Dy =



dRy 0 0 · · · 0

0 dRy 0 · · · 0

0 0 dRy · · · 0

...
...

...
. . .

...

0 0 0 · · · dRy


(6.12)

give the rates of ZeoR creation and degradation, respectively. Functions

and rates are given in Table 6.2.

6.3.4 Parameters

In this work, parameters used for the model follow the choices of Nevozhay

et al. (2012). Some adjustments are necessary and, due to the di�erences
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between the models, some are reinterpreted.

Nevozhay et al. (2012) de�ne C = 7[ATc], stating that, for this system,

bifurcation occurs at ATc = 1 ng/ml. A value for ϕ is not given. However,

it seems that bifurcation occurs for no value of ϕ using the parameters

de�ned (Figure 6.3).

Figure 6.3: Combinations of parameters C and ϕ that permit one (green) or two
(blue) stable steady states.

Since α and β were �t assuming that �uorescence is indicative of presence of

rtTA (Nevozhay et al., 2012), whereas in this model �uorescence is indica-

tive of ZeoR alone, I aim to �t these parameters anew. Also, ϕ is inferred,

and the assumption is made that C takes the value at which bifurcation

occurs in Figure 6.3.

These four parameters have no bearing on results obtained for experiments

with ATc = 0. Therefore, these four data points (Table 6.1, bottom four
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rows) are used �rst to �t parameters χ, κ and s, which are �xed for �tting

the ATc > 0 data.

6.4 Results

Using the model outlined above, with functions and parameters based on

those of Nevozhay et al. (2012), a reasonable �t to some data can be found

(Figure 6.4). For these results, a distance-minimisation procedure was used

to �t α, β, χ, κ, s, C and ϕ, with results given in Table 6.2. In the

procedure, the normalised distance between the observed population �tness

and the model's expected population �tness was minimised.
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Figure 6.4: Predictions of a two-protein FSP model with population growth,
�t using a distance-minimisation algorithm. Data from Nevozhay et al. (2012)
shown in black.
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6.4.1 Fit to data with maximal antibiotic

A good �t is found to the maximal-antibiotic (Z = 2) data, shown in

Figure 6.4 (red). The mechanism behind the result is illustrated in Figure

6.5. When ATc is low (Figure 6.5, left), the slow decay of ZeoR relative to

rtTA results in transient occupation of a low-rtTA, high-ZeoR state. It is

here that cells have greatest �tness, dividing and feeding the steady states.

Increasing ATc (Figure 6.5, right) causes rtTA to be more frequently in the

high state, reducing the occupation of the high-�tness low-rtTA, high-ZeoR

state.
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Figure 6.5: Protein distributions over �tness landscapes with Z=2 and ATc=1
ng/ml (left) and ATc=10 ng/ml (right). Background: �tness given rtTA and ZeoR
content, where black is no division and white is maximal division. Overlaying
contours: distribution that results of cell division model after 100 hours. Mean
�tness is 0.2204 in ATc=1 ng/ml and 0.1348 in ATc=10 ng/ml, showing that
additional ATc ceases to be bene�cial once the bifurcation point has been passed.

6.4.2 Fit to data without antibiotic

The model fails to �t the no-antibiotic (Z = 0) data (Figure 6.4, purple).

Having �xed the parametrisation for protein dynamics, no parametrisation

for �tness (α, β, ϕ, and C) can �t the qualitative behaviour seen in Ta-
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ble 6.1. This is likely a consequence of rtTA dynamics at high inducer

concentrations (ATc ≥ 5 ng/ml) being near indistinguishable. Figure 6.6

shows rtTA decay rate and expression rates for di�erent inducer concentra-

tions. Such a qualitative behaviour is seen for any choice of ϕ: expression

dynamics and steady states converge for high ATc.
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Figure 6.6: rtTA dynamics for ϕ = 28. The rate of decay is constant. The rate
of gene expression is shown for �ve concentrations of ATc (ng/ml). Steady states
occur at the intersections of the expression rate with the decay rate. For ATc>1
ng/ml, there are three steady states, the �rst stable, the second unstable, the
third stable. Note that the steady states and reaction rates are very similar for
ATc≥ 5 ng/ml.

Furthermore, the model fails to capture the changes in the proportions of

low-expressing cells as ATc changes. Table 6.1 gives the proportion of cells

that were found to be in the low state for Z = 0, showing that the proportion

decreases as ATc increases. However, for this model, all parametrisations
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found through systematic searches result in a levelling out or increase in

the occupation of the low state as the amount of inducer is increased.

My hypothesis is that the function given for F (x) in Table 6.2, and shown

in Figure 6.6, will not permit a �t to the data presented. Two analyses are

presented below that give support for this.

Analysis 1: steady-state dynamics

The �rst analysis is a comparison between the data presented, and a model

that has no division and yields the steady-state protein distribution. For

the no-division model, parameters are set as ϕ = 31 and C as the point

at which rtTA bifurcates. We are interested here in the proportion of cells

that are in the low-expressing state, NL. The model yields NL = 0.1929

for ATc=10 ng/ml, and NL = 0.1853 for ATc=20 ng/ml.1 We suppose that

these are the protein distributions that we would see in a population of

non-dividing cells, and in this light compare them with the experimental

data from Table 6.1. These data are summarised in Table 6.3.

Table 6.3 suggests that, on introducing di�erential cell division to the model,

there is a greater shift from high expression to low expression for ATc=10

ng/ml than for ATc=20 ng/ml. The shift for ATc=10 ng/ml is 0.4112,

and that for ATc=20 ng/ml 0.0415 (Table 6.3). The shift is due to the

di�erence between the �tnesses of the high-expressing and low-expressing

states. This di�erence must be greater for ATc=10 ng/ml than for ATc=20

1rtTA dynamics are very similar for ATc≥ 5 ng/ml; the steady states are very close
(Figure 6.6), as are the proportions of cells in the low-expressing state for a range of
choices of C and ϕ.
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Table 6.3: The proportion of cells in the low-expressing state, NL, for Z = 0 and
ATc=10 and 20 mg/ml. The �rst row shows the data from Nevozhay et al. (2012).
The second row shows the steady-state proportion that results from the model
applied to a non-dividing population. The third row shows the supposed shift
from high to low expression that would be expected to result from introduction
of division to the non-dividing model, according to the data.

ATc, ng/ml 10.0 20.0
Data 0.6041 0.2268

Non-dividing model 0.1929 0.1853
Shift 0.4112 0.0415

ng/ml, according to the shifts in Table 6.3. This can only be the case

if �tness increases as ATc increases, which is impossible (Nevozhay et al.,

2012). My conclusion is that the no-division steady states, and therefore

the protein dynamics, are incorrect.

Analysis 2: average �tnesses for high- and low-expressing states

A concurrent conclusion is found with an approximation study using the

Z = 0 data. Making the approximation that each subset (high and low) is

represented by one protein-content value, it is possible to learn something

about the parameters α and β. The �tness approximation is written as

gATc = g0NL
α

α + PL
C

C+β

+ g0NH
α

α + PH
C

C+β

(6.13)

where gATc and NL are taken from Table 6.1, NH = 1−NL, and PL and PH

are taken as the stable steady states in Figure 6.6. Using X = α(C + β),

we can rewrite this as

X2

(
1− g0

gATc

)
+X

(
C(PL + PH)− g0C

gATc
(NLPH +NHPL)

)
+PLPHC

2 = 0.

(6.14)
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This equation was solved using a range of C�ϕ combinations taken from

the upper boundary in Figure 6.3. All the resulting roots imply negative

values of β (such that C + β < 0). The implication is that the only way

to �t the Z = 0 data is to have γ2(P,C) an increasing function of C. This

suggests that there is something wrong with the model, and together these

observations point to the problem residing with the expression rate of rtTA.

Conclusion

These analyses support the notion that for the function F (x) illustrated in

Figure 6.6, it is not possible to generate populations with �tnesses given

in Table 6.1. This is because protein dynamics for high ATc (5, 10 and

20 ng/ml) are near indistinguishable. The only factor that could cause

populations to di�er in di�erent conditions is the �tness di�erential between

the high subset and the low subset. This di�erential should be greatest for

highest ATc. The greater the di�erence, the more cells `move' from high to

low expression, and this contradicts the �nal column of Table 6.1.

I propose that distinguishable protein dynamics could solve this problem.

Considering Figure 6.6, dynamics to improve the �t to the data might

be either a steeper expression gradient for higher ATc, or a higher steady

state for higher ATc, or both � with the aim to have steady-state protein

distributions that already resemble the target proportions in Table 6.1.

6.5 Summary & future work

Using the FSP method developed in Chapter 4, I have shown that it is pos-

sible to use a molecular model to explain the qualitative behaviour observed
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by Nevozhay et al. (2012). The key is that the �tness cost is associated with

the driver (rtTA) and the gain is associated with the resistance protein

(ZeoR). When ZeoR decays more slowly than rtTA, the optimal solution is

to express minimal rtTA to achieve occupation in the high-expression state,

so that the long memory of ZeoR confers resistance for a period su�cient

to allow the population to grow.

This conclusion relies on the rate of ZeoR decay exceeding the rate of rtTA

decay. What is not clear is whether the phenomenon persists in the absence

of the slow-decaying appended green �uorescent protein (Corish & Tyler-

Smith, 1999), and therefore if one would expect to �nd it in vivo.

In terms of the model capturing the dynamics of the system, there is a

clear discrepancy in one dataset in particular (Figure 6.4, purple), and

this problem remains to be solved. A possible solution has been proposed:

to alter the expression function F (x), so that protein dynamics at high

induction are more distinct. This hypothesis is qualitatively supported by

�uorescence measurements reported in Nevozhay et al. (2012), in which

there is a graded response to increasing ATc.

The existence of a �sweet spot� could not be modelled by a non-dividing

population: if protein dynamics alone determine �tness, then sole occupa-

tion of the high-expressing state will maximise �tness. A modelling method

such at that presented in Chapter 4 is necessary to capture the population-

level dynamics.



7

Extrinsic noise decomposition

In Section 2.3, the concept of noise in a biological system was introduced,

along with number of ways in which it is modelled. In the previous two chap-

ters we saw how noise in a system can give rise to interesting population-

level dynamics. The focus of this chapter is what drives noise ab initio. I

will present an analysis that demonstrates how a modeller can predict the

proportion of the variability in an output species that arises from intrinsic

and extrinsic sources from each reaction leading to its creation.

The modelling methods used in this chapter will be described in Section

7.1, and developed in Section 7.2 in order to show the decomposition of

extrinsic noise. In Section 7.3, the decomposition will be applied to some

simple systems, and some heuristics will be presented in Section 7.4.

107
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7.1 Introduction

The heterogeneity seen across an isogenic population of cells arises as a

result of the stochastic nature of biological processes within a cell, and

di�erences in environmental circumstances across cells. The former type of

e�ect is referred to as intrinsic noise, and the latter extrinsic noise (Elowitz

et al., 2002).

In Chapters 5 and 6, we saw how the combination of intrinsic noise in

gene expression and extrinsic noise in protein number inheritance led to

interesting behaviour at the population level. In this chapter, I will open

a study into how intrinsic and extrinsic noise are propagated through a

biological system.

An overview was given in Section 2.3 of methods commonly used for mod-

elling these types of noise either separately or in combination. Here, I will

adopt the approach of de�ning a model that consists of stochastic reactions

and variable (but �xed) parameters (Toni & Tidor, 2013). This approach

naturally equates species and reactions inherent to the de�ned system with

intrinsic noise and variability in reaction rates with extrinsic noise.

In what remains of the Introduction, two methods will be presented. Each

method pertains to one type of source of noise: the linear noise approx-

imation, described in Section 7.1.1, is used to model noise from intrinsic

sources, and the unscented transform, described in Section 7.1.2, is used to

model noise from extrinsic sources. Each method can be decomposed, and

is subsequently used to address the overarching question: can we attribute
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the variability that arises in a system to any of the processes giving rise to

the output?

7.1.1 The linear noise approximation

The linear noise approximation (LNA) is a method to approximate stochas-

tic processes via expressions for means and covariances of the species of a

system as functions of time, assuming spatial homogeneity (van Kampen,

1981). The LNA is exact for purely linear systems (Grima, 2010) and a valid

approximation for nonlinear systems with su�ciently large populations of

species (Wallace et al., 2012). For nonlinear systems where the molecular

abundance is not large, it is necessary to dissect the dynamics in order to

determine how valid its linearisation is Grima (2010).

With the LNA, the mean values for all species x in the modelled system

are de�ned according to the rate equation

dx

dt
= S · a(x, θ). (7.1)

Here, S is the stoichiometry matrix and a(x, θ) a vector of reaction propen-

sities, where we include explicitly the dependence on the parameter vec-

tor θ. The covariance matrix C for the species evolves according to the

�uctuation�dissipation theorem (van Kampen, 1981)

dC

dt
= JC + CJT +D (7.2)

where J is the Jacobian, and D = S · diag(a(x, θ)) · ST . In what follows, I

will solve assuming stationarity, i.e. dC
dt

= 0.
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Equation 7.2 can be decomposed into its component parts, corresponding

to reactions rj, j = 1, ..., n, which are given by

dCrj
dt

= JCrj + CrjJ
T + S(j) · diag(a(x, θ)) · S(j)T (7.3)

where Crj is the contribution to the covariance matrix from the j-th reac-

tion, and S(j) is the row of the stoichiometry matrix that corresponds to

reaction rj. Then C =
∑

j=1,...,nCrj (Komorowski et al., 2013).

For an individual molecule (here, the output molecule of a system) the

LNA-derived variance is written

VarLNA = Varr1 + ...+ Varrn , (7.4)

where Varri is the variance contributed by reaction ri (Komorowski et al.,

2013).

7.1.2 The unscented transform

The unscented transform (UT) (Wan & Van Der Merwe, 2000) is used in

this chapter to model extrinsic noise, in the same manner as in Toni &

Tidor (2013). In this section the mathematics behind it is described, and in

the following section it is shown how it can be decomposed to learn about

how extrinsic noise propagates through a system.

Mathematical formulation of the unscented transform

The unscented transform is an e�cient scheme for propagating a multivari-

ate Gaussian distribution through a non-linear function, recovering a mul-

tivariate Gaussian distribution in output space (Wan & Van Der Merwe,
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2000; Silk et al., 2011). A precisely de�ned set of points in the input space,

called sigma points, are mapped via the function to the output space. Their

con�guration in output space enables the construction of the output distri-

bution. It is an e�cient approximation to extensive sampling or tabulation

of parameter space (Scott et al., 2006).

The sigma points are chosen according to a set of rules. The �rst is the

mean of the parameter distribution, µθ. Subsequent points, of which there

are 2L, where L is the dimensionality of θ, are selected to represent the

spread about the mean (van der Merwe, 2004). The formulae for choosing

sigma points are:

θ0 = µθ;

θs = µθ +
(√

(L+ λ)Σθ

)
s
, s = 1, ..., L;

θL+s = µθ −
(√

(L+ λ)Σθ

)
s
, s = 1, ..., L.

(7.5)

Parameters α and κ govern the spread of the points via λ, where λ =

α2(L+κ)−L. Here I will use α = 0.001 in order to achieve stable, consistent

results, and κ = 0 following Toni & Tidor (2013). See van der Merwe (2004)

for details on scaling parameters.

The mapping function, f , is evaluated at each sigma point, generating a set

of points in the output space

xs = f(θs), s = 0, ..., 2L. (7.6)

These points are used to construct the output distribution, x ∼ N (µx,Σx),

according to some weights, w. For x, y ∈ x, means and (co)variances are
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de�ned as

µx ≈
2L∑
s=0

w(m)
s xs; (7.7)

Σxy ≈
2L∑
s=0

w(c)
s (xs − µx)(ys − µy), (7.8)

where the weights are de�ned to be (van der Merwe, 2004)

w
(m)
0 =

λ

L+ λ
;

w
(c)
0 =

λ

L+ λ
+ (1− α2 + β);

w(m)
s = w(c)

s =
1

2(L+ λ)
, s = 1, ..., 2L.

(7.9)

In the following work, I will use β = 2, the suggested choice for reconstruct-

ing a Gaussian distribution (van der Merwe, 2004).

Modelling extrinsic noise

In modelling biological systems with these methods, we are representing

extrinsic sources of noise with a multivariate Gaussian probability distribu-

tion for the parameter set, θ: θ ∼ N (µθ,Σθ).1 The transformation of this

distribution through the LNA-derived functions for the �rst two moments

gives the output distribution, x : x ∼ N (µx,Σx) (Toni & Tidor, 2013).

Though a Gaussian input is required, the rate functions a(x, θ) can involve

any transformation of θ, so that other distributions might be realised. For

example, with a log-normal distribution, real rates can be bounded below

by zero, and the multivariate Gaussian provides the hyper-parameters.

1In this work, only diagonal matrices Σθ are considered. For implementation and
interpretation of non-diagonal covariance matrices, see Appendix C.
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The modelling process is shown in Figure 7.1. The LNA captures intrinsic

�uctuations by mapping a parameter set to a normal output distribution of

dimension nS, where nS is the number of species. The UT captures extrinsic

noise by mapping a parameter distribution of dimension n to a normal

output distribution of dimension nS. Together, they map the parameter

distribution of dimension n to a normal output distribution of dimension

nS(nS+3)/2, corresponding to nS mean values, nS variances, and nS(nS−1)

covariances.
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Figure 7.1: The linear noise approximation and the unscented transform for
one output. Intrinsic noise in a simulation arises due to the stochastic nature
of reactions; it is modelled using the linear noise approximation, which maps a
parameter to the output distribution. Extrinsic noise in a simulation corresponds
to di�ering rate parameters; it is modelled using the unscented transform, which
maps a parameter distribution to the output distribution. Combining the meth-
ods yields a map from a parameter distribution to an output distribution that
includes, in one dimension, the expected variance (the intrinsic noise) and, in the
other dimension, the variance about the expectation (the extrinsic noise).

For example, for two variables x and y, the mean vector output by the UT

is given by
(
µx̄ µȳ µVarx µVary µCovx,y

)T
, where µVarx , µVary and µCovx,y give
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the intrinsic noise. The covariance matrix is

Σx̄,x̄ Σx̄,ȳ Σx̄,Varx Σx̄,Vary Σx̄,Covx,y

Σȳ,x̄ Σȳ,ȳ Σȳ,Varx Σȳ,Vary Σȳ,Covx,y

ΣVarx,x̄ ΣVarx,ȳ ΣVarx,Varx ΣVarx,Vary ΣVarx,Covx,y

ΣVary ,x̄ ΣVary ,ȳ ΣVary ,Varx ΣVary ,Vary ΣVary ,Covx,y

ΣCovx,y ,x̄ ΣCovx,y ,ȳ ΣCovx,y ,Varx ΣCovx,y ,Vary ΣCovx,y ,Covx,y


where the top-left two-by-two matrix gives the extrinsic noise. We can

therefore write the total variability for the system as the sum of the expected

variance (intrinsic noise) and the variance about the mean (extrinsic noise)

(Toni & Tidor, 2013): Varx,tot Covx,y,tot

Covx,y,tot Vary,tot

 =

 µVarx + Σx̄,x̄ µCovx,y + Σx̄,ȳ

µCovx,y + Σx̄,ȳ µVary + Σȳ,ȳ

 . (7.10)

In this work, the focus will be on the total output variance of some species

x, which is expressed as the sum of intrinsic and extrinsic contributions

(Toni & Tidor, 2013):

Varx,tot = µVarx + Σx̄,x̄

= Varx,in + Varx,ex.
(7.11)

Varx,in corresponds to (but is not necessarily equal to) VarLNA and Varx,ex

corresponds to noise arising due to extrinsic sources. Below, the noise

contributed by each reaction is decomposed into a pair of contributions,

where one term corresponds to intrinsic and the other to extrinsic noise

emanating from this reaction.
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7.2 Extrinsic noise sources: decomposing the

unscented transform

From the LNA, we have functions for the mean and the variance in terms

of the parameters, fmean(θ) and fvar(θ). In order to decompose the result

of the UT, for each reaction ri, we de�ne

f (ri)
mean(θs, µθ) = fmean({µθ,1, ..., θs,i, ..., µθ,n}) and

f (ri)
var (θs, µθ) = fvar({µθ,1, ..., θs,i, ..., µθ,n}),

i.e., the function for reaction ri is evaluated with noise in parameter θi

alone.

The resulting normal distribution contains, in its mean vector, the expected

variances given noise in each reaction alone, which may di�er from the

LNA prediction of the intrinsic noise. The covariance matrix contains the

variances about the mean from each reaction. It also contains a readout of

the accuracy of the decomposition.

For a single output, then, the total intrinsic noise is the intrinsic noise

predicted by the LNA, plus any additional sources of intrinsic noise that

arise due to extrinsic sources,

Varx,in = VarLNA +
n∑
i=1

(
µ

(ri)
Varx
− VarLNA

)
, (7.12)

where µ(ri)
Varx

is the expected intrinsic noise given variability in parameter θi.

The extrinsic noise is the sum of the individual reaction contributions and

any interference terms,

Varx,ex =
n∑
i=1

Σ
(ri)
x̄,x̄ +

n∑
i=1

n∑
j 6=i

Σ
(ri,j)
x̄,x̄ , (7.13)
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where Σ
(ri)
x̄,x̄ is the extrinsic noise from parameter θi and Σ

(ri,j)
x̄,x̄ corresponds

to extrinsic noise interference for reactions ri and rj. The total variance is

the sum of the variances from intrinsic and extrinsic sources, as in Equation

7.11.

The interference terms represent the extent to which the extrinsic noise

cannot be decomposed. In summation, they are equal to the di�erence

between the variance given the UT applied to the full system, and sum of

variances given the UT applied to each parameter in turn. The interference

terms are typically small for low variability in parameters. In such cases,

extrinsic noise is traceable to individual reactions.

A detailed example of the decomposition is given in Section 7.3.1, applied

to the birth�death process.

7.3 Application to simple systems

The previous section gave the derivation of the decompositions for the vari-

ance of some output, de�ned in Equations 7.12 and 7.13, along with Equa-

tion 7.11. In this section, the method of decomposing noise into intrinsic

and extrinsic components of individual reactions is applied to some simple

systems.

First, it is applied to the birth�death process, in which the full decomposi-

tion is enumerated for clarity. It is then applied to a catalytic cascade and

a feed-forward loop to highlight the e�ects of reaction rates and network

architectures. Figures 7.2A and 7.3A and B depict the motifs studied.
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Details of the set-up for each system are presented in Appendix D, including

µθ and Σθ, the molecular species modelled (output species in bold), the

reactant and product stoichiometries (SR and SP ), the mean value from

the UT output, and each contribution to the noise using the decomposition

above. Mass-action kinetics are employed, with all reactions of zero-th or

�rst order. In Appendix D.4 it is shown that it is also possible to model

the dual-reporter experiment within this framework.

7.3.1 Birth�death

In the birth�death process (Figure 7.2A), a species is created in reaction 1

(zero-th order) and destroyed in reaction 2 (1st order) (Feller, 1968). With

this system, the LNA�UT is compared with an analysis of 10,000 stochastic

simulations, and its decomposition to the moment expansion method of

Zechner et al. (2012).

Detailed decomposition

For this process, the functions to be transformed are

fmean(θ•) = θ•,1/θ•,2 and

fvar(θ•) = θ•,1/θ•,2,

yielding four equations:

f (r1)
mean(θs, µθ) = θs,1/µθ,2,

f (r2)
mean(θs, µθ) = µθ,1/θs,2,

f (r1)
var (θs, µθ) = θs,1/µθ,2,

f (r2)
var (θs, µθ) = µθ,1/θs,2,
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Figure 7.2: A: Schematic of the birth�death process for species P . B: The
balance of noise attribution changes as the variance in the decay reaction of the
birth�death process shifts. The coe�cient of variation for parameter ki is αki .
The coe�cient of variation (CV) ratio is αk2/αk1 : the CV of the decay parameter
over the CV of the birth parameter. The percentage of noise from reaction 2 is
bounded below at 40% due to intrinsic noise when the variance in the second
reaction is zero. C: Amount of intrinsic noise in the second reaction that can be
attributed to variance in parameter k2 as a function of the coe�cient of variation
of k2.
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With the decomposed UT (dUT), an output space of the form x(dUT ) ∼

N (µ(dUT ),Σ(dUT )) is generated, where

µ(dUT ) =



µ
(r1)
x

µ
(r2)
x

µ
(r1)
Varx

µ
(r2)
Varx


, Σ(dUT ) =



Σ
(r1)
x̄,x̄ Σ

(r1,2)
x̄,x̄ Σ

(r1)
x̄,Varx

Σ
(r1,2)
x̄,Varx

Σ
(r2,1)
x̄,x̄ Σ

(r2)
x̄,x̄ Σ

(r2,1)
x̄,Varx

Σ
(r2)
x̄,Varx

Σ
(r1)
x̄,Varx

Σ
(r1,2)
x̄,Varx

Σ
(r1)
VarxVarx

Σ
(r1,2)
VarxVarx

Σ
(r2,1)
x̄,Varx

Σ
(r2)
x̄,Varx

Σ
(r2,1)
VarxVarx

Σ
(r2)
VarxVarx


(7.14)

and Σ
(ri,j)
x̄,x̄ are the extrinsic interference terms, corresponding to the amount

the extrinsic sources combine with one another.

For µθ = (500 10) and Σθ =

50 0

0 1

, VarLNA = 50. The distributions for

the decomposed UT and the full UT, x(UT ) ∼ N
(
µ(UT ),Σ(UT )

)
, are de�ned

as follows:

µ(dUT ) =



50.0

50.5

50.0

50.5


, Σ(dUT ) =



0.5 0.0 0.5 0.0

0.0 25.5 0.0 25.5

0.5 0.0 0.5 0.0

0.0 25.5 0.0 25.5


; (7.15)

µ(UT ) =

50.5

50.5

 , Σ(UT ) =

26.0 26.0

26.0 26.0

 . (7.16)

Applying Equations 7.12 and 7.13, the total extrinsic noise in the output is

a sum of noise from the two reactions:

Varx,in = VarLNA +
∑
i

(
µ

(ri)
Varx
− VarLNA

)
= 50 + 0.0 + 0.5
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= µ
(UT )
Varx

;

Varx,ex =
∑
i

Σ
(ri)
x̄,x̄ +

∑
i

∑
j 6=i

Σ
(ri,j)
x̄,x̄

= 0.5 + 25.5 + 0.0

= Σ
(UT )
x̄,x̄ .

The decomposed UT therefore equates to the full UT.

Results

The LNA�UT method concurs with the average of many stochastic sim-

ulations, and the method of Zechner et al. (2012). Using parameters θ =

{k1, k2}, k1 = 10 and k2 = 0.1, the LNA�UT predicts x ∼ N (100.25, 150.375)

(see Appendix D.1 for details). 10,000 stochastic simulations �nd x ∼

N (100.19, 152.165).

In the method of Zechner et al. (2012), static extrinsic noise is incorpo-

rated directly into the expression for the output moment via calculation

of cross moments. For this system, it yields x ∼ N (100.25, 150.125). Dis-

section of the moment equations suggest the following expressions for the

contributions from each reaction:

Intrinsic Extrinsic

Reaction 1
µθ1
2µθ2

= 50
Σθ1
µ2θ2

= 25

Reaction 2
µθ1
2µθ2

= 50 µ2
xΣθ2 = 25.125

which agree with those of the LNA�UT (see Table D.1), with the exception

of the intrinsic noise in reaction 2: the LNA�UT �nds that extrinsic noise

in reaction 2 adds 0.25 to its intrinsic noise.
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This example highlights two points about the method that relate to the

e�ects of the coe�cients of variation of the parameters. The �rst is that the

greater the variation, the greater the contribution to extrinsic noise. Figure

7.2B shows how noise attribution changes as the coe�cient of variation in

one parameter changes relative to that of the other. In what follows, I

will include parameter variability with coe�cients of variation equal for all

parameters.

The second point to note is that as the variation increases, the interference

terms in Equation 7.12, where present, increase. Where extrinsic sources of

noise are small, the e�ects of interference are small (Figure 7.2C), and the

individual contributions remain separable.

7.3.2 Catalytic cascade and feed-forward loop

In this section, the decomposition method is used to demonstrate how sto-

ichiometry and rate in a reaction system impact on intrinsic and extrinsic

noise, via comparison of a catalytic cascade and a feed-forward loop. These

systems have six reactions in common, in which three reactants sequentially

activate one another, and each molecular species can decay (Figures 7.3A

and B). The feed-forward loop (Alon, 2007) has an additional reaction in

which the �rst reactant can also activate the last.

Noise in the catalytic cascade

The catalytic cascade, shown in Figure 7.3A, is one in which a molecular

species is created (reaction 1) and destroyed (reaction 2), and activates a
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Figure 7.3: Intrinsic and extrinsic noise in a catalytic cascade and a feed-forward
loop. A: Schematic motif of a catalytic cascade. B: Schematic motif of a feed-
forward loop. C and D: Intrinsic and extrinsic contributions to output coe�cient
of variation for the two motifs where the reactions are slow (C) and fast (D). Bars
show the contribution to the coe�cient of variation of each rate parameter ki.

second species (reaction 3). The second species can be destroyed (reaction

4) and activates a third species (reaction 5), which can also be destroyed

(reaction 6). First, a slow cascade is compared to a fast cascade: reactions 3,

4, 5 and 6 are 100 times faster in the latter relative to the former, following

Komorowski et al. (2013).

The results, shown in Figure 7.3C and D and Tables D.2 and D.3, demon-

strate that intrinsic noise is transmitted from a reaction through the cascade

according to the reaction's rate relative to that of the �nal reactions; in-
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creasing all rates will not change the relative intrinsic noise resulting from

any reaction. A relatively fast reaction will transmit little noise (Figure

7.3C, k1 and k2), as its �uctuations are averaged out by the later, slower

dynamics. A relatively slow reaction will transmit more noise (Figure 7.3D,

k1 and k2). This is recognised as output reactions acting as low-pass �lters.

Extrinsic noise is transmitted to the same extent irrespective of the cas-

cade's reaction rates, and it also arises evenly across all reactions: all reac-

tion rate variabilities have equal impact on variability in the output.

Noise in the feed-forward loop

The feed-forward loop is shown in Figure 7.3B. To make its dynamics com-

parable to the catalytic cascade, the total activation of the third species is

the same in both systems, i.e. the rate of reaction 5 in the cascade is equal

to the sum of the rates of reactions 5 and 7 in the feed-forward loop. The

loop is compared to the cascade and, to compare slow to fast kinetics, the

rates of reactions 3�7 are increased 100-fold.

The results are shown in Figure 7.3C and D and Tables D.4 and D.5. The

intrinsic noise in reactions 5 and 7 of the loop add up to that of reaction

5 of the cascade. However, intrinsic contributions of reactions 3 and 4 are

substantially reduced compared to the cascade, and not compensated at

any point. As before, when reactions 1 and 2 become relatively slow, their

intrinsic noise terms become enhanced while all other noise sources remain

the same (Figure 7.3D, k1 and k2).

Again, extrinsic noise in the loop is una�ected by changes in rate. However,
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it is reduced across all reactions that form the loop in the motif (Figures

7.3C and D, k3, k4, k5 and k7). The feed-forward loop architecture therefore

appears to reduce both types of noise compared to the cascade, with a more

pronounced e�ect in extrinsic noise.

7.4 Mechanistic explanation of observations

The last section highlighted how variability in reaction rates can in�uence

noise in the output. The LNA�UT is now dissected in order to discover the

mechanism underlying the observations. For this, I return to the de�nition

of extrinsic noise in Equation 7.8: it is the `variance around the expected

mean'. It is calculated as the perturbation to the output mean that results

from perturbation to a parameter value. Therefore, the role of a parameter

in determining the output mean determines its role in extrinsic noise.

For illustration, consider a single species and a simple function that de-

�nes the mean, e.g. fmean(θ) = k1/k2. To �nd the extrinsic noise using

the UT, we �nd �rst the expected mean when the parameters are altered,

one parameter at a time. We capture parameter variability by adding or

subtracting a small fraction, δ. The expected mean given variability in

parameter ki, µi(θ), will have the form

µ1(θ) = w
(m)
0

k1

k2

+ w
(m)
1

k1 + δk1

k2

+ w
(m)
1

k1 − δk1

k2

, (7.17)

µ2(θ) = w
(m)
0

k1

k2

+ w
(m)
1

k1

k2 + δk2

+ w
(m)
1

k1

k2 − δk2

, (7.18)

where weights w(m)
0 and w(m)

1 are as given in Equation 7.9.



7.4. Mechanistic explanation of observations 125

Then, the extrinsic noise, Σi(θ), due to variability in parameter ki is given

by

Σ1(θ) = w
(s)
0

(
µ1 −

k1

k2

)2

+w
(s)
1

(
µ1 −

k1 + δk1

k2

)2

+w
(s)
1

(
µ1 −

k1 − δk1

k2

)2

,

(7.19)

Σ2(θ) = w
(s)
0

(
µ2 −

k1

k2

)2

+w
(s)
1

(
µ2 −

k1

k2 + δk2

)2

+w
(s)
1

(
µ2 −

k1

k2 − δk2

)2

.

(7.20)

Thus the e�ect of extrinsic sources of noise on outputs is determined by

which parameters appear in the expression for the mean of the output, and

what e�ect perturbing them has on the output. How a parameter appears

in the expression for the output mean can be deduced from the pathway

structure.

In what remains of this section, some typical motifs are discussed in terms of

how the reaction rates in�uence the expression for the mean, and therefore

how much they impact on extrinsic noise in the output.

7.4.1 Obligatory paths

Rates governing any (portions of) paths that are obligatory do not a�ect

the mean and therefore do not contribute any extrinsic noise to the system

output, with the exceptions of original sources and �nal sinks. An `oblig-

atory' path is one for which there is no alternative. A net contribution of

zero is made to output noise because any �uctuation in the substrate is

precisely negated by the �uctuation in the product.
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For example, consider enzyme dynamics of the form

∅ k1−−−−−→ P0
k2−−−−−⇀↽−−−−−
k3

E
k4−−−−−→ P

k5−−−−−→ ∅

where P0 is the substrate, P the product, and E the complex, with the

enzyme omitted for simplicity. The output P has expectation k1/k5. All

of the intervening steps are obligatory and lead only to P , so, apart from

reactions 1 and 5, every reaction is both a sink and a source, and therefore

their contributions to extrinsic noise in P cancel each other out.

7.4.2 Stoichiometry

The expression for the mean will typically be a quotient with the numerator

comprising the sum of all sources and the denominator the sum of all sinks.

Parameters can appear in the numerator, the denominator, or both; they

can be multiplying factors, they can be part of a sum, and they can be

raised to powers higher than one. The fundamental question is: what is the

e�ect of a small shift δ on expressions of the form of Equations 7.17�7.20?

Sources and sinks

Nominally, numerators and denominators make similar contributions to the

overall noise in the output. A rate parameter for a reaction that is a unique

source (sink) for the output will manifest as a multiplying factor in the

numerator (denominator). All such multiplying factors have similar e�ects

in Equations 7.17�7.20.

For example, the �nal protein of the catalytic cascade of Figure 7.3A has
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the expected stationary solution

k1k3k5

k2k4k6

.

Terms in the numerator correspond to the creation of each species, and

those in the denominator to their decay. Analysis of extrinsic noise shows

that each reaction contributes similarly (Figures 7.3C and D).

Branching

Where a sink or source is not unique but occurs at a branching point of

the reaction network, the rate parameters appear as sums in the expression

for the mean. For example, if ∅ k1−→ A
k2−→ ∅ and, in addition, A

k3−→ B, the

mean of A is
k1

k2 + k3

.

Here, heterogeneity in rates k2 and k3 will typically make small to moderate

contributions to the output variability.

When the production (or decay) of a molecular species can occur through

more than one reaction, the extrinsic noise contributions of the individual

reactions do not sum up to extrinsic noise resulting from a single reaction,

given the same overall �ux. The more similar the rates of the two reactions

are, the smaller the sum of their extrinsic noise contributions will be. Par-

allel branches are therefore a means for diminishing the e�ects of extrinsic

noise in a chemical reaction pathway, as was seen in the feed-forward loop

when compared to the catalytic cascade (Figure 7.3).
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Multimerisation

A molecular species that enters a reaction in a cooperative manner con-

tributes to the expression for the mean a term that is raised to the appro-

priate power (e.g. squared for a reaction involving a dimer). As a result,

variability in such processes can contribute considerably to the extrinsic

noise in the output.

Homodimer formation contributes (relatively) more extrinsic noise than het-

erodimer formation. A homodimer would have a mean of the form

k2
1k3

k2
2k4

,

where k1 is rate of formation of the monomer, k2 its decay, and k3 and k4 cre-

ation and decay of the dimer, respectively. The corresponding heterodimer

would have mean
v1v3v5

v2v4v6

,

where v1 = v3 = k1, v2 = v4 = k2, v5 = k3 and v6 = k4. Perturba-

tion to k1 has greater impact than perturbation to both v1 and v3. For

parameters {k1, k2, k3, k4} = {25, 0.5, 0.1, 0.1}, the homodimer contributes

extrinsic noise of Varhom,ex ≈158,000, compared to Varhet,ex ≈94,000 of the

heterodimer. Given that transcription factors frequently occur as dimers,

tetramers, hexamers etc. (Toni et al., 2011), it might be expected that

variability in upstream transcriptional processes greatly increases extrinsic

noise in the output.
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7.4.3 Reaction rates

The extent of a reaction's contribution to extrinsic noise depends little on

the parameter's magnitude (see Figure 7.3) and largely on its form in the

mean expression, as discussed above. However, there are instances in which

magnitude does play a role. As an illustration, consider a conversion cascade

with three species, which is similar to the catalytic cascade but, rather than

activating subsequent species (e.g. A −→ A+B), each species is transformed

into the next (e.g. A −→ B). The output of a conversion cascade has mean

k1k3k5

(k2 + k3)(k4 + k5)k6

, (7.21)

where k2, k4 and k6 are rates of decay of the three species, k1 is the rate of

creation of the �rst species, and k3 and k5 and are the rates of conversion

(similarly to Figure 7.3A). The output of a catalytic cascade has mean

k1k3k5

k2k4k6

. (7.22)

For a conversion cascade with slow decay terms (k2, k4) relative to conver-

sion rates (k3, k5), the mean expression tends to k1/k6. Thus, for a fast

conversion cascade, there are e�ectively only two reactions contributing to

the extrinsic noise. Conversely, with fast decay the mean expression tends

to Equation 7.22 and the reaction scheme resembles the catalytic cascade,

with all reactions contributing equally. The relative rates determine where a

reaction system resides on the spectrum between these two extremes, which

suggests control of decay rates along a pathway as a tool for tuning noise

in a process output.
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7.5 Discussion

In the preceding sections, a study of how sources of extrinsic and intrinsic

noise a�ect the overall variability in the output of biomolecular reaction

systems using the LNA and the UT was presented. Both the LNA and

the UT capture the dynamics of the �rst two moments. Third moments

and beyond are outside their scope, although it is in principle possible to

capture higher moments using generalisations of the LNA (Grima, 2010;

Thomas et al., 2013; Endres & Wingreen, 2008; Lakatos et al., 2015), and

the UT can also be extended, for example by �tting a Gaussian mixture

model to the distribution (Silk et al., 2013).

For the examples considered here, and perhaps more generally, intrinsic and

extrinsic contributions are comparable for parameter coe�cients of variation

(a) of the order 0.1. For a � 0.01, intrinsic variability is likely to be the

sole determiner of output noise. For a � 0.1, extrinsic variability is likely

to be the sole determiner of output noise.

Propagation of intrinsic noise is sensitive to rate parameters. Reactions

likely to contribute to noise in the output are those that are slower and

those that are more proximate (in the reaction scheme) to the �nal output.

All reactions propagate noise from previous reactions, and slower reactions

are capable of �ltering out (high-frequency) noise from upstream reactions,

e�ectively acting as low-pass �lters (Fujita et al., 2010; Mc Mahon et al.,

2015).

For a pathway consisting only of conversion reactions, it is necessarily the
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case that exactly half comes from the output's creation and half from its de-

cay, as can be seen from the analytic LNA decomposition and was reported

in Komorowski et al. (2013). Any steps involving catalysis, however, do

not comply with this rule, and the contribution of noise intrinsic to these

reactions is not bounded in relation to conversion steps, as is seen in Figure

7.3.

Unlike the propagation of intrinsic noise, that of extrinsic noise does not

depend substantially on the rates of reactions (see Figures 7.3C and D).

Note that parameter variabilities were set relative to their absolute values

so that they themselves did not confound the analysis (Toni & Tidor, 2013).

A larger factor in the pattern of transmission of sources of extrinsic noise

is the structure of the reaction network. Obligatory steps contribute no ex-

trinsic noise; increased branching reduces noise transmission; and reactions

involving homomultimers contribute relatively more to extrinsic noise than

those involving equivalent heteromultimers.

7.6 Conclusion

This chapter has demonstrated the decomposition of noise in a molecule of

interest, in which contributions are traced to intrinsic and extrinsic sources

in the di�erent reactions that gave it rise. The sum is less straightforward

than those given in Komorowski et al. (2013) and Toni & Tidor (2013)

when the parameters are mapped through a non-linear transformation. The

additional terms that account for the discrepancy are generally small for

su�ciently small variation in the parameter (see Figure 7.2C); where they
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are large, they indicate the confounding of di�erent sources of extrinsic

noise, rendering separation impossible.

Assuming a Gaussian distribution over the model parameters to capture

cell-to-cell variability in a system limits the applicability of the method.

While it can be e�ective (Filippi et al., 2016), approaches such as this (and

its predecessors (Komorowski et al., 2013; Toni & Tidor, 2013)) are to be

viewed as a starting point.

The heuristics derived in Section 7.4 might be most immediately applicable

to design in synthetic biology. In this setting, taking into account many

unknown factors via extrinsic sources of noise in the modelling process may

aid in the choice of e.g. regulatory motifs (Diambra et al., 2014) or sig-

nalling components (Voliotis et al., 2014; Jovanovic et al., 2015), allowing

identi�cation of those that are more robust to or less likely to introduce

extrinsic noise.

They may also �nd a role in model simpli�cation or reduction (Gillespie

et al., 2009; Cappelletti & Wiuf, 2014), in which choices are made regard-

ing whether factors are modelled explicitly or by proxy. An understanding

of the di�erent implications of intrinsic and extrinsic factors would eluci-

date the implications of such decisions. For example, a sequence of open-

conversion reactions can be faithfully replaced by a single reaction, which

would not be true of a catalytic cascade.

The decomposed LNA�UT method is a quick and �exible method for study-

ing noise behaviours in simple or simpli�ed systems (Filippi et al., 2016;
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Toni & Tidor, 2013). It has been used to show how some mechanisms may

be able to enhance or attenuate di�erent classes of noise; however, it is not

su�ciently sophisticated to interpret the relative contributions of the noisy

forces that drive the interesting dynamics seen in Chapters 5 and 6.



8

Concluding remarks and future

work

The purpose of modelling is to learn about biological systems. Mechanistic

models are routinely created in order to summarise and test our under-

standing of a system under study. Simultaneously, models can be used

to formulate and query general principles that apply across a range of bi-

ological systems. Both these processes are founded upon some choice of

modelling methodology.

Contributions to these areas have been made each in di�erent sections of

this thesis. Towards model testing, a computational tool was presented that

performs model selection and parameter inference in Chapter 3. Towards

theoretical principles in systems biology, a study was presented into how

noise propagates in generic biochemical pathways in Chapter 7. Towards the

foundations on which systems biology is built, a modelling methodology was

134
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developed in Chapter 4. The methodology is designed speci�cally to model

systems in which molecular dynamics interact with population dynamics,

and two implementations were presented in Chapters 5 and 6.

Proposed models are compared to data in order to query how well the

behaviour observed is captured by the model, or, more explicitly, the hy-

pothesis represented by the model. With nested sampling, the support af-

forded to a model by some data (the evidence) is approximated algorithmi-

cally, while the posterior parameter distribution is inferred simultaneously

(Skilling, 2006). Sysbions (Johnson et al., 2015), a software package im-

plementing accelerated nested sampling, was presented in Chapter 3. This

tool is designed to facilitate model parametrisation and validation in the

systems biology community.

Nested sampling requires the de�nition of a likelihood function for the data

(Skilling, 2006). This function quanti�es the probability of observing the

data given some model. The model must therefore yield some distribu-

tion over values corresponding to an observation. In the examples given in

Chapter 3, Gaussian noise was assumed about the mean-�eld dynamics of

the models, following mass-action kinetics.

In di�erent settings, di�erent modelling methods may be chosen, according

to the system under study and the purpose of the model. For example,

noisy protein dynamics have been proposed as the driving force behind nu-

merous population-level phenomena resulting of cell-fate decisions (Balázsi

et al., 2011). An appealing methodology to model such systems would
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therefore be one that captures the full distribution over species that result

from their interactions, such as the �nite state projection (FSP) (Munsky

& Khammash, 2006). To capture population-level phenomena, however,

requires linkage of protein-level dynamics to population-level dynamics. To

this end, a new modelling methodology was presented in Chapter 4 that

models protein-driven population dynamics.

The methodology developed in Chapter 4 assumes an isogenic population

of cells. As an implementation of the FSP, it approximates the chemical

master equation (CME) via truncation of the state space (Munsky & Kham-

mash, 2006). It therefore has within its remit the full distribution over state

occupations. It has the capacity to model systems with numerous stages

and biomolecules. The usefulness of the methodology is demonstrated in

its ability to model population dynamics in a cell cycle and in antimicro-

bial resistance. However, further method development is required before it

can be used to model a system in which population dynamics depend on

population size.

The models of the cell cycle presented in Chapter 5 were developed to cap-

ture two hypotheses regarding the existence of a quiescent stage. The �rst

model had four stages only, representing the hypothesis that the quiescent

phenotype belongs to stage G1. The second model included a �fth, quies-

cent stage, G0, distinct from G1.

It was shown that both models were able to reproduce the behaviours ob-

served in published data (Spencer et al., 2013); however, further analysis

is required before it can be established what accompanying behaviours are
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predicted by each model. For example, from the distance-minimisation

parametrisation of the models, it seems that the four-stage model predicts

that cells spend more time in stage G1 than the �ve-stage model does in G1

and G0. This parameter optimisation, however, does not take account of the

range of parametrisations, and therefore predicted behaviours, that would

give rise to an adequate �t to the data. Such an analysis could be performed

with itemised data (rather than summary data) and a likelihood-based pa-

rameter inference and model validation method such as that presented in

Chapter 3.

The model of antibiotic resistance in yeast, presented in Chapter 6, demon-

strated that combining population- and protein-level models yields predic-

tions that are not intuitive from considering population- or protein-level

models alone. Using distance minimisation to parameterise the model, a

solution was found that exhibited the desired behaviour in one experimen-

tal setting, but highlighted a problem with the model in another. Ruling

out the presented model of rtTA expression, future work will begin with

formulating a new hypothesis about rtTA dynamics.

The power of noise in driving population-level dynamics motivated the ques-

tion of where variability arises and how it is transmitted. The dissection of

noise sources presented in Chapter 7 began to unpick mechanisms through

which biological systems accumulate and attenuate noise. A number of fac-

tors in�uencing the magnitude of extrinsic noise was identi�ed, including

branching in biochemical pathways and reactions involving multimerisation.

Note that these factors were found by considering only the �rst two moments
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of the distribution over parameters and the distribution over the output; to

validate these insights, it would be informative to ask the same questions

using more moments, and of biological systems in vivo. Further, the insights

pertain to systems in which the sources of extrinsic noise are static, i.e.

varied but �xed across di�erent realisations. This corresponds to factors

that vary on a timescale much slower than that of the output of interest.

Another question to ask then is the extent to which the observations hold

as these factors vary faster.

Modelling noise in biological systems has been the common thread in this

thesis. By considering noisy protein dynamics, we can model emergent be-

haviours at the population level. By dissecting models of noise, we can

learn how variability arises in a system. By de�ning noise models, we

can use likelihood-based methods of model validation, with which we can

transparently critique the suitability of our hypotheses to explain biolog-

ical phenomena. If we are to test our hypotheses through comparison of

models to data, we must be con�dent that our modelling methodology is

faithfully capturing our beliefs about how stochasticity inherent to the pro-

cesses manifests in what we ultimately observe.
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Appendix A

The variance of the log-evidence

in nested sampling

At each iteration the value for X, representing the proportion of prior mass
contained within the likelihood contour, are estimated using the relation
Xi = tXi−1. Here, t is the shrinkage factor. In Skilling's presentation of
the algorithm, t is beta-distributed with parameters (n, 1) (Sivia & Skilling,
2006).

A.1 The variance when one point is

discarded and replaced

The distribution t ∼ Beta(n, 1) describes the case in which one point is
discarded and replaced at each iteration; t is the largest value of points
uniformly distributed on [0,1]. With n live points, p(t) = ntn−1. In Sivia
& Skilling (2006) the expected value E(log t) = −1/n is used for each
shrinkage factor. The variance in t is 1/n and so, after M iterations, a
standard deviation of

√
M/n is accumulated (Sivia & Skilling, 2006).

Skilling recommends that the algorithm is terminated once the number of
iterations greatly exceeds nH, where H is the information accumulated
(Sivia & Skilling, 2006). The standard deviation accompanying the �nal

estimate of log Z is
√
H
n
.1

1It is not clear in their algorithm or in their discussions what the correspondence is
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A.2 The variance when many points are

discarded and replaced

It is possible for more than one point to be discarded and replaced in a
single iteration. In this instance, the shrinkage factor sought is the kth

largest value of points uniformly distributed on [0,1], where k is the number
of points to be discarded. Such a value has a distribution tk ∼ Beta(n −
k + 1, k) (Skilling, 2012), where

p(tk) =

(
n

k

)
ktn−kk (1− tk)k−1.

The expected value in this case is

E(log tk) = log(1− k(1− exp(−1/n))).

As in the case in which k = 1, Xi = tkXi−1.

The variance of log tk is then

var(log tk) =
k−1∑
m=0

1

(n−m)2
.

A.3 Implications for the algorithm

The variance of a variable tk ∼ Beta(n− k + 1, k) increases as k increases.
First: another method is required to calculate the �nal standard deviation.
Second: a choice needs to be made as to how the number of points to be
skipped is chosen given its e�ect on the variance of log Z.

A.3.1 Comparing the algorithms k = 1 and k > 1

When points are skipped, the ground is covered more quickly. It is therefore
not accurate to compare directly the case that k = 1 with k > 1 in terms
of numbers of points discarded. It makes sense to compare them in terms
of X values.

between Hn and the point at which the algorithm exits; indeed, the algorithm iterates
1000 times and Hn ≈ 39. It is unclear, then, why their variance is H/n and what is
meant by m `signi�cantly exceeding' Hn.
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If M1 iterations in the k = 1 case take the algorithm to a point on the X
axis X∗, the same point is reached in Mk iterations for k > 1 where

Mk =
−M1

n log(1− k(1− exp(−1/n)))
. (A.1)

A.3.2 The �nal variance

After Mk iterations, upon each of which k points are skipped, the variance
might be estimated as the product of the number of iterations and the
variance associated with each iteration:

var(log XMk
) =

Mk∑
j=1

(ψ1(n− k + 1)− ψ1(n+ 1)) (A.2)

=

Mk∑
j=1

k−1∑
m=0

1

(n−m)2
. (A.3)

Supposing k is variable:

var(log XMk
) =

Mk∑
j=1

(ψ1(n− kj + 1)− ψ1(n+ 1)) (A.4)

=

Mk∑
j=1

kj−1∑
m=0

1

(n−m)2
, (A.5)

where kj is the number of points skipped on the jth iteration.

A.3.3 Skilling's approximation of the variance

Skilling states that it takes Hn steps to traverse the posterior to its bulk.
To use

√
H/n (that is,

√
var(log XHn)) as the standard deviation seems

to suggest that all errors arise in the transition to the bulk, and that none
is associated with its traversal. Similarly, the �nal n live points are not
included in the calculation of the standard deviation.

In Equation A.2, we need to know the number of iterations Mk that take
us to the point equivalent to Hn in the case that k = 1. However, Mk is
typically not an integer so it is unclear how to perform this sum. In the
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case that kj ≡ k it might be tempting to write

var(log XMk
) = Mk(ψ1(n− k + 1)− ψ1(n+ 1)) (A.6)

= Mk

k−1∑
m=0

1

(n−m)2
. (A.7)

However, the variance is not a linear function of the variance of the kth

point; the rate of change of the variance dips and rises between leap points.
We therefore use the more general formula

var(log XMk
) =

Mk∑
j=1

kj−1∑
m=0

1

(n−m)2
(A.8)

where the �nal sum to kMk
can terminate at the point corresponding to

XHn. This is di�erent from taking some fraction of the variance of one
point corresponding to Mk. This applies also to the case where kj varies;
the variance can be summed precisely, point by point.

In terms of the algorithm: We start at the X = 1 end and work back
through the points until we reach the �rst point with X smaller than e−H.
Each point adds a term 1

(n−m)2
to the variance, where m is the number of

preceding points with the same width. E.g., if the width changes for every
point (k ≡ 1), m ≡ 0; if the width changes after 10 points, then the tenth
point will have m = 9.



Appendix B

Derivation of Equation 4.12

To recap, we have:

• N cells

• Up to NP proteins

• NS cell stages

• J = NS(NP + 1) states indexed by j = {1, 2, ..., J}

• Rj denoting the number of cells in state j, with
∑
Rj = N

• Pj denoting the proportion of N that is in state j, with
∑
Pj = 1 and

R = NP .

Usually, we express the result of reactions occurring over some time step as

R
(t+1)
i = R

(t)
i + ui(R

(t)),

where ui is the change to Ri as a function of all the states. In order to
model the evolution of probabilities, we need to know what happens to all
cells at each time point. A state's proportion Pi can change even if there
has been no change in Ri. What we seek is the change in proportion, which
we call vi:

P
(t+1)
i = P

(t)
i + vi(N

(t), P (t)). (B.1)
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The change to the total number of cells is

N (t+1) = N (t) +
J∑
i=1

ui(R
(t)). (B.2)

A state's probability is

P
(t+1)
i =

R
(t+1)
i

N (t+1)
. (B.3)

Writing in terms of states at time t and then omitting the superscript, we
have

P
(t+1)
i =

R
(t)
i + ui(R

(t))

N (t) +
∑J

j=1 uj(R
(t))

(B.4)

=
Ri + ui(R)

N +
∑J

j=1 uj(R)
(B.5)

=
N(Ri + ui(R))

N(N +
∑J

j=1 uj(R))
(B.6)

=
NRi +

∑J
j=1 uj(R)Ri +Nui(R)−Ri

∑J
j=1 uj(R)

N(N +
∑J

j=1 uj(R))
(B.7)

=
(N +

∑J
j=1 uj(R))Ri +Nui(R)−Ri

∑J
j=1 uj(R)

N(N +
∑J

j=1 uj(R))
(B.8)

=
Ri

N
+
Nui(R)−Ri

∑J
j=1 uj(R)

N(N +
∑J

j=1 uj(R))
(B.9)

=
Ri

N
+
Nui(R)−NPi

∑J
j=1 uj(R)

N(N +
∑J

j=1 uj(R))
(B.10)

=
Ri

N
+
ui(R)− Pi

∑J
j=1 uj(R)

N +
∑J

j=1 uj(R)
(B.11)

= Pi +
ui(R)− Pi

∑J
j=1 uj(R)

N +
∑J

j=1 uj(R)
(B.12)

Thus the function vi can be expressed in terms of N and P at time point t:

vi(N,P ) =
ui(NP )− Pi

∑
uj(NP )

N +
∑
uj(NP )

. (B.13)
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Here, vi is the change in proportion, ui is the change in number, N is the
total number of cells, and

∑
uj(NP ) is the change in protein number going

to the next time step.



Appendix C

Diagonalisation for correlated

parameters

The UT decomposition relies on the construction of extrinsic noise by con-
sidering reactions independently. In cases where parameters are dependent,
it is necessary to transform the equations to a new basis. Then the contri-
butions of noise will correspond to linear combinations of parameters, i.e.
relations between parameters. For example, two transcription rates might
be jointly determined by the availability of transcriptional machinery.

A new set of parameters θ̃ = M−1θ is constructed such that the covari-
ance matrix for the transformed parameters Σ̃ = M−1ΣM is diagonal. For

example, for the birth�death process and M−1 =

(
a b
c d

)
:

θ̃1 = aθ1 + bθ2

θ̃2 = cθ1 + dθ2

Var(θ̃1) = a2Var(θ1) + b2Var(θ2)

Var(θ̃2) = c2Var(θ1) + d2Var(θ2)

Cov(θ̃1, θ̃2) = ac · Var(θ1) + bd · Var(θ2) + (ac+ bd)Cov(θ1, θ2)

= 0.
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These allow the functions xs = f(θs) to be rewritten as xs = g(θ̃s) so that

fmean(θs) = θs,1/θs,2 7→ gmean(θ̃s) =
dθ̃s,1 − bθ̃s,2
aθ̃s,2 − cθ̃s,1

,

fvar(θs) = θs,1/θs,2 7→ gvar(θ̃s) =
dθ̃s,1 − bθ̃s,2
aθ̃s,2 − cθ̃s,1

.

For reaction rates that are related, we can no longer say that some variance
can be attributed to some reaction, because this variance has an extrinsic
component which does not exclusively belong to one reaction. We no longer
have a situation of `variability in reactions' contributing variance to the
output. Rather, hidden variables manifest in multiple reactions contribute
to the variance.



Appendix D

Decomposed noise: model details

and results

Here, details of the set-up for each system are presented, including µθ and
Σθ, the molecular species modelled (output species in bold), the reactant
and product stoichiometries (SR and SP ), the mean value from the UT
output, and each contribution to the noise using the decomposition above.
Mass-action kinetics are employed, with all reactions of zeroth or �rst order.

D.1 Birth�death

µθ =
(

10 0.1
)
, Σθi = a2µ2

θi
, a = 0.05

SR =
(

0 1
)
, SP =

(
1 0

)
µx = 100.25

D.2 Catalytic cascade

Species: protein 1, protein 2, protein 3.

SR =

 0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

 , SP =

 1 0 1 0 0 0
0 0 1 0 1 0
0 0 0 0 1 0
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Table D.1: Reaction contributions to intrinsic and extrinsic noise for the
birth�death system

Non-zero cross-terms

i Varri µ
(ri)
Varx
− VarLNA Σ

(ri)
x̄,x̄

(
Σ

(ri,j)
x̄,x̄

)
Total

1 50.0 0.0 25.0 75.0
2 50.0 0.25 25.125 75.375

Total 100.0 0.25 50.125 0.0 150.375

D.2.1 Slow

µθ =
(

50 1 0.1 0.1 0.1 0.1
)

Σθi = a2µ2
θi
, a = 0.1

µx =
(

50.5 51 51.5
)

Table D.2: Reaction contributions to intrinsic and extrinsic noise for slow
catalysis

Non-zero cross-

i Varri µ
(ri)
Varx
− VarLNA Σ

(ri)
x̄,x̄ terms

(
Σ

(ri,j)
x̄,x̄

)
Total

1 1.2397 -0.0000 25.0 26.2397
2 1.2397 0.8231 25.5 0.5000 0.5000 28.5628
3 12.5 0.0248 25.0 37.5248
4 12.5 0.9812 25.5 0.5000 0.5000 39.9812
5 25.0 0.2748 25.0 50.2748
6 25.0 0.9812 25.5 0.5000 0.5000 52.4812

Total 77.4793 3.0851 151.5 3.0 235.0644

D.2.2 Fast

µθ =
(

50 1 10 10 10 10
)

Σθi = a2µ2
θi
, a = 0.1

µx =
(

50.5 51 51.5
)
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Table D.3: Reaction contributions to intrinsic and extrinsic noise for fast
catalysis

Non-zero cross-

i Varri µ
(ri)
Varx
− VarLNA Σ

(ri)
x̄,x̄ terms

(
Σ

(ri,j)
x̄,x̄

)
Total

1 21.6942 -0.0000 25.0 46.6942
2 21.6942 1.2491 25.5 0.5000 0.5000 49.4433
3 12.5000 0.4339 25.0 37.9339
4 12.5000 2.1493 25.5 0.5000 0.5000 41.1493
5 25.0000 0.6839 25.0 50.6839
6 25.0000 2.1493 25.5 0.5000 0.5000 53.6493

Total 118.3884 6.6655 151.5 3.0000 279.5539

D.3 Feed-forward loop

Species: protein 1, protein 2, protein 3.

SR =

 0 1 1 0 0 0 1
0 0 0 1 1 0 0
0 0 0 0 0 1 0

 , SP =

 1 0 1 0 0 0 1
0 0 1 0 1 0 0
0 0 0 0 1 0 1


D.3.1 Slow

µθ =
(

50 1 0.1 0.1 0.05 0.1 0.05
)

Σθi = a2µ2
θi
, a = 0.1

µx =
(

50.5 51 51.25
)
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Table D.4: Reaction contributions to intrinsic and extrinsic noise for slow
feed-forward loop

Non-zero cross-

i Varri µ
(ri)
Varx
− VarLNA Σ

(ri)
x̄,x̄ terms

(
Σ

(ri,j)
x̄,x̄

)
Total

1 1.4979 0.0 25.0 26.4979
2 1.4979 0.6484 25.5 0.2500 0.5000 28.3964
3 3.125 0.0062 6.25 9.3812
4 3.125 0.3735 6.375 0.2500 0.2500 10.3735
5 12.5 0.0687 6.25 18.8187
6 25.0 0.6546 25.5 0.5000 0.2500 51.9046
7 12.5 0.0114 6.25 18.7614

Total 59.2459 1.7628 101.125 2.0000 164.1336

D.3.2 Fast

µθ =
(

50 1 10 10 5 10 5
)

Σθi = a2µ2
θi
, a = 0.1

µx =
(

50.5 51 51.25
)

Table D.5: Reaction contributions to intrinsic and extrinsic noise for fast
feed-forward loop

Non-zero cross-

i Varri µ
(ri)
Varx
− VarLNA Σ

(ri)
x̄,x̄ terms

(
Σ

(ri,j)
x̄,x̄

)
Total

1 21.9525 -0.0000 25.0 46.9525
2 21.9525 1.0617 25.5 0.2500 0.5000 49.2642
3 3.125 0.1085 6.25 9.4835
4 3.125 0.8489 6.375 0.2500 0.2500 10.8489
5 12.5 0.1710 6.25 18.9210
6 25.0 1.8291 25.5 0.5000 0.2500 53.0791
7 12.5 0.1136 6.25 18.8636

Total 100.155 4.1328 101.125 2.0000 207.4128
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D.4 Dual-reporter experiments

The classical illustration of the roles of extrinsic and intrinsic noise is the
dual-reporter experiment pioneered by Elowitz et al. (2002), in which two
reporters share an environment (extrinsic) and have independent �uctua-
tions (intrinsic).

In the dual-reporter experiment, contributions from intrinsic and extrinsic
sources of noise to the overall variability are measured directly. Var(p1, p2)
is calculated from the experimental (or here the simulated) data, shown
schematically in Figure D.1B, and the coe�cient of variation (CV) is de�ned
as (Hil�nger & Paulsson, 2011)

CVtot =
Vartotp1
µ2
p1

= CVin + CVex, (D.1)

with

CVex =
Var(p1, p2)

µp1µp2
. (D.2)

D.4.1 Model set-up: two reporters

Here I use the model of Toni & Tidor (2013) with two identical mR-
NAs and proteins (shown schematically in Figure D.1A), the parameters
of Shahrezaei et al. (2008), and the noise equations of Hil�nger & Paulsson
(2011) to show how this experiment can be modelled and dissected.

Species: mRNA 1, protein 1, mRNA 2, protein 2.

SR =


0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

 , SP =


1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0

 ,

µθ =
(

0.07 0.005 0.2 0.0004
)

Σθi = a2µ2
θi
, a = 0.05

µx =
(

14 7035 14 7035
)

The same parameters are used for each mRNA�protein motif.
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Figure D.1: The dual-reporter experiment. A: A schematic of the dual-reporter
experiment. A plasmid contains two identical genes, one tagged red (RFP), the
other green (GFP). For the purposes of modelling, the process of their expression
consists of transcription, mRNA decay, translation and protein decay. B: Sim-
ulated measurements from cells expressing the plasmid in panel A. Correlations
between RFP and GFP are due to shared environmental conditions and thus
constitute extrinsic noise (i.e. spread along the x = y axis). Uncorrelated vari-
ability is due to random occurrences of reactions and thus contributes to intrinsic
noise. C: The intrinsic and extrinsic contributions of the four reactions to the
output noise, as calculated with the LNA�UT model of a single instance of gene
expression. D: Comparison of predictions of intrinsic and extrinsic noise in pro-
tein expression from simulations of the dual-reporter experiment (panels A and
B) and the LNA�UT model (panel C). Simulation data consist of 20 repetitions
of 512 simulations, with error bars corresponding to one standard deviation.
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Var(p1, p2) is found from the LNA�UT approach as:

Var(p1, p2) = Varin(p1, p2) + Varex(p1, p2)

=

(
269500 0

0 269500

)
+

(
492500 492500
492500 492500

)
.

(D.3)

Shown in Table D.6, the results of the model coincide well with the stochas-
tic simulation results (Figure D.1D).

Table D.6: Noise calculations for simulated and LNA�UT modelled gene
expression. Simulation data consist of 20 repetitions of 512 simulations.

〈p1〉, 〈p2〉 Var(p1, p2) CVin CVex CVtot

Simulation 7059, 7042

(
770100 492300
492300 763800

)
0.0055 0.0099 0.0154

LNA�UT 7035, 7035

(
761900 492500
492500 761900

)
0.0054 0.01 0.0154

D.4.2 Model set-up: one reporter

Here I show how the LNA�UT method can be used to reproduce the same
result by modelling only one reporter.

Species: mRNA, protein.

SR =

(
0 1 1 0
0 0 0 1

)
, SP =

(
1 0 1 0
0 0 1 0

)
,

µθ =
(

0.07 0.005 0.2 0.0004
)

Σθi = a2µ2
θi
, a = 0.05

µx =
(

14 7035
)

η2
tot = 0.0154 η2

int = 0.0054 η2
ext = 0.01

The values for intrinsic, extrinsic and total noise are the same as those
generated when two reporters were modelled explicitly (Table D.6).



D.4. Dual-reporter experiments 175

Table D.7: Reaction contributions to intrinsic and extrinsic noise for one
reporter modelling a two-reporter experiment

µ
(ri)
Varx
− Non-zero cross-

i Varri VarLNA Σ
(ri)
x̄,x̄ terms

(
Σ

(ri,j)
x̄,x̄

)
Total

1 129629.6 0.0 122500.0 252129.6
2 129629.6 1821.5 123112.5 612.5 255176.1
3 3500.0 648.1 122500.0 126648.1
4 3500.0 717.2 123112.5 612.5 127942.2

Total 266259.2 3186.8 491225.0 1225.0 761896.0

D.4.3 One reporter, dynamic activator

Species: activator, mRNA, protein.

SR =

 0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

 , SP =

 1 0 1 0 0 0
0 0 1 0 1 0
0 0 0 0 1 0

 ,

µθ =
(

0.1 0.001 0.07 0.005 0.2 0.0004
)

µx =
(

100.25 14.07 7052.5
)

Table D.8: Reaction contributions to intrinsic and extrinsic noise for one
reporter modelling a two-reporter experiment with activator dynamics

i Varri Intrinsic Extrinsic
1 69135.8 69135.8
2 69135.8 69135.8
3 129629.6 129629.6
4 129629.6 129629.6
5 3500.0 3500.0
6 3500.0 3500.0

Total 404530.8 266259.2 138271.6

To relate the results to the dual-reporter experiment, we relabel the acti-
vator dynamics as extrinsic in Table D.8. Thus, the totals for intrinsic and
extrinsic are 266259.2 and 138271.6, respectively.
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