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Abstract

We explore, using a variety of models grounded in computational neuroscience, the dynam-

ics of attachment formation and change. In the first part of the thesis we consider the

formation of the traditional organised forms of attachment (as defined by Mary Ainsworth)

within the context of the free energy principle, showing how each type of attachment might

arise in infant agents who minimise free energy over interoceptive states while interacting

with caregivers with varying responsiveness. We show how exteroceptive cues (in the form

of disrupted affective communication from the caregiver) can result in disorganised forms of

attachment (as first uncovered by Mary Main) in infants of caregivers who consistently in-

crease stress on approach, but can have an organising (towards ambivalence) effect in infants

of inconsistent caregivers. The second part of the thesis concerns Self-Attachment: a new

self-administrable attachment-based psychotherapy recently introduced by Abbas Edalat,

which aims to induce neural plasticity in order to retrain an individual’s suboptimal attach-

ment schema. We begin with a model of the hypothesised neurobiological underpinnings

of the Self-Attachment bonding protocols, which are concerned with the formation of an

abstract, self-directed bond. Finally, using neuroscientific findings related to empathy and

the self-other distinction within the context of pain, we propose a simple spiking neural

model for how empathic states might serve to motivate application of the aforementioned

bonding protocols.
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1. Introduction

Attachment theory, a dominant paradigm in psychology, aims to explain the dynamics of

the relationship between an infant and a primary caregiver (most often a parent), and the

lasting effect that the nature of these early interactions has on the infant’s emotional and

social development. The theory states that each infant is genetically pre-disposed to seek

out an emotionally supportive, dependent relationship with a primary caregiver, to whom

they become “attached”. Extensive empirical evidence has shown that caregivers who are

sensitive and responsive to requests for comfort raise secure children, who are confident in

the ability of the caregiver to provide a “secure base” from which they can explore and

learn. On the other hand, caregivers who are insensitive to the infant’s attachment needs

foster various forms of insecure attachment. At the neural level, these organised attachment

patterns, which become apparent by the end of the first year, are believed to reflect deeply

embedded cognitive-emotional schemas in unconscious and implicit memories, rooted in

Right Hemisphere (RH)-biased cortical-subcortical circuits.

In this thesis we will study (in the form of computational models) how various types of

attachment might form in infants, along with the proposed neurobiological underpinnings of

a new self-administrable attachment-based psychotherapy which has recently been proposed

as a method for retraining an individual’s attachment schema. The dynamics of attachment

are explored using a number of paradigms from computational neuroscience and machine

learning: in particular the free energy principle, deep learning and spiking neural networks.

1.1 Chapters

The remainder of this thesis is structured as follows. In Chapter 2 we overview background

material on attachment theory (from both psychological and developmental neuroscientific

perspectives), and cover existing work in computational and mathematical attachment mod-

elling. In Chapter 3 we present a computational account of organised and disorganised at-

tachment development within the context of the free energy principle. Next, in Chapter 4, we

present a model of the hypothesised neurobiological underpinnings of the Self-Attachment

bonding protocols, which are believed to provide a method for retraining an individual’s
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attachment schema. In Chapter 5 we explore the computational neural underpinnings of

the Self-Attachment empathy protocols, and how they might motivate application of the

bonding protocols. Finally, we offer some concluding remarks in Chapter 6.

1.1.1 Relationship to Published Work

The work in Chapter 4 was presented at IJCNN 2015 and published in the conference

proceedings (Cittern and Edalat, 2015c). A paper based on the work presented in Chapter 5

is currently under review by the Journal of Computational Psychiatry. The work in Chapter

3, which was undertaken in collaboration with Dr Tobias Nolte, is as yet unpublished.

Other work completed during the course of the PhD includes a neurocognitive model of

infant attachment formation (presented at IEEE SSCI 2014 and published in the conference

proceedings (Cittern and Edalat, 2014)) and a multi-agent framework for manipulating

reward in order to generate new Nash equilibria (presented as a poster at AAMAS 2015 and

published as a short paper in the conference proceedings (Cittern and Edalat, 2015a)).
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2. Background

During the early stages of life, an infant is highly dependent on others for their survival.

Attachment theory posits that each infant is genetically pre-disposed to seek out an emo-

tionally supportive, dependent relationship with a primary caregiver, to whom they turn

for comfort and safety during times of stress or perceived threat. The central tenet of the

theory is that the nature of early dyadic attachment interactions (and in particular the

caregiver’s response to the emotionally-charged bids for proximity by the infant) lead to

particular, distinguishable attachment styles. These attachment styles, which reflect an in-

ternal working model (attachment schema) capturing the extent to which the infant believes

they can rely on the caregiver for assistance in emotion and stress regulation, manifest in

different patterns of behaviour during times of dysregulation. Early interactions are believed

to have a disproportionately large effect on the formation of this schema in the infant, with

attachment experiences generalised to other socially challenging and emotionally charged

situations that the individual may find themselves in later in life.

Extensive empirical evidence has shown that caregivers who are responsive to requests

for comfort raise secure children, who are confident in the ability of the caregiver to provide

a “secure base” from which they can explore and learn about the world. On the other hand,

a caregiver who is consistently dismissive of attachment need raises an avoidant child, who

comes to learn that these needs will generally not be met by the caregiver, and instead focuses

on developing alternative, self-coping strategies. Inconsistent caregivers have been shown

to raise ambivalent children, who come to spend much of their time in a state of anxiety;

uncertain as to whether or not they can depend on the caregiver for security. Caregivers

who are either “helpless” (i.e. convey an inability to provide for the infant’s attachment

needs), or “hostile” (generate additional fear in the infant) have been shown to foster various

forms of disorganised attachment. From a clinical perspective, disorganised attachment is

particularly significant since (as we will see) it has been linked to a predisposition for the

development of various psychological disturbances.
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2.1 Roots of Attachment Theory

In the 1940s a psychiatrist and psychoanalyst named John Bowlby began to study early

mother-child relationships, and in particular the effects on the child of maternal deprivation

and separation. Bowlby strongly opposed the dominant psychoanalytic views of the time,

which argued that Freudian drives (such as fulfilment of hunger or thirst) were the key to

understanding an infant’s tie to their mother (he remarked that “were it true, an infant of

a year or two should take readily to whomever feeds him, and this clearly is not the case”

(Sandler and Bowlby, 1989, p.104)). Instead, he theorised that it was the nature of the in-

fant’s cumulative early experience with its caregiver (usually the mother), and their family

life, that was key to understanding this tie along with subsequent emotional development.

His initial study into 44 juvenile thieves showed an empirical link between affection-less

behaviour and lack of a consistent caregiver in childhood (Bowlby, 1944). Following World

War 2 Bowlby collected data on the effects of hospitalisation on children, and his collabo-

rative work with Robertson played a major role in initiating changes in hospital practices

so that more parental involvement was encouraged (Bowlby and Robertson, 1953). He was

also commissioned to write the World Health Organisation’s report on the mental health

of homeless children (Bowlby et al., 1951). He concluded that in order for healthy mental

development an infant “should experience a warm, intimate, and continuous relationship

with his mother (or permanent mother substitute)”, which led to widespread changes in the

treatment of infants under institutional care.

Bowlby developed attachment theory over the following decades (Bowlby, 1958, 1960b,a,

1969, 1973, 1980, 1982), framing it as a lasting psychological connectedness that had a

biological, evolutionary basis. His theory took the view that each child was genetically

predisposed to form an attachment with a primary caregiver, to whom they would seek

proximity in times of stress, fear or perceived danger. According to Bowlby, the attachment

behavioural system (a result of natural selection) interacts with other behavioural systems

(fear, exploratory, caregiving) whose collective primary goal is experience of felt security in,

and survival of, the infant. He hypothesised that the attachment behavioural system is acti-

vated in response to both internal (e.g. pain, hunger) and external (e.g. being threatened or

endangered) events, triggering proximity seeking behaviours that in turn activate the care-

giving behavioural system (in the caregiver), such that the infant and caregiver are both

predisposed to seek and maintain proximity with each other. Central to this attachment

behavioural system was the concept of an internal working model: a representation of the

attachment relationship and its participants that the infant builds based on its particular

experiences. This internal working model is used to generate expectations and make pre-

dictions about future attachment-related experiences and caregiving behaviour, based upon

which the infant makes decisions about how they should act in order to achieve their goal
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of felt security.

The balance between attachment and environmental exploration was first examined by

Mary Ainsworth (Ainsworth, 1963), who proposed the idea that infants use their caregivers

as a secure base from which to explore the world while monitoring and periodically return-

ing to them as a safe haven. In particular, it was hypothesised that infants who were more

assured of their caregiver’s availability would be more confident in their exploration. Bowlby

later argued that “All of us, from the cradle to the grave, are happiest when life is organised

as a series of excursions, long or short, from the secure base provided by our attachment

figures” (Bowlby, 1988), where secure forms of attachment entail an internal working model

encapsulating confidence in the caregiver’s responsiveness and availability which results in

effective use of this secure base. The 1960s onwards saw the emergence of a large amount

of empirical data supporting Bowlby’s theories, and increasing research interest in the dif-

ferences between, and implications of, the types of attachment that different infant-parent

dyads foster.

2.2 An Empirical Classification Scheme for Infant At-

tachment

The first body of research to directly examine Bowlby’s hypotheses and provide empirical

evidence for links between maternal caregiving behaviour and infant attachment style came

from Mary Ainsworth. In 1967, Ainsworth published a longitudinal study into the patterns

of communication and behaviour between parents and their infants in Uganda, by observing

the dynamics of 16 families once every two weeks (Ainsworth, 1967). Although a relatively

small sample size, the data suggested that the infants gradually came to develop a preference

for a particular primary caregiver (in this case the mother), manifesting in a flight to her

when they were uncertain or distressed; the use of her as a secure base for exploration; and

an active approach on reunion following a separation. In addition, a minority of infants

were observed either not being soothed by their mothers on reunion, or not exploring their

environment to the same degree. Following interviews, Ainsworth concluded that these

differences were the result of disparities in the sensitivity of caregiving (measured in terms

of the perception of the subtleties and details of their infant’s behaviour). In addition, she

found evidence for a positive correlation between infant security and mother’s pleasure in

breast feeding (Bretherton, 1985). The Uganda study was followed up with similar research

in Baltimore, in which 26 mothers (recruited before the birth of their infants) were observed

in their home environments over 18 visits (every 3 weeks from 3 to 54 weeks postpartum)

lasting 4 hours each. The data collected supported the Uganda observations, and pointed

towards a cross-cultural and innate attachment system (Ainsworth et al., 1978).

One difference between the Uganda and Baltimore studies was that Baltimore infants
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Episode Participants Duration Description

1 Caregiver, infant,
experimenter

< 1 minute Experimenter brings mother and
infant to the room, gives instruc-
tions and introduces the room
(which contains toys and objects
of interest to the infant of this
age)

2 Caregiver, infant 3 minutes Caregiver sits in chair and reads
while infant explores. Caregiver
responds if approached, but does
not initiate

3 Caregiver, infant,
stranger

3 minutes Stranger enters, silent (1
minute), converses with care-
giver (1 minute), approaches
infant (1 minute)

4 Infant, stranger 3 minutes First separation: caregiver de-
parts, stranger comforts infant
if necessary (or otherwise sits in
chair)

5 Caregiver, infant 3 minutes First reunion: caregiver returns,
greets and/or comforts infant,
returns to chair and reads

6 Infant 3 minutes Second separation: caregiver de-
parts, infant is alone

7 Infant, stranger 3 minutes Second separation: stranger en-
ters, comforts infant if necessary,
otherwise sits in chair

8 Caregiver, infant 3 minutes Second reunion: caregiver re-
turns, greets and/or comforts in-
fant (whilst stranger leaves)

Figure 2.1: Strange situation episodes. Adapted from Ainsworth et al. (1978)

did not display the secure-base behaviour observed in Uganda, with exploration seeming to

continue when the mother departed. Ainsworth predicted that the Baltimore infants would

display the same pattern of behaviour as the Ugandan infants if they were placed in an

unfamiliar environment. As such she devised a controlled laboratory procedure called the

Infant Strange Situation (ISS), which has since gone on to become the standard measure of

attachment in infants between the ages of 9 and 18 months of age. The ISS consists of eight

phases (Fig. 2.1), with 3 stressful components (interaction with a stranger, caregiver sepa-

ration and an unfamiliar environment) that are designed to activate the infant’s attachment

system.

Application of the ISS provided results (which have since been replicated many times)
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suggesting three distinct attachment categories. These attachment types were termed secure,

avoidant and ambivalent, and each was found to be strongly correlated with a different

pattern of mother-infant interaction in the home environment (according to observations in

the fourth quarter of the first year) 1.

Ainsworth found that those infants who went on to be classified as secure based on

the year’s worth of observation displayed attachment behaviour in the ISS. These infants

exhibited a strong desire to explore their environment in the presence of the caregiver,

were distressed on separation, but were almost immediately consoled on reunion with the

mother. As a group, secure infants were thus characterised by effective use of the mother

as a secure base for exploration. In contrast, two distinct types of insecure attachment

emerged. In the first (avoidant) group, infants were observed by Ainsworth to continue

to explore despite the mother leaving the room, and avoided the mother completely on

reunion. Although they displayed little outward distress on separation, later studies found

increased heart rate (Donovan and Leavitt, 1985; Spangler and Grossmann, 1993; Zelenko

et al., 2005), decreased heart rate variability (Hill-Soderlund et al., 2008; Smith et al., 2016)

and increased cortisol (Spangler and Grossmann, 1993) (although see (Hertsgaard et al.,

1995; Spangler, 1998)) for these infants in response to the procedure, suggesting that they

do experience separation anxiety but attempt to regulate or repress internal stress and

emotion themselves. The second group of insecure infants (ambivalent) explored to a far

smaller degree than the secure and avoidant infants, instead remaining preoccupied with

the mother’s proximity throughout the procedure. Ainsworth identified two types of these

ambivalent infants: those who were “angry”, who oscillated between actions of rejection

and anger towards the mother; and those categorised as “passive”, who only expressed faint

bids for comfort. Ambivalent infants were observed to be harder to console once they had

achieved proximity with the caregiver, and they typically displayed behaviours indicating

anger, resistance and/or helplessness. A later meta-analysis of 2104 non-clinical, North

American infants that had undertaken the ISS found that 62 percent were classified as

secure, 15 percent avoidant, and 9 percent ambivalent van Ijzendoorn et al. (1999a).

In order to assess maternal fourth quarter caregiving behaviour in the home environ-

ment, Ainsworth developed four scales: sensitivity-insensitivity, cooperation-interference,

accessibility-ignoring and acceptance-rejection (Ainsworth et al., 1978). A mother scoring

high on sensitivity is alert to the infant’s signals, interprets them accurately, and responds

appropriately and promptly. A mother scoring high on cooperation respects the autonomy

1Some authors have argued that temperament (in terms of a biological predisposition to a particular
behavioural style that is independent of experience) can either partly or wholly account for infant behaviour
in the ISS (e.g. Belsky and Rovine (1987); Planalp and Braungart-Rieker (2013)). However, as was noted in
the review of a number of meta-analyses, “the empirical evidence is still insufficient to document a causal role
of temperament in the development of attachment security” (van IJzendoorn and Bakermans-Kranenburg,
2004, p.234). In this work we take the classical (and most widely held) view of attachment theory: that the
biggest factor in infant ISS (and attachment in general) behaviour is the cumulative prior conduct of the
caregiver towards the infant, and we do not consider the role of temperament
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of the infant and avoids interfering or exerting control over the infant’s behaviour whenever

possible. An accessible mother was defined as one with high psychological availability and

physical accessibility, and low preoccupation with other distracting demands on her atten-

tion. Finally, a mother scoring high for acceptance “cheerfully accepts the responsibility of

her maternal role” without interacting with the infant as if they were an obstacle to other

goals.

Ainsworth found that secure infants tended to have mothers that scored highly on all four

of these scales. Although acceptance-rejection was a better discriminant between avoidant

and ambivalent ISS classifications, she found that it was the sensitivity scale that best

predicted security over insecurity. A later meta-analysis of 4176 infants confirmed the

large effect size for sensitive-responsiveness (according to Ainsworth’s original definition)

on attachment security in the ISS (Wolff and Ijzendoorn, 1997). The study showed that

responsiveness alone (without additional consideration of the caregiver’s behaviour) was a

far weaker predictor than the more encompassing definition of sensitivity, and also found a

number of other predictors of attachment security, such as synchrony (the extent to which

interactions appeared to be reciprocal and mutually rewarding) and mutuality (including

a measure of the extent to which exchanges were positive and involved the infant and

caregiver attending to the same thing, and the caregiver’s responsiveness and skill in mod-

ulating the infant’s arousal). A meta-analysis of 13835 children assessed with attachment

Q-sort (an alternative procedure to the ISS) also found a strong effect size of caregiver

sensitivity on security (van IJzendoorn et al., 2004), and another meta-analysis focusing

on caregiver-intervention studies aiming to increase caregiver sensitivity additionally found

that successful interventions were strong predictors of enhancement to attachment security

(Bakermans-Kranenburg et al., 2003), supporting an effect for sensitivity on attachment

security. On the other hand, caregivers of avoidant infants have been found to be dismissing

or rejecting of the infant’s bids for connection; are emotionally unavailable, distant and

seemingly uncomfortable; are more rigid and inflexible in their behaviour; and have been

observed to have a propensity to withdraw when the infant was sad. An ambivalent infant

attachment style has been found to correlate with an inconsistent style of caregiving that

fluctuates between under- and over-involvement (Cozolino, 2014, p.150).

2.3 Disorganisation

The secure and insecure (avoidant, ambivalent) forms of attachment originally uncovered

by Ainsworth are typically considered to be organised forms of attachment, in that they

manifest in coherent and consistent behavioural strategies in the infant that are thought to

result from adaptations to the (attachment related) behaviour of their particular caregiver.

A fourth attachment classification was later identified by Mary Main (Main and Solomon,
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1986), who noticed that a relatively small subset of infants in the ISS did not fit into one of

the three organised classifications in that they seemed to lack a coherent strategy for their

attachment behaviour. These infants displayed bizarre or contradictory behaviours in the

caregiver’s presence and on reunion, including freezing, contradictory approach-avoidance

tendencies, backing towards the caregiver, and stifled screaming; behaviours which were

displayed without an immediately obvious explanation and often amidst the organised be-

havioural strategies.

Six categories of behaviour are considered in scoring disorganisation in the ISS (Main

and Solomon, 1990; Goldberg, 2000, p.25):

1. Sequential or simultaneous displays of contradictory behaviour (e.g. strong proximity

seeking followed by strong avoidance)

2. Undirected, incomplete or interrupted movements and expressions (e.g. seeking prox-

imity to caregiver but turning away before contact is made)

3. Stereotypies (repetitive or ritualistic), asymmetrical and mistimed movements and

expressions (e.g. sudden jerky movement)

4. Slow movements and expressions, or freezing (e.g. holding completely still for an

extended period)

5. Direct displays of apprehension or fear towards the caregiver (e.g. hands over mouth

upon return of caregiver with a fearful facial expression)

6. Direct displays of disorganisation, disorientation or confusion (e.g. aimless wandering)

Disorganised infants (considered insecure since they are unable to effectively use their

caregiver as a secure base) are unable to maintain a consistent strategy with regards to

attachment behaviour. They are described as either lacking a coherent strategy altogether,

or having an inclination towards a particular strategy (secure, avoidant or ambivalent) but

being unable to fully realise that preference. Thus, an effort is sometimes made to assign

a subcategory to disorganised infants, according to the underlying strategy that best fits

their overall behavioural patterns: D-Secure or D-Insecure (D-Avoidant or D-Ambivalent).

In cases where there does not appear to be an underlying strategy, infants are typically

assigned D-Unclassifiable. In the previously discussed North American meta-analysis (van

Ijzendoorn et al., 1999a) disorganised infants were found to comprise approximately 15

percent of the population.

2.3.1 Hypotheses on Causes

There are two main hypotheses with respect to the patterns of caregiving behaviour that

give rise to infant disorganisation, which we overview here. These are a) that the caregiver
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displays frightened or frightening behaviour towards the infant, and b) that the caregiver

displays more general patterns of disrupted affective communication.

2.3.1.1 Frightened/Frightening Behaviour

Main and Hesse proposed that frightened and/or frightening behaviour on the part of the

caregiver might be the key to understanding the emergence of disorganised attachment in

the infant (Main and Hesse, 1990). They suggested that disorganised infant behaviour

results from an unsolvable dilemma, in that the caregiver (i.e. the secure base from whom

the infant seeks comfort) has, as a result of past experience, also become associated with

being a source of fear (leading to “fear without solution”). In order to test this hypothesis,

a coding system including six categories of such infant-directed caregiving behaviours was

developed (Main and Hesse, 1992):

1. Anomalous, frightening/threatening behaviour

2. Sexualised behaviour

3. Disorganised/disoriented behaviour

4. Deferential, timid and submissive behaviour

5. Dissociative behaviour

6. Frightened behaviour

A number of studies using this scale have found support for the hypothesis (Jacobvitz et al.,

1997; Schuengel et al., 1999; McMahan True et al., 2001; Abrams et al., 2006). Also broadly

in support is evidence suggesting a strong association between caregiver maltreatment and

infant disorganisation (Carlson et al., 1989; van Ijzendoorn et al., 1999b).

2.3.1.2 Disrupted Affective Communication

Lyons-Ruth et al. built on Main’s Frightened/Frightening hypothesis on the origins of dis-

organised attachment by considering a wider variety of caregiving behaviours and patterns

of affective communication mediating the caregiver’s overall ability to moderate the infant’s

distress (Lyons-Ruth et al., 1999). They proposed instead that disorganised attachment

arises as a result of a “failure to repair”, with the infant unable to organise a consistent

strategy for attachment (and for using the caregiver as a source of comfort) when the care-

giver comes to be seen as ineffective in modulating their arousal and assisting them to

achieve a regulated state. This inability to modulate the infant’s arousal was proposed to

be caused by the caregiver’s own prior attachment experiences: if the caregiver did not

themselves experience comfort from their own caregiver during times of distress, then the
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infant’s distress is proposed to evoke fear in the caregiver. This fear in the caregiver was fur-

ther proposed to result in competing parental attachment tendencies towards the infant (e.g.

communications and behaviours that simultaneously invite and reject the infant), resulting

in patterns of disrupted affective communication and misattunement that fail to modulate

the infant’s arousal. Accordingly, they introduced the Atypical Maternal Behaviour Instru-

ment for Assessment and Classification (AMBIANCE) scale as a method for coding such

disrupted (atypical) affective communication in caregivers (Bronfman et al., 1999; Safyer,

2013, Appendix G). Under this scale, which includes many of the frightened, frightening

and dissociative behaviours coded for by Main and Hesse (1992), disrupted affective com-

munication has five dimensions: Affective Communication Errors (ACE), Role/Boundary

Confusion, Fearful/Disoriented Behaviours, Intrusiveness/Negativity, and Withdrawal.

In their initial study, Lyons-Ruth et al. (1999) investigated disrupted maternal affec-

tive communication in 65 mother-infant dyads (22 secure, 13 avoidant and 30 disorganised)

during the ISS. Disorganised infants were sub-categorised into D-Secure and D-Insecure sub-

groups: D-Secure infants tended to continue to approach the caregiver while displaying other

disorganised behaviours, whereas D-Insecure infants combined disorganised behaviours with

avoidance and resistance. While caregivers of D-Secure infants tended to display higher rates

of withdrawal (including compared to mothers of avoidant infants), caregivers of D-Insecure

infants were prone to disorientation, negative/intrusive (including frightening) behaviour

and role confusion, such that they tended to provide a complex mix of cues that were both

involving and rejecting of infant approach. Crucially, across all infants, maternal ACEs

were correlated with increased disorganisation, proximity seeking and crying, and ACEs

were additionally correlated with increased resistance in infants classified as either organ-

ised or D-Insecure. Overall rates of disrupted affective communication on the AMBIANCE

scale differentiated mothers of organised and disorganised infants (and also D-Secure from

D-Insecure, with more for mothers of the D-Insecure infants), however ACE was the only

dimension to individually differentiate mothers of organised and disorganised infants (with

no significant difference in rates of ACEs between D-Secure and D-Insecure mothers).

Subsequent studies have found evidence for elevated rates of ACEs in both mothers of

ambivalent and disorganised infants, during both free-interaction and while undertaking the

ISS. In a sample of 82 strange-situation aged infants (7 avoidant, 27 secure and 48 disor-

ganised, sub-categorised as 12 D-Secure, 21 D-Avoidant, 28 D-Ambivalent), Madigan et al.

(2006) investigated disrupted affective communication between infants and their mothers

during free interactions both with and without toys. They found heightened prevalence

of ACEs and fearful/disoriented behaviours during both interactions in mothers of disor-

ganised compared to organised infants, and elevated rates of role/boundary confusion and

negative/intrusive behaviour in the without-toys condition.

Safyer (2013) conducted an ISS with 52 infants (22 categorised as secure, 10 avoidant,
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8 ambivalent, 12 disorganised) and used the AMBIANCE scale to measured the prevalence

of ACEs in the mother on episodes 2,3,5 and 8 of the procedure. Although no significant

difference was found in the amount of ACEs in mothers of disorganised compared to or-

ganised (secure, avoidant and ambivalent) infants, significantly higher scores were found

for insecure (avoidant, ambivalent, disorganised) versus secure. Furthermore, in pairwise

comparisons of the four attachment classifications, it was found that mothers of ambivalent

infants displayed significantly more ACEs than mothers of secure, avoidant and disorganised

infants. The authors also found higher mean ACE score for mothers of disorganised com-

pared to secure and avoidant infants (although, contrary to the author’s prior hypothesis,

this difference did not pass the threshold for statistical significance).

Studies have also found evidence for overall heightened levels of disrupted affective com-

munication (including ACE) in mothers of disorganised versus organised, and ambivalent

compared to secure or avoidant, infants. Goldberg et al. (2003) studied 197 dyads (152

organised and 45 disorganised, subcategorised as 23 D-Secure and 22 D-Insecure) during

episodes 2,5 and 8 of the strange situation. They found that overall disrupted affective

communication was lower for mothers of organised compared to disorganised infants, and

for mothers of D-Secure compared to D-Insecure infants (although they did not present

scores for the ACE dimension alone). The finding of elevated ACEs in mothers of am-

bivalent infants in Safyer (2013) discussed above is consistent with the results presented in

Grienenberger et al. (2005). In that study of 45 mother-infant dyads undertaking the ISS

(23 secure, 8 avoidant, 4 ambivalent and 10 disorganised), higher scores for overall disrupted

affective communication were found in mothers of ambivalent and disorganised infants com-

pared to mothers of secure and avoidant infants (although they again did not present scores

specifically for the ACE dimension).

2.4 Adult Attachment

Although initially focusing on infant development, attachment theory expanded in scope to

examine internal working models in adults and their impact on, for example, romantic and

peer relationships. The most influential measure of attachment in adults is the Adult Attach-

ment Interview (AAI) (Main et al., 1985; Hesse, 2008), which is a semi-structured interview

aiming to elicit an adult’s state of mind with respect to attachment. The AAI interview

asks questions focusing on early memories of childhood experiences and the relationship

the participant had with their parents (such as separation experience and relationship atti-

tudes). The aim is to assess how these past attachment-related experiences are reflected on

and evaluated with respect to current functioning, which leads to an attachment classifica-

tion that is based on both the content and structure (coherence) of the participant’s verbal

responses to the interview questions.
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The AAI defines three adult attachment classifications that mirror the organised (secure,

avoidant and ambivalent) infant classifications. Secure-autonomous individuals are those

who provide narratives that value attachment relationships and describe them in a balanced

way using a coherent and consistent discourse. Those who are classified as Dismissing tend

to minimise or devalue the personal impact of attachment relationships, have a defensive

discourse, and show memory lapses. Preoccupied individuals provide an incoherent discourse

that tends to be over-dependent, and includes angry or ambivalent representations of past

attachment experiences. In addition to these classifications an individual might also be

classified as either Unresolved or Hostile/Helpless (Lyons-Ruth et al., 2005), which are

considered to be disorganised classifications. An unresolved state of mind is one which

shows trauma in relation to previous attachment experience (such as loss or abuse), whereas

hostile/helpless individuals display contradictory, unintegrated and unexamined emotional

evaluations of the caregiver (which may include negative devaluing mental representations

of the self and/or caregiver and references to fear).

A meta-analysis of studies (854 infant-caregiver dyads) comparing infant ISS classifica-

tion (measured at approximately 1 year of age) and caregiver’s AAI classification (assessed

either prospectively before childbirth, concurrently with the infant classification, or retro-

spectively) showed a strong predictive power for adult attachment classification on infant

attachment type (which was independent of when the AAI classification was undertaken)

(van IJzendoorn, 1995). Considering only organised infant/adult attachment types, then

on a secure-insecure split adult attachment classification was found to predict infant type

with 75% accuracy, whereas on a three-way split amongst these classifications (i.e. pair-

ing secure-autonomous with secure, dismissive with avoidant and preoccupied with am-

bivalent) predictive accuracy was found to be 70% (or 69% for just those studies in which

AAI classification was assessed before childbirth). Considering also disorganised/unresolved

infant/adult attachment classifications, then on a secure-insecure split AAI classification

predicted infant attachment type with 74% accuracy, while on a four-way split (including

unresolved-disorganised pairings) the correspondence was 63% (or 65% for prenatal studies

only). In other words, the analysis found that with high probability a caregiver’s prenatal

adult attachment type will predictively correspond to the attachment type of their infant at

one year of age. Unresolved caregivers display a higher prevalence of frightened/frightening

infant-directed behaviour (Jacobvitz et al., 2006) and have been directly linked to higher oc-

currence of infant disorganisation in a number of other studies (Steele et al., 1996; Schuengel

et al., 1999), as have hostile-helpless states of mind (Lyons-Ruth et al., 2005). Research has

also demonstrated stability in attachment type from infancy to adulthood (see (Cozolino,

2014, p.155) for a summary), with secure to insecure changes typically linked to adverse life

experiences or trauma (e.g. Waters et al. (2000)), and insecure to secure transformations

also possible (e.g. Hamilton (2000)). Overall, this suggests a tendency towards intergenera-
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tional transmission of attachment types, however this transmission is by no means inevitable,

especially given intervention.

A number of other measures of adult attachment have been proposed: we briefly describe

here those measures used in studies that we refer to later on. The Adult Attachment Pro-

jective (George et al., 1999) assesses adult attachment (according to the same attachment

groups as in the AAI) by asking participants to provide narratives (tell a story) in response

to a standardised set of pictures depicting attachment-relevant events such as solitude, sep-

aration or abuse. A number of self-report questionnaires have also been developed. In The

Relationship Questionnaire (Bartholomew and Horowitz, 1991), participants are presented

with groups of statements regarding attachment and relationships (with each group corre-

sponding to prototypical behaviour for a particular attachment type), with a classification

made according to which group of statements the participant reports as best reflecting their

stance. The Experience in Close Relationships self-report questionnaire (Brennan et al.,

1998) similarly presents attachment-related statements, but asks participants to score how

strongly they agree/disagree with each statement. This results in scores for attachment

anxiety and avoidance, based on which an overall classification is made (according to a

quadrant, with low scores on both scales corresponding to security, high scores to fearful

disorganisation, low avoidance and high anxiety to ambivalence, and high avoidance with

low anxiety to avoidant attachment).

2.4.1 Summary of Correlations Between Infant and Adult Attach-

ment Classifications

A summary of findings (adapted from Cozolino (2014)) on the correlations between infant

and adult attachment types and home caregiving behaviour is given in Fig. 2.2.

2.5 Attachment and Psychological Health

Secure attachment is believed to confer social developmental advantages on the individual:

for example, in a longitudinal study infants classified as secure were found to be rated higher

in competence by teachers and observed to be less isolated at preschool age, and rated higher

in self-confidence and leadership in middle childhood (Sroufe et al., 1999). While secure at-

tachment is thought to be associated with mental resilience and relatively quick recovery

from stress, it has been argued that insecure forms of attachment (the prevalence of which

correlates with a wide range of issues including depression, clinically significant anxiety,

and various personality disorders) can be viewed as a general vulnerability to (although not

necessarily a sufficient cause of) mental disorders (with particular symptomatology influ-

enced by other factors including genetic, developmental/experiential, and environmental,
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ISS AAI
Home Caregiving

Behaviour

Secure

Infant seeks
proximity, is easily

soothed and
returns to exploration

Detailed memory,
balanced perspective,
narrative coherency

Emotionally available,
perceptive and effective

Avoidant

Infant does not
seek proximity, nor
(outwardly) appear

stressed

Dismissing/denial,
minimising,
idealisation,
lack of recall

Distant and rejecting

Ambivalent

Infant seeks
proximity, is resistant

and not easily
soothed, slow to

return to exploration

Lots of output,
intrusions/pressure,

preoccupied,
idealising or

enraged

Inconsistent availability,
ACEs

Disorganised
Chaotic, inconsistent,
incoherent behaviours

Disoriented, conflictual
behaviour, unresolved

loss, traumatic
history

Disorienting,
frightened,
frightening,

hostile,
sexualised

behaviours,
ACEs

Figure 2.2: Summary of findings from attachment research, adapted from (Cozolino, 2014,
p.150).
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(Mikulincer and Shaver, 2012)). This general link between attachment insecurity and psy-

chopathology is proposed to be mediated by dysfunctional beliefs about the self and others

(e.g. lack of self cohesion, or unstable self esteem), disruptions in the development of ca-

pacities for regulation (including self-regulation) of emotion, and problems in interpersonal

relationships resulting from this incapacity (Mikulincer and Shaver, 2012).

From both a developmental and clinical perspective, disorganisation is a particularly sig-

nificant attachment categorisation. Disorganised attachment in infancy has been found to

predict teacher ratings of hostile classroom behaviour at five years of age (Lyons-Ruth et al.,

1993) along with childhood aggression towards peers (Lyons-Ruth, 1996), and criminality

and drug use in young adulthood have also been linked to disorganised models of attach-

ment (Allen et al., 1996). Disorganised attachment has furthermore been linked to Bor-

derline Personality Disorder (BPD), a disorder characterised by affective instability, intense

angry emotional outbursts, and difficulties of interpersonal exchange (American Psychiatric

Association, 2013; World Health Organization, 1992). A prominent theoretical account of

BPD posits a developmental basis for the disorder in early disorganised forms of attachment

experience, as a result of a defensive inhibition of mentalization capacities (Fonagy et al.,

2000; Fonagy, 2000), which is supported by evidence from a longitudinal study that found

disorganised attachment at 18 months (along with maltreatment and maternal hostility) to

be predictive of borderline symptoms at 28 years of age (Carlson et al., 2009). As with dis-

organised attachment, BPD shows a strong intergenerational effect (see discussion in Stepp

et al. (2012)), and caregivers with BPD have been linked to the development of disorgan-

ised forms of attachment in dependent infants. For example, Hobson et al. (2005) assessed

12-month-old infants of women with and without BPD in three settings including the ISS,

and found that a higher proportion of infants of caregivers with BPD (8 out of 10, compared

with 6 out of 22 for the control group) were categorised as having disorganised attachment

(the remaining 2 infants in the BPD group also showed signs of disorganisation). Women

with BPD have additionally been found to display a higher prevalence of hostile-helpless

(Lyons-Ruth et al., 2007) and unresolved (Macfie et al., 2014) states of mind in the AAI,

which (as we discussed previously) have both otherwise been linked to disorganised infant

attachment. Moreover, BPD mothers display an increased tendency for infant-directed be-

haviour otherwise found to be likely to lead to insecure and disorganised forms of attachment

(including frightened and disoriented behaviours and ACEs during the ISS (Hobson et al.,

2009)), and a decreased tendency towards positive and affiliative behaviours (including less

positive affect and more insensitive behaviour in response to infant distress during ISS re-

union (Kiel et al., 2011), and reduced smiling, imitation, touch (White et al., 2011) and

sensitivity and responsiveness (Newman et al., 2007) during free-interactions) of the type

thought to encourage security. Also supporting the link between infant disorganisation and

caregiver BPD, children aged 4-7 of BPD as opposed to non-BPD mothers have been found
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to express more negative parent-child relationship expectations (with a perception of the

relationship tending towards one that is dangerous, unpredictable and/or involving serious

or wilful harm, (Macfie and Swan, 2009)), while a study of 15 year old children found a

significant positive correlation between perceptions of maternal hostility reported by the

child and increasing borderline characteristics in the mother (Herr et al., 2008).

Disorganised forms of attachment have also been linked to dissociation, which is typically

defined as a deficit in the integration of memory, consciousness and identity that manifests

in the form of either a lack of attention to the outside environment or sudden breaks in the

continuity of discourse, thought or behaviour (of which the individual is unaware) (Liotti,

2004). Dissociative states of mind are associated with both individuals with BPD and those

classified as unresolved in the AAI (Liotti, 2004). Previous experiences of unresolved trauma

or loss are thought to result in sudden floods of emotion from implicit attachment memories

in such individuals, causing rapid shifts in state of mind that might sometimes lead to a

trance-like state, and other times to hostile rage (Siegel, 2012, p.140). As we discussed in

Section 2.3, disorganised infants display many behaviours within the context of attachment

that have been noted as similar to those indicative of dissociation in adults, including sudden

immobility, freezing and unresponsiveness towards the caregiver; contradictory patterns

of movement (displayed either simultaneously or in quick succession); sudden dazed or

trance-like expressions; disorientation; and aggressive gestures performed suddenly in the

middle of affectionate behaviours displayed towards the caregiver (Liotti, 2004; Main and

Morgan, 1996). It has been proposed that these behaviours might be the first instance

of dissociative reactions during life (Liotti, 2004), and that early disorganised attachment

experiences increase the vulnerability for dissociative reactions to other traumas later in life

(Liotti, 1992, 2004).

2.6 Neuroscience of Attachment

In this section we briefly outline the key neural and regulatory circuits, systems and ab-

stractions currently believed to underlie various infant attachment phenomena. Much of

what follows is based on the integrative work of Schore (2002, 2003a,b), Siegel (2012) and

Cozolino (2010, 2014) who, over the past few decades, have worked to develop a neuro-

scientific framework for attachment. We focus here particularly on key functionality of the

networks thought to be centrally involved in attachment from the developmental perspective

of the infant. More detail on these networks (including recent studies that have correlated

patterns of activity with independently assessed attachment classifications), along with the

neuroscience of parenting and caregiving, is introduced in Chapters 4 and 5.

The newborn baby has only a partially developed brain, with the brainstem and a signif-

icant part of the limbic system (including the amygdala) highly mature at birth (Cozolino,
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2010; Humphrey, 1968; Nikolić and Kostović, 1986; Ulfig et al., 2003), but cortical networks

that regulate these areas developing later, over critical periods of varying length and onset

(Cozolino, 2010). As Cozolino explains:

“It is an unfortunate twist of evolutionary fate that the amygdala is mature

before birth while the systems that inhibit it take years to develop. This leaves

us vulnerable to overwhelming fear with little or no ability to protect ourselves.

On the other hand, evolution has also provided us with caretakers who allow

us to link into their developed cortex until our own is ready” (Cozolino, 2010,

p.253).

At this early stage of development these authors view the brain primarily as a social organ,

facilitating communication and emotional appraisal in order to achieve homeostatic regula-

tion. The many early, repeated attachment interactions that an infant and caregiver engage

in are thought to be processed primarily in the emotionally-biased RH (which, according to

Schore, is both dominant and undergoing a period of critical development during the first

year of life (Schore, 2003a, p.74)), and the internal working model (attachment schema) has

been theorised to be based in unconscious and implicit memories, rooted mainly in RH-

biased networks centred on the Orbitofrontal Cortex (OFC), insular and cingulate cortices,

amygdala and hypothalamus (Schore, 2003a; Cozolino, 2014, p.53,143); areas known to be

central to emotional processing, social cognition, fear conditioning and homeostatic regu-

lation. The Anterior Insular (AI) and Anterior Cingulate Cortex (ACC) are involved in a

wide range of social information and emotion processing tasks (Cozolino, 2014, p.104,238),

and in Chapter 5 we will explore the role of these regions in facilitating empathic states.

Within the context of early attachment experience, the OFC and amygdala are thought to

be crucial regions in the assignment of emotions to caregiver representations and the predic-

tion of interaction outcomes, along with the regulation of homeostatic state via connectivity

with the hypothalamus. We explore the functions of these regions in more detail in the

following sections, in order to lay the ground work for our model of self-directed bonding in

Chapter 4.

Two key systems which dyadic attachment interactions serve to regulate are the arousal

and stress systems which (as we will see in Chapter 4) are strongly interlinked and mutually

stimulatory. Arousal (controlled by the Autonomic Nervous System (ANS)) is a physiologi-

cal and psychological state of being alert or reactive to environmental stimuli. Of particular

relevance is the Sympathetic Nervous System (SNS): a subsystem of the ANS responsible for

mobilising the body for “fight or flight” in response to perceived threat or danger. During

the fight or flight response, Norepinephrine (NR) (which increases alertness, attention, heart

rate and anxiety) is released from the Locus Coeruleus (LC) in response to stimulation by

the amygdala and hypothalamus (both of which receive inputs from the OFC) 2.

2Another subsystem of the ANS, the Parasympathetic Nervous System (PSNS), serves an opposite,
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The body’s reaction to stress (loosely defined as a reaction to perceived challenge) is

controlled by the hypothalamic–pituitary–adrenal axis. When stimulated by the amygdala,

the hypothalamus releases Corticotropin-releasing Hormone (CRH), which in turn results in

the release of adrenocorticotropic hormone from the pituitary gland, which causes the release

of cortisol from the adrenal cortex. Cortisol serves to increase blood sugar, suppress the

immune system, and aid in metabolism, but high sustained (chronic) levels in the body can

lead to high blood pressure and muscle damage. Evidence from animal and human studies

furthermore suggests that chronic stress might lead to a variety of effects on the brain,

including cell destruction, changes in proportions of cell types, and decreased plasticity

(Leuner and Shors, 2013) in regions including the hippocampus (Frodl et al., 2010; Woon

et al., 2010; Krugers et al., 2006), Medial Prefrontal Cortex (mPFC) (Radley et al., 2005,

2006) and OFC (Varga et al., 2017).

Crucially, according to these authors, dyadic attachment interactions serve not only to

immediately regulate the infant’s emotion, stress and arousal; but moreover, through a

mechanism of experience-dependent plasticity, facilitate the construction of networks that

form the basis for self-regulation and interactive coping strategies employed later in life

in other stressful situations (Wallin, 2007, p.24). The appropriate caregiver empathically

attunes to the infant’s distressed state before guiding them towards positive emotional states

in which stress and arousal are returned back to within tolerable levels. This repair in the

infant’s internal state is achieved with affectively charged interactions and communications

involving, for example, the physical expression of positive emotion, touch and singing. As

we will see in Chapter 4, such communications activate areas in the infant’s brain involved

in positive emotion and reward (including the OFC). Emotionally available caregivers who

engage in these reciprocal interactions aimed at repairing the infant’s internally distressed

state are believed to foster healthy growth and integration in these key cortical-emotional

circuits, and these dyadic transitions from positive to negative and back to positive affect

are thought to form the basis for the emergence of emotional resilience and imprint in

the infant expectations that ruptures in internal state will be repaired (Schore, 2001). On

the other hand, caregivers who are unavailable and insensitive to infant attachment need

can hamper this development, and in extreme cases where the caregiver exposes the infant

dampening function to the SNS by preparing the body for states of “rest and digest” by lowering blood
pressure and heart rate. The hypothalamus, which receives strong projections from the OFC and amygdala,
is involved in the regulation of both the SNS and PSNS systems (Saper and Lowell, 2014). According to
Polyvagal Theory, the PSNS consists of a phylogentically older system (the unmyelinated branch of the
vagus nerve) involved in defensive immobilisation, and a phylogenetically newer system (the myelinated
branch) which rapidly inhibits SNS and hypothalamic–pituitary–adrenal axis activity to allow for social
engagement (Porges, 2011), and it has been proposed that insecure attachment experience could disrupt
OFC integration with and regulation of this vagal system (Schore, 2003a, p.34). Some attachment theorists
have proposed secure attachment to involve a good balance between SNS and PSNS activity, avoidant
attachment a bias towards PSNS activity, ambivalence a bias towards SNS activity, and disorganisation to
involve simultaneously high levels of both SNS and PSNS activation (Cozolino, 2014, p.152), (Siegel, 2012,
p.318).
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to trauma, excessive fear or unregulated stress during this critical period of development,

representations of a self interacting with a highly dysregulating other are stored in the

infant’s brain (Schore, 2003a, p.35) predisposing them to future psychopathology (Schore,

2003a, p.6).

Recall that infants with insecure (particularly ambivalent and disorganised) attachment

types have been found to exhibit elevated cortisol levels compared to secure infants in

response to the ISS (Section 2.2), and that during this procedure insecure infants have

shown relatively high increases in heart rate on separation and slower return to baseline on

reunion. In Chapter 4 we will additionally review evidence for heightened baseline cortisol

activity in adults classified as preoccupied (ambivalent), suggesting a lasting impact for

failures in attachment-based regulation of arousal and stress systems during insecure infant

attachment experiences.

2.6.1 Hemispheric Lateralisation of Emotional Processing and Con-

trol

One proposal in Schore’s neuroscientific theory of attachment (outlined here) is a dominant

role for RH regions during early development and attachment experiences, which are thought

to be primarily emotional (rather than cognitive) in nature. Although both hemispheres

develop rapidly during an infant’s early years, Schore highlights studies of both electrical

activity (using Electroencephalography (EEG), (Giudice et al., 1987)) and blood flow (using

Dynamic Single Photon Emission Computed Tomography (Chiron et al., 1997)) in the brain

suggesting that the right cerebral hemisphere is dominant in both its development and pro-

cessing during the first 3 years of life (corresponding to the ages of infants in ISS data), after

which there is a shift to the Left Hemisphere (LH). Across all age groups, particular distinc-

tions across the lateral dimension have been noted in emotional control and processing, for

which it is believed that (in general) the RH is dominant. This is supported anatomically in

the greater relative connection that the RH has to subcortical regions compared to the LH

(Schore, 2003a, p.61), and also by (for example) studies of facial affect recognition ability

in children with hemispheric lesions (Voeller et al., 1988). It also appears that the RH is

more directly involved with the regulation of cortisol (Wittling and Pflüger, 1990), and the

ANS and arousal (Schore, 2003b) than the LH.

A large number of studies (reviewed by Schore) have found evidence supporting the idea

of lateralised valence, where RH activation is associated with more negative emotion whilst

LH activation is associated with more positive emotion. For example, EEG recordings have

shown that negative mood and depression are associated with greater frontal cortex activity

in the RH (Henriques and Davidson, 1991; Flor-Henry et al., 2004), and EEG recordings

from the left and right frontal and parietal regions of 10 month old infants showed that

RH activation level correlated with the visible level of distress shown by the infant during
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maternal separation (Davidson and Fox, 1989). Lesions to the LH have been found to be

accompanied by depression, and RH lesions with elevated mood (Carran et al., 2003; Braun

et al., 2008). A Functional Magnetic Resonance Imaging (fMRI) study found enhanced

RH activation when participants were shown negative emotional images, and higher LH

activation when they were shown positive images (Lee et al., 2004). Another fMRI study

found a strong bias towards the RH in the role of processing pain (Symonds et al., 2006).

Some neuroscientists are nonetheless cautious as to the extent to which the generalisation

of lateralised valance holds. In particular, studies have found a greater relative frontal

LH activation during states of anger, which would seem to contradict the model (Harmon-

Jones et al., 2010). There is, however, largely a consensus that the RH generally mediates

emotion resulting in avoidance behaviour, whereas the LH is involved in emotion resulting

in approach (see for example (Hane et al., 2008), which studied EEG measures in infants at

4 and 9 months). This is consistent with both the findings of the anger studies and those

used to support the idea of lateralised valance.

A few studies have investigated differential lateralisation effects with respect to attach-

ment classifications. In an ISS study of 159 infants aged between 13 and 15 months, EEG

measures (taken as a baseline, during play with mother and during play with an experi-

menter) showed that insecurely attached infants were found to exhibit relatively reduced

left frontal brain activity compared to securely attached infants (Dawson et al., 2001),

broadly consistent with theory of emotional valance lateralisation. In an EEG study on

adults, avoidant individuals made more errors when judging positive attachment-related

words presented to the RH using divided visual field methods 3 (Cohen and Shaver, 2004).

In another EEG study, adults were shown attachment-related video clips aimed at inducing

happiness, sadness and fear (Rognoni et al., 2008). Participants rated as more avoidant or

ambivalent were found to have a higher resting asymmetry towards the RH relative to secure

adults. In response to positive stimuli, ambivalent individuals showed a greater relative LH

activation, whilst avoidant showed greater relative RH activation. In contrast, in response

to negative stimuli, ambivalent individuals showed higher relative RH activation (especially

to fear-inducing stimuli), and avoidant a higher relative LH activation.

2.6.2 Amygdala

The amygdala is thought to be a key subcortical region within the context of attachment.

It plays an important role in the initial appraisal of external stimuli (Rolls, 1990), and the

learning and storage of these appraisals and emotional events in the form of unconscious,

implicit memories. The emotional significance that the amygdala assigns to external stimuli

3In Divided Visual Field experiments, visual stimuli are presented to either the left or right visual field.
If the visual stimulus appears on the left visual field, the visual information is initially projected to the
right hemisphere, whereas if the visual stimulus is presented to the right visual field the visual information
is initially received by the left hemisphere.
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is projected to other regions involved in cognitive functioning, such as attention, perception

and explicit (conscious) memory. This can result in various modulating effects, for example

enhancing the memory of an emotionally salient event in the hippocampus, or re-directing

cortical attention (LeDoux and Phelps, 1993). From the perspective of social interaction,

the primary role of the amygdala can be summarised as the modulation of vigilance and

attention, remembering emotionally significant events and people, and preparing the body

for a fight or flight response (Cozolino, 2014, p.175-178).

It is widely acknowledged that one of the amygdala’s primary roles is to remember

a threat, and generalise this threat to other possible future situations (Cozolino, 2010,

p.254). The amygdala has long been known to be involved in triggering a state of fear

(Feinstein et al., 2011): in particular, it has been strongly implicated in Pavlovian fear

conditioning, in which an emotionally neutral Conditioned Stimulus (CS) is repeatedly

paired with an Unconditioned Stimulus (US) that triggers a state of fear, until the CS itself

comes to elicit a fear response in absence of the US (LeDoux, 2003). The lateral nucleus (a

part of the Basolateral Amygdala Complex, consisting of the Lateral, Basolateral (Basal)

and Basomedial (Accessory Basal) nuclei (BLA)) is a major input region to the amygdala,

receiving sensory information from the thalamus and cortex, and responds to both CS and

US input. The BLA then projects to the central nucleus, which has direct projections

to the hypothalamus and ANS (which allow for the rapid translation of appraisals into

stress and autonomic fight or flight responses (Davis, 1992)) along with the dorsal central

(periaqueductal) gray, which can induce defensive, fear-invoked freezing behaviour (LeDoux

et al., 1988). This pathway is often called the “fast-path” for threat response, and allows the

body to respond to a potential threat even before conscious awareness, and while the “slow-

path” (mediated from the thalamus through the neocortex and hippocampus) analyses the

extent of the treat posed by the external stimulus within context (LeDoux, 1997).

As we will explore in more detail in Chapter 4, insecure (particularly ambivalent) forms

of adult attachment have been found to correlate with relatively high levels of activity in

the amygdala in a number of social and attachment-related contexts.

2.6.3 Hypothalamus

The hypothalamus is an integrative region which brings together a range of inputs relating

to the internal environment, comparing them to setpoints (ideal ranges) and activating

autonomic, endocrine and behavioural responses in order to maintain the internal state

within these ranges (Saper and Lowell, 2014). Receiving strong projections from the OFC

and amygdala, the hypothalamus is summarised by Cozolino as being a key region within

the context of attachment in terms of its function in translating social information into

hormonal secretions and bodily processes (Cozolino, 2014, p.48). As we will discuss in more

detail in Chapter 4, the hypothalamus plays an important role in both stress and arousal
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(fight/flight) responses to perceived threat: briefly, when threat is detected the Central

Nucleus of the Amygdala (CeA) stimulates the Parvocellular part of the Paraventricular

Nucleus of the Hypothalamus (PVNp) to release CRH (the precursor to cortisol, the stress

hormone), which causes the LC to release NR and stimulate the SNS. The hypothalamus

also plays important roles in attachment from the perspective of the caregiver: as we will

see in Chapters 4 and 5, the Magnocellular part of the Paraventricular Nucleus of the

Hypothalamus (PVNm) (when indirectly stimulated by the OFC) releases Oxytocin (OXT)

(a hormone and neurotransmitter that is involved in bonding, and can enhance prosocial

motivation), while the Medial Preoptic Area (mPOA) (a part of the anterior hypothalamus

which receives projections from the mPFC) facilitates caregiving behaviour via onward

projections to the mesolimbic Dopamine (DA) pathway.

2.6.4 Orbitofrontal Cortex

In general, the OFC has been highlighted as playing an important role in emotional appraisal

(i.e. the evaluation of the significance of internal and external stimuli, so that stimuli ap-

praised as being motivationally significant will evoke an emotional reaction), in associating

sensory input with reward, and in the evaluation of interpersonal interactions in terms of

internal states (Siegel, 2012, p.312-314), although the precise nature of its role in these func-

tions is an open research question. The OFC, which is particularly large in the RH (Schore,

2003a, p.50), has direct and reciprocal connections with the amygdala and hypothalamus

(Barbas, 2007), and receives polysensory interoceptive and exteroceptive information about

the internal and external environment (Kringelbach and Rolls, 2004). This region is thought

by attachment researchers to have an important role in early social communication, attach-

ment behaviour and affect regulation (Schore, 2002, 2003a,b; Siegel, 2012; Cozolino, 2010,

2014): in what follows we briefly overview some of the evidence motivating that claim.

In contrast to more dorsal and lateral areas of the prefrontal cortex which primarily

mediate LH-biased “cold” executive functions (Chan et al., 2008; Zelazo and Müller, 2002)

(e.g. working memory (Barbey et al., 2013) and planning (Mushiake et al., 2006)), orbital

and medial regions (including the OFC), in concert with regions such as the ACC and AI to

which they are strongly connected, are more involved in the mediation of RH-rooted “hot”

executive functions (such as the regulation of emotion and social behaviour, and decision

making involving emotional interpretation). Evidence from a number of imaging studies

suggests that both lateral and orbital-medial regions are active in infancy, and that they

serve to facilitate this same distinction between types of executive function (see Grossmann

(2013) for a review). However, while “cold” areas such as the dorsolateral prefrontal cortex

have a long maturation period lasting up until the third decade of life (Goldman-Rakic, 1987;

Luna et al., 2001), according to Schore the OFC (which is argued to be directly involved in
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a range of attachment functions) enters a critical period of maturation 4 at 10 to 12 months

of age, which corresponds to the period at which attachment patterns begin to be reliably

observed (Schore, 2003a, p.13,47).

A large body of evidence implicates (particularly lateral parts of) the OFC in being

involved in the inhibition and suppression of emotion in a broad range of contexts, including

physical sensation (e.g. pain), selective attention, emotion regulation, decision making and

social relationships (see Hooker and Knight (2006) for a review). For example, the lateral

OFC is thought to be involved in the reappraisal and suppression of negative emotion (Golkar

et al., 2012), and individuals assessed as having heightened emotion dysregulation have been

found to have reduced grey matter volume in this region (Petrovic et al., 2015). Reappraisal

of negative scenes in order to decrease emotional response results in increased lateral OFC

and adjacent ventrolateral prefrontal cortex and decreased amygdala activity, with activity

in OFC and amygdala inversely correlated (Ochsner et al., 2002, 2004; Phan et al., 2005).

One particularly relevant inhibitory pathway (that we will discuss in Chapter 4) extends from

the Medial Orbitofrontal Cortex (mOFC) and overlapping/adjacent Ventromedial Prefrontal

Cortex (vmPFC) through to the Intercalated Cells of the Amygdala (ITC) and CeA, and is

involved in inhibition of the conditioned fear response.

A number of proposals have been made regarding the specific function of the OFC

with respect to learning and decision making, and how representations stored by the OFC

might relate to emotional states. For example, the influential somatic marker hypothesis

proposes that the mOFC is involved in learning and updating associations between particular

situations (stimuli) and changes in physiological state (e.g. heart rate). The hypothesis

proposes that these learned associations give rise to emotions in similar future situations

that occur or are considered, and that these emotions guide decision making (by focusing

attention on stimuli predicting positive states, and rejecting stimuli predicting negative

outcomes) (Damasio et al., 1996).

A number of proposals on OFC function focus on a role for this region in reinforcement

learning. Reinforcement learning is concerned with how an agent should select actions in

their environment in order to maximise long-run cumulative reward (where a reward is

defined as anything an agent will work to acquire). Delivery of unexpected reward serves

to increase the probability of future repetition of the action within the current environment

state upon which its receipt was contingent, while unexpected punishment decreases this

probability, and a prominent account of reinforcement learning in the brain proposes that the

reward-prediction error (i.e. difference between expected and actual reward) is represented

in the phasic firing of DA neurons (Niv, 2009). A recent proposal of OFC function suggests

4A critical period of maturation is one in which the region is especially sensitive to environmental
stimuli. Schore argues that the OFC is in such a period at 10-12 months of age based on evidence of neuron
maturation along with synaptic excess (with experience during this period determining which synapses will
be preserved or pruned), and also based on evidence for the OFC serving as a central region for attachment
and homeostatic regulatory processes. See (Schore, 2003a, p.13) for detailed summary and references.
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that this region is involved in decision making processes in terms of representing hidden

states of the environment within the context of reinforcement learning, particularly in cases

where hidden states are partially observable (i.e. not determinable based on sensory input

alone) (Wilson et al., 2014; Schuck et al., 2016).

In the framework outlined by Rolls (2013), which we broadly follow for our models of Self-

Attachment in Chapters 4 and 5, the OFC is involved in emotion, (reinforcement) learning

and decision making as a result of two primary functions. The first of these functions

is its representation of the reward (anything that an animal will work to acquire) and

punishment (anything that they will work to avoid) value of primarily reinforcing stimuli

(stimuli such as food or pain that are positively or negatively reinforcing, i.e. will increase

or decrease the probability of repeating behaviours paired with them, innately and without

learning). Evidence reviewed by Rolls from both human and primate studies suggests that

the OFC represents reward and punishment associated with many different types of primary

reinforcer (including taste, pleasant and painful touch, and visual and auditory stimuli), and

in particular that its activity encodes reward value within the current motivational context

(e.g. neuron firing in response to food stimuli is positively correlated with hunger) (Rolls,

2013, p.71). The second function is the OFC’s involvement in the rapid learning and reversal

of associations between previously neutral stimuli and primary reinforcers, such that these

previously neutral stimuli become (as a result of their association with primary reinforcers)

secondary reinforcers (i.e. rewarding or punishing themselves). Rolls argues that emotions

are states elicited by reinforcers, defined in terms of the withholding or administration of

rewards and punishments (for example, non-delivery of an expected reward might lead to

anger, while delivery of a punishment might elicit a state of fear) (Rolls, 2013, p.18).

The OFC (along with the amygdala) outputs information on the reinforcing (emotional)

value of stimuli to four main targets in order to drive behaviour: the hypothalamus (which,

as we have discussed above, controls endocrine and autonomic reactions such as increased

heart rate), the basal ganglia (which is involved with habitual stimulus-response learning

and behaviour), the ACC (which is involved in learning response-outcome (where the out-

come is a motivationally relevant reward or punishment) associations used in goal-directed

behaviour), along with other areas involved in conscious declarative multi-step planning

and decision making (Rolls, 2013, p.209). In terms of the OFC’s interaction with the basal

ganglia and the habitual learning and response system, Rolls proposes in particular that

the OFC is responsible for the computation of reward prediction errors, and that the mid-

brain DA neurons (whose phasic firing encapsulates such errors (Schultz et al., 1997; Niv,

2009)) receive these signals from the OFC (possibly via the ventral striatum) (Rolls, 2015,

p.129). This proposal is made on the basis of the OFC containing both neurons that signal

the reward expected and reward obtained (unlike midbrain DA neurons), and furthermore

neurons that respond to mismatches between these signals.
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As we will explore in Chapter 4, the OFC (along with other areas associated with reward

processing, including the ventral striatum and Ventral Tegmental Area (VTA)) has been

found to be relatively underactive in individuals classified avoidant for attachment in various

social interaction-related contexts.

2.7 Existing Work in Computational Modelling of At-

tachment

Although remaining relatively fertile ground, a series of recent works have begun to explore

the dynamics of attachment using mathematical and computational models.

2.7.1 Dynamical Systems Models

Stevens and Zhang (2009) present a dynamical systems model of physiological infant at-

tachment in terms of opioid and arousal variables. The role of the caregiver is considered

to be a regulator of the infant’s internal physiological state, in particular their opioid (nat-

ural pain killers, such as endorphins and enkephalins) and arousal (e.g. norepinephrine,

cortisol) systems. High levels of opioid activity are associated with stimulating seeking and

exploratory behaviour (for low arousal levels), or states of euphoria (for high arousal lev-

els). On the other hand, when the infant’s opioid levels drop below a desirable threshold

this is subjectively experienced as anxiety or fear, and is usually associated with increases

in the arousal system, triggering attachment behaviour. This attachment behaviour is an

attempt on the part of the infant to induce comforting behaviour from the caregiver, which

stimulates opioid activity in the infant that decreases their arousal level and helps to return

them to a state of equilibrium. The infant’s internal state is then given only by joint levels

of activity in these opioid and arousal systems. Avoidant infants (who show low levels of

separation distress and continued exploration in the ISS) are proposed to be represented by

higher levels of sensitivity to opioids than arousal. On the other hand, ambivalent infants

(who show high levels of separation distress, and a relatively long time to be soothed on

reunion) are proposed to be represented by higher levels of sensitivity to arousal than opi-

oids. Secure infants (who are distressed on separation, but quickly soothed on reunion) are

represented by equal sensitivity to opioids and arousal.

Another dynamical systems model of attachment is presented in Buono et al. (2006),

which identifies the infant’s anxiety (increases in which imply decreases in comfort) along

with their emotional distance from the caregiver as quantities of interest. The authors

begin by considering the infant’s anxiety as a variable driven by parameters representing

the insensitivity of the caregiver to the infant’s needs and the distance between the infant

and caregiver, along with infant-specific parameters governing how they return to baseline
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following a stressful episode and their emotional stability. For some parameter values peak

anxiety (following separation) can be sustained with slow decay, whereas for other values it

returns quickly to baseline, which is proposed to be in correspondence with patterns observed

in the organised attachment types during the strange situation along a secure-insecure split.

The model is then extended to consider short-term variation in the ability of the caregiver to

down-regulate infant stress, by changing the parameter representing the emotional distance

of the infant from the caregiver (described above) into a variable. This emotional distance

variable itself changes according parameters governing the caregiver’s inconsistency and

insensitivity, along with a parameter representing the infant’s intrinsic curiosity levels and

the variable (described above) representing the infant’s anxiety level. The equation describes

an infant who will seek to increase distance (when it is low) from an insensitive caregiver (who

either does not respond to, or makes worse, infant high-anxiety states), who has a natural

tendency to reduce distance (proportional to their anxiety), and who has a natural drive to

explore (create distance) during low anxiety states. These two equations (infant anxiety and

emotional distance) are then combined to give a complete model capable of capturing the

three organised forms of infant attachment (secure, avoidant and ambivalent) in terms of

anxiety recovery in response to high anxiety and low distance states, and the distance infants

put between themselves and caregivers with differing consistency and sensitivity profiles.

2.7.2 Control Systems Model

Buono et al. (2006) propose a simple model of attachment based on a feedback system

grounded in control theory. The system represents the infant, whereas the controller (regu-

lating system activity) models the relationship between the caregiver and infant. The inputs

comprise a disturbance (representing some external stressful event) and a reference signal

(corresponding to a baseline stress level), and the output is the infant’s overall stress level.

In the absence of the caregiver the infant will amplify externally induced stress, whereas the

caregiver is proposed to have a regulating effect on infant stress in reducing the discrepancy

between actual stress and baseline levels. The regulator comprises three gains (positive or

negative) on infant stress: a proportional gain (assumed to be random) representing the

current ability of the caregiver to regulate infant stress, an integral gain representing the

healthiness of the past relationship between infant and caregiver (so that caregivers will

be more likely to reduce stress if they have previously done so), and a differential gain

representing caregiver consistency.

2.7.3 Attachment Types as Strong Patterns

Attachment schemas and prototypes have also been considered within the context of strong

(i.e. multiply learned) patterns in a Hopfield network (Edalat and Mancinelli, 2013; Edalat,
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2013a). It is shown both mathematically and in simulations that strong patterns give rise

to strongly stable attractors, with a large basin of attraction compared to simple (i.e. singly

learned) patterns. For a single strong pattern it is proven mathematically that a square

law property holds, such that the storage capacity for retrieving a strong pattern exceeds

that for retrieving a simple pattern by a multiplicative factor that equals the square of the

number of times that the strong pattern has been stored. This strong stability of strong

patterns, along with their large basins of attraction for random patterns, is proposed to

provide a conceptual model of how an infant might come to conform to a particular pattern

of attachment. Psychotherapeutic-driven changes in attachment type are proposed to be

modelled by the creation of new strong attractors, which result from the learning of a new

strong pattern that increasingly weakens an existing strong pattern as it competes for a

larger basin of attraction.

2.7.4 Goal-Based Agent Architectures

Petters (2006a,b) presents a number of goal-based cognitive agent architectures designed to

capture empirically observed attachment phenomena comprising increasing levels of com-

plexity. His work takes Bowlby’s view; that the attachment system comprises two key evolu-

tionary adaptations motivating learning and security, and that these innate drives manifest

in fear and attachment behavioural systems (to keep the infant safe), and exploratory and

socialisation behavioural systems (to foster learning).

The first architecture (Fig. 2.3), called the goal-switching architecture, is intended to

capture a regular and repeated interchange of behaviour that alternates between exploration

and proximity seeking. This architecture consists of 3 subsystems: goal activation, goal

selection and action. The goal activation subsystem contains 4 goal activator modules, each

of which represents a different implicit goal: Exploration (which senses the environment, and

passes increasing activation when a target of exploration is near), Socialisation (concerned

with learning about other agents, with a internal architecture to the exploration activator),

Security (which includes caregiver proximity anxiety, object wariness and unknown agent

wariness sub-activators), and Physical need (intended to represent the amalgamation of

all types of physical need, e.g. feeding and warmth needs). In simulations based on this

architecture, the caregiver remains static whilst the infant is free to sense and explore the

environment. The infant decides how to behave according to a winner-take-all policy based

on the goal with highest activation level: for Exploration the highest activator they move

towards a toy, for Physical Need, Security or Socialisation (with caregiver target) activators

highest they move towards the caregiver and signal to them, whereas for Socialisation (with

stranger target) activator highest they move towards, and signal to, the stranger.

Next, building on this goal-switching architecture, an attempt is made to describe infor-

mation processing structures that an infant might possess that would enable them to assess
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Goal Activation Goal Selection Action

exploration move-carer

anxiety move-stranger

object wariness security arbitration move-toy

agent wariness no-signal

socialisation signal-carer

physical need signal-stranger

Figure 2.3: Petter’s goal-switching agent architecture. See text for details.

carer sensitivity, and form an appropriate (secure or insecure) pattern of behaviour based

on this assessment. The caregiver is now assumed to have two goals to manage: exploring

their environment and responding to the infant’s signalling requests. In addition, the in-

fant can now adjust their proximity safe-range based on the responsiveness (delay) of the

caregiver following infant signalling. The infant’s goal activation and action selection are

as before, but the caregiver agent now only responds to the infant agent when the infant

agent’s signals are above some particular threshold. In simulatory experiments, there was

found to be a critical point for this threshold, determining whether the dyad developed into

a secure or insecure (non-specific between avoidant and ambivalent) style.

Finally, two architectures are presented to reproduce ISS behaviour seen in secure,

avoidant and ambivalent types of attachment. The first of these is similar in structure

to the proceeding architecture, although there is an additional avoid-pain goal activator,

along with a mutual inhibition arbitration scheme. Secure attachment occurs in infants

who have had a history of close physical contact predisposing the avoid-pain subsystem

to low activation, whereas avoidancy occurs in infants who have experienced rejection (re-

sulting in high levels of activation of the avoid-pain subsystem, which inhibits the security

goal activator leaving exploration as the dominant goal in a process akin to ethological dis-

placement), and ambivalence in infants with lower avoid-pain goal activation than avoidant

infants (such that only the security goal is activated). The second of these architectures

additionally contains a deliberative subsystem (inspired in part by Joseph LeDoux’s slow-
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path/fast-path theory of emotional processing (LeDoux, 1997)), and also includes a comfort

sensor input (which senses the comfort that physical proximity to the caregiver provides,

and stores this in memory). In this second architecture, avoidant attachment is explained

in terms of an inhibitory effect that the deliberative system has based on recall of memories

of a caregiver who previously provided low levels of comfort. In contrast to our work (to

follow in the next chapter), the architectures did not attempt to capture disorganised forms

of infant attachment.

2.7.5 Arousal Secure-Base Model

In developmental robotics, the attachment secure base and dyadic arousal regulation paradigms

are now being studied as mechanisms for driving a robot’s exploration in a novel environ-

ment. Hiolle et al. (2012, 2014) design an arousal-based model of an attachment secure

base, in order to study the influence of a human’s interaction on the robot’s learning. The

robot has a single goal, which is to learn the best model of its environment that it can. At

the same time it aims to keep in balance an internal measure of arousal, which is defined by

the degree to which the robot is memorising and recalling the current percepts, and which

dictates the robot’s behaviour. When the arousal level is low it continues to explore and

learn, but when it is too high it seeks comfort from a human attachment figure (who can

choose to either sooth/calm it to various degrees, or ignore it). The robot will resume explo-

ration once its arousal drops back to within its tolerable threshold. This drive to moderate

the arousal level is motivated by the inverted U-shape theory of arousal, which states that

higher-mammals attempt to maintain their average arousal level at a middle point that gives

optimal physiological conditions for learning (Anderson, 1990; Baldi and Bucherelli, 2005).

The robot architecture has 3 main subsystems: for learning, arousal and action selection.

The learning system comprises two neural networks: a Hopfield network used for the measure

of memory recall, and a Kohonen self-organising map used for the measure of classification.

The input to both networks is a binary matrix containing discretised sensor values for

the robot’s current percepts, and the robot’s arousal level is calculated using metrics from

the Hopfield network and Kohonen map, reflecting their performance. The first metric

is the discrepancy between the current stimuli and the output of the Hopfield network,

called surprise (since it decreases as a function of the familiarity). The second metric is

the categorisation adjustment, which is the sum of the variations of the weights of the

Kohonen map, corresponding to the difficulty of the categorisation of the input. Arousal

is also dependent on caregiver interaction (with any received comfort reducing the arousal

level). The robot then chooses actions based on this arousal level and an interval threshold:

if arousal is below the threshold the robot is not stimulated enough and searches for a

new stimulus, whereas if arousal is within the threshold they will continue to focus on and

attempt to learn the current stimulus. If arousal exceeds the threshold interval then the
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robot seeks out the caregiver for comfort.

A first experiment aimed to uncover whether the behaviour of the human caregiver

changed the learning experience of the robot or not. The experimenter behaved in 2 pro-

totypically different ways towards the robot: responding to every call for attention in a

dedicated way under the first prototype, and providing only initial comfort under the sec-

ond. The result was a larger mean and standard deviation of categorisation adjustment for

the non-cared for robot than the cared-for robot, and a larger surprise for the non-cared

for robot. The authors interpreted this as the cared-for robot having learnt its environment

better than the non-cared for robot, and was explained as being the result of the robot

tending to lose focus whilst calling for attention often, thus not allowing for its networks

to converge and stabilise. A second experiment, conducted with public participation at

the London Science Museum, aimed to assess whether the robot would elicit appropriate

caregiving behaviour from humans. Two robot profiles were tested: a “needy” robot (which

called for attention and looked for a human face when its arousal was high) and an “inde-

pendent” robot (which required assistance less often). The authors found that participants

preferred to interact with the needy robot. Subsequently, the model was updated in Hiolle

et al. (2014) to allow the robot to adapt itself along the needy/independent axis, according

to responsiveness of the caregiver.

2.7.6 Arousal-Based Neural Model of Infant Attachment

We attempted a synthesis of the work in Petters (2006a) and Hiolle et al. (2012) with

an arousal-based neurocognitive model (Cittern and Edalat, 2014). This model aimed to

explain basic infant attachment behaviour and physiology in a simple (ISS-like) separation

and reunion scenario, following episodes of learning based on secure-base exploration and

attachment approach. In the model, arousal levels are driven by a measure of novelty

(proposed to involve the perirhinal cortex) during exploration representing the degree to

which the infant is overwhelmed by environmental perceptions, along with a safe-range

distance (which, as in Petters (2006a), adapts based on experience of the ability of the

caregiver to relieve attachment distress, in this case excessively high arousal levels), plus

fear circuitry activation (centred on the amygdala) on retrieval of memories of previously

hostile caregiving. The model was able to capture very basic elements of secure, avoidant,

ambivalent and disorganised infant attachment behaviour and physiology, in infants who

had previously experienced attachment episodes with caregivers with varying degrees of

sensitivity and responsiveness with respect to infant arousal reduction.
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2.7.7 Decision and Game Theoretic Models

Buono et al. (2006) presents game theoretic models of attachment to show how secure,

avoidant and ambivalent forms of attachment might emerge as equilibrium decision choices.

The authors begin by considering a single player game (i.e. a decision theoretic model)

of an infant’s choice as to whether to approach or avoid a caregiver who might either at-

tend to or ignore them. The infant is assumed to have stress above some tolerable level,

and the payoffs correspond to changes in stress (i.e. increases or decreases). When the

model includes a guarded form of approach (corresponding to resistant and guarded forms

of attachment seen in ambivalent infants) which dampens the effect of attention/rejection

on decreases/increases in infant stress, the authors show mathematically how approach,

guarded approach or avoidance behaviour (corresponding to the three organised forms of

attachment) emerge as optimal responses to caregivers with responsiveness profiles that fall

into three distinct regions (see Chapter 3 for more detail). This single player game is then

extended to consider also payoffs for the caregiver given these joint-action outcomes. The

authors showed how pure Nash equilibria corresponding to secure and avoidant attachment

relationships emerge according to payoff configurations, and additionally determined a pay-

off configuration for which a mixed strategy equilibrium reflecting ambivalent attachment

emerges, with the probability that the infant seeks comfort proportional to the cost of care-

giving (i.e. the higher the caregiving cost the clingier the infant will be), and the probability

of caregiving attention proportional to the stress the infant receives when rejected.

2.7.8 Reinforcement Learning as a Model of Attachment-Based

Psychotherapy

Edalat and Lin (2014) present a computational neural model of mentalization-based psy-

chotherapy from an attachment-theory perspective. The work is based on an existing neural

model for pathways of cognitive-emotional decision making, which involves key attachment-

related brain areas. Under the model, interaction between the OFC and amygdala mediates

heuristic (emotional) decisions, whereas an OFC-dorsolateral prefrontal cortex loop controls

deliberative (cognitive) decision making. Both of these networks are implemented with Re-

stricted Boltzmann Machines (RBMs), with the type of decision made based on output

from the two networks (and mediated by the ACC, which has a documented role in error

detection). Input to these networks comes from a Hopfield network representing the hy-

pothalamus (capturing the individual’s current biologically-based needs), which categorises

six basic emotions (representing needs for cognitive closure) along with a mentalization pat-

tern (representing a need for cognition). Reinforcement learning is applied along with the

notion of strong (i.e. multiply learned) patterns in order to gradually increase the need for

cognition in the needs network, which in turn gradually results in a shift away from heuristic
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and towards deliberative decision making.

In Cittern and Edalat (2015a,b) we presented a mathematical framework for the genera-

tion of a new Nash equilibrium within a multi-agent reinforcement learning setting. Inspired

by evidence suggesting the possibility that both cognitive (Yang et al., 2013) and emotional

(Yang et al., 2014) reappraisal of reward-prediction errors might be possible in the brain, we

showed how convergence to a new equilibrium outcome (that has previously been determined

as desirable in some wider context) could be achieved as a result of reward manipulation

(here in the form of application of a simple multiplicative factor). We applied the framework

to one of the games in Buono et al. (2006) describing an avoidant attachment relationship,

to show how the framework could result in a more desirable secure form of attachment.

In Edalat (2017a) this process was adapted in order to describe the application of Self-

Attachment therapy (which is introduced in Chapters 4 and 5), with both agents partaking

in the game fully internalised within the self.
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3. Attachment as Free Energy

Minimisation

In this chapter we explore infant attachment formation within the context of the free energy

principle, showing how each of the classical organised attachment types might arise in infant

agents who minimise free energy over interoceptive states while interacting with caregivers

with varying responsiveness. We then consider how affective communication errors (in the

form of misleading or ambiguous exteroceptive cues from the caregiver) might have an

organising effect in infant agents who interact with caregivers who are inconsistent with

regards to fulfilling infant attachment needs, but a disorganising effect in infants interacting

with caregivers who consistently increase the infant’s stress levels on approach.

3.1 The Free Energy Principle

The free energy principle is a theory of brain function proposing that the brain resists a

tendency to disorder by aiming to restrict itself to a small number of physiological and

sensory states that it a priori prefers to occupy (Friston, 2010). The theory argues that the

only tractable way the brain can restrict itself to this small number of preferred states is

by minimising a quantity called free energy, which provides an upper bound on a measure

of surprise (that increases as a function of the undesirability of states that are occupied).

According to the theory, action, perception and learning are all fundamentally driven by

this minimisation of free energy, with the resulting process (describing loops of interaction

between an agent and its environment) referred to as Active Inference.

We follow the mathematical models outlined in Friston et al. (2015) and FitzGerald et al.

(2015) based on a finite discrete partially observable Markov decision process (see Appendix

A.2 for further details). We thus have a finite set of W observations (or observable outcomes)
∼
o∈ O = {1, ...,W}, a finite set of J discrete hidden states

∼
s∈ S = {1, ..., J} and a finite set

of L discrete actions
∼
a∈ Ω = {1, ..., L}, where ∼ denotes a sequence of variables over time.

The generative process R defining the environment dynamics up to current time t is then:
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R(
∼
o,
∼
s,
∼
a) = Pr({o0, ..., ot} =

∼
o, {s0, ..., st} =

∼
s, {a0, ..., at} =

∼
a) (3.1)

The agent is assumed to have an internal model of this generative process, called their

“generative model” (i.e. an internal model of how hidden causes produce sensory data).

The agent’s generative model over observations
∼
o∈ O, hidden states

∼
s∈ S and control

states
∼
u∈ U is:

P (
∼
o,
∼
s,
∼
u) = Pr({o0, ..., oT } =

∼
o, {s0, ..., sT } =

∼
s, {u0, ..., uT } =

∼
u) (3.2)

which (unlike the generative process) includes beliefs about future states (up to time T > t).

Under the model, actions (a, a variable that acts on the generative process) are distinguished

from control states (u, the corresponding hidden cause in the generative model). A policy

π ∈ {1, ...,K} indexes a sequence of future control states (
∼
u |π) = (ut, ..., uT |π), and it is

assumed that the agent has an approximate posterior distribution Q over hidden and control

states:

Q(
∼
s,
∼
u) = Pr({s0, ..., sT } =

∼
s, {u0, ..., uT } =

∼
u) (3.3)

which is parametrised by (
_
s ,

_
π ), where

_
s∈ [0, 1]J is a J × 1 vector of hidden state expec-

tations, and
_
π∈ [0, 1]K is a K × 1 vector of policy expectations.

The variational free energy F is:

F (
∼
o,
_
s ,

_
π ) = EQ[− lnP (

∼
o,
∼
s,
∼
u)−H[Q(

∼
s,
∼
u)]

= − lnP (
∼
o) +KL[Q(

∼
s,
∼
u)||P (

∼
s,
∼
u | ∼o)]

(3.4)

where:

H[P (x)] = EP (x)[− lnP (x)] (3.5)

is the Shannon entropy, and:

KL[Q(x)||P (x)] = EQ(x)[lnQ(x)− lnP (x)] (3.6)

is the Kullback-Leibler divergence. The agent is assumed to have a prior distribution spec-

ifying the utility (preference) of each outcome at time τ > t:

P (oτ ) = Cτ (3.7)

and the free energy principle argues that agents fundamentally aim to minimise a quantity

called surprise − lnP (
∼
o). According to the theory, the only tractable way to do this is by
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minimising free energy which gives an upper-bound on this surprise (see second rearrange-

ment in Eq. 3.4, which upper-bounds surprise since the KL divergence term cannot be less

than zero).

The following factorisation is assumed for the generative model:

P (
∼
o,
∼
x | ∼a) = P (

∼
o | ∼s,A)P (

∼
s | ∼a,B,D)P (

∼
u |γ)P (γ|α, β)P (A|θ)P (B|φ)P (D|ξ) (3.8)

with
∼
x=
∼
s,
∼
u, γ,A,B,D. The first factor P (

∼
o | ∼s,A) = P (o0|s0, A)P (o1|s1, A)...P (ot|st, A),

defining observations given hidden states, is encoded in matrix form (such that i.e. column

j of A, i.e. A•j , encodes the likelihood of observations given hidden state j):

P (ot = i|st = j, A) = Aij (3.9)

The second factor P (
∼
s | ∼a) = P (st|st−1, at, B)...P (s1|s0, a1, B)P (s0|D) defines hidden state

transitions (and the initial hidden state), and is encoded in matrix form as:

P (st+1 = i|st = j, ut, B) = B(ut)ij (3.10)

P (s0 = i|D) = Di (3.11)

The third factor P (
∼
u |γ) = σ(γ ·Q) expresses beliefs about sequences of control states (i.e.

policies), with σ a softmax function. Here, Q is a K × 1 vector containing the expected

negative free energy of each policy at the current time t, so that row Q(π) gives the negative

free energy expected under some particular policy π:

Q(π) =

T∑
τ=t+1

EQ(oτ ,sτ |π)[lnP (oτ , sτ )] +H[Q(sτ |π)] (3.12)

where Q(oτ , sτ |π) = P (oτ |sτ )Q(sτ |π) = EQ(st)[P (oτ , sτ |st, π)] is a posterior predictive dis-

tribution over future states and outcomes.

The fourth factor P (γ|α, β) expresses a prior over precision γ (encoding confidence in prior

beliefs), which is assumed to have a gamma distribution with shape and rate parameters α

and β:

P (γ|α, β) = Gamma(α, β) (3.13)

The fifth factor P (A|θ) is a Dirichlet prior (with concentration parameters θ) over the

multinomial distributions A•j (encoding the likelihood of observations given hidden state
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j):

P (A•j | θ) = Dirichlet(θ•j) (3.14)

Similarly, the sixth factor P (B|φ) is a Dirichlet prior (with concentration parameters φ)

over the multinomial distributions B(u)•j encoding the likelihood of hidden states at t+ 1

given that the hidden state at time t is j:

P (B(u)•j | φ(u)) = Dirichlet(φ(u)•j) (3.15)

The final factor P (D|ξ) is a Dirichlet prior (with concentration parameters ξ) over the

multinomial distribution encoding the initial hidden state:

P (D | ξ) = Dirichlet(ξ) (3.16)

For the approximate posterior Q the following factorisation is assumed:

Q(
∼
x | _x) = Q(s0|

_
s 0)...Q(sT |

_
s T )Q(ut, ..., uT |

_
π )Q(γ|

_
γ )Q(A|

_

θ )Q(B|
_

φ)Q(D|
_

ξ ) (3.17)

with parameters
_
x=

_
s ,

_
π ,

_
γ ,

_

θ ,
_

φ,
_

ξ and:

Q(γ|
_
γ ) = Gamma(α,

_

β= α/
_
γ ) (3.18)

Q(A|
_

θ ) = Dirichlet(
_

θ ) (3.19)

Q(B|
_

φ) = Dirichlet(
_

φ) (3.20)

Q(D|
_

ξ ) = Dirichlet(
_

ξ ) (3.21)

Given these factorisations, it can be shown (see Appendix A.2) that the variational

updates to
_
x that minimise free energy are given by:

_
s t =

σ(
_

A ·ot+
_

D) if t = 1

σ(
_

A ·ot+
_

B (at−1)
_
s t−1) otherwise

(3.22)
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_
π= σ(

_
γ ·Q) (3.23)

_
γ= α/(β −Q· _π ) (3.24)

_

θ ij= θij +

T∑
t=1

oti
_
s tj (3.25)

_

φ (u)ij = φ(u)ij +

T∑
t=2

[u = at−1] ·_s ti
_
s t−1j (3.26)

_

ξ= ξ +
_
s 1 (3.27)

for
_

Aij= EQ[lnAij ] = ψ(
_

θ ij) − ψ(
∑
i

_

θ ij),
_

Bij= EQ[lnBij ] = ψ(
_

φ ij) − ψ(
∑
i

_

φ ij) and
_

Di= EQ[lnDi] = ψ(
_

ξ i)−ψ(
∑
i

_

ξ i), with ψ the digamma function, and the Iverson brackets

[·] returning one if the expression is true and zero otherwise.

The first three of these updates (Eqs. 3.22 - 3.24) are inference updates, and are iterated

until convergence (or, and as here, N times) before each step of an episode (see Algorithm A1

for full details). Briefly, following an observation the agent iterates these inference updates

before selecting an action that they expect to minimise free energy (sampled from
_
π ), then

on performance of this action the environment will transition to a new hidden state and

provide the agent with a new observation. These two steps repeat until the end of the

episode. The variational updates involved in perception (inference of the hidden state, Eq.

3.22) have been associated with the prefrontal cortex, while the updates involved in action

(Eq. 3.23) have been linked with activity in the striatum, and the expected precision (Eq.

3.24) has been associated with dopaminergic projections from the VTA and Substantia

Nigra pars Compacta (SNc) (Friston et al., 2015, Fig.1). The final three updates (Eqs.

3.25 - 3.27) are Hebbian-like learning updates with implicit learning rates determined by

the amount of prior experience, and are typically performed following each length-T trial

(episode) (FitzGerald et al., 2015).

3.2 Decision Theoretic Model of Attachment

Buono et al. (2006) proposes both one and two player game theoretic models of attachment

(the one-player game is a decision theoretic model, which we examine here). The decision-

theoretic problem with a half-go action (corresponding to the guarded request for comfort

seen in ambivalent infants) is given in Fig. 3.1.

The probability that the caregiver attends is 0 ≤ q ≤ 1. When the infant seeks comfort
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Caregiver’s action
Attend Ignore
q 1− q

Infant’s
action

Go 1 −s
Don’t Go 0 0
Half Go h −t

Figure 3.1: Decision theoretic model of infant attachment

(i.e. chooses action Go) but the caregiver ignores them, the payoff is −s. If the infant is

stressed by this rejection then s > 0, whereas if they are comforted by being close to the

caregiver (even though the caregiver ignores them) then s < 0 (in this second case it is

assumed that s > −1, i.e. if the infant is ignored then they receive less comfort than if the

caregiver attends). If the infant does not go to the caregiver for comfort (i.e. they choose

Don’t Go) then they receive no comfort, regardless of what the caregiver chooses to do.

Finally, if the infant approaches the caregiver in a guarded fashion (Half Go) then outcomes

are parametrised by h and t. It is assumed that 0 < h < 1, i.e. comfort received from the

Half-Go action is less than for the Go action, but more than for the Don’t Go action. As

for s, there are two cases for the sign of t: if t < 0 then the infant receives comfort from

being around the caregiver even if the caregiver ignores them (in this case it is assumed that

−1 < s < t < 0). If t > 0 then the infant is stressed by the caregiver ignoring them (in this

case it is assumed that 0 < t < s).

We consider here the cases of q for 0 < t < s, 0 < h < 1 and either h > t/s or h < t/s,

which allows for the emergence of the three actions (and thus three attachment types) as

optimal responses to the caregiver with a known q. The expected payoffs for the infant for

each action are PGo = q − (1 − q)s, PDon’t Go = 0, PHalf Go = hq − (1 − q)t. For t ≤ 0

then Go is a dominant strategy, and the infant should never choose Don’t Go or Half Go,

whereas for 0 < t < s there is no dominant strategy. In particular, when q = 0 then

PGo = −s, whereas when q = 1 then PGo = 1, and PGo = 0 when q = s/(1 + s). For

the Half Go action we have that when q = 0 then PHalf Go = −t whereas when q = 1 then

PHalf Go = h, and PHalf Go = 0 when q = t/(h+ t). For the Don’t Go action, when q ∈ {0, 1}
then PDon’t Go = 0. We also have that PGo = PHalf Go for q − s(1 − q) = hq − t(1 − q)
i.e. q = (s − t)/(1 + s − h − t). Thus, for 0 < t < s, 0 < h < 1 and t/(h + t) >

s/(1 + s) (i.e. h < t/s), then PDon’t Go > max(PGo, PHalf Go) for q ∈ [0, s/(1 + s)) and

PGo > max(PDon’t Go, PHalf Go) for q ∈ (s/(1 + s), 1]. On the other hand, for 0 < t < s,

0 < h < 1 and t/(h+ t) < s/(1 + s) (i.e. h > t/s) then PDon’t Go > max(PGo, PHalf Go) for

q ∈ [0, t/(h+ t)), PHalf Go > max(PGo, PDon’t Go) for q ∈ (t/(h+ t), (s− t)/(1 + s− h− t)),
and PGo > max(PDon’t Go, PHalf Go) for q ∈ ((s − t)/(1 + s − h − t), 1]. In other words, if

h < t/s then for low q Don’t Go is optimal, and for high q Go is optimal; whereas if h > t/s

then for low q Don’t Go is optimal, for mid q Half Go is optimal, and for high q Go is
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optimal.

We extend the analysis of Buono et al. (2006) to the more general case in which the

payoff for the infant who chooses Go when the caregiver Attends is parametrised by g.

Now PGo = gq − (1 − q)s, with PHalf Go = hq − (1 − q)t and PDon’t Go = 0 as before.

When q = 0 then PGo = −s, whereas when q = 1 then PGo = g, and PGo = 0 when

q = s/(g+s). As before, for the Half Go action we have that when q = 0 then PHalf Go = −t
whereas when q = 1 then PHalf Go = h, and PHalf Go = 0 when q = t/(h + t). For the

Don’t Go action, when q ∈ {0, 1} then PDon’t Go = 0. We also have that PGo = PHalf Go for

gq−s(1−q) = hq−t(1−q) i.e. q = (s−t)/(g+s−h−t). Thus, for 0 < t < s, 0 < h < g and

t/(h+t) > s/(g+s) (i.e. h < gt/s), then PDon’t Go > max(PGo, PHalf Go) for q ∈ [0, s/(g+s))

and PGo > max(PDon’t Go, PHalf Go) for q ∈ (s/(g+ s), 1]. On the other hand, for 0 < t < s,

0 < h < g and t/(h+ t) < s/(g + s) (i.e. h > gt/s) then PDon’t Go > max(PGo, PHalf Go) for

q ∈ [0, t/(h+ t)), PHalf Go > max(PGo, PDon’t Go) for q ∈ (t/(h+ t), (s− t)/(g + s− h− t)),
and PGo > max(PDon’t Go, PHalf Go) for q ∈ ((s− t)/(g + s− h− t), 1].

3.3 Free Energy Model of Attachment

The argument of the free energy principle (that agents act, perceive and learn in order

to restrict themselves to some limited number of a priori preferred states) aligns with the

idea of the infant’s early developing brain directing action, performing emotional appraisal

and learning about the characteristics of their attachment caregiver in order to achieve

homeostatic regulation. Thus, using the decision theoretic model outlined above as a starting

point, we now attempt to formulate a basic model of attachment in terms of free energy

minimisation, with an infant agent who has prior preferences for interoceptive observations

related to low stress states. Evidence suggesting that the physiological stress response is

related to subjective estimates of uncertainty (de Berker et al., 2016) also fits with our use

of the free energy principle and active inference, in the sense that this framework inherently

involves a drive towards the resolution of uncertainty (Friston et al., 2015).

To begin with (in order to explore the parameter space) we assume that the infant

agent has a perfect generative model of the environment (i.e. they know the caregiver’s

value q), before later considering how the generative model might be learned as experience

accumulates. As in the decision theoretic model outlined in the previous section, the value q

here encapsulates the probability that (on any particular timestep) the caregiver will respond

in such a way (i.e. attentively) that effectively lowers the infant’s internal stress levels

should they approach. We refer to this as caregiving “responsiveness” (with responsiveness

increasing as a function of q).

57



3.3.1 Environment

We consider the environment for the infant agent in terms of the control states, observations

(to begin with, corresponding only to interoceptive states relating to relative stress levels),

contexts, and hidden states.

3.3.1.1 Control States

The control states u ∈ U = {U1, U2, U3} correspond to the actions that the infant can

choose. These are Seek (U1, corresponding to Go in the decision theoretic model), Guarded

Seek (U2, corresponding to Half-Go), and Avoid (U3, corresponding to Don’t Go). We

assume that the infant must, at each timestep, choose one of these actions. Control states

and allowable sequences of control states (i.e. allowable policies) are shown in Fig 3.2.

U1

U2 U3

Figure 3.2: Control states and allowable sequences of control states: U1 = Seek, U2 =
Guarded Seek, U3 = Avoid.

3.3.1.2 Observations

To begin with, the observations for the infant agent are interoceptive observations related

to its internal state (Fig. 3.3). Later on, in addition to these interoceptive observations,

we will also consider exteroceptive observations emanating from the caregiver. The prefer-

ence distribution over interoceptive observations corresponds to the payoffs in the decision

theoretic model, which represent the amount of comfort or stress reduction (relative to the

previous timestep) received by the infant when the caregiver either attends to or ignores

them. In particular, solid green represents the payoff g, checkered green is h, solid red is

−s, checkered red is −t, and solid blue is 0.

Figure 3.3: The set of (interoceptive) observations corresponding to payoffs in the decision
theoretic model.
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3.3.1.3 Caregiving Behaviours

There are two possible caregiving behaviours X = {Attend, Ignore}, encoded in the envi-

ronment dynamics, which correspond to the caregiver’s behaviour towards the infant. Each

behaviour assigns interoceptive observations to control states. For both Attend and Ignore,

control state U3 (Avoid) maps to the blue observation, which is the internal state in which

there is no change in stress reduction relative to the previous timestep. For the Attend

behaviour (Fig. 3.4), control state U1 (Seek) maps to the solid green observation (reduction

in stress of g), and control state U2 (Guarded Seek) maps to the checkered green observation

(reduction in stress of h with g > h > 0).

U1

U2 U3

Figure 3.4: Mappings from control states to interoceptive observations for Attend.

On the other hand, when the caregiver chooses to Ignore (Fig. 3.5), control state U1 (Seek)

maps to the solid red observation (stress increase of s relative to the previous timestep),

and control state U2 (Guarded Seek) maps to the checkered red observation (stress increase

of t with 0 < t < s).

U1

U2 U3

Figure 3.5: Mappings from control states to interoceptive observations for Ignore.

3.3.1.4 Hidden States

The hidden states correspond to the four control states, along with the two possible caregiv-

ing behaviours (i.e. whether the caregiver will Attend or Ignore). Although we call the set

of all of these states “hidden states”, only states involving blue interoceptive observations

cannot be determined with certainty based on the observation (the remaining states are

fully observable).

U1 U2 U3

⊗
Attend Ignore

Figure 3.6: The set of hidden states is given by the tensor product of control states and
caregiving behaviours.
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such that the six hidden states are 1: (Seek,Attend), 2: (Seek,Ignore), 3: (Guarded Seek,Attend),

4: (Guarded Seek, Ignore), 5: (Avoid, Attend), 6: (Avoid, Ignore). The hidden state tran-

sition probabilities (generative process) are given by:

R(st+1|st, ut) = G(ut) (3.28)

where:

G(ut = Ui ∈ U) = M(i, 0, L, L)⊗

[
q q

(1− q) (1− q)

]
(3.29)

with M(i, j,m, n) ∈ {j, 1}m×n is the m×n matrix with all elements in row i equal to 1, and

all other elements equal to j; and ⊗ the Kronecker tensor product; so that (for example):

G(ut = U2) =

0 0 0

1 1 1

0 0 0

⊗ [ q q

(1− q) (1− q)

]

=



0 0 0 0 0 0

0 0 0 0 0 0

q q q q q q

(1− q) (1− q) (1− q) (1− q) (1− q) (1− q)
0 0 0 0 0 0

0 0 0 0 0 0



(3.30)

meaning that all hidden states can be entered into or exited from within the time horizon.

For reasons of simplicity, we consider all hidden states to represent states for which the

infant’s stress levels are (arbitrarily) above some tolerable threshold (i.e. states in which

their attachment system is active). We don’t explicitly consider the return to a baseline

state (in which the infant’s attachment system is deactivated), since the addition of such a

state would require us to define additional transition probabilities from the current hidden

states. Empirical studies measuring cortisol (Spangler and Grossmann, 1993; Hertsgaard

et al., 1995; Spangler, 1998) and heart rate (Donovan and Leavitt, 1985; Spangler and Gross-

mann, 1993; Zelenko et al., 2005; Hill-Soderlund et al., 2008; Smith et al., 2016) during the

strange situation experiment (i.e. with controlled high caregiving responsiveness) consis-

tently show a quicker return to baseline for secure infants on final reunion in the strange

situation, however data on relative times to return to baseline for avoidant, ambivalent and

disorganised infants is (on the whole) currently inconclusive, and moreover there is currently
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no such data for interactions in which caregiver responsiveness is uncontrolled.

3.3.1.5 Initial Hidden State Distribution

We assume that the infant starts in the hidden state involving the Avoid control state (U3)

representing physical and/or emotional distance from the caregiver, and that initial care-

giving behaviour is determined by the probability q governing their overall responsiveness.

The actual initial hidden state distribution (generative process) is thus given by:

R(s0) = σ([0 0 1]⊗ [q (1− q)])> (3.31)

3.3.1.6 Outcomes

The set of all possible outcomes (total W ) for the infant is given by the tensor product of

control states and interoceptive observations:

U1 U2 U3

⊗
Figure 3.7: The set of outcomes is given by the tensor product of control states and intero-
ceptive observations.

The (generative process) distribution of outcomes (rows) given hidden states (columns)

is given by:

R(ot|st) =

O1

O2

O3

 (3.32)

with:

O1 =


1 0

0 0

0 1

0 0

0 0

O2 =


0 0

1 0

0 0

0 1

0 0

O3 =


0 0

0 0

0 0

0 0

1 1

 (3.33)

and the remaining elements of R(ot|st) are zero. The infant’s outcome preferences are given

by:

61



P (oτ ) = C = σ({1}1×L ⊗ [g h − s − t 0])> (3.34)

i.e. the infant is assumed to be indifferent with respect to control states, but not with

respect to interoceptive observations. We can argue for these priors from an evolutionary

perspective, under which (given the negative effects on both brain and body) preference for

prolonged and chronic states of stress would be deselected for.

3.4 Simulations

We begin by performing free energy minimisation in an infant agent that interacts with

environments defined by various values of q: in each case, the infant is assumed to have a

perfect generative model of the environment (i.e. they know the actual value q), and no

generative model learning occurs. Then we consider agents that start with a generative

model reflecting no knowledge of caregiver responsiveness and show that, by additionally

performing learning on their generative model, distinct behavioural policies corresponding to

secure, avoidant and ambivalent attachment will emerge from this common starting point. In

all simulations we set prior gamma parameters α = 250 and β = 1, and number of variational

iterations N = 4, with presented results averaged over 100 independent repetitions. Our

implementation is built using the SPM12 toolkit (SPM12, 2014), which contains a number

of routines for the underlying discrete free energy minimisation scheme described here.

3.4.1 Parameter Space Exploration for Perfect Generative Models

We begin by exploring the parameter space for relative stress changes resulting from states

involving infant seeking and caregiver attention (with preference parameter g), infant seek-

ing and caregiving ignoring (s), infant guarded seeking and caregiver attention (h), infant

guarded seeking and caregiver ignoring (t), and infant avoidance irrespective of caregiving

behaviour (preference 0). Our aim is to find configurations for these interoceptive observa-

tion preference parameters that result in distinct regions of q values corresponding to the

three organised forms of attachment (secure, ambivalent and avoidant), with the degree of

attachment organisation measured by the proportion that the corresponding action (Seek,

Guarded Seek, Avoid) is chosen by the infant in each case.

In order to conduct this initial preference parameter analysis we assume that the in-

fant has a perfect generative model B of the generative process G governing hidden state

transitions. The generative model is:
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_

B (ut) ≈ G(ut) = R(st+1|st, ut) (3.35)

which is achieved with the following Dirichlet concentration parameters:

φ(ut) = G(ut) ◦ {1000}J×J + {ε}J×J (3.36)

with A ◦ B the Hadamard (element-wise) matrix product (i.e. (A ◦B)ij = AijBij) and

ε = 10−10 a small positive number (added since Dirichlet parameters must be greater than

zero). Similarly, we begin by assuming that the infant’s model D of the true initial state

distribution is also accurate:

_

D≈ R(s0) (3.37)

according to parameters:

ξ = R(s0) ◦ {1000}J×1 + {ε}J×1 (3.38)

We also assume that the infant has a perfect generative model A of the generative process

for interoceptive observations given hidden states:

_

A≈ R(ot|st) (3.39)

parametrised by:

θ = R(ot|st) ◦ {1000}W×J + {ε}W×J (3.40)

As we discussed previously, in the single-step decision theoretic model of attachment

the parameter configuration h > gt/s results in an interval of q values (t/(h + t), (s −
t)/(g + s − h − t)) such that the Half-Go (Guarded Seek) action is optimal, whereas for

h < gt/s there is no such interval. Recall also that organised (i.e. Secure, Ambivalent

and Avoidant) forms of attachment are characterised by coordinated behaviours aimed at

achieving either proximity or distance from the caregiver in response to attachment need,

compared to disorganised forms of attachment which is characterised by (amongst other
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things) simultaneous or sequential conflicting/contradictory behaviours. Our aim here is

thus to examine how the infant chooses to behave when they minimise free energy, and

whether similar bounds (over internal infant stress response and caregiving behaviour) apply

in terms of resulting in sequentially consistent infant behaviour corresponding to the three

organised forms of attachment.

Accordingly, we ran simulations for nine equally spaced configurations of responsiveness

parameter q ∈ {0.1, 0.2, ..., 0.9}, for h ∈ {0.05, 0.5, 1, 1.5, 1.95}, g = 2, and varying value-

pairs of (s, t) ∈ {(0.1, 0.05), (0.5, 0.075), (0.9, 0.225), (1.3, 0.455), (1.7, 0.765), (2.1, 1.155),

(2.5, 1.625), (2.9, 2.175), (3.3, 2.805)}. Values of t were chosen such that, for s increasing

in equal increments of 0.4 (from 0.1 to 3.3), (s, t) pairs have values of gt/s that increase in

increments of 0.2 (from 0.1 to 1.7), which allows us to examine infant behaviour in response

to increasing h − (gt/s) (for some fixed value of h). Simulation results are for a single

iteration of depth T = 4, averaged over 100 repetitions.

Fig. 3.8 shows the mean proportion of selection for Seek, Guarded Seek and Avoid during

iterations (averaged over the repetitions), for g = 2 and varying these values of q, h, s and

t. For fixed h, increasing q increases the proportion of selections of Seek (for all values of

gt/s), whereas decreasing q increases the proportion of selections of Avoid (for high gt/s).

Guarded Seek selection increases with increasing h (and is highest for lower-mid values of

q). Note from the top row of plots (for which ∀(s, t) : h = 0.05 < gt/s) that Guarded Seek

is chosen (in proportions up to 0.97 for q = 0.2, s = 0.9 and t = 0.225) relatively frequently

even when h < gt/s, although (for fixed q, s and t) the highest selection proportions for

this action are focused in regions for which h > gt/s and increase as h increases. The key

point to note is that there are many parameter configurations for which highly consistent

sequential selection of the three actions (corresponding to the three organised attachment

types) emerges as q (caregiver responsiveness) is varied.
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Figure 3.8: Heatmap of action selection proportions (black=0, white=1) per 4-step iteration
of free energy minimisation (averaged over repetitions) for Seek (Left column), Guarded
Seek (Middle column) and Avoid (Right column), for varying values of gt/s (x-axis)
and q (y-axis). Proportions are shown (from top to bottom) for h = 0.05, h = 0.5, h = 1,
h = 1.5 and h = 1.95.

Based on the above, in the simulations that follow (involving generative model learning)

we choose parameters g = 2, h = 0.75, t = 0.9 and s = 2 for the agent’s interoceptive obser-

vation preference distribution. In our free energy model, for high q conditions (approaching

q = 0.9), the Seek action (which has the highest mean expected negative free energy) is

preferentially and increasingly selected as free energy minimisation progresses (Fig. 3.9).

On the other hand, for mid q conditions (0.3 ≤ q ≤ 0.4) Guarded Seek has the highest mean

expected negative free energy on the final step and is preferentially and increasingly selected
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over steps, whereas for low q conditions (approaching q = 0.1) Avoid has the highest mean

expected negative free energy on the final step and is preferentially and increasingly selected

as free energy minimisation progresses. Thus, these parameters result in three intervals of

q for which infants consistently sequentially choose behaviours corresponding to the three

organised forms of attachment. Precision parameter α controls the gradient of the curves

and thus the extent to which attachment is organised, such that increasing α (i.e. increasing

prior expected precision) increases the extent to which Seek is chosen for q ≥ 0.5, Guarded

Seek is chosen for 0.3 ≤ q ≤ 0.4, and Avoid is chosen for q ≤ 0.2.

Figure 3.9: Top: mean (over repetitions) expected negative free energies for Seek, Guarded
Seek and Avoid on final step of free energy minimisation (y-axis), for different values of
q (x-axis). Bottom: mean action selection probabilities (z-axis) on each episode step of
free energy minimisation (x-axis) for different values of q (y-axis) (Left: Seek, Middle:
Guarded Seek, Right: Avoid).

3.4.2 Learning a Generative Model Encapsulating Caregiver Re-

sponsiveness

Up to now we have considered how infants behave when they minimise free energy over

interoceptive observations according to a generative model that perfectly encapsulates the

probability that the caregiver will attentively respond to their attachment needs. In real-

ity, however, infants are not born knowing the particular responsiveness characteristics of
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their caregiver, but must instead learn this over many repeated attachment interactions.

Thus, we now consider an infant who learns the parameters of their generative model (with

updates that minimise free energy). We pair the same infant with three different envi-

ronments (i.e. types of caregivers): highly responsive (q = 0.9), which corresponds to an

attentive caregiver that mostly attends to the infant’s requests for attachment interaction;

inconsistently responsive (q = 0.4), which corresponds to an inconsistent caregiver; and

unresponsive (q = 0.1) which corresponds to a negligent caregiver that mostly ignores the

infant’s requests for attachment comfort, to see whether the distinct, organised forms of at-

tachment emerge. In particular, we assume that each infant starts with a generative model

with prior distributions that are uniform with respect to caregiving behaviour, in order to

consider how the infant’s model and preferred behavioural policies might adapt accordingly

as experience accrues.

The prior distribution over hidden state transitions is given by the following matrix of

Dirichlet prior concentration parameters 1:

φ(ut = Ui ∈ U) = M(i, ε, L, L)⊗ {1}J/L×J/L (3.41)

where ε = 10−10 is a small positive number. Similarly, we assume that the initial hidden

state distribution is also uniform with respect to caregiving behaviour (and also initial

control state):

ξ = {1}J×1 (3.42)

Since they are uniform with respect to caregiving behaviour, these parameters φ and ξ

result in prior initial hidden state and hidden state transition distributions equivalent to the

(uncertain) expectation of a caregiver with responsiveness q = 0.5 (Fig. 3.10), which (as

we have seen previously) induces Seek behaviour in the infant for our chosen interoceptive

observation preference and precision prior parameters. The fact that these priors (flat with

respect to responsiveness) result in an initial tendency in the infant towards Seek behaviour

is broadly consistent with the tenets of attachment theory, in that although infants are

assumed to have no prior knowledge with respect to the effectiveness of their particular

caregiver as an attachment figure, they are (according to Bowlby) nonetheless (genetically)

1We only consider here convergence to secure and avoidant forms of attachment for q = 0.9 and q = 0.1
respectively, for prior hidden state concentration parameters of 1. Convergence to these organised forms of
attachment can also occur for lower/higher values of q (e.g. q = 0.7 for secure and q = 0.2 for avoidant,
according to the regions outlined in the previous section), however we note that the convergence point is
more organised for these less extreme values when the prior concentration parameters are increased (which
decreases the implicit learning rate, and increases the amount of initial exploratory behaviour in the avoidant
case).
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predisposed to seek out an attachment relationship with them.

Figure 3.10: Prior initial hidden state distribution (Top), and prior hidden state transition
distributions P (st+1|st, ut) for control states Seek (Bottom Left), Guarded Seek (Bottom
Middle) and Avoid (Bottom Right), for all agents. For the hidden state transition
distributions, the x (lower right) axis gives current hidden state st, the y (lower left) axis
gives the next hidden state st+1, and the z-axis gives the associated probability.

As in the previous section, we assume that the infant’s generative model of outcomes

given hidden states is a priori accurate (Eq. 3.39) so that, given a hidden state (which

consists of a control state and caregiving behaviour), the infant knows the corresponding

outcome (which consists of a control state and interoceptive observation) with certainty.

These priors represent prior knowledge in the infant that, under states in which their at-

tachment system is active, seeking out the caregiver might result in either an increase or

decrease in their stress level relative to the previous timestep (and that this increase or

decrease can be reduced in magnitude with guarded or resistant behaviour), whereas avoid-

ance of the caregiver will result in no (externally induced) relative change to their stress

level. We argue here that it is reasonable to assume the existence of such (perhaps evolu-

tionarily ingrained) priors for our initial modelling efforts. Since we are primarily concerned

with the learning of the hidden state transition distribution (which encapsulates caregiving
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responsiveness), in the simulations that follow we do not perform learning on these ob-

servation model parameters (although the results presented here also apply to the case in

which these observation model parameters are additionally updated, given sufficiently large

concentration parameter priors).

In what follows we present simulation results for infants that all start with these same

prior parameters, but differ with respect to the type of caregiver that they are exposed to

(either highly responsive, inconsistent, or unresponsive). All results are averaged over 100

repetitions of 500 iterations (where each iteration consists of an individual episode of free

energy minimisation and learning with respect to a process of depth 4 timesteps).

3.4.2.1 Highly Responsive Caregiver

We begin by considering an environment for which q = 0.9, i.e. an environment representing

a caregiver who will (with relatively high probability) attend to the infant during high-

stress states in which their attachment system is activated (Fig. 3.11). Since the infant’s

hidden state transition generative model is initially flat with respect to caregiver behaviour,

they have an initial tendency to Seek out the caregiver during these high stress states,with

this preference sustaining over iterations. The mean number of distinct actions chosen

per iteration (a measure of organisation with respect to attachment behavioural strategy)

drops slightly to approximately 1.3, suggesting that (on average) these infant prefer policies

instructing sequentially-consistent Seek behaviour, while expected precision on the final step

of each iteration rises as the infant comes to learn a more accurate generative model (which

results in a higher probability for prediction of reaching states associated with the preferred

interoceptive observation as a result of Seek behaviour).
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Figure 3.11: Top Left: Mean (over repetitions) expected negative free energies for the three
actions on the final step of each iteration, for an infant paired with a high-q (responsive)
caregiver. Top Middle: Mean (over repetitions) final-step expected precision. Top Right:
Mean (over repetitions) number of distinct actions chosen per iteration. Bottom: Mean
(over repetitions) proportion each action was chosen during each iteration.

Examining the final hidden state transition distribution in the infant’s generative model

(Fig. 3.12) we see that they have learned fairly accurate distributions for the Seek control

state (particularly so for transitions from previous hidden states involving Seek or Avoid

control states), and relatively accurate (compared to the prior distribution) transition prob-

abilities for the less frequently selected Guarded Seek control state. It is worth noting that

transition probabilities amongst hidden states involving Avoid have not been learned ac-

curately, which is due to the fact that the interoceptive observation received is the same

in hidden states involving the Avoid control state and both caregiver Attend and Ignore

behaviour, however this is not a barrier to the formation of organised secure attachment.
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Figure 3.12: Mean (over repetitions) hidden state transition distributions for an agent in-
teracting with a high-q (responsive) caregiver, for control states Seek (Left), Guarded Seek
(Middle) and Avoid (Right). Top: Mean (over repetitions) final (posterior model) and
actual (process) initial hidden state transition distributions. Middle: Mean (over repeti-
tions) hidden state transition distributions P (st+1|st, ut) learned by the agent (generative
model). Bottom: The actual hidden state transition distributions (generative process).
The x (bottom right) axis gives current hidden state st, y (bottom left) axis the transitory
hidden state st+1, and z-axis the probability.
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3.4.2.2 Inconsistent Caregiver

We now consider the same infant paired instead with an inconsistent caregiver (with q = 0.4),

for which we previously showed a strong tendency towards organised Guarded Seek (i.e. am-

bivalent) behaviour when the infant has a perfect generative model of hidden state transi-

tions (i.e. caregiving behaviour). Since the infant’s hidden state transition generative model

is initially flat with respect to caregiver responsiveness, they have an initial tendency to Seek

out the caregiver during these high stress states. However, this initial Seek behaviour leads

to the preferred interoceptive observation (highest stress reduction) with lower probability

than the prior model suggests, resulting in exploratory behaviour. As the transition model

is gradually accordingly updated, the infant increasingly comes to prefer policies involv-

ing sequential Guarded Seek behaviour, with this ambivalent behaviour becoming relatively

more organised as iterations progress (Fig. 3.13).

Figure 3.13: Top Left: Mean (over repetitions) expected negative free energies for the three
actions on the final step of each iteration, for an infant paired with a mid-q (inconsistent)
caregiver. Top Middle: Mean (over repetitions) final-step expected precision. Top Right:
Mean (over repetitions) number of distinct actions chosen per iteration. Bottom: Mean
(over repetitions) proportion each action was chosen during each iteration.

The final hidden state transition distribution in the infant’s generative model (Fig. 3.14)

has become relatively accurate for all transitions involving control states other than Avoid

(as for the infant paired with the responsive caregiver, this is due to an inability to infer

these hidden states accurately).
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Figure 3.14: Mean (over repetitions) hidden state transition distributions for an agent inter-
acting with a mid-q (inconsistent) caregiver, for control states Seek (Left), Guarded Seek
(Middle) and Avoid (Right). Top: Mean (over repetitions) final (posterior model) and
actual (process) initial hidden state transition distributions. Middle: Mean (over repeti-
tions) hidden state transition distributions P (st+1|st, ut) learned by the agent (generative
model). Bottom: The actual hidden state transition distributions (generative process).
The x (bottom right) axis gives current hidden state st, y (bottom left) axis the transitory
hidden state st+1, and z-axis the probability.
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3.4.2.3 Unresponsive Caregiver

Finally we consider a consistently unresponsive caregiver (with q = 0.1), for which we

previously showed a strong tendency towards organised Avoid behaviour when the infant

has a perfect generative model of hidden state transitions (Fig. 3.15). Again, due to their flat

prior hidden state distributions, the infant has an initial tendency to Seek out the caregiver,

however they quickly come to prefer policies involving a majority of Avoid actions, with this

avoidance behaviour becoming highly consistent and organised. We note that this transition

from preference for policies involving Seek behaviour to policies involving Avoid behaviour

tends to occur via a period during which Guarded Seek behaviour is preferred: this is a

model prediction that can be tested empirically.

Figure 3.15: Top Left: Mean (over repetitions) expected negative free energies for the three
actions on the final step of each iteration, for an infant paired with a low-q (unresponsive)
caregiver. Top Middle: Mean (over repetitions) final-step expected precision. Top Right:
Mean (over repetitions) number of distinct actions chosen per iteration. Bottom: Mean
(over repetitions) proportion each action was chosen during each iteration.

The infant’s final hidden state transition distribution has become relatively accurate for

all hidden state transitions dependent on control states other than Avoid (Fig. 3.16).
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Figure 3.16: Mean (over repetitions) hidden state transition distributions for an agent inter-
acting with a low-q (unresponsive) caregiver, for control states Seek (Left), Guarded Seek
(Middle) and Avoid (Right). Top: Mean (over repetitions) final (posterior model) and
actual (process) initial hidden state transition distributions. Middle: Mean (over repeti-
tions) hidden state transition distributions P (st+1|st, ut) learned by the agent (generative
model). Bottom: The actual hidden state transition distributions (generative process).
The x (bottom right) axis gives current hidden state st, y (bottom left) axis the transitory
hidden state st+1, and z-axis the probability.
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3.4.3 Exteroceptive Observations, Ambivalence and Disorganisa-

tion

In the preceding simulations we have considered an infant who behaves, perceives and learns

in order to minimise free energy based on interoceptive observations relating to changes in

internal stress levels. In particular, we have shown that minimisation of free energy over

these interoceptive observations is sufficient for the emergence of behaviour resembling the

organised attachment types, in infants who differ only with respect to the environment (i.e.

hidden state transition dynamics) that they interact with. However, as stated by Bowlby

(1969), mother-infant attachment communications are:

...accompanied by the strongest of feelings and emotions, happy or the reverse,

(and occur within the context of) facial expression, posture, tone of voice, phys-

iological changes, tempo of movement, and incipient action

According to Bowlby (as quoted by Schore (Schore, 2012, p.168)):

Emotion is nonverbal communication of basic but very powerful attitudes in

mind and potential action

Thus, in addition to these interoceptive observations, we now also consider exteroceptive

observations representing emotional cues from the caregiver. In particular, we consider how

cues that conform to an infant’s exteroceptive observation priors with respect to subsequent

caregiving behaviour might have an organising effect for either highly responsive (leading to

secure) or unresponsive (avoidant) caregivers. On the other hand, we show how caregivers

who provide cues that are either ambiguous or misleading for the infant with respect to

subsequent behaviour might lead to ambivalent attachment in the case where the caregiver

is inconsistent, and how caregivers who consistently increase infant stress on approach but

provide misleading cues might have a disorganising effect on infant attachment formation.

As detailed in Section 2.3.1.2, disrupted (atypical) affective communication according to

the AMBIANCE scale (Bronfman et al., 1999; Safyer, 2013, Appendix G) has been linked

to caregivers of both ambivalent and disorganised infants. For our initial modelling efforts

we focus on the ACE dimension of this scale, which examines the quality of communication

(encompassing verbal communication, along with emotional communication in the form of

tone of voice, facial expressions, gestures and mood presentation) between the infant and

caregiver. The ACE dimension has three components (see Appendix A and (Safyer, 2013,

Appendix G) for further details):

1. Contradictory signalling to the infant. This category of communications includes the

display of incongruent physical behaviours, and cases in which the caregiver’s voice

tone is incongruent with the message, the verbal content or voice tone is incongruent
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with physical responses, or the voice content or voice tone is incongruent with the

accompanying facial expression.

2. Failure to initiate responsive behaviour to an infant cue. This category consists of

absent responses from the caregiver to clear infant signals directed towards them.

3. Inappropriate responses to infant signals or needs.

In samples that did not include ambivalent infants: ACE was the only AMBIANCE dimen-

sion to individually differentiate organised and disorganised infants in Lyons-Ruth et al.

(1999), and these behaviours were found at an elevated rate in caregivers of disorganised

compared to organised infants in Madigan et al. (2006). In samples containing all four ma-

jor attachment classifications: prevalence of ACEs was found to be elevated and highest in

caregivers of ambivalent infants in Safyer (2013), and overall disrupted affective communi-

cation (including ACE behaviours) was found to be highest in caregivers of ambivalent and

disorganised infants compared to secure and avoidant in Grienenberger et al. (2005). Ele-

vated disrupted affective communication was also found in caregivers of disorganised infants

in a sample categorised as either organised or disorganised (Goldberg et al., 2003).

In light of the above, we extend the hidden state transition model to incorporate both cur-

rent and subsequent (proceeding timestep) caregiving behaviour, i.e. X = {(Attend,Attend),

(Attend, Ignore), (Ignore,Attend), (Ignore, Ignore)} so that we now have J = 12 total

hidden states (i.e. all pairs of current and subsequent caregiving behaviour times all infant

control states). We call these second-order hidden state representations. The hidden state

transition generative process now becomes:

G(ut = Ui ∈ U) = M(i, 0, L, L)⊗


q 0 q 0

(1− q) 0 (1− q) 0

0 q 0 q

0 (1− q) 0 (1− q)

 (3.43)

and, as before, the prior parameters for the transition generative model are uniform with

respect to caregiving behaviour:

φ(ut = Ui ∈ U) = M(i, ε, L, L)⊗ {1}J/L×J/L (3.44)

Amongst other items, the ACE dimension of the AMBIANCE coding instrument includes

both caregiver communications that are misleading or ambiguous (contradictory) with re-

spect to subsequent infant-directed behaviour. In order to focus on such communication

errors here, we consider 3 types of exteroceptive cues from the caregiver: cues that the
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infant a priori associates with subsequent attention (which is given by the caregiver in cor-

responding hidden states with probability a), absence of a caregiving cue that the infant

a priori associates with subsequent inattention (which the caregiver gives in corresponding

hidden states with probability b), and an ambiguous cue that the infant a priori asso-

ciates with both subsequent Attend and Ignore behaviour (given in these hidden states with

probability c). The total observation set is now the product of the infant’s interoceptive

observations relating to internal stress levels (as before) and these exteroceptive cues from

the caregiver, so that the distribution of outcomes given hidden states in the generative

process now becomes:

O1 =



a (1− b− c) 0 0

(1− a− c) b 0 0

c c 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 a (1− b− c)
0 0 (1− a− c) b

0 0 c c

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



(3.45)
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O2 =



0 0 0 0

0 0 0 0

0 0 0 0

a (1− b− c) 0 0

(1− a− c) b 0 0

c c 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 a (1− b− c)
0 0 (1− a− c) b

0 0 c c

0 0 0 0

0 0 0 0

0 0 0 0



, O3 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0



(3.46)

and the infant’s distribution of observations given hidden states (in their generative model)

is now given by:

θ = {ε}W×J +

 θ1θ2
θ3

 (3.47)

with:
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θ1 =



900 0 0 0

0 900 0 0

100 100 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 900 0

0 0 0 900

0 0 100 100

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



, θ2 =



0 0 0 0

0 0 0 0

0 0 0 0

900 0 0 0

0 900 0 0

100 100 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 900 0

0 0 0 900

0 0 100 100

0 0 0 0

0 0 0 0

0 0 0 0



, θ3 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1000 1000 1000 1000

0 0 0 0


(3.48)

In addition to the prior associations between interoceptive observations and hidden states

discussed in the previous section, this model now additionally encodes prior beliefs associ-

ating a particular exteroceptive cue with subsequent caregiving Attend behaviour, another

(lack of) exteroceptive cue with subsequent Ignore behaviour, and a third (ambiguous) cue

which is expected under both hidden states in which the subsequent behaviour is Attend

and Ignore. As for the previous case which considered only interoceptive observations, we

assume for our initial modelling efforts here that the infant’s distribution of observations

given hidden states is static and not subject to learning. This is so that we can focus on the

learning of the hidden state transition distribution (which encodes caregiving responsive-

ness q), but also because the misleading and ambiguous cues we consider here encompass

many different emotional and verbal communications (rather than just a single cue). As

such, we argue that effects of learning in the infant’s model of exteroceptive observations

given hidden states (in response to these wide variety of cues) are likely to be relatively

small compared to learning in the hidden state transition model. The results that follow do,

however, also apply to cases in which the observation model is additionally learned (given

sufficiently large prior concentration parameters).

We begin by considering the three organised (secure, avoidant, ambivalent) forms of

attachment. As discussed above, evidence suggests elevated rates of ACE in caregivers of

ambivalent infants compared to caregivers of secure and avoidant infants. We thus ran

simulations for an infant paired with four types of caregiver: a highly responsive caregiver
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who signals subsequent behaviour appropriately and unambiguously (q = 0.9, a = b = 1,

c = 0); a highly unresponsive caregiver who signals subsequent behaviour appropriately

and unambiguously (q = 0.05, a = b = 1, c = 0); an inconsistent caregiver who signals

subsequent behaviour appropriately and unambiguously (q = 0.4, a = b = 1, c = 0); and an

inconsistent caregiver who performs various types of affective communication errors (q = 0.4,

varying values for a, b, c). All results are averaged over 100 repetitions of 1000 iterations

(where each iteration consists of an episode of free energy minimisation and learning with

respect to a process of depth 4 timesteps).

Fig. 3.17 shows the mean proportion of action selections along with mean number of

actions chosen per iteration for infants paired with these caregivers. Notice that a lack

of ACEs in highly responsive and unresponsive caregivers results in organised secure and

avoidant attachment, respectively. On the other hand, an infant paired with an inconsistent

caregiver who signals subsequent behaviour appropriately is not led to an organised form of

attachment, however when this inconsistent caregiver provides misleading (a = b = 0.25) and

ambiguous (c = 0.5) cues, a relatively organised form of ambivalent attachment emerges. In

other words, and consistent with the study outlined previously, ACEs can have an organising

effect in infants of highly inconsistent caregivers.
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Figure 3.17: Left Column: Mean (over repetitions) proportion each action was chosen
during each iteration. Right Column: Mean (over repetitions) number of distinct actions
chosen per iteration. Top Row: Infant paired with highly responsive caregiver (q=0.9) with
no ACEs (a=b=1, c=0). Second Row: Infant paired with highly unresponsive caregiver
(q=0.05) with no ACEs (a=b=1, c=0). Third Row: Infant paired with inconsistent care-
giver (q=0.4) with no ACEs (a=b=1, c=0). Bottom Row: Infant paired with inconsistent
caregiver (q=0.4) with both ambiguous and misleading ACEs (a=b=0.25, c=0.5).
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Fig. 3.18 shows the final posterior hidden state transition distributions learned by infants

paired with these inconsistent caregivers in the cases where they either do or do not display

these ACEs. The infant paired with the inconsistent caregiver who does not display ACEs

is able to learn meaningful structure in their generative model with respect to transitions

between second-order hidden states Seek and Guarded Seek actions (e.g. they learned that

the hidden state representing current Attend and subsequent Ignore behaviour transitions to

hidden states representing current Ignore and either subsequent Attend or Ignore behaviour).

On the other hand, accurate second-order hidden state transition distributions have not been

learned by the infant subjected to ACEs.
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Figure 3.18: Mean (over repetitions) hidden state transition distributions for an agent in-
teracting with a mid-q (inconsistent) caregiver, for control states Seek (Left), Guarded
Seek (Middle) and Avoid (Right). Top: Mean (over repetitions) hidden state transi-
tion distributions P (st+1|st, ut) learned by an infant paired with an inconsistent caregiver
(q=0.4) with no ACEs (a=b=1, c=0). Middle: Mean (over repetitions) hidden state tran-
sition distributions P (st+1|st, ut) learned by an infant paired with an inconsistent caregiver
(q=0.4) with misleading and ambiguous ACEs (a=b=0.25,c=0.5). Bottom: The actual
hidden state transition distributions (generative process). The x (bottom right) axis gives
current hidden state st, y (bottom left) axis the transitory hidden state st+1, and z-axis the
probability.

Fig. 3.19 shows the mean proportion each action was chosen during the last 10 iterations

by an infant paired with an inconsistent caregiver (q = 0.4) for varying values of a, b, c. The
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charts show how various combinations of misleading and ambiguous ACEs can results in

relatively organised forms of ambivalent attachment compared to the case where cues are

accurate and unambiguous (a = b = 1, c = 0). Ambivalent attachment is particularly

organised for three of the configurations we have examined: when all cues are ambiguous

(a = b = 0, c = 1), when cues are either misleading or accurate with equal probability

(a = b = 0.5, c = 0), and for a mixture of misleading and ambiguous cues (a = b = 0.25,

c = 0.5).

Figure 3.19: Mean (over repetitions) proportion each action was chosen by the infant dur-
ing the last 10 iterations, when they were paired with an inconsistent caregiver (q=0.4)
displaying varying rates and types of affective communication errors. Top Left: Propor-
tions for a=b=1-c. Top Right: Proportions for a=b=0.75 and c decreasing from 0.25 to 0.
Bottom Left: Proportions for a=b=0.5, and c decreasing from 0.5 to 0. Bottom Right:
Proportions for a=b=0.25 and c decreasing from 0.75 to 0.

We now consider ACEs and the formation of disorganised attachment. Lyons-Ruth et al.

(1999) highlighted particular ACE items that were found to be at least three times more

prevalent in mothers of disorganised infants (see Appendix A). One of these communication

errors (and the one that we focus on here) is “inviting approach verbally then distancing”,
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which corresponds to b < 1 in the generative process.

Although caregivers of disorganised infants (prone to withdrawal and frightening be-

haviours with high probability) are typically thought to increase infant stress levels at a

greater magnitude than caregivers of avoidant infants (who instead simply ignore on ap-

proach), we note that for a = b = 1 and c = 0 the infants of such caregivers would learn

policies consisting predominantly of Avoid behaviour (as in the case of the avoidant infant

examined above). Thus, for reasons of simplicity we consider the same interoceptive prefer-

ence distribution as before, and aim to show (in a general sense) how this particular ACE

(b < 1) can have a disorganising effect in caregivers who (with high probability) increase

the infant’s stress on approach (which encompasses a form of disorganised caregiving).

Fig. 3.20 shows the mean proportion of action selections along with the mean number

of actions chosen per iteration for infants paired with caregivers who, with high probability

(q = 0.05), increase infant stress on approach. In accordance with the studies outlined

previously, while caregivers who signal all subsequent behaviour accurately (a = b = 1,

c = 0) lead infants towards organised avoidant attachment, caregivers that signal subsequent

Attend behaviour accurately but subsequent Ignore behaviour inaccurately with probability

60% (a = 1, b = 0.6, c = 0) have a highly disorganising effect on infant behaviour. The

mean proportion each action was chosen during the last 10 iterations by an infant paired

with caregivers with q = 0.05 and varying values of b (with a = 1 and c = 0 in all cases) is

shown in Fig. 3.21.
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Figure 3.20: Left Column: Mean (over repetitions) proportion each action was chosen
during each iteration. Right Column: Mean (over repetitions) number of distinct actions
chosen per iteration. Top Row: Infant paired with highly unresponsive caregiver (q=0.05)
with no ACEs (a=b=1, c=0). Bottom Row: Infant paired with highly unresponsive
caregiver (q=0.05) with misleading ACEs on subsequent Ignore behaviour (a=1, b=0.6,
c=0).
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Figure 3.21: Mean (over repetitions) proportion each action was chosen by the infant during
the last 10 iterations (y-axis), when they were paired with a highly unresponsive caregiver
(q=0.05) displaying varying rates of misleading affective communication errors (values of
b ∈ {0, 0.25, 0.5, 0.75, 1} along the x-axis, for fixed a = 1 and c = 0).

Fig. 3.22 shows the final hidden state transition distributions learned by infants paired

with these unresponsive caregivers in the cases where they either do or do not display

this ACE with respect to subsequent inattention. The infant paired with the unresponsive

caregiver who does not display ACEs is able to learn meaningful second-order hidden state

transition distributions for Seek and Guarded Seek actions (although they have not learned

a perfect model for these actions, since they very quickly come to display an organised

form of avoidant attachment). On the other hand, the infant paired with an unresponsive

caregiver who instead signals subsequent inattention inaccurately has learned distributions

for Seek and Guarded seek which, for all current hidden states, predict subsequent hidden

states overwhelmingly involving current Ignore behaviour. Thus, similarly to the case of the

inconsistent caregiver considered above, ACEs prohibit the emergence of the second-order

hidden state transition model.
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Figure 3.22: Mean (over repetitions) hidden state transition distributions for an agent in-
teracting with a low-q (unresponsive) caregiver, for control states Seek (Left), Guarded
Seek (Middle) and Avoid (Right). Top: Mean (over repetitions) hidden state transition
distributions P (st+1|st, ut) learned by an infant paired with highly unresponsive caregiver
(q=0.05) with no ACEs (a=b=1, c=0). Middle: Mean (over repetitions) hidden state tran-
sition distributions P (st+1|st, ut) learned by an infant paired with an unresponsive caregiver
(q=0.05) with misleading ACEs on subsequent Ignore behaviour (a=1,b=0.5,c=0). Bot-
tom: The actual hidden state transition distributions (generative process). The x (bottom
right) axis gives current hidden state st, y (bottom left) axis the transitory hidden state
st+1, and z-axis the probability.

In order to understand in more detail why the infant of the low-q caregiver who ad-

ditionally displays ACEs exhibits roughly equal proportions of Avoid and Guarded Seek
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behaviour within each episode, it is helpful to consider the expected negative free energy

for policies containing each action. In Friston et al. (2015) it is shown that the expected

negative free energy for some particular policy π at time τ > t consists of extrinsic and

epistemic value terms:

Qτ (π) = EQ(oτ |π) [lnP (oτ ) +KL[Q(sτ |oτ , π)||Q(sτ |π)]] (3.49)

The extrinsic value component EQ(oτ |π) [lnP (oτ )] of the expected negative free energy is

the utility of the outcome oτ (expected under the predictive posterior distribution) to the

agent. In our model, extrinsic value corresponds to the preference the agent has for the inte-

roceptive observation (stress increase or reduction) associated with that particular outcome,

since they are assumed to be indifferent with respect to control states and exteroceptive ob-

servations. The epistemic value component EQ(oτ |π) [KL[Q(sτ |oτ , π)||Q(sτ |π)] reports the

reduction in uncertainty about hidden states based on the outcome. Epistemic value can

result in exploration, in the sense that an agent might select policies predicting outcomes

with relatively low extrinsic value if these outcomes nonetheless help to reduce uncertainty

with respect to hidden states.

Fig 3.23 shows the expected negative free energy, extrinsic and epistemic value for each

action on the final step of each iteration (mean over repetitions), for both avoidant and

disorganised infants. Both the avoidant and disorganised infants come to predict similar

interoceptive observations for Seek and Guarded Seek behaviours (corresponding to the

caregiver Ignoring them at τ) and thus both assign similar extrinsic value to these actions.

However, epistemic value for Seek and Guarded Seek actions remains relatively high for

the disorganised compared to the avoidant infant over iterations. The avoidant infant’s

posterior transition distribution has learned meaningful information with respect to second-

order hidden state transitions, such that they tend to predict future hidden states at τ

involving both current and subsequent Ignore behaviour, and outcomes at τ consisting of

the interoceptive cue predicting current, and exteroceptive cue predicting subsequent, Ignore

behaviour. On the other hand, as a result of previously experiencing ACEs, the disorganised

infants have not learned these second-order hidden state transitions. These infants come

to predict future hidden states at τ involving current Ignore, but either subsequent Attend

or Ignore, behaviour (with exteroceptive cues a priori expected in each case to be able to

disambiguate between these two hidden states). The additional epistemic value that results

is enough to give rise to disorganisation.
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Figure 3.23: Mean (over repetitions) expected negative free energy, extrinsic value and
epistemic value for Seek, Guarded Seek and Avoid actions on the final step of each iteration,
for infants interacting with a low-q (unresponsive) caregiver displaying no ACEs, i.e. a =
b = 1, c = 0 (Left) or ACEs with a = 1, b = 0.6, c = 0 (Right). Top: Mean (over
repetitions) final step expected negative free energies. Middle: Mean (over repetitions)
final step extrinsic values. Bottom: Mean (over repetitions) final step epistemic values.
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3.5 Summary and Future Work

In this chapter we built on an existing decision theoretic model of organised attachment in

order to propose a multi-step formulation of infant attachment formation in terms of free

energy minimisation. In particular, we considered infant agents that minimise free energy

over interoceptive observations related to changes in internal stress levels. Using this model,

we showed how an infant with a prior hidden state transition distribution that is uniform

with respect to caregiving responsiveness can come to acquire either a secure, avoidant

or ambivalent form of organised attachment, with the particular type of attachment that

emerges depending only on the responsiveness of the caregiver. Based on evidence relating

to ACEs in caregivers of both ambivalent and disorganised infants, we then extended this

model to consider also exteroceptive cues from the caregiver. We considered one particular

ACE that has been found to be three times more prevalent in caregivers of disorganised in-

fants, which is a cue that inaccurately implies subsequent attention. In order to capture the

essence of disorganisation with this particular ACE, we showed how such a misleading cue

might have a disorganising effect in infants of caregivers who, with high probability, increase

infant stress on approach. Since (to the best of our knowledge) no particular ACE items on

the AMBIANCE scale have as yet been associated with ambivalent forms of attachment, we

explored the effect on the infant of both exteroceptive cues that are misleading and ambigu-

ous with respect to subsequent caregiving behaviour. We showed how the introduction of

various combinations of such ACEs might have an organising (towards ambivalence) effect

in infants paired with these inconsistent caregivers. Our model makes a new prediction that

can be tested empirically: namely that particular combinations (distributions) of misleading

and ambiguous ACEs will lead to the most organised forms of ambivalent attachment.

The model (or atleast future versions of it) can potentially be used for phenotyping

(Schwartenbeck and Friston, 2016), however there are a number of ways in which the work

can be improved. For example, we considered free energy minimisation over fixed-length

episodes in which all hidden states were taken to be states in which the infant’s attachment

system is active, i.e. we did not explicitly consider a return to baseline stress level for

the infant. This was for reasons of simplicity, and also since evidence with respect to the

relative time taken to return to baseline for avoidant, ambivalent and disorganised infants is

currently either inconclusive (for interactions in which caregiver responsiveness is controlled)

or unavailable (for uncontrolled interactions). As more empirical data becomes available,

the model might be extended to include transitions from the current hidden states to an

additional state (associated with a highest-preference interoceptive observation) representing

deactivation of the infant’s attachment system, with stress change parameters, transition

probabilities and caregiving responsiveness set in order to model the data for each of these

distinct attachment types. Future work could also extend the scope of the model to capture
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the secure-base exploration paradigm more fully, to consider how undesirable stress states

might arise during the course of exploration and how environment exploration might resume

on transition to this baseline state.

In accordance with studies which found only the ACE dimension of the AMBIANCE

scale to be a differentiator of disorganised compared to organised (secure and avoidant)

attachment, and elevated ACEs in caregivers of ambivalent infants, we only considered the

ACE dimension in our model. For disorganised attachment we considered only one particular

type of ACE (cues that are misleading on subsequent caregiving inattention), whereas for

ambivalent attachment we considered a number of distributions under which misleading

and/or ambiguous cues were delivered with varying frequency. In particular, we considered

these exteroceptive cues to be misleading or ambiguous to the infant a priori, captured using

relatively large priors in the infant’s model of observations given hidden state transitions.

We chose to make this modelling assumption since the AMBIANCE scale describes ACEs

in terms of broad groups of emotional and/or verbal cues, and so we decided to focus

here on the learning of the infant’s hidden state transition distribution (which encapsulates

caregiving responsiveness). Future work could consider how ambiguity in exteroceptive cues

might arise as a result of learning (and the two models could be selected between using,

for example, a Bayesian model comparison). In addition (as discussed previously) elevated

rates of other dimensions of the AMBIANCE disrupted affective communication scale have

been associated with disorganised (withdrawal, disorientation, negative/intrusive and role

confusion) and resistant (disorientation, negative/intrusive) forms of attachment. Future

models can consider these other atypical caregiving behaviours, along with the other cues

described by the ACE dimension, and might also attempt to differentiate between sub-

categories of disorganisation (perhaps according to the Hostile/Helpless caregiving profiles

associated with D-Insecure/D-Secure infants in Lyons-Ruth et al. (1999)). An attempt to

capture additional aspects of disorganised (such as dissociative-like freezing) and ambivalent

(e.g. hyperactivation) infant attachment behaviour can also be made: in the case of the

ambivalent infant a self-induced increase in stress is believed to be a strategy to increase

the likelihood of subsequently attentive caregiving, which can be captured relatively easily

in the hidden state transition structure. As a further extension to the model, we might

attempt to capture prolonged states of mind in the caregiver over each attachment episode

(corresponding to contexts in the scenario modelled in Friston et al. (2015)) and an infant

agent who learns a hierarchical generative model in which higher levels contextualise lower

levels (Friston et al., 2015; Pezzulo et al., 2015).

Another possible extension to the model is to consider the subjective emotional expe-

riences of infants paired with the different types of caregiver. A definition of emotion in

terms of first and second-order time derivatives of free energy is proposed in Joffily and

Coricelli (2013): according to that model, the valence of a state visited by an agent at time
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t is defined as the negative first time-derivative of free energy at that state, so that free

energy increasing over time (F
′

t > 0) implies negative valence, and free energy decreasing

over time (F
′

t < 0) implies positive valence. Particular categorical emotions are then defined

in terms of first and second time derivatives of free energy: for example, when F
′

t < 0 and

F
′′

t < 0 (i.e. free energy is decreasing at an increasing rate) the agent is hopeful of visiting a

state with lower free energy in the future, whereas when F
′

t > 0 and F
′′

t > 0 (free energy is

increasing at an increasing rate) the agent is fearful of visiting a state of greater free energy

in the future. Fear would be particularly desirable to capture in our model, since (according

to Main’s classical hypothesis) we would expect elevated experience of this emotion in cases

of disorganisation.

Finally, a very recent update to the discrete free energy minimisation framework used

here additionally accounts for habit learning (Friston et al., 2016) which would be interesting

to consider within the context of attachment, and particularly Self-Attachment therapy

(introduced in the next chapter). Briefly (and as we will see in more detail), Self-Attachment

therapy aims to redress suboptimal early attachment experience by inducing DA and OXT-

mediated neural plasticity in key attachment-related neural circuitry, which may involve

the overcoming of deeply ingrained habits. It has recently been proposed that OXT plays

a role in encoding the precision of interoceptive signals and therefore is involved in the

association of interoceptive and exteroceptive observations within generative models of the

self (Quattrocki and Friston, 2014). An interesting next step would thus be to formulate

the hypothesised dynamics underlying a successful application of Self-Attachment therapy

in terms of the free energy principle.
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4. Self-Attachment Bonding

Protocols

Having examined the formation of the organised (secure, ambivalent and avoidant) and

disorganised forms of attachment in the previous chapter, we now consider a computational

model of the neurobiological underpinnings of the Self-Attachment psychotherapy, which

aims to re-train an individual’s attachment schema. We begin by presenting a hypothesis

relating to plasticity induced by the Self-Attachment bonding protocols, before considering

the interplay between this and another aspect of the therapy (the empathy protocols) in the

next chapter.

4.1 Introduction

As discussed in Section 2.5, early insecure attachment experiences are now believed to have

important implications with regards to the development of capacities for self-regulation of

emotion and the governing of various aspects of social behaviour. Self-Attachment is a new

attachment-based psychotherapy that has recently been proposed as a method for re-training

an individual’s sub-optimal attachment schema (Edalat, 2013b, 2015). Rooted in neurosci-

entific theories of attachment, it consists of a number of self administrable protocols which

aim to recreate the effects of positive infant-parent RH to RH interactions using instead

internal LH to RH interactions within the individual. With initial success in pre-clinical

trials, a key hypothesis with regards to the therapy is that it facilitates the construction of

new neural circuitry between the OFC and limbic system, in order to increasingly contain

pathological and suboptimal neural activity related to early insecure attachment experi-

ences. While acknowledging the view of attachment theorists which states that attachment

needs persist into adulthood (particularly in those with adverse childhood experience), the

aim of Self-Attachment is to equip the individual with tools and techniques that will enable

them to effectively regulate their own internal state.

In what follows we build on findings related to the neuroscience of attachment, bonding
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and reward processing to present a computational model of fear counter-conditioning within

neural circuits mediating stress and facilitative reactivity to social stimuli. We argue that

our model can aid in understanding the dynamics underlying a successful application of a

particular phase of the Self-Attachment therapy, which is concerned with the creation of an

abstract, self-directed bond.

4.2 Neuroscience of Attachment and Bonding

As outlined previously, the internal working model (attachment schema) has been theorised

to be based in unconscious and implicit memories, rooted mainly in RH brain regions centred

on the OFC, amygdala and hypothalamus (Schore, 2003a; Cozolino, 2014, p.53); areas known

to be central to emotional processing, homeostatic regulation, social cognition and fear

conditioning. Recent neuroimaging studies which have specifically investigated the neural

correlates of attachment, bonding and parenting have begun to elaborate on this picture.

In a number of social and attachment-related contexts, insecure attachment has been

found to correlate with relatively high activity in the amygdala and related stress circuitry.

For example, Lemche et al. (2006) conducted a task in which individuals (rated as either se-

cure or insecure for attachment according to the AAI) were shown a series of self-referential

sentences describing either neutral situations or unpleasant attachment experiences (stress

scenario), and were asked whether they agreed or disagreed with the statements while being

scanned with fMRI and simultaneously having skin conductance (autonomic) levels mea-

sured. The study found that bilateral amygdala activity was positively correlated with

attachment insecurity and autonomic response in the stress scenario. This seems to be

the case in particular for ambivalent forms of insecure attachment. Vrtička et al. (2008)

conducted a study in which faces with different expressions (either smiling or angry) were

presented as social feedback signals about performance during a perceptual game (in which,

after brief exposure, participants were asked to indicate which side of a screen contained

more dots). The left amygdala selectively activated when angry faces were presented as neg-

ative feedback following incorrect responses (i.e. as social punishment), and the magnitude

of this response was found to correlate with the degree of anxious (ambivalent) attachment

(as measured by the relationship questionnaire) in participants, suggesting an increased

sensitivity to social punishment and task failure. In Riem et al. (2012), women without

children were exposed to the sounds of the crying of a non-related infant. Those women

scoring high in ambivalent (preoccupied) or avoidant (dismissing) attachment (as measured

by the AAI) showed elevated amygdala activation, reported more irritation, and applied

more force on a handgrip dynamometer, relative to securely attached women. In another

study (Kidd et al., 2013), salivary cortisol measurements were collected across an entire

day (in a non-laboratory setting) from a sample of men and women whose attachment was
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classified based on the relationship questionnaire. Anxious (preoccupied) attachment was

found to be correlated with a relatively elevated and flat cortisol profile across the whole

day, and these individuals also reported the highest subjective levels of stress.

The amygdala may also differentially activate in individuals with disorganised forms of

attachment. Buchheim et al. (2006) conducted studies in which participants underwent

fMRI while being rated for attachment type according to the adult attachment projective

measure, in which the individual is asked to tell a story in order to explain what is happening

in pictures that depict various attachment-related scenarios. The task was designed in such

a way so that, as it progresses, it increasingly activates the attachment system (e.g. by

depicting more traumatic scenes). The authors found increasing amygdala activation as a

function of task progression only in individuals rated unresolved (disorganised). A recently

reporting longitudinal study found increased left amygdala volume in adulthood in those

classified as disorganised in infancy (Lyons-Ruth et al., 2016). A number of studies have

also suggested hyperactive amygdala responses in individuals with BPD (a disorder closely

related to disorganised attachment, see Section 2.5), for example in response to emotional

pictures (Herpertz et al., 2001) and faces (Donegan et al., 2003); and in response to cues

indicating threat in individuals who have experienced childhood maltreatment (Dannlowski

et al., 2012; McCrory et al., 2011). However, the picture is perhaps not as entirely consistent

as it seems to be for ambivalent forms of attachment. In the study of exposure to non-

related infant crying outlined above (Riem et al., 2012), although there was a significant

correlation between a measure of coherence of mind and amygdala activation, individuals

with unresolved attachment did not show significant increased amygdala activation relative

to secure individuals. In addition, mothers rated unresolved according to the AAI in Kim

et al. (2014) showed blunted amygdala activity in response to the sad faces of their own

infant compared to their happy faces (in contrast to resolved mothers, who showed the

opposite effect).

Much evidence from rodent studies implicates the DA reward system in maternal and

bonding behaviour (Numan and Stolzenberg, 2009; Numan, 2014), and a similar picture has

started to emerge for humans. For example, Bartels and Zeki (2004) used fMRI to look at

activity in reward circuitry in response to mothers viewing photographs of their own relative

to other people’s children. They found increased activation of the VTA and SNc, which both

contain major concentrations of DA-releasing neurons; and the dorsal striatum (Caudate

Nucleus (CN) and putamen) and OFC, regions which are known to receive dopaminergic

projections. In Minagawa-Kawai et al. (2009), anterior parts of the OFC were found to

activate both in mothers viewing their own infants (with activation positively correlated

with a rating of the pleasant mood of the infant), and in infants on viewing their mother’s

smile. As with activity in the amygdala and related stress circuitry, activity in the reward

system appears to be modulated by attachment type. In Strathearn et al. (2009) relatively
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low ventral striatum and OFC activity was found in avoidant relative to secure mothers (as

assessed by the AAI) in response to seeing own-baby images. A comparison of own versus

unknown infants (with either happy or sad emotional expression) showed significantly higher

activation in reward circuitry when caregivers were considered irrespective of attachment

type, suggesting a general increased motivation for interaction with an own as opposed

to unknown infant. In Vrtička et al. (2008), increasing attachment avoidance (according

to the adult attachment questionnaire) was found to correlate with decreasing activation

in the VTA and ventral striatum in response to facial images conveying social feedback.

Some evidence suggests involvement of reward circuitry in response to infants in general

(i.e. not necessarily own infants). For example, Kringelbach et al. (2008) found activation

of the mOFC (a region implicated in stimulus-reward association) in response to images of

unfamiliar infants but not adults.

Also important with regards to attachment is OXT. Elevated OXT has been linked to

a range of pro-social behaviours, including parenting and bonding behaviours, and elevated

trust. For example, Feldman et al. (2007) found that higher levels of OXT predicted greater

amounts of maternal behaviours (such as gaze towards infant, positive affect and affectionate

touch) during the postpartum period. Another study looked at OXT in both new mothers

and fathers postpartum (Gordon et al., 2010), finding that both maternal and paternal

OXT levels increased across the period. Whilst maternal OXT was related to the amount

of affectionate parenting behaviours (as in Feldman et al. (2007)), paternal OXT correlated

with stimulatory parenting behaviours such as “proprioceptive contact, tactile stimulation,

and object presentation”. Furthermore, OXT levels have been linked to earlier attachment

experience and development. For example, Heim et al. (2008) found that adult women

exposed to childhood maltreatment had lower OXT levels compared to controls.

Despite strong evidence for the involvement of OXT in encouraging many types of pro-

social and attachment-related behaviour, it appears increasingly unlikely that OXT sim-

ply acts as a universal bonding hormone. For example, intranasal OXT administration

was found to decrease cooperation during trust games, when participants interacted with

anonymous strangers compared to familiar persons with whom they had previously been

acquainted (Declerck et al., 2010). Intranasal OXT has also been found to decrease the like-

lihood of cooperation during a social dilemma game in adults with BPD and high levels of

attachment anxiety (according to the experience in close relationships self-report measure,

(Bartz et al., 2010a)). In a recollection study (Bartz et al., 2010b), securely attached indi-

viduals (again according to the experience in close relationships measure) remembered their

mother as more caring and close in childhood following intranasal OXT relative to placebo,

whereas anxiously-attached individuals remembered their mother as less caring and close

(using self-report measures). Such results suggest that, rather than universally promoting

bonding behaviour, exogenous OXT administration may instead result in an amplification
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of the influence of pre-existing interpersonal schemas (Olff et al., 2013), likely making exoge-

nous OXT administration unsuitable as a treatment for many attachment-related disorders.

This provides motivation for the development of therapies in which endogenous OXT secre-

tion is naturally enhanced as a side effect of changes to the underlying attachment schema.

4.3 Self-Attachment Therapy

Self-Attachment (Edalat, 2015) is a new, self-administrable, attachment-based psychother-

apy which aims to redress the insecure early attachment experiences that are believed to

underpin many affect dysregulation disorders. Under the Self-Attachment paradigm, the

self of the individual undergoing therapy is conceptualised as comprising two parts: the

inner-child and the adult-self. The inner-child corresponds to the emotional self that be-

comes dominant under times of stress and perceived threat, thought to be rooted mainly in

the RH of the brain. The adult-self corresponds to the more rational self dominant under

times of calm and low perceived threat, thought to be rooted mainly in the LH.

In essence, the therapy aims to recreate the effects of early RH to RH attachment-based

interactions between an infant and primary caregiver, using instead LH to RH interactions

within the individual’s own brain, in order to create a secure attachment schema within

the individual. These interactions are proposed to naturally stimulate the release of OXT

and DA, in order to encourage neural plasticity and increasingly contain suboptimal and

pathological neural activity that inhibits abilities for self-agency. This is achieved by means

of simulating (for example, using mental imagery techniques) the interactions between an

infant and secure caregiver, from both perspectives. Since both the inner-child and adult-

self are conceptualised as constituents of the self, the individual can be said to securely “self

attach”.

4.3.1 Stages

The four stages of the Self-Attachment therapeutic process (Fig. 4.1) are outlined here

(see Edalat (2015, 2017a,b) for further details). In the first (introductory) stage, the indi-

vidual becomes familiar with the scientific basis and underlying hypotheses of the therapy,

which includes an introduction to attachment theory, and the basics of the (developmen-

tal) neurobiology of attachment, love, bond making and emotion regulation. The aim of

this preliminary phase is to provide initial motivation for undertaking the therapy, which

requires dedication and self-discipline in terms of time and commitment.

Once this preliminary phase has been completed, the individual can begin to concep-

tualise the inner-child as an entity that is distinct from the adult-self, and the adult-self

can begin to create a relationship with the inner-child with a view to establishing empathy

and ultimately compassion with them. During the second (conceptualisation) phase of Self-
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Attachment, the individual selects both a positive photograph of their childhood (which

elicits emotions and memories such as happiness or contentment) and a negative photo-

graph (for example associated with sadness). Several highly-structured exercises (termed

protocols), focused towards these images, are then conducted in order to conceptualise the

inner-child as concretely as possible. These protocols include (for example), with closed

eyes, trying to visualise the two chosen childhood photos, and attempting to imagine that

the child that they were is present and close to them and that they can touch and hold this

child. Another protocol, aimed at strengthening the distinction between the adult-self and

inner-child, involves projection of a negative internal state outwards onto an image associ-

ated with the inner-child. As we will discuss in the following chapter, we suggest that the

undertaking of techniques from existing therapies (e.g. mentalization) might additionally

be helpful in strengthening the self-other distinction during this phase.

1. Introduction

The individual becomes familiar
with the basics of attachment
theory, and the scientific basis and
underlying hypotheses of the therapy.

2. Conceptualisation

Focuses on differentiation of
adult-self and inner-child. The
adult-self begins to develop empathy
for the inner-child.

4. Re-parenting

A number of protocols emulat-
ing attachment interactions between
a child and good-enough care-
giver are undertaken, including the
reprocessing of traumatic memories.

3. Bonding

The adult-self creates an imagi-
native but passionate relationship
with inner-child, which is subjectively
experienced as falling in love with
them.

Figure 4.1: The four stages of the Self-Attachment therapeutic process. See text for further
details.

The third stage of Self-Attachment (and the focus of this chapter) is concerned with

building an imaginative but passionate affectional bond with the inner-child, which is sub-

jectively experienced as falling in love with them. First, the adult-self adopts the inner-child

and makes a vow to consistently support and love them. Then (from the perspective of the

adult-self) the individual focuses on the images of the inner-child and attempts to bond with

them, as a basis for creating the internalised attachment relationship. This bonding process
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is enhanced with the use of activities such as self-massage and positive tactile stimulation

(to simulate an embrace), and (overt and/or imagined) song and dance directed towards the

inner-child which (as we will expand on) are hypothesised to assist in inducing neural plas-

ticity in key attachment-related neural circuitry. Motivation to engage in this bonding may

be enhanced with protocols involving empathic attunement with the emotional state of the

inner-child: as we will explore in the following chapter, the protocols involved in the second

(conceptualisation) and third (bonding) phases are closely intertwined, with application of

each likely to drive progress in the other, and many of the protocols associated with these

phases are carried out in a parallel rather than serial fashion.

The fourth phase of Self-Attachment therapy involves a number of protocols describing

patterns of interaction between the adult-self and inner-child that emulate the function of a

good enough parent interacting with a securely attached child, with the aim of minimising

negative emotion and maximise positive affect. One example is a protocol that involves

the reprocessing of painful and traumatic past events: first, the individual closes their eyes

and recalls a traumatic childhood episode, remembering and re-experiencing in as much

detail as possible the associated negative emotions (such as fear or helplessness). Once this

state has been recalled, the individual imagines that the inner-adult quickly and competently

intervenes in order to reduce distress in the inner-child, for example by embracing or vocally

reassuring them. The aim is for these protocols to become habituated with repetition, so

that the individual spontaneously engages with the inner-child in ways that alleviate their

attachment needs.

4.3.2 Relationship to Existing Therapies

Self-Attachment can be regarded as an extension of attachment theory, but it is also related

to and incorporates ideas from a range of existing psychotherapeutic methods including

transactional analysis, behavioural therapy, mentalization, object-relations psychodynamic

therapy, and cognitive behavioural therapy (Edalat, 2017a). Self-Attachment, which can be

combined with any well-established therapeutic framework, integrates techniques from these

therapies into its key and uniquely distinguishing focus of intervention, which is the creation

of a fully internalised attachment relationship and affectional bond that emulates the char-

acteristics of a secure infant-parent dyad. Although in its early stages, the results from a

small number of initial (uncontrolled) preclinical trials (overseen by psychotherapists in pri-

vate practice) have shown success in tackling chronic anxiety and depression in individuals

who had previously (unsuccessfully) engaged with a number of other practices (including

cognitive behavioural therapy, psychoanalytic therapy, mindfulness and neurofeedback) for

long periods over several years (Edalat, 2015).

A closely related concept is security priming (Mikulincer and Shaver, 2007), which in-

volves temporarily activating mental representations relating to the availability of a secure
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attachment figure in order to reduce distress and restore positive mood. This is achieved

using a variety of techniques involving subliminal (e.g. presentation of pictures suggesting

attachment figure availability, or of the name of an individual perceived to be a secure at-

tachment figure), visual (e.g. presentation of the face of a secure attachment figure) and

imagery (e.g. guided imagery involving availability of an attachment figure) methods.

Also related is compassion-focused therapy (Gilbert, 2009), which involves activities

designed to develop compassionate attributes and skills within the individual in order to

improve capabilities for self-compassion and affect regulation. Techniques include the use of

imagery, in which the individual imagines themselves receiving compassion from an external

(not necessarily human) source (Rockliff et al., 2008). Recent studies have used virtual

reality as a medium for switching an individual’s perspective between an adult avatar (re-

sembling themselves) and a generic child (Falconer et al., 2014, 2016). While embodied

in the adult avatar the individual administered compassion to the distressed child, before

switching to the perspective of the child in order to re-experience themselves administering

the compassion from this alternative perspective; a practice which resulted in a reduction in

measures of depression and self-criticism. In these experiments a non-related and non-self-

resembling child avatar was used (although virtual embodiment during the recipient phase

would have resulted in some sense of identification with the child). In contrast, rather than

being a generic child, the recipient of attachment-based compassion in Self-Attachment (the

inner-child) is conceptualised as comprising a part of the self, and there is a focus on the

development of a dyadic attachment relationship between the inner-child and adult-self. It

has been argued that using this inner-child representation, as opposed to a generic and/or

non-related child, increases the efficacy of the therapy from the perspective of primary nar-

cissism (Edalat, 2017a), and in Chapter 5 we will additionally argue that this inner-child

representation should assist in inducing empathically-motivated caregiving (bonding) be-

haviour.

4.3.3 Bonding Protocols

In order to complete later stages of the therapy, the adult-self must first establish an imagi-

native (but passionate) loving relationship with the inner-child, which is subjectively experi-

enced as falling in love with them. The individual begins by focusing on happy and unhappy

images of their younger self, in order to form a conceptualisation of the inner-child. Then,

from the perspective of the adult-self, the individual attempts to bond with the inner-child

in order to create an attachment relationship with them, enhancing this process with the

use of activities such as (overt and/or imagined) song and dance directed towards the inner-

child. These activities can be experienced from the perspective of the inner-child in terms

of attempts by the adult-self to engage and comfort during times of unease or distress.

There is evidence to suggest that humans are capable of, and indeed driven to, form bonds
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with both inanimate objects and non-material beings of a more abstract nature (Edalat,

2017a). For example, it is common for children to form bonds with inanimate transitional

objects that can serve as mother substitutes (Litt, 1986). In addition, throughout much

of history, abstract bonds formed and reinforced through religious practice have been a

predominant means of regulating emotion and social behaviour, and it has been argued

that bonds between religious believers and God meet many of the criteria of an attachment

relationship (Kirkpatrick, 2005). An fMRI study of Danish Christians (Schjødt et al., 2008)

found activation of the CN during formal prayer, suggesting that, as with attachment and

bonding to a human, these effects are mediated (at least in part) by the brain’s reward

system. As discussed previously, the CN receives dopaminergic projections, and has been

proposed to play a role in attachment-related approach behaviours (Villablanca, 2010).

A key technique in Self-Attachment is to enhance the bonding process through the use of

activities such as song and dance directed towards the inner-child, along with positive tactile

stimulation such as self massage, which are proposed to stimulate the dopaminergic reward

system and areas involved in the representation of reward. Music has long been recognised as

a powerful mediator of emotional state, and fMRI studies have shown correlated activation

in a wide range of brain regions implicated in emotional processing (e.g. Koelsch et al.

(2006)). Furthermore, recent fMRI studies have shown evidence for the involvement of

the reward system during passive listening to self-reported pleasurable music (consistently

implicating the Nucleus Accumbens (NAc), a major target for dopaminergic projections from

the VTA). For example, in Salimpoor et al. (2011), fMRI and PET scans revealed striatal

DA release in the CN and NAc in response to anticipation and peak emotional response

to the music, respectively. Another study (Montag et al., 2011) found that self-reported

favourite as opposed to least favourite music correlated with increased activity in the ventral

striatum (which includes NAc), CN and insular. Similarly, in Koelsch et al. (2006) pleasant

contrasted to unpleasant music correlated with activation of areas including the ventral

striatum and anterior superior insular. In Mitterschiffthaler et al. (2007), subjects reported

their emotional responses to classical music on a scale from 0 (sad) through 50 (neutral)

to 100 (happy). Self-reported happy states correlated with activity in regions including

ventral and dorsal striatum (CN), and sad with activity in regions including the amygdala.

In a PET study (Brown et al., 2004), activations elicited by unfamiliar though pleasantly

rated music resulted in activation of regions including AI and NAc compared to a rest

condition. Song, too, has been shown to activate emotion and reward circuitry in both

overt and imagined form. Jeffries et al. (2003) compared brain activity while subjects either

spoke or sang words to a familiar song. For singing opposed to speaking, they found a

relative increase in areas including mPFC and NAc. In another study (Kleber et al., 2007),

professional classical singers were asked to imagine singing an aria (love song), resulting in

intense activation in emotional areas (including amygdala, ACC, and mPFC) along with the
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CN and putamen. Finally, there is evidence from human studies to suggest that pleasant

touch (which is thought to be primarily reinforcing), of the sort that would be involved in

self-massage, activates the OFC (with activation positively correlated to pleasantness (Rolls,

2013, p.72)), decreases cortisol (Field et al., 2005) and increases DA (Field et al., 2005) and

OXT (Light et al., 2005) (in a recent study it was furthermore demonstrated that gentle

stroking activates Paraventricular Nucleus of the Hypothalamus (PVN) OXT neurons in

the rat (Okabe et al., 2015)).

As discussed in Section 4.2, evidence suggests involvement of reward circuitry during

infant interaction, especially for own-infant. In addition, in songbirds at least, it is known

that singing directed towards a potential mate, but not undirected singing, results in in-

creased DA concentrations in the VTA (Huang and Hessler, 2008). Thus, we hypothesise

that song directed towards the conceptualised inner-child is also likely to be a powerful ac-

tivator of the dopaminergic reward system in humans. In this chapter, we begin to explore

(in the form of a computational model) some of the neural mechanisms that might under-

lie the formation of this abstract, self-directed bond. During this phase of the protocol,

the volunteer focuses on happy and unhappy images of themselves as a child in order to

conceptualise the inner-child, before attempting to create an attachment relationship with

this abstract entity. The volunteer is encouraged to sing and/or dance (either overtly or

imagined) with the inner-child in order to accelerate and enhance this bond making pro-

cess. The hypothesis presented here is that the success of such techniques in driving the

self-directed bond formation process may be (at least in part) due to their facilitation of a

form of counter-conditioning for fearful associations formed to classes of social stimuli.

4.4 Model of Hypothesised Self-Attachment Bonding

Protocol Effects

We now present a computational neural model to attempt to explain how bonding cir-

cuitry activation may be strengthened, and stress reactivity dampened, under a counter-

conditioning paradigm. This is achieved by introducing and associating additional re-

ward with a class of social stimuli that have previously been conditioned as being fear-

ful/threatening in nature, resulting in a prefrontal-mediated inhibition of stress circuitry

and increased release of OXT. The overall architecture is shown in Fig. 4.2.

Our starting point is Levine’s neuroanatomical model in Levine (2008), which identified

the OFC as the key region in mediating the relative strength of activity in fight/flight

circuitry (focused on the amygdala, PVNp and LC) and bonding circuitry (focused on the

reward system). In particular, it is proposed that the OFC sends, via the Dorsomedial

Hypothalamus (dmH), different inhibitory strengths to the PVNm (which controls release

of OXT and Vasopressin (VA)) and the PVNp (which controls release of CRH). Release of
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Figure 4.2: The overall neural architecture, based on both Levine (2008) and Moustafa et al.
(2013). Conditioned (CS) and unconditioned (US) stimuli representations enter the basolat-
eral amygdala (BLA), with CS representations also entering the orbitofrontal/ventromedial
prefrontal cortex (OFC/vmPFC). Stress reactivity in the central nucleus of the amygdala
(CeA) - parvocellular part of the paraventricular nucleus of the hypothalamus (PVNp) -
locus coeruleus (LC) loop is stimulated by the BLA, and inhibited by OFC/vmPFC - in-
tercalated cells (ITC) and dorsomedial hypothalamus (dmH) - PVNp pathways. Oxytocin
(OXT) release is controlled by the OFC/vmPFC - dmH - magnocellular part of the par-
aventricular nucleus of the hypothalamus (PVNm). Dopamine (DA) release drives inhibitory
learning in vmPFC-ITC pathways.

OXT and VA to the reward system enhances the facilitation of the creation of social bonds,

whilst CRH release serves to further stimulate activity in the amygdala-PVNp-LC stress

loop, inhibiting social approach.

The OFC and BLA are known to have extensive bidirectional connections, which are

implemented in our model within a Deep Belief Network (DBN) (see Appendix B.1) using

the architecture shown in Fig. 4.3. We chose to use a DBN here primary due to its

power in functioning as a hierarchical associative memory (and thus ability to capture

the counter-conditioning processes hypothesised to underlie successful application of the

bonding protocols). An RBM (i.e. a single layer DBN) has recently been used for modelling

of the psychotherapeutic process (Edalat and Lin, 2014), while a DBN has been used to
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model area V2 of the visual cortex (Lee et al., 2008). The Deep Boltzmann Machine (an

architecture closely related to the DBN) has additionally been used to model both object-

based attention in the visual cortex (Reichert et al., 2011) and Charles Bonnet syndrome

(the common experience of complex visual hallucinations in those with blindness) (Series

et al., 2010; Reichert et al., 2013).

An RBM is defined by visible units x and hidden units h, and parametrised by θ =

{b, c,W}, with weights W , hidden biases b and visible biases c. In an RBM h and x are

conditionally independent given each other, and each configuration of x and h is assigned a

scalar energy E(x, h), where:

E(x, h) = −
∑
i,j

Wijhixj −
∑
j

cjxj −
∑
i

bihi (4.1)

giving joint-distribution over x and h:

p(x, h) =
e−E(x,h)∑
x,h e

−E(x,h)
(4.2)

For both x and h binary, units are activated according to a probability given by the logistic

function σ(x) = (1 + e−x)−1. A learning procedure called contrastive divergence (Hinton,

2002) gives a simple Hebbian-like gradient descent learning rule for parameter updates. To

construct a DBN, we first train an RBM and then use its hidden layer activations as the

visible layer in another RBM. It has been shown that a variational lower bound on log p(x)

can always be increased with each additional new layer (Hinton et al., 2006), with successive

layers of hidden units coming to learn increasingly higher-order features over the hidden unit

activations of the previous layer.

... OFC (O)

... ... ... CS, BLA (B), K

... ... CS, US

Figure 4.3: BLA-OFC DBN architecture

In both humans and animals, the amygdala has long been known to be crucially im-

portant in fear conditioning, in which a previously neutral CS is repeatedly paired with a

noxious US that elicits a (fear related) Unconditioned Response (UR). Over time, the CS

comes to elicit the UR independent of the US, as a result of the learnt association. It is

106



believed that the CS and US representations enter and converge on the BLA, which seems

to be important in fear acquisition; whilst expressions of the fear response are triggered by

the CeA’s various projections to regions including the hypothalamus and parasympathetic

nervous system.

In addition to responding to stimuli with negative emotional valance, it is now known

that the amygdala additionally also responds to stimuli with both positive and neutral

valance, and furthermore appears to respond preferentially to social vs non-social stimuli.

For example, Vrtička et al. (2012) found similar levels of amygdala reactivity to positive

and negative faces (social stimuli), but more activation to neutral social relative to neutral

non-social stimuli. Such findings support theories for a more general role of the amygdala

in the processing of stimuli that are predictive of biologically relevant events (within the

context of the individual’s current needs).

In our model we therefore consider associations between CS and both appetitive and

aversive (biologically salient) US representations. Both CS and US representations enter

the BLA at the input level, and the activations of the first layer of hidden units (the BLA

layer, B) in the DBN serve as input to the CeA feed-forward network C (Eq. 4.4). Thus,

the BLA layer B (the first hidden layer in the DBN) learns latent representations over

associations formed between the CS and US.

In addition to feeding forward into the CeA, BLA activations at B also serve as input

into to the OFC (the top hidden layer of the DBN, O), along with the CS representation and

n = 10 softmax units representing associated rewards, giving a modified DBN architecture.

Note that we are modelling associations between CS and reward values in the OFC, but

associations between CS and US features in the BLA, which is consistent with findings

from reversal learning and devaluation experiments on primates highlighted by Rolls as

suggesting that the OFC is more involved in the representation of reward value than the

amygdala (Rolls, 2015, p.136).

The activation of the OFC’s hidden layer O in turn serves as input to the ITC feed-

forward network I (Eq. 4.5), whilst the activation state of the OFC’s reward nodes K serves

as input to the dmH-PVNp feed-forward network D (Eq. 4.6). This flow of information from

the BLA to the OFC, with the BLA hidden unit activations B in turn influencing the OFC

hidden unit activations O, is broadly consistent with a recent study that found a dominant

directional influence from BLA to OFC during a choice task involving both appetitive and

aversive food (i.e. primary reinforcer) stimuli (Jenison, 2014), and with evidence suggesting

that projections from the amygdala are involved (but not crucially so) in stimulus value

coding in the OFC (Rudebeck et al., 2013). This overall structure gives a reasonable (if

basic) first approximation to dominant associations and information flows involved in the

re-association of classes of social stimuli (previously conditioned as being threatening or

stressful in nature) with new (appetitive) reward values.
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4.4.1 Stress/Arousal System

The stress/arousal system is intended to encapsulate the basic dynamics of the CeA, PVNp

and LC loop described in Levine (2008). It is excited by input from the BLA (capturing

BLA-CeA excitation), inhibited by the dmH (capturing dmH-PVNp inhibition), and in

turn excites the BLA (capturing NR-based stimulation by the LC). This creates a positive

feedback loop which serves to further enhance stress levels once this circuit is activated,

until stimuli inputs significantly change. The stress level at time t is given by:

S(t) = max(0, C(t)− I(t)−D(t)) (4.3)

for C(t) the activation strength along the BLA-CeA pathway at time t, and I(t) and D(t)

the inhibitory strengths of the ITC and dmH at time t, respectively. The activation strength

of the BLA-CeA pathway at time t is:

C(t) =
∑
i

tanh

∑
j

WijBj(t)

+ γS(t− 1) (4.4)

where Bi ∈ {0, 1} is the first hidden-layer activation in the BLA-OFC DBN (i.e. the BLA

layer), and S(t − 1) is the stress/arousal level for the previous timestep. Thus, the BLA

activates the CeA at a strength dependent on feedback from the stress/arousal system in

the previous timestep (with γ = 0.1). Inhibitory strength of the ITC at time t is given by:

I(t) =
∑
i

tanh

∑
j

WijOj(t)

 (4.5)

where Oi ∈ {0, 1} is the top hidden-layer activation in the BLA-OFC DBN (i.e. the OFC

layer). Similarly, inhibitory strength of the dmH on the PVNp pathway at time t is given

by D(t), where:

D(t) =
∑
i

tanh

∑
j

WijKj(t)

 (4.6)

for Ki ∈ {0, 1} the state of the OFC’s associative reward node i at time t (determined by

running a Gibbs chain). OXT levels φ(t) at time t are calculated based on the strength of

the inhibitory input to the PVNm:
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φ(t) = max

(
1, q − g

(
q − 1

Mmax

))
(4.7)

where q = 2 is a parameter controlling maximum OXT level, g ∼ N (M(t), 0.05) (to intro-

duce a very small amount of random noise in OXT levels), and M(t) is the strength of the

inhibition on the PVNm at time t:

M(t) =
∑
i

tanh

∑
j

WijKj(t)

 (4.8)

and Mmax =
∑
i tanh (Wi1) is the maximum inhibition on the PVNm (i.e. inhibition on the

PVNm for minimum reward input from the OFC).

4.4.2 Reward System

A prominent account of reinforcement learning in the brain suggests that phasic DA firing

signals an appetitive reward prediction error, i.e. unexpected rewards (Niv, 2009). Midbrain

DA neurons in the VTA project to the OFC and vmPFC via the mesocortical pathway,

and evidence from rodent studies suggests a critical role for DA in the prefrontal cortex

for the consolidation and retrieval of fear extinction (see Abraham et al. (2014) for an

overview). This may be at least in part due its phasic signalling of appetitive reward

prediction errors, strengthening vmPFC-ITC connections known to result in inhibition of

the CeA fear response (Milad and Quirk, 2012; Moustafa et al., 2013).

Although mechanisms underlying the signalling of aversive outcomes and unexpected

punishments are less clear, DA projections from the VTA do also reach the amygdala (both

directly, and via the NAc and mesolimbic pathway), and there is some evidence to suggest

a role for DA in fear acquisition (Abraham et al., 2014). A recent theory proposes that

whilst DA neurons in general respond to unexpected cues, there are in fact two distinct

types of DA neuron population (Bromberg-Martin et al., 2010; Hu, 2016). Under this view,

one population of DA neurons, found in the ventromedial SNc and throughout the VTA, is

involved in value learning, with increases in phasic firing for unexpected reward and slight

decreases for unexpected punishment. These signals are projected to areas involved in value

learning, such as the NAc shell, dorsal striatum and vmPFC. A second population of DA

neurons, found in the dorsolateral SNc and medial VTA, is involved in signalling salience,

with increased phasic firing for highly salient events (regardless of valence). Salience signals

are believed to be sent to areas involved in orienting, cognitive processing and general

motivation, such as the NAc, dorsal striatum and dorsolateral prefrontal cortex.
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In our model, we assume that reward predictions and prediction errors are computed

by the OFC (Rolls, 2013, p.316) and signalled to the reward system (see Section 2.6.4).

We consider value-signalling DA neurons, which encapsulate appetitive and aversive reward

prediction errors in phasic firing patterns that are projected to the OFC/vmPFC and amyg-

dala. In the model, reward predictions K are associative activations, resulting from a Gibbs

chain initiated at a representation composed of the CS and BLA hidden unit activation,

with only the reward (K) nodes un-clamped during the chain. The OFC’s reward nodes K

use a 1-of-n encoding (i.e. they encode n reward categories). They are activated accord-

ing to a softmax function, and we assign the index of the activated node to a particular

reward prediction P (t) ∈ Z. More explicitly, we use n = 20 reward units and distribute

these equally amongst positive and negative rewards. For indexed-reward values increasing

in uniform steps from −n/2 to n/2, exclusive of zero, then the predicted reward at time t

is given by:

P (t) =

j − n
2 − 1 if j ≤ n

2

j − n
2 otherwise

(4.9)

for j ∈ N+ the index of the activated unit in the OFC’s softmax reward units at time t (i.e.

Kj(t) = 1 and Ki 6=j(t) = 0). The reward-prediction temporal difference error F (t) at time

t is then given by:

F (t) = φ(t)(R(t) + δP (t)− P (t− 1)) (4.10)

for δ = 0.1 the temporal-difference discount factor, R(t) the reward at time t, P (t) the

predicted reward at time t and P (t− 1) the predicted reward at time t− 1.

Here we assume a modulating effect of OXT on phasic DA firing (the reward prediction

error). In Love (2014), it is suggested that OXT could influence both salience and valance

attribution based on such an effect on the two distinct DA neuron populations discussed

previously. This is based on evidence suggesting a role for OXT in increasing the salience of

social cues, on the location of OXT receptors throughout the mesocorticolimbic system, on

recent evidence suggesting that activation of OXT neurons that target the VTA stimulate

DA neurons, and on behavioural evidence suggesting a role for OXT in facilitating shifts

in valance attribution (see Love (2014) for a discussion). Such OXT modulation of DA

within the context of maternal and caregiving behaviour has been demonstrated directly

in the rat (Shahrokh et al., 2010). In that study, mothers exhibiting higher rates of pup-

directed caregiving behaviour expressed higher levels of OXT in the PVN and had increased

projections from OXT cells in the PVN to the VTA, and in all mothers direct infusion of OXT
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into the VTA increased the DA signal in the NAc. The authors found a positive correlation

between increase in DA signal in the NAc and rate of maternal behaviour, but this relatively

high increase was abolished with administration of OXT receptor antagonist directly into

the VTA. Broadly in line with these findings, in our model OXT can modulate valance

attribution by increasing phasic DA firing F (t) for positive unmodulated reward prediction

error R(t) + δP (t) − P (t − 1) > 0. For simplicity, we also assume OXT serves to decrease

F (t) for unmodulated negative error. While we are primarily concerned with modelling

the delivery (and modulation) of positive reward prediction errors (which are proposed to

be involved in the counter-conditioning process driving the therapy), detail regarding the

effect of OXT on signals representing the delivery of unexpected punishments can be refined

in future, once a clearer picture emerges regarding the role for DA in conveying negative

reward-prediction errors and the interplay between OXT and DA within this context.

4.4.3 Counter-Conditioning

As discussed previously, in individuals with high attachment anxiety, stress circuitry appears

to be over-active and could be triggered for a large and general class of social stimuli. A key

part of Self-Attachment therapy is pairing classes of previously fearful or stress-inducing

social stimuli with alternative representations (in particular music, and interactions such

as singing directed towards inner-child representations) that naturally induce reward in

order to drive a process of reinforcement learning. Supporting our proposal, based on the

wealth of evidence showing activity in reward related brain areas and dopamine release

during listening to music (outlined previously), Gold et al. (2013) investigated the effects

of music listening on both accuracy and responsiveness in a learning task. In the training

phase participants learned the reward contingencies for pairs of symbols, before a test phase

in which participants were required to generalise what they had learned. Subjects heard

either self-reported pleasurable or neutral music during the training and test phases of the

task, and the accuracy (proportion of trials in which the stimulus with higher reward) and

reaction times (amount of time between stimulus presentation and response) were measured.

Pleasurable music generally accelerated reaction times during learning, and also accuracy for

individuals reporting low prior musical experience. The authors argued for these results to

be interpreted in terms of musically-elicited dopaminergic reward prediction errors directly

enhancing reward-driven reinforcement learning. In particular, it was proposed that learning

was improved by pleasurable music in individuals with low prior music experience as a result

of amplified reward-prediction errors, since these individuals are less able to form accurate

musical predictions.

Thus, we hypothesise that the inner-child directed singing and passive listening to plea-

surable music involved in the Self-Attachment bonding protocols serve, at least in part, to

counter-condition negative and fearful associations learnt for classes of social stimuli as a
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result of previous relational trauma. Based on findings from fear extinction, we consider

here a mechanism which (in addition to the OFC-dmH-PVNp inhibitory pathway originally

detailed in Levine (2008)) may inhibit stress circuitry.

In fear extinction, the CS is presented without the aversive US until it no longer elicits

the UR. Rather than CS:US fear memories being “forgotten”, it seems that fear extinc-

tion predominantly involves the creation of new CS:no-US memories, formed in descending

connections from the vmPFC to the ITC, that in turn inhibit the CeA (Milad and Quirk,

2012). In contrast to fear extinction, in a counter-conditioning paradigm the CS is repeat-

edly paired with a qualitatively different (i.e. appetitive for fear) US, until the CS no longer

elicits the UR. Although few studies have explicitly looked at the neural mechanisms under-

pinning counter-conditioning, behavioural experiments suggest that counter-conditioning to

a positive (or even neutral) US is more effective in inhibiting a fear response compared to

extinction alone (e.g. Raes and De Raedt (2012)).

As a first hypothesis, we consider here a similar vmPFC-ITC extinction inhibitory pro-

cess to occur as a result of the counter conditioning-like aspects of the Self-Attachment

bonding protocols. Our computational model of this process is based on the recent fear

extinction model proposed in Moustafa et al. (2013). In that model, the learning of con-

ditioned fear responses in the CeA is driven by prediction errors encapsulating unexpected

punishment, that serve to strengthen activation based on signals coming from the BLA. On

the other hand, extinction learning is driven by prediction errors encapsulating less pun-

ishment than expected, which strengthen activation of the ITC (which in turn inhibits the

CeA) based on signals from the vmPFC. Also considered is the role of hippocampal inputs

to the BLA and vmPFC in terms of context modulation, although we exclude those inputs

here for simplicity.

Similarly to Moustafa et al. (2013), we assume that positive reward prediction errors

(i.e. signalling unexpected rewards) strengthen inhibitory activation along the vmPFC-ITC

pathway, whilst negative reward prediction errors (i.e. unexpected punishments) strengthen

activation of the BLA-CeA pathway. As in that model, we update vmPFC-ITC weights in

a Hebbian manner according to:

4Wij(t) =

αitcF (t)Oi(t)Ij(t) if F (t) > 0

0 otherwise
(4.11)

and similarly, BLA-CeA weights according to
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4Wij(t) =

−αceaF (t)Bi(t)Cj(t) if F (t) < 0

0 otherwise
(4.12)

Thus, as compared to an extinction, our model will afford more rapid strengthening

of ITC inhibition, driven by the relatively larger prediction errors (and thus weight up-

dates) between the vmPFC and ITC. In our model, CS- representations are hypothesised

to correspond to a general class of social stimuli that have previously been paired with

negatively-valenced US-. US+ representations are related to the reward-inducing activities

(such as song), and positively-valenced infant perceptions, that are utilised during the proto-

cols. This gives a reasonable first approximation to a counter-conditioning model, although

the finding of enhanced fear inhibition in counter-conditioning to a neutral US as compared

to extinction may suggest a more intricate process in the brain (Raes and De Raedt, 2012).

4.5 Simulations

We first generated 40 random binary stimuli, each of length 200 bits (where each bit was

activated independently with probability 0.1). These stimuli were split evenly amongst

the four stimulus categories (CS+/- and US+/-), and each US+/- stimulus was assigned a

reward/punishment with a surjective mapping to {x|x ∈ Z, 1 ≤ x ≤ 10} and {x|x ∈ Z,−1 ≥
x ≥ −10}, respectively. We then created equal quantities of US+ paired with CS+ and

random stimuli; and US- paired with CS- and random stimuli, to create an input dataset

of size 200. The DBN was then trained on this input data (with 500 hidden units in the

second and third layers, a learning rate of α = 0.05, a sparsity target of d = 0.01 (with

gain η = 0.25 and decay γ = 0.9), an L2 weight decay penalty of λ = 0.02, and batch

size 50, for 2000 epochs) using 1-step contrastive divergence, so that it learnt sparse latent

representations for the CS and US associations.

The BLA-CeA feed-forward network was trained to have a high activation for CS-:US-

pairs, using as input the first hidden layer (BLA) activations in the DBN, and the weight up-

date rule described above with temporal difference errors proportional to the corresponding

punishment for the US-. Similarly, we trained the vmPFC-ITC network to have high activa-

tion for CS+:US+ pairs, using as input the second hidden layer (OFC/vmPFC) activations

in the DBN. Both the BLA-CeA and vmPFC-ITC feed-forward networks were configured

with 200 hidden units, a learning rate of 75× 10−6 and weights initialised randomly in the

interval [0, 10−4]. Finally, the weights in the OFC-dmH-PVNp feed-forward network were

initialised to have high activation (inhibition) for increasingly large reward representations

in the OFC (i.e. generally higher activation in the OFC-dmH-PVNp network corresponded

to activation of units with decreasing index in the OFC’s softmax reward units). Similarly,
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Figure 4.4: Top: Predicted/actual reward and dopamine at each time-step of the protocol
(x-axis) for a typical simulation run. Middle: Oxytocin levels at each time-step (x-axis)
of the protocol. Bottom: Stress levels at each time-step (x-axis) of a typical simulation
(taken as an average over 100 activations) in response to a CS- permuted with 1,5,10 and
15% random noise.

the OFC-dmH-PVNm network was initialised to have increasingly high activation (inhibi-

tion) for increasingly large punishment representations (corresponding to lower indices in

the OFC’s reward units). Both the OFC-dmH-PVNp and OFC-dmH-PVNm feed-forward

networks had the same number of hidden units as the BLA-CeA and vmPFC-ITC networks

described above, however weights were fixed after this initialisation and not subject to any

learning. This gave a network that responded with relatively high stress to CS- (and slightly

permuted CS-) inputs, but relatively low stress for CS+ (and slightly permuted CS+) inputs,

representing an individual with high stress reactivity to a particular set of inputs (which

are here taken to correspond to a class of attachment-related social stimuli).

We then attempted to simulate the counter-conditioning elements of the bonding phase

of the Self-Attachment therapy, for a particular CS- (see Fig. 4.5). On every iteration, we

paired this CS- with one of either two US+ stimuli (with corresponding rewards of 7 or

8), and propagated these into the OFC to compute the predicted reward (Eq: 4.9). Based

on this predicted reward, and the actual reward associated with the US+, we computed

114



the temporal difference error (corresponding to a phasic DA signal) as in Eq. 4.10, and

used this to update the weights in either the BLA-CeA or OFC-ITC feed forward networks

(according to Eq. 4.11 and Eq. 4.12). The CS-:US+ was then also stored in the DBN

along with the categorical representation for the received reward, using online learning (i.e.

a single epoch).

The onset of the protocol results in large temporal-difference errors (phasic DA release),

which spikes when the OFC’s reward-prediction shifts before settling to a lower baseline

level (Fig. 4.4, top). This spike in DA coincides with a spike in OXT (Fig. 4.4, middle),

and a large drop in average stress levels associated with the CS- randomly permuted at

1,5,10 and 15% levels (Fig. 4.4, bottom). The effect can be seen in Fig. 4.5, which shows

100 time-steps in which either the counter-conditioned CS- stimulus, or a random stimulus,

is presented to the network along with a random pattern for the US input, before (top) and

after (middle) application of the protocols. Before counter-conditioning, stages in which

the CS- is presented correspond with large spikes in CeA input, low dmH inhibition on

the PVNp, and a correspondingly high stress level. Inhibition from the dmH and ITC are

increased following completion of counter-conditioning, with corresponding reduced stress

reactivity.

4.6 Summary and Future Work

In this chapter we presented a neurobiological hypothesis with regards to the underlying

effects of the Self-Attachment bonding protocols, based on a previous neuroanatomical model

of OFC-mediated stress and bonding reactivity to social stimuli. We considered how this

balance could be driven by both OFC-dmH inhibition on PVNp, and vmPFC-ITC inhibition

on CeA. By way of a computational model, we showed how a counter-conditioning procedure

(which we linked to application of the Self-Attachment bonding protocols) could be used to

drive a re-balance of activity between these circuits, by creating new social stimuli-reward

associations in the OFC that drive an increase in OXT-modulated DA release, and a decrease

in CRH release (which is involved in the stress response).

In particular, we considered how the pairing of broad classes of social stimuli (that have

previously been conditioned as threatening in nature) with additional, naturally induced

reward (which is proposed to result from activities associated with the protocols) might

result in reward prediction errors, originating in the OFC and encapsulated in DA firing.

Building on a previous model of fear conditioning and extinction, DA-encapsulated reward

prediction errors were proposed to drive strengthening of vmPFC-ITC inhibition on the

CeA, whose output drives activity in autonomic and endocrine systems that have been

found to be relatively overactive in individuals with insecure attachment classifications.

Based on recent evidence we considered here a role for OXT in modulating DA (Love,
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Figure 4.5: Stress circuit reactivity for the counter-conditioned CS- before and after bonding
protocols have been applied. Top: Before application of the protocol, presentation of the
the CS- at random discrete time-steps is associated with large CeA and stress spikes (red).
Middle: After counter-conditioning, ITC and dmH inhibition reduces associated stress
reactivity (red) in response to CS-. Bottom: Time-steps at which CS- was presented in
both the before- and after-application testing conditions. In all other time-steps a random
stimulus was presented.
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2014), so that in our model the strengthening of the vmPFC-ITC pathway was driven by

reward-prediction errors that were enhanced by OXT release, however we note that DA

might also have a modulating effect on OXT (Love, 2014). As we discussed, the role of DA

in signalling negative reward prediction errors remains somewhat inconclusive, and the role

of DA encapsulated reward-prediction errors in the OFC/vmPFC has also been questioned

(since the OFC is itself thought to compute and signal prediction errors, it may be that

DA errors are used mostly for habit learning in the striatum (Rolls, 2013, p.316)). Further

complicating the matter, there is also evidence to suggest that DA is released during the

stress response (Pruessner et al., 2004) (possibly related to the firing of salience signalling

DA neurons that we discussed previously). Future work can refine the precise role of DA in

the model as functionality becomes clearer with further research.

Recent studies have also suggested a role for OXT in direct modulation of stress reactivity

to fearful stimuli, potentially mediated via receptors in the amygdala, although such effects

are not explored in this initial model. For simplicity, we did not consider the role of the

hippocampus in either fear context modulation (Moustafa et al., 2013) or short term memory

effects of bonding (Levine, 2008). Neither did we consider VA, which is believed to play a

role in selective attention along with memory and stress modulation (Levine, 2008; Bachner-

Melman and Ebstein, 2014). Future work should consider such effects.
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5. Self-Attachment Empathy

Protocols

In this chapter we build on a neuroanatomical model of how empathic states can motivate

caregiving behaviour, via empathy circuit-driven activation of regions in the hypothalamus

and amygdala which in turn stimulate a mesolimbic-ventral pallidum pathway, by integrating

findings related to the perception of pain in self and others. Based on this we propose a

network to capture states of personal distress and empathic concern, which are particularly

relevant for psychotherapists conducting attachment-based interventions. This model is

then extended for the case of Self-Attachment therapy in which conceptualised components

of the self serve as both the source of and target for empathic resonance, and we consider

how such states might optimally generate motivation for self-directed bonding (as described

in the previous chapter). We simulate our model computationally, and discuss the interplay

between the bonding and empathy protocols of the therapy.

5.1 Introduction

As we have discussed, early insecure attachment experiences are believed to have important

implications with regards to the development of capacities for self-regulation of emotion

and the governing of various aspects of social behaviour, and create a predisposition for

the future development of a range of psychopathological disturbances. On the other hand,

the caregiver’s mimicry and resonance of the emotional state of the infant in optimal early

attachment experience is believed to underlie development of the ability to empathise with

others. In attachment-based psychotherapies, which view the client-therapist relationship as

an attachment bond, empathic resonance is used as a tool both to communicate attunement

to the client, and to generate internal motivation for prosocial stances that guide the client

towards states of positive emotion and internal regulation. While engaging in such resonance

effectively and avoiding negative states of distress and burnout depends crucially on the

ability to differentiate self from other, prosocial motivation resulting from an empathic
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state is stronger the more closely related the other is deemed to be to the self.

In the previous chapter we hypothesised that Self-Attachment protocols involving the

formation of a self-directed bond would stimulate neural plasticity in a network spanning

the OFC, vmPFC and amygdala, increasingly containing stress circuitry and facilitating the

release of hormones related to prosocial tendencies. In this chapter we build on this work

by integrating neuroscientific findings relating to empathy, compassion and the self-other

distinction, to present a computational model of how empathic states can provide additional

motivation for the application of these bonding protocols. Within the context of findings

relating to modulation of the empathic response, we argue that the particular conceptuali-

sation that we use for the part of the self deemed as requiring attachment intervention aids

in the generation of this motivation.

5.2 Empathy

Work in empathy distinguishes between a number of related yet distinct phenomena and

states. We broadly follow the definitions set out in Gonzalez-Liencres et al. (2013), with

states of “emotional contagion”, “personal distress”, “emotional empathy” and “sympathy”

being relevant for our initial discussion here. A state of emotional contagion within the

self involves a mirroring of the emotional state of another. Crucially, this mirroring occurs

within a context of weak or absent self-other distinction, such that the emotional state of the

other is perceived as belonging to the self, and is not necessarily attributed to the other. In

cases in which the mirroring is of a negatively-valenced emotion belonging to the other, emo-

tional contagion can result in emotional distress within the self (“personal distress”), driving

egoistic withdrawal responses in which the self withdraws from its surrounding environment

and stimuli triggering the state, in order to relieve the symptoms of the distress.

Similarly to emotional contagion, emotional empathy is a state that arises from a mirror-

ing of the emotional state of another. In contrast, however, this mirroring is accompanied

with a strong self-other distinction. In other words, there is both an experience of the

other’s emotional state within the self, and knowledge that this emotional state originates

in the other rather than the self. Since there is this self-other distinction, empathic states

involving negatively-valenced emotion can drive prosocial motivation aimed at relieving the

perceived distress of the other (we discuss this in more detail in Section 5.2.2.1). The term

“sympathy” is sometimes loosely used to describe prosocial motivation arising from such an

empathic state (we prefer to use the phrase “empathic concern” here).

5.2.1 Empathy in Psychotherapy

The ability to empathise emotionally is recognised as an integral skill for professionals

in a broad range of health-related occupations, including social work (Gerdes and Segal,
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2011) and, increasingly, medicine (Halpern, 2003). The role of empathy in psychotherapy

dates back to Carl Rogers, who proposed that a continuous effort to empathically attune

with the client, along with an unconditional positive regard for them, are necessary in

order for therapeutic change to occur (Rogers, 1957). Heinz Kohut’s psychoanalytic self-

psychology, developed from the 1960s onwards, holds that almost all psychopathology is

rooted in empathic failure on the part of the parent in childhood, and the therapist serves

as an empathic self-object in order to resume development towards maturity (Kohut, 1959;

Baker and Baker, 1987). Empathy is now widely accepted as being important for the

formation of an effective working relationship between the therapist and client. For example,

the influential empathy cycle model defines a framework under which communication of the

therapist’s ever-strengthening empathic resonance helps to guide the client towards more

accurate expression of their internal experience (Barrett-Lennard, 1981).

From an evolutionary perspective, empathic motivation has been argued to have its ul-

timate roots in selective pressures to care for offspring, identify with in-groups, and exclude

out-groups (Zaki, 2014). The mechanisms driving empathic responses may have initially

evolved in order to fulfil parental care (i.e. attachment) responsibilities, while only later

being “co-opted” in order to increase survival prospects of in-groups (Gonzalez-Liencres

et al., 2013), suggesting a primacy for attachment in the empathic experience. The infant’s

experiences of emotional mimicry and resonance within early attachment experiences have

been proposed to underlie the later development of capabilities for empathy towards oth-

ers (Decety and Meyer, 2008), and a number of studies have shown increased tendencies

for self-reported compassionate states and prosocial behavioural responses with increasing

attachment security (Mikulincer and Shaver, 2005).

Empathy plays a particularly important role in attachment-based psychotherapies, which

are the main focus of this chapter. Attachment-based psychotherapies view the client-

therapist relationship as an attachment bond, with the therapist aiming to provide a secure

safe-haven for the relief of the client’s distress (Obegi, 2008). The therapist uses empathic

attunement and contingent communication as tools in order to help the client explore painful

feelings and memories, and engages in interactive regulation of the client’s emotion in order

to guide them towards alternative ways of feeling and acting (Wallin, 2007, p.196). Thus, in

order to cultivate secure attachment, the client must additionally experience the therapist as

being both able and willing to help them cope with their difficult feelings, and the therapist

must engage in a process of interactive regulation of the client’s internal emotional state.

Empathic resonance is an effective tool for therapists and other health professionals to

communicate attunement and understanding to the client, and generate prosocial motiva-

tion to guide interactions towards desirable outcomes. However, the demands of sharing

the client’s negative emotional state can potentially prove to be detrimental to the thera-

pist’s own mental health. Therapists and other health workers engaging in empathic reso-
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nance without a sufficiently strong self-other distinction can become susceptible to secondary

trauma (the second-hand exposure to traumatic events), burnout (overwhelming emotional

exhaustion), alexithymia (dysfunction in emotional awareness), and states of personal emo-

tional distress (Wagaman et al., 2015; Zenasni et al., 2012; Gleichgerrcht and Decety, 2013).

5.2.2 Neuroscience of Empathy

Imaging studies have uncovered a core empathy-for-pain network (Engen and Singer, 2013)

involving the AI (an area involved in a range of emotion-related functions and experiences,

including interoceptive awareness (Critchley et al., 2004; Zaki et al., 2012), emotional states

induced by imagery or recall (Phan et al., 2002), and affective states that arise during

social interaction, particularly relating to notions of fairness and cooperation (Lamm and

Singer, 2010) and attachment functions including recognition of the mother’s own infant

(Noriuchi et al., 2008)) and Anterior Midcingulate Cortex (aMCC) (a part of the ACC,

which is involved in a range of social and emotion-related functions including theory of mind

cognition and the perception of fear (Baird et al., 2006) and the detection and appraisal

of social exclusion (Kawamoto et al., 2015)), with lesion-based data furthermore suggesting

that the AI is crucial for empathy (Gu et al., 2013). The considerable overlap in regions

activated during the experiencing of pain oneself, and when perceiving others to be in pain

(particularly in the AI and aMCC) has led to a shared-network hypothesis of empathy

(Lamm et al., 2011). A number of factors, including perceived innocence (the degree to

which the recipient of the empathic response is deemed to be responsible for their fate

(Fehse et al., 2015)) 1, closeness (in terms of subjective similarity, or membership of an

in-group (Hein et al., 2010)) and fairness (i.e. tendency to cooperate (Singer et al., 2006))

of the other have been found to modulate the strength of behavioural and neural empathic

responses (Engen and Singer, 2013; Numan, 2014).

5.2.2.1 A Neuroanatomical Model of how Empathic States can Motivate Care-

giving Behaviour

Numan has recently proposed a neuroanatomical model (Fig. 5.1)for how empathic states

can give rise to caregiving behaviour (Numan, 2014, p.278). A large number of studies

are cited by him as justification for this model: we overview the most important of those

here, along with some additional studies that further support his architecture. We refer

to Numan (2014) for a more comprehensive motivation of the model (see also Numan and

Young (2016) and Numan (2017) for details on underlying circuits involved in parental

caregiving behaviour).

1The authors used the term “compassion” to refer to a state more closely related to what we call
“emotional empathy” and “sympathy”/“empathic concern”.
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Figure 5.1: Numan’s neuroanatomical model for how empathic states can motivate caregiv-
ing behaviour. Ellipses represent neural populations, arrows are excitatory synapses, and
circles inhibitory (the nature of the connections between AI and NAc, and mPFC and NAc
within this context is currently unknown). See text for details.

Under the model, projections from the Basolateral (Basal) and Basomedial (Accessory

Basal) nuclei of the Amygdala (BLMA) to the AI are proposed to facilitate the creation of

the shared empathic state (Hurlemann et al., 2010). It is proposed that, when AI activation

levels are high enough, this region stimulates the mPFC (which includes the ACC, and

thus aMCC, in Numan’s definition) which in turn activates prosocial pathways resulting in

caregiving behaviour. Supporting this claim, empathy-related activity in the AI and mPFC

has been found in response to viewing an unfairly treated other (in the form of exclusion

from a ball-tossing game) with activity correlating with subsequent (spontaneous) prosocial

behaviour (Masten et al., 2011) (similar results were reported by Mathur et al. (2010) in

response to viewing the suffering of another perceived as being in-group).

In particular, it is proposed by Numan that more ventral parts of the mPFC might

be activated most strongly during the empathic concern response. There is evidence to

suggest that the mPFC encodes a ventral-dorsal gradient for self-other reflection (Denny

et al., 2012) that is also sensitive to self-relatedness of the other, with reflection on others

perceived to have high degrees of self-relatedness (e.g. in terms of similarity, familiarity

and closeness) correlating with more ventral mPFC activation, and reflection on non-self-

related stimuli (e.g. a publicly known but personally unknown other) correlating with more

dorsal mPFC activation, and that this gradient is sensitive within the context of empathy.
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Using fMRI, Meyer et al. (2012) investigated the neural correlates of individuals viewing the

social exclusion of either a friend or stranger, and found that observation of the friend was

associated with relatively higher activation in the vmPFC. There is also evidence to suggest

that more ventral parts of the mPFC activate in response to a perceived innocence of the

other within the context of empathy: Fehse et al. (2015) found higher self-reported empathic

concern, along with elevated activation of (more ventral parts of) the mPFC in response to

stimuli depicting individuals that had experienced an unfortunate fate but were described as

being innocent rather than responsible for their situation. These studies are consistent with

Numan’s proposal that more ventral parts of the mPFC are associated with relatively high

subsequent activation in caregiving pathways in response to empathic resonance, according

to a ventral-dorsal encoding of self and other representations in this area. An alternative

perspective on mPFC functioning (Nicolle et al., 2012) proposes that activity in more ventral

parts of the mPFC is associated with agent-independent choice value for executed behaviour

(i.e. value for self/other when the self chooses on behalf of themselves/the other), whereas

activity in more dorsal areas of the mPFC is associated with modelled value (i.e. value

for the other when the self chooses on behalf of the self, or value for the self when the self

chooses on behalf the other). According to this view, we might similarly expect value for

empathic concern behaviour (towards an other perceived as being in distress) as executed

by the self to be represented by activity in vmPFC.

The mPFC is proposed to initiate caregiving behaviour via activation of the Ventral

Pallidum (VP) along both a stimulatory mPFC-BLMA-VP pathway, and a dis-inhibitory

mPFC-mPOA-VTA-NAc-VP pathway (with inhibition of the NAc serving to release the VP

from BLMA-mediated inhibition, thus potentiating caregiving behaviour). VP projections

to midbrain locomotor regions have long been proposed to be involved in the translation

of limbic motivation signals into motor output (Mogenson, 1987; Brudzynski et al., 1993;

Jordan, 1998), and increasing activation in ventromedial parts of the VP (in response to

NAc shell-mediated disinhibition) have been associated with goal-directed behaviour (Root,

2013; Numan, 2014, p.24-25).

The first of these pathways (mPOA-VTA-NAc-VP) has been identified as crucial for

the onset and maintenance of maternal and caregiving behaviour based on a large body

of animal (lesion) studies, and it is proposed that these same pathways also underlie the

motivational aspects of empathic concern in humans (Numan, 2014). In particular, in

animals, hormones and neurotransmitters (including OXT) act on the mPOA (a part of

the anterior hypothalamus) resulting in projections from this region to the mesolimbic DA

system in response to infant stimuli. The subsequent DA release from the VTA serves to

inhibit the NAc, which releases the VP from inhibition and allows it to be responsive to

infant stimuli-mediated projections from the BLMA. In animal studies, activation of this

circuit has been found to result in motivated responses that attract a mother to her young,
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and disruption of projections from the mPOA to the mesolimbic pathway halt this attraction

and associated caregiving behaviour (Numan et al., 2005; Numan, 2014).

Since inactivation of mPFC projections to mPOA are also known to disrupt pup retrieval

in rats (Numan, 2014, p.191), the mPFC is suggested as a crucial link between areas involved

in the formation of empathic states and the dis-inhibitory mPOA-mesolimbic DA pathway

identified as being crucially involved in caregiving behaviour. A number of studies are

presented as evidence for involvement of this same pathway in prosocial and caregiving

behaviours arising from empathy in humans, one of which is the investigation by Moll et al.

(2006) that used fMRI to uncover the correlates of prosocial behaviour related to giving

(in the form of a monetary donation) and receiving reward. Whilst both the receiving

and giving of reward correlated with activity in the VTA and NAc, donation correlated

additionally with activation in the preoptic area and Brodmann Area (BA)25 (a part of

the vmPFC), and increased activation in the NAc. This suggests that the vmPFC and

preoptic area might interact with the mesolimbic DA system within the context of prosocial

acts that are interpreted as being rewarding to the recipient, as is the case in empathic

concern responses. Interactions between the preoptic area and the mesolimbic DA system

have furthermore been observed during the simulation of prosocial acts: in the fMRI study

conducted by Decety and Porges (2011), participants viewed scenes including those involving

individuals easing the pain of others, and were then asked to mentally simulate being the

performer of such acts. In simulatory but not viewing scenarios, the authors found increased

activation in the preoptic area and NAc, plus increased functional connectivity between the

amygdala and NAc and VP. Using simulation theory (Hesslow, 2002), the authors argued

that actual overt prosocial action would be expected to activate the same pathways as were

found to be activated during these simulations. This suggests that activation of the same

mPOA-mesolimbic DA pathway might drive both overt and imagined empathic concern.

The BLMA is anatomically positioned to relay the olfactory and somatic sensory inputs

from infants (important for maternal and caregiving behaviour) to the NAc and VP, and

suppression of BLMA activity and its input to the VP have been found to disrupt maternal

and caregiving behaviour in rats (Numan et al., 2010). Within the context of empathic

concern responses in humans, it is suggested in the model that projections from the mPFC to

the BLMA are a significant pathway by which the type of social stimuli that can gain access

to positively valent neurons in the BLMA and VP are regulated, allowing in-group members

priority access to prosocial circuits. Finally, it is suggested that the Lateral Prefrontal Cortex

(lPFC) and the OFC might also be involved in empathic concern responses in the form of

cognitive modulatory influences via projections to the BLMA and AI. Later on we will

consider in particular a possible role of the mOFC within this framework related to findings

from the neuroscience of compassion and the hypothesised effects of the Self-Attachment

bonding protocols.
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5.2.2.2 Neural Correlates of Self and Other Pain Attribution

In order to extend Numan’s model to additionally consider a state of personal distress

(which behaviourally has been found to induce egoistic withdrawal as opposed to caregiving

behaviour), we consider now the neural correlates of self and other pain attribution. Singer

et al. (2004) used fMRI to asses brain activity while volunteers either experienced a painful

stimulus (electrode) themselves, or received a cue indicating that their loved one (present

in the same room) was receiving a similar painful stimulus. Their experiment followed

on from a number of previous studies which had consistently shown activation in a pain

network spanning the secondary somatosensory cortex (an area thought to be involved in

the processing and integration of both painful and nonpainful somatosensory stimuli that

are salient for higher-order functions such as memory and attention (Chen et al., 2008)),

insular cortex, ACC, the cerebellum and supplementary motor areas (which are involved

in movement, motor control and adaptation (Glickstein, 2007)), and (less consistently) the

thalamus (which relays and controls the flow of information to the cortex (Sherman and

Guillery, 2002)) and primary somatosensory cortex in response to painful noxious stimuli.

The authors found that areas including the bilateral AI, rostral (perigenual) ACC, brainstem

and cerebellum activated in both self- and other-pain conditions, whereas activity in the

left Posterior Insular (PI)/secondary somatosensory cortex and right mid insular (areas

otherwise implicated in the interoceptive (Craig, 2011) and sensory-discriminatory (Pavuluri

and May, 2015) aspects of pain), caudal ACC and sensorimotor cortex (an area that is

thought to be involved in both imagery and execution of motor function (Stippich et al.,

2002)), comprising a pain network that has commonly been found to activate in response

to painful noxious stimuli, was specific to the self-pain condition. The authors concluded

that empathising with others in pain does not involve activation of the whole of the pain

network, and that empathy is mediated by areas involved in representing the affective (but

not sensory) aspects of pain.

Similarly, Zaki et al. (2007) conducted an fMRI study in order to determine the neural

correlates of pain when experienced by the self, and contrasted this with the correlates of

pain perceived to be experienced by another. During the self-pain condition, a thermal

noxious stimulus was administered to the individual, whilst under the other-pain condition

participants watched videos of other people receiving pain-inducing injuries. Based on this

data, contrast (Ochsner et al., 2008) and functional connectivity (Zaki et al., 2007) analyses

were performed.

In the contrast analysis (which looked at relative activation levels) a number of regions

were found to have common activation during both self and other pain conditions. These

regions include the aMCC and AI (regions previously implicated in the shared-network

hypothesis of empathy), along with the middle frontal and premotor gyri, and the dorsal

thalamus. The AI, PI and middle frontal gyrus were found to be more activated for self-
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Figure 5.2: Distinct neural networks proposed for self and other pain (Zaki and Ochsner,
2011). Blue: more functionally connected during other pain, Red: more functionally con-
nected during self pain, Green: anatomical connections. See text for details.

pain as opposed to other-pain, whereas in contrast greater activation was found in regions

including the precuneus (an area that has been implicated in functions including the expe-

rience of a sense of agency (Cavanna and Trimble, 2006) and the recall of autobiographical

memories involving familiar others (Maddock et al., 2001)), OFC and amygdala for other-

as opposed to self-pain. The functional connectivity analysis revealed distinct circuits in-

volved in the perception of pain in the self and other. Whilst the AI and aMCC were found

to be functionally connected to each other during both self and other pain, these regions

showed increased functional connectivity with more posterior (mid) areas of the insular dur-

ing self-pain, along with the periaqueductal gray (which is involved in pain modulation and

sensations associated with aversive emotions (Mai and Paxinos, 2011, p.367)) and areas in

the midbrain. In contrast, during other-pain these regions were more functionally connected

with a network comprising mPFC, precuneus, Posterior Cingulate Cortex (PCC) (a region

that, similarly to the precuneus, is thought to be involved in the recall of autobiographical

memories involving familiar others (Maddock et al., 2001)) and Superior Temporal Sulcus

(STS) (which has been implicated in a variety of social processes including theory of mind

(Beauchamp, 2015)).
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5.3 A Model of Self-Other Representation-Mediated Per-

sonal Distress and Empathic Concern

Here, we have attempted to extract key findings from the studies by Zaki et al. (detailed

in Section 5.2.2.2) with respect to self- and other-pain networks in order to model states

of personal distress and empathic concern. In particular, we consider two points of current

injection (Self and Other), with the self-pain condition involving current injection to neurons

in the PI and AI, and other-pain involving current injection into neurons in the aMCC and

mPFC.

PI aMCC Other

Self AI mPFC

mPOA

NAc VTA

BLMA	 BLMAi BLMA⊕ VP⊕

Stimuli
Caregiving
behaviour

Figure 5.3: Model capturing how self-other distinction can mediate empathically-motivated
caregiving behaviour in response to pain-inducing stimuli. Ellipses represent neural pop-
ulations. Arrows are excitatory, and circles inhibitory (intra-group excitatory/inhibitory
connections not shown). Rectangles (Self, Other) are points of current injection, proposed
to represent activity in distinct neural networks involved in the perception of self and other
pain. ⊕ represents positively-valent neurons (i.e. populations that subsequently activate
prosocial/approach pathways) and 	 negatively-valent neurons (that subsequently activate
withdrawal/avoidance pathways), which loosely correspond to positively and negatively va-
lent emotional states, respectively. See text for details.

According to Zaki’s model, self-pain involves increased activation in both the AI and

PI. To capture this, during the self-pain condition, we inject current into neurons in both
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the AI and PI. These injections to the insular might feasibly represent projections along

a midbrain-periaqueductal gray pathway, since these regions are both anatomically and

(during self-pain) functionally connected to this region, and/or via a pathway involving the

thalamus and hypothalamus, which showed preferential activation for self- as opposed to

other- referential processing in a separate meta-analysis (Zaki and Ochsner, 2011, p.21) and

have strong connectivity with this region.

During the other-pain condition, we input current to neurons in the aMCC and mPFC.

Input to the aMCC may represent inputs from the precuneus in Zaki’s other-pain network,

since this region was found to be both more active, and more connected to the aMCC, during

other-pain, and there are known anatomical connections between these regions. Input to

the mPFC during the other-pain condition represents activation of neurons preferentially

encoding other-referential processing, and we propose that activation of a subset of these

neurons encoding close-others will most strongly drive activation in the caregiving pathways

described by Numan. This current injection might also represent increased activation in

precuneus, which is anatomically connected with the mPFC via the PCC.

5.3.1 Implementation Details

We use Izhikevich neurons (Izhikevich et al., 2003) with current-based synapses (i.e. a

postsynaptic current into a neuron is proportional to the weight between the presynaptic

and postsynaptic neurons), with weights in the network tuned in order to capture the

particular network states that we wish to model. We use the full 9-parameter Izhikevich

model, which is able to imitate the firing properties of a large range of biological neuron

types. The neuron membrane potential (voltage) v for a given current I is described by:

dv

dt
= (1/C)(k(v − vr)(v − vt)− u+ I) (5.1)

where I = Isyn + Iext is the total current input, i.e. the sum of all synaptic and external

currents to the neuron membrane. The synaptic currents in our model are proportional

to synaptic weights, such that the total synaptic current Isynj at postsynaptic neuron j

resulting from spikes at presynaptic neurons i at some particular point in time is given by:

Isynj =

N∑
i=1

siwij (5.2)

where si = 1 if presynaptic neuron i is spiking, or 0 otherwise (neuron i spikes if its

membrane voltage has exceeded the peak value, i.e. vi > vpeak). In Eq. 5.2, wij is the

synaptic weight between i and j, and N is the total number of presynaptic connections onto

postsynaptic neuron j. External currents Iext are additional currents injected into neurons

as according to the phases of our model. The recovery variable u is described by:
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a b c d k C vr vt vpeak

RS 0.03 -2 -50 100 0.7 100 -60 -40 35
FS 0.15 8 -55 200 1 20 -55 -40 25
MSN 0.01 -20 -55 150 1 50 -80 -25 40
IB 0.01 5 -56 130 1.2 150 -75 -45 50

Figure 5.4: Izhikevich parameter values for the four types of neuron (RS, FS, MSN and IB)
used in our model.

du

dt
= a(b(v − vr)− u) (5.3)

and there is an instantaneous reset of the membrane potential v, and a stepping of the

recovery variable u, whenever v reaches a value vpeak:

v(v > vpeak) = c (5.4)

u(v > vpeak) = u+ d (5.5)

The 9 open parameters of the model are thus a, b, c, d, k, C, vr, vt, vpeak, the setting of

which define different types of neurons. The values we use in our simulation for our four

neuron types (Regular Spiking (RS), Fast Spiking (FS), Medium Spiny Neuron (MSN) and

Intrinsically Bursting Neuron (IB)) are given in Fig. 5.4. Parameters for RS, MSN and

IB come from the models in Izhikevich and Moehlis (2008), and parameters for FS neurons

come from the model in Izhikevich and Edelman (2008).

5.3.2 Regional Detail

Table 5.1 details the number of neurons, neuron types, and target connection probabilities

and weights for all neural groups (regions) in our model. The number of neurons is derived

from human non-clinical estimates, while neuron types and connection probabilities are

based on animal (mainly rodent) data, due to a lack of human data. Weights describe the

connection weight between any two neurons for a given presynaptic and postsynaptic group

pair. Although this is just one of many sets of weights that would achieve our proposed

network states, our focus here is on motivating the hypothesised neural dynamics underlying

the therapeutic empathy, rather than on the particular weight magnitudes found in order

to achieve this. Pre- and post-synaptic groups are connected randomly according to given

probabilities (except for mPFC connections to mPOA and Positively valenced neurons of

the Basolateral and Basomedial nuclei of the Amygdala (BLMA⊕), which are connected ac-

cording to the negative-binomial distribution with r = 7 and p = 0.0025 (Fig. C.1) intended
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to capture a simple model of the ventral-dorsal gradient for self-other representations in the

mPFC 18.

Sub-

Group

No.

Neurons

Neuron

Type
Target

Connection

Probability

(%)

Weight

BLMA	 76 2 Excitatory

(RS)

BLMA	 0.855 3 150

BLMAi 5 3 350

AI exc 0.019 3 300

AI inh 0.008 3 25

BLMAi 13 2 Inhibitory

(FS)

BLMAi 5 3 350

BLMA	 10 3 1750

BLMA⊕ 76 2 Excitatory

(RS)

BLMA⊕ 0.855 3 60

BLMAi 5 3 225

NAc 0.674 3 3000

VP 0.674 3 550

2Total number of neurons taken as sum of estimates for basolateral and basomedial nuclei
in Garćıa-Amado and Prensa (2012), with 15% assumed fast-spiking inhibitory interneu-
rons (Inhibitory interneurons of the Basolateral and Basomedial nuclei of the Amygdala
(BLMAi)) and the remaining regular-spiking excitatory principal (pyramidal) neurons (Sah
et al., 2003; Zhang et al., 2013). Excitatory neurons are split evenly between groups with
positive (BLMA⊕) and negative (Negatively valenced neurons of the Basolateral and Ba-
somedial nuclei of the Amygdala (BLMA	)) valence. Total number of neurons in BLMAi
is scaled by 0.5 (under crude assumption that interneurons target positively/negatively va-
lenced excitatory cells in equal proportions).

3As in the neocortex (see footnote 14), we assume that 50% of targets of amygdala
excitatory (exc) neurons are local, and 50% long-range, with local targets split evenly
between excitatory and inhibitory interneurons (inh) neurons and long-range neocortical
targets split so that 90% target exc neurons and 10% inh neurons (Lewis et al., 2002; Mel-
chitzky et al., 2001). Furthermore, 100% of targets of amygdala inh neurons are taken to
be local (i.e. within BLMA). Woodruff and Sah (2007) found basolateral amygdala intra-
connectivity probabilities (for pairs within intersomatic distance 120µm) of inh→inh=26%,
inh→exc=50% and exc→inh=27.5%: assuming more dense local connectivity, we thus set
exc→inh=inh→inh=5%, inh→exc=10%, from which the remaining probabilities are calcu-
lated.
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VP 9 4 Inhibitory

(FS)
5

NAc 184 6 Inhibitory

(MSN)
7

NAc 2.5 8 25

VP 10 9 25

VTA 3 10 Dopamine

(IB)

NAc 1.85 11 10

mPOA 20 12 Excitatory

(RS)
5

4Total estimate of 350,000 VP neurons (Pakkenberg, 1990) divided by 2, to give a crude
estimate of the total number of positively valent neurons. NAc-mediated γ-Aminobutyric
Acid (GABA)-ergic VP projections to the mesencephalic locomotor region have long been
proposed to be involved in the translation of limbic motivation signals into motor output
(Jordan, 1998; Mogenson, 1987; Brudzynski et al., 1993). Both increasing and decreasing
levels of activation in the VP have been associated with goal-directed behaviour (Numan,
2014, p.25-26) such that there are likely to be two distinct pathways, with inhibition of
NAc shell acting to disinhibit (ventromedial) VP in the first, and stimulation of NAc core
inhibiting (dorsolateral) VP in the second (Root, 2013). Since we are concerned primarily
with the NAc shell-VP pathway here, we consider an increased firing rate to correspond
to increased motivation for caregiving behaviour. We only consider GABAergic neurons,
which constitute approximately 80% of all VP neurons (Gritti et al., 1993).

5We default to RS (for excitatory) and FS (for inhibitory) neurons when type is unknown
(VP, mPOA).

6Based on total neuron estimate of 7285654 (control) from Wegiel et al. (2014).
7We only consider MSN cells, which are thought to account for 95% of NAc neurons (Shi

and Rayport, 1994). Number of neurons is scaled accordingly.
8Tecuapetla et al. (2007) report a connection probability of 13% for MSN pairs with

intersomatic distance within 100µm. Taking into account BLMA connection probability
scaling (see footnote 3), and assuming more dense local connectivity, we set the connection
probability to 2.5%.

9Default connection probability of 10% (50% for mPOA-VTA) used when actual proba-
bilities are unknown.

10Total number of human DA neurons estimated to be 450000 (German et al., 1983), of
which 15% are in the VTA (Düzel et al., 2009) which gives 67500 VTA DA neurons. 55% of
all VTA neurons are DA neurons (Margolis et al., 2006) giving 122727 total VTA neurons.
We use the estimate of total number of neurons for the number of DA neurons, due to the
otherwise very low number of DA neurons in the model.

11Based on the midpoint of the estimate in Bolam and Pissadaki (2012), but re-calculated
using the more accurate rat nucleus accumbens volume of 6mm3 (McClure et al., 2004).

12Volume used is human anterior-superior hypothalamus (Makris et al., 2013), which in-
cludes preoptic area. Density is averaged across the four interstitial nuclei of the mPOA
(Byne et al., 2000). A majority of mPOA neurons are GABAergic (Lonstein and De Vries,
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mPOA 10 9 25

VTA 50 9 1750

AI

AI exc 6212 13 Excitatory

(RS)
17

AI exc 3.259 14 300

AI inh 13.036 14 50

aMCC exc 2.601 14 75

aMCC inh 1.157 14 25

mPFC exc 2.601 14 90

mPFC inh 1.156 14 100

PI exc 2.602 14 95

PI inh 1.155 14 70

BLMA	 10 9 10

AI inh 1553 13 Inhibitory

(FS)
17

AI exc 12.5 15 200

2000) and they might potentially be involved if projections to the VTA inhibit VTA
GABAergic interneurons such that VTA DA neurons are released from local inhibition
(Michael Numan, personal communication). Here we only consider glutamatergic neurons,
since they form the majority in the central mPOA region that is thought to be particularly
important for maternal behaviour (Tsuneoka et al., 2013). We use the total neuron number
estimate due to a) relatively small size of mPOA and b) unknown precise overall proportion
of glutamatergic neurons in mPOA.

13AI volume given in Makris et al. (2006). Density comes from BA13, in adjacent PI
(Semendeferi et al., 1998) .

14We assume that 50% of targets of neocortical excitatory are local, and 50% long-range
(actual proportions unknown). Of the local targets, we assume that these are split evenly
between excitatory and inhibitory neurons (Lewis et al., 2002), whilst for long-range targets
in other neocortical areas, we assume that 90% target excitatory neurons and 10% inhibitory
neurons (Melchitzky et al., 2001). The average number of outgoing synapses per excitatory
neocortical neuron is assumed to be the same as for inhibitory neocortical interneurons,
from which connection probabilities are calculated.

15We assume that 100% of targets of neocortical inhibitory interneurons (inh) are local,
with 95% targeting local excitatory (exc) neurons and 5% inh neurons (fast-spiking local
inh-inh connections are relatively rare and sparse (Rudy et al., 2011; Markram et al., 2004)).
Packer and Yuste (2011) found a local connectivity probability (for intersomatic distances
less than 200µm) of inh→exc of 62% (averaged across regions), with dense local connectivity
that decreased as a function of intersomatic distance (probability became zero for distances
greater than 450µm). Based on both this and data for the basolateral amygdala 3 we set
local connection probability inh→exc to 12.5%, from which other connection probabilities
are calculated.
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AI inh 2.632 15 750

mPFC

mPFC exc 9574 16 Excitatory

(RS)
17

mPFC exc 3.315 14 150

mPFC inh 13.261 14 50

aMCC exc 7.459 14 25

aMCC inh 3.318 14 50

AI exc 7.460 14 35

AI inh 3.316 14 45

BLMA⊕ 10 9 18 12.5

mPOA 10 9 18 20

mPFC inh 2393 16 Inhibitory

(FS)
17

mPFC exc 12.5 15 25

mPFC inh 2.632 15 300

PI

PI exc 3106 19 Excitatory

(RS)
17

PI exc 3.289 14 460

16Volume based on meta-analysis of MRI data on mPFC areas preferentially activated
for self (in right vmPFC) and other (in left vmPFC and left Dorsomedial Prefrontal Cortex
(dmPFC)) referential processing (contrasted with control data) (Murray et al., 2012). Dor-
sal areas activate during picture-based empathy-for-pain (Engen and Singer, 2013), while
more ventral (possibly left-hemispheric) areas, thought to encode close-other representa-
tions (Murray et al., 2012), are proposed to project more strongly to BLMA⊕ and mPOA
((Numan, 2014, p.281), see footnote 18). Density is from BA10 (vmPFC) in Rabinowicz
et al. (1999).

17mPFC and PI have 80% excitatory neurons and 20% inhibitory neurons, as per rough
neocortex proportions. These are presumed to correspond to regular-spiking pyramidal and
fast-spiking basket neurons, respectively (according to neocortex excitatory/inhibitory cell-
type majorities) (see Rudy et al. (2011), Harris and Shepherd (2015) and references in Voges
et al. (2010)). We also consider agranular AI and aMCC to have these same proportions.

18mPFC connected to BLMA⊕ and mPOA according to a negative-binomial distribution
parametrised by r=7 and p=0.0025, intended to model a dorsal-ventral gradient for other-self
representations (i.e. close-other representations, more ventral, have strongest connectivity,
whilst neurons encoding self and other representations have sparser connectivity). The
overall connection probabilities for each group pairing are as specified.

19Total neuron estimate based on PI control volume (Makris et al., 2006) and density
(Semendeferi et al., 1998) estimates.
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PI inh 13.149 14 100

AI exc 2.439 14 850

AI inh 1.084 14 25

aMCC exc 2.438 14 210

aMCC inh 1.085 14 80

PI inh 777 19 Inhibitory

(FS)
17

PI exc 12.5 15 100

PI inh 2.630 15 200

aMCC

aMCC exc 1329 20 Excitatory

(RS)
17

aMCC exc 3.289 14 100

aMCC inh 13.168 14 100

AI exc 0.417 14 750

AI inh 0.185 14 300

mPFC exc 0.417 14 50

mPFC inh 0.185 14 50

PI exc 0.417 14 750

PI inh 0.185 14 500

aMCC inh 332 20 Inhibitory

(FS)
17

aMCC exc 12.5 15 200

aMCC inh 2.634 15 400

Table 5.1: Number of neurons, neuron types, connection probabilities and connection
weights for neuron groups/regions in the model. Estimates for total number of neurons
in each region are calculated based on human bilateral volume and neuron density data (all
control/non-clinical data, and averaged across age and gender when applicable), and then
scaled to give 25660 total neurons in the model, and over 23 million synapses. Neuron types
and connection probabilities are based on non-human (primarily rodent) data. Neurons
in each group are connected randomly and uniformly (or according to a negative-binomial
distribution in the case of mPFC to mPOA and BLMA) according to specified probabilities
and with given weight.

20Volume is bilateral aMCC (dorsal ACC, labelled “whole” in Kitayama et al. (2006)).
Density comes from chart for BA24a’,b’,c’ (averaged across layers) in Höistad et al. (2013) .
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5.3.3 Desired Network States and Simulation Phases

Here we describe three network states that are modelled in distinct phases of our simulation.

The network is simulated at 1ms granularity, with discrete iterations t = 1, 2, ..., 30000

giving a total of 30s simulation time. We split our simulation into 3 phases of equal length

p = 10000, where each phase corresponds to one of the three network states.

At each iteration, current is injected into neurons in the BLMA	 (representing presence

of a negatively valent social stimulus, for example an emotionally distressed client); the AI

and PI (representing input from the self-pain network); and the aMCC and mPFC (repre-

senting input from the other-pain network). We define three values representing different

proportional levels of stimulation: L = 0.05 (“low”), M = 0.1 (“medium”) and H = 0.15

(“high”). For each of these five neural groups G ∈ {BLMA	,AI,PI, aMCC,mPFC}, we

now designate a subset of neurons g(G) ⊂ G that can receive current injection, where

|g(G)| = |G| ∗H. For BLMA	, AI, PI and aMCC the neurons consisting this subset g(G)

are chosen randomly according to a uniform distribution U .

Recall that the mPFC is believed to encode self-other representations along a ventral-

dorsal gradient, and that we have connected neurons in this region to Numan’s caregiving

pathway accordingly. In particular, the mPFC has been connected to the mPOA and

BLMA⊕ according to a negative-binomial distribution parametrised by r = 7 and p =

0.0025, which is intended to model this ventral-dorsal gradient for self-other representations

in the mPFC (i.e. neurons representing self or distant-other will be sampled with relatively

low probability). In the simulations that follow, we consider two distinct target populations

in the mPFC for neural activity in Zaki’s other-pain network: a first population (encoding

close-other representations) that is sampled according to this negative-binomial distribution

(i.e. with r = 7 and p = 0.0025), and a second population (encoding more distant-other

representations) that is sampled according to a negative-binomial distribution with r = 14

and p = 0.035 (see Fig. C.1).

We have a total of 5 subgroups g of neurons that can potentially receive external current

on each iteration. At each time-step t, before each current injection, each of these neural

subgroups g is perturbed by 10% (by random-uniformly switching 10% of neurons designated

to receive current injection with neurons that previously were not). This perturbation results

in gt(G), which defines the subset of neurons in neural group G that can potentially receive

current injections at time-step t. This subset is then used to determine the final subset of

neurons ct(G) ⊆ gt(G) that actually receive current at time-step t, chosen according to a

random-uniform distribution and varied according to which phase the simulation is currently

in. For simplicity we use an amplitude 90mA for all current injections, and capture the

different network states by varying ct(G) for all G across the phases.

At all iterations t (i.e. across all phases), we inject currents into a random subset

ct(BLMA	) ⊆ gt(BLMA	) of BLMA	 neurons, where the size of this subset |ct(BLMA	)| ∼
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U{|BLMA	|∗M, |BLMA	|∗H} is a uniformly distributed integer in the interval [|BLMA	|∗
M, |BLMA	|∗H]. This current injection into the BLMA	 represents high levels of negatively-

valent input stimulation across the whole simulation.

5.3.3.1 Personal Distress

The first state that we want to capture is that of personal distress. In accordance with the

findings of Zaki et al. described previously, AI and PI activations should be relatively high

for this state. Since personal distress is associated with withdrawal rather than prosocial

behaviour, we should have low activity in the VP (which drives caregiving behaviour).

Relatively high activity in the BLMA	-AI-PI network (and activation of the aMCC), along

with low activity in the VP, thus defines a network state corresponding to personal distress.

In accordance with the above, during this phase of the simulation we inject current at a

high level into both the AI and PI (in addition to current injections into the BLMA	). This

corresponds to injecting currents into a random subset ct(AI) ⊆ gt(AI) of AI neurons (with

|ct(AI)| ∼ U{|AI| ∗M, |AI| ∗H}), and a random subset ct(PI) ⊆ gt(PI) of PI neurons (with

|ct(PI)| ∼ U{|PI| ∗M, |PI| ∗ H}. During this phase, we also inject current at a low level

into the aMCC and mPFC (to represent low-levels of activity in the other-pain network, i.e.

a weak self-other distinction). This corresponds to injecting currents into random neuron

subsets ct(aMCC) ⊆ gt(aMCC) (with |ct(aMCC)| ∼ U{|aMCC| ∗ L, |aMCC| ∗ M}); and

ct(mPFC) ⊆ gt(mPFC) (with |ct(mPFC)| ∼ U{|mPFC| ∗ L, |mPFC| ∗ M}). Current is

injected into mPFC neural populations encoding a close-other representation (Fig. C.1).

5.3.3.2 Weak Empathic Concern

The second state that we want to capture (which we call “weak empathic concern”) is that

of an empathic state with a relatively strong self-other distinction (compared to the personal

distress state), but with an other stimulus that is encoded as being a relatively distant-other.

Despite this distant-other encoding, the weak empathy state should nonetheless potentially

be sufficient for the motivation of caregiving behaviour. In this state we should again have

activation in the BLMA	 (stimulated by a focusing on the negative client stimulus), and AI

and aMCC (which form core parts of empathy circuitry). In accordance with the findings

by Zaki et al, AI and PI activations should be relatively low compared to a personal distress

state, whilst aMCC should be roughly the same. Activity in mPFC neurons encoding

distant-other representations should trigger activity in the BLMA⊕-VP and mPOA-VTA-

NAc-VP pathways that facilitate caregiving behaviour (at a level that is relatively high

compared to the personal distress state, but relatively low compared to a strong empathy

state considered next).

During the second phase of the simulation, in addition to current injections into the

BLMA	, we thus inject current at a low level into both the AI and PI. This corre-
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sponds to injecting currents into a random subset ct(AI) ⊆ gt(AI) of AI neurons (with

|ct(AI)| ∼ U{|AI| ∗ L, |AI| ∗ M}), and a random subset ct(PI) ⊆ gt(PI) of PI neurons

(with |ct(PI)| ∼ U{|PI| ∗ L, |PI| ∗ M}. We also inject current at a high level into the

aMCC and mPFC (to represent high-levels of activity in the other-pain network). This

corresponds to injecting currents into random neuron subsets ct(aMCC) ⊆ gt(aMCC)

(with |ct(aMCC)| ∼ U{|aMCC| ∗ M, |aMCC| ∗ H}); and ct(mPFC) ⊆ gt(mPFC) (with

|ct(mPFC)| ∼ U{|mPFC| ∗M, |mPFC| ∗ H}). Current is injected into mPFC neurons en-

coding more distant-other representations (Fig. C.1).

5.3.3.3 Strong Empathic Concern

The third state that we want to capture (which we call “strong empathic concern”) is that

of an empathic state with a strong self-other distinction, and a target that is now perceived

to be a close-other. This close-other encoding should result in a relatively high level of

motivation for caregiving behaviour compared to the weak empathy state. Activation levels

across neural populations should thus be similar as for the weak empathy state, except that

we should now expect relatively high activity in the BLMA⊕-VP and mPOA-VTA-NAc-VP

pathways.

Current injections for the third phase of the simulation capturing this strong empathy

state are the same as for the weak empathy state, except that current is now injected into

mPFC neurons encoding close-other representations rather than distant-other representa-

tions (Fig. C.1).

5.3.4 Simulations

Here we describe results of simulations of our network over the three phases described in

Section 5.3.3, implemented using the CARLsim 3.1 framework (Beyeler et al., 2015). In brief

(and as covered previously), the first phase, for time-steps t ∈ (0, 10] seconds, corresponds

to a personal distress response, during which activation inputs from the self- and other-pain

networks are high/low respectively (inputs from the other-pain network target close-other

mPFC representations). The second phase (t ∈ (10, 20] seconds) corresponds to a weak

empathic concern state (i.e. a state in which the other’s emotional state is mirrored, with

the other being perceived as a relatively distant other). Input from the self-pain network is

low, and from the other-pain network is high, and the other-pain network stimulates mPFC

neurons encoding close-other representations leading to a relatively high level of caregiving

behaviour compared to the personal distress state. The third phase (t ∈ (20, 30] seconds)

corresponds to a strong empathic concern state, with strong self-other distinction and the

other perceived as a close-other. During this phase, input from the self-pain network is low,

while input from the other-pain network is high (and targets mPFC neurons encoding close-

other representations), such that relatively high amounts of caregiving behaviour result as
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Figure 5.5: Mean firing rates for the AI and PI. See text for details.

compared to the weak empathy state.

The results presented here are representative of a typical simulation run using the con-

figuration previously described. Fig. 5.5 gives the Mean Firing Rate (MFR) for neurons in

the excitatory and inhibitory AI and PI neural groups. The chart shows that the MFR of AI

and PI neurons is highest during the first phase (personal distress), and drop significantly

relative to this during the final two phases (corresponding to weak and strong empathic

concern). Excitatory/inhibitory AI neurons drop from a MFR of 1.08/8.80 Hz at 10s (end

of the first phase and beginning of the second phase) to 0.22/1.92 Hz at 20s (the end of the

second phase) and rise again slightly to 0.45/4.33 Hz at 30s (end of the third phase); while

excitatory/inhibitory PI neurons drop from a MFR of 1.09/10.55 Hz at 10s to 0.06/1.97 Hz

at 20s, and rise slightly to 0.34/3.69 Hz at 30s. These patterns correspond directly with the

results of the experiments described in Section 5.2.2.2 regarding relative activation in these

regions in self and other pain conditions.

MFR for neurons in the excitatory and inhibitory aMCC and mPFC groups are shown

in Fig. 5.6. The aMCC MFR is relatively flat across the three phases: the MFR for

excitatory/inhibitory aMCC is 1.09/5.97 Hz at 10s, 0.93/4.79 Hz at 20s, and 1.05/5.61 Hz

at 30s. This relative stability is in accordance with the findings of the experiments described

in Section 5.2.2.2, which did not find significant differences in activation of the aMCC across

self and other pain paradigms. On the other hand, the MFR of the mPFC is slightly higher

in the second and third phases compared to the first phase (0.84/5.25 Hz at 10s, 1.30/8.53

at 20s and 1.26/8.82 at 30s). This coincides with increased stimulation of neurons encoding

distant- and close-other representations in this region by the other-pain network during the

second and third phases (the mPFC is not directly stimulated with current injection during
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Figure 5.6: Mean firing rates for the aMCC and mPFC. See text for details.

the self-pain condition).

Fig. 5.7 shows the MFR for the three BLMA neural populations. The BLMA	, which

receives a steady input current across all three phases (corresponding to client stimulus

input) has a MFR that is relatively flat across all three phases, dropping slightly for the

second and third phases relative to the first (0.92 Hz at 10s, 0.75 at 20s, 0.72 at 30s). This

drop during the third phase coincides with an increase in MFR of the BLMA⊕ (from 0.21

Hz at 20s to 6.75 Hz at 30s), whose neurons are stimulated by the mPFC and excite the

BLMAi.

Finally, MFR for the mPOA, VTA, NAc and VP are shown in Fig. 5.8. Activity in

the mPOA, VTA and NAc is relatively low during the first phase, and rises significantly

during the second phase (with a stronger self-other distinction, and perception of the other

as a relatively distant-other) and further across the third phase (in which the other is

instead encoded as a close-other). These firing patterns are reflected in firing in the VP,

with relatively low MFR in the VP during the first phase but increased firing during the

second phase, and higher firing yet during the third phase (with MFR 2.44 Hz at 30s).

Firing of the VP (which represents facilitation of caregiving behaviour in response to an

internal emotional state) is thus low during the personal distress state, increased for the

weak empathy state, and highest for the strong empathy state.

5.4 Empathic Motivation in Self-Attachment Therapy

Up to this point we have considered states of personal distress and (weak and strong) em-

pathic concern within an individual (e.g. a psychotherapist) resonating with the negatively-
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Figure 5.7: Mean firing rates for the three BLMA neural populations. See text for details.

Figure 5.8: Mean firing rates for the mPOA, VTA, NAc and VP. See text for details.
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valanced emotional state of another (e.g. the client). We have shown how these states are

mediated by the relative strength of self-other emotional state attribution, and the perceived

degree of self-relatedness of the other. We now extend this model to Self-Attachment: an

attachment-based psychotherapy in which the individual takes the role of both psychother-

apist and client.

As discussed in previous chapters, at a neural level the internal working model (attach-

ment schema) has been theorised to be based in unconscious and implicit memories, rooted

mainly in RH brain regions centred on the OFC, amygdala and hypothalamus (Schore,

2003a; Cozolino, 2014, p.53); areas known to be central to, and crucially involved in, so-

cial cognition and emotional processing. Largely mature at birth (Ulfig et al., 2003), the

amygdala is crucially involved in fear conditioning (Milad and Quirk, 2012), saliency, and

stress-related processes that are likely to underpin many forms of insecure (particularly

disorganised) attachment (Main and Hesse, 1990). High levels of attachment anxiety have

been found to correlate with elevated cortisol profiles (Kidd et al., 2013), and a relatively

over-active amygdala in response to angry faces conveying negative social feedback (Vrtička

et al., 2008) and infant crying (Riem et al., 2012). The amygdala has strong bi-directional

connectivity with the OFC, medial parts of which are (in the macaque) involved in the

learning of stimulus-reward associations (Walton et al., 2010), and which is believed to

mediate stress and facilitative reactivity to social stimuli via projections to dmH and the

PVN. The PVNp releases CRH, which stimulates stress circuitry focused on the CeA and

LC, while the PVNm releases OXT, one effect of which is thought to be a modulation of

DA release (Love, 2014). Evidence implicates both DA (Bartels and Zeki, 2004; Strathearn

et al., 2009; Vrtička et al., 2008) and OXT (Feldman et al., 2007; Gordon et al., 2010) as

being crucial for a range of bonding and attachment-related behaviours. However, exoge-

nous OXT administration has in certain cases been found to increase anti-social tendencies

(Declerck et al., 2010; Bartz et al., 2011), and appears to amplify pre-existing interpersonal

schemas (Olff et al., 2013; Bartz et al., 2010) making it unsuitable as a treatment for many

attachment-related disorders.

In light of the above, in the previous chapter we hypothesised that a main effect of

the Self-Attachment bonding protocols (in which the adult-self attempts to create an ab-

stract bond with the inner-child) is to associate broad classes of social stimuli that have

previously been conditioned as being fearful or threatening in nature with representations

of additional, naturally-induced reward (which result from various interactions, for exam-

ple directed singing (Salimpoor et al., 2011; Jeffries et al., 2003; Kleber et al., 2007) with

inner-child imagery (Strathearn et al., 2008, 2009)). At a neural level, we proposed that this

would result in a rebalancing in activation of stress and facilitative circuitry in response to

such classes of social stimuli. As the protocols progress, the OFC should gradually come to

learn new reward associations, increasingly facilitating natural OXT release and inhibiting
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CRH release; while dopaminergic reward-prediction errors should drive a vmPFC-mediated

inhibition of stress circuitry via strengthening of an ITC-CeA pathway, inhibiting activity

in the amygdala and stress circuitry.

5.4.0.1 Bonding Protocols and Compassionate States

The Self-Attachment bonding protocols are closely related to the concept of compassion.

In a compassionate state (Gonzalez-Liencres et al., 2013), as for an empathic state, there

is a strong self-other distinction along with knowledge of the emotional state of another.

Also in similarity with an empathic state, a compassionate state in the self can motivate

prosocial behaviour aimed at relieving a perceived negative state in the other. The key

distinction between empathic and compassionate states is that compassionate states do not

necessarily involve the mirroring of the emotional state of the other. For example, one

may perceive suffering in another but, rather than mirroring this suffering and experiencing

this within the self (as in an empathic state), a compassionate state would instead involve

positively-valenced emotion within the self. In a compassionate state, it is this positively

valenced emotion within the self, rather than negatively valenced emotion that is mirrored

from the other, that can motivate prosocial behaviour aimed at alleviating the suffering of

the other. In this sense, a compassionate state can be seen as involving an attempt to project

outwards a positive emotional state from the self to the other, whereas in contrast empathic

states involve inward projections (mirroring) of the emotional state of the other. With

respect to Self-Attachment, we propose that application of the bonding protocols towards

the conceptualised inner-child serves to engender a more compassionate stance within the

adult-self.

While empathy-for-pain states have been found to activate overlapping regions involved

in self-pain, compassion instead seems to activate areas associated more with love, reward,

and positive emotion. For example, Klimecki et al. (2013) investigated subjective emotional

states and neural activations in response to another’s distress, before and after both short-

term empathy and compassion training. Empathy training increased empathic responses

and negative affect, and was associated with activation in core AI-aMCC empathy-for-pain

circuitry. Following compassion training (which involved watching videos of others in dis-

tress and cultivating feelings of benevolence towards them), negative affect response to

others’ pain returned to baseline, whilst activation in areas associated with positive affect

(including mOFC, reward circuitry in the ventral striatum (which includes the NAc), and

perigenual ACC) increased. A related study (Engen and Singer, 2015) examined neural

activations involved in the formation of a compassionate state in response to someone in

distress, as opposed to a re-appraisal (i.e. down-modulation of negative affect), with com-

passion compared to both re-appraisal and passive watching of the same negative stimuli

resulting in increased activation in vmPFC, mOFC, perigenual ACC, and NAc.
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5.4.1 Empathy Protocols

In this section we propose a model of the hypothesised neural underpinnings of another

component of the Self-Attachment psychotherapy. The procedures that we consider, which

we call the “empathy protocols”, involve the individual undergoing the therapy taking the

perspective of the “adult-self” while focusing on a negatively emotionally-valenced image

of their younger self (the “inner-child”) and attempting to enter into an empathic state

with them. Variations of the protocol can involve imagery or virtual reality techniques,

rather than the focus on an actual image of the younger self, in order to conceptualise

the distressed and assistance-requiring inner-child. The purpose of the empathy protocols

is to motivate caregiving behaviour towards the inner-child, as defined by the “bonding

protocols” in the previous chapter. In this section, we use findings from the neuroscience

of empathy, compassion, and the self-other distinction within the context of pain to explain

how sufficient self-other distinction can lead to an empathic state which motivates bonding

with the inner-child, and how application of these bonding protocols may in turn drive a

progression from empathic to compassionate states within the adult-self.

The effectiveness of the Self-Attachment empathy protocols in motivating bonding be-

haviour may vary according to a number of dimensions, one of which is gender. As previously

discussed, empathic motivation has been argued to have its ultimate roots in selective pres-

sures for attachment bond formation. Evidence suggests that women (who have typically

served as primary caregivers for young infants throughout history and across cultures) have

more attuned empathic capabilities with respect to infants relative to men. These traits are

believed to have roots more in biological than cultural factors, and are again possibly the

result of evolutionary pressures (Christov-Moore et al., 2014).

Efficacy of these protocols may also vary according to prior attachment experience. In

particular, in BPD (which, as discussed previously, is a condition linked to early disorganised

attachment experience) empathic dysfunction may be experienced in the form of hyper-

reactivity of reflexive systems involved in the sharing of others’ mental states, along with

impairments in more deliberative systems involved in perspective taking and the explicit

attribution of empathic mental states to the other (Ripoll et al., 2013; Gonzalez-Liencres

et al., 2013). Thus, in the case of BPD individuals, care may need to be taken so as to avoid

overwhelming personal distress, and we suggest that the application of these protocols be

supplemented with techniques that focus on forming clear mental distinctions between the

adult-self and inner-child. One such therapy that may be particularly helpful in achieving

this aim is Mentalization therapy (Bateman and Fonagy, 2012). Mentalization, defined as

the ability to attribute mental states (including emotional) underlying overt behaviour to

self and other, can be seen as inclusive of the notion of emotional empathy. The ability

of an individual to mentalize is viewed as arising from contingently responsive mentalizing

on the part of the caregiver in infancy, and therapies involve a joint focus on the client’s
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subjective inner states in order to strengthen their sense of self and ability to mentalize.

5.5 A Model of the Self-Attachment Empathy Proto-

cols

Based on the evidence outlined above relating to the neuroscience of empathy and com-

passion; the model of how empathic states can motivate prosocial behaviour; the proposed

networks for self- and other-pain; and findings relating to self-other representations in the

mPFC, we propose a model of how the Self-Attachment empathy protocols can motivate

application of the bonding protocols, and how repeated application of these bonding proto-

cols can in turn facilitate a gradual shift towards inner-child directed caregiving behaviour

that is mediated by a positive (compassionate) rather than negative (empathic) emotional

state.

In particular, we propose that a sufficient self-other distinction is required in order for the

mPFC to stimulate the mPOA-VTA-NAc-VP, BLMA-VP and BLMA-NAc-VP pathways (as

described in Numan’s model) that facilitate caregiving behaviour. Recall that there is evi-

dence to suggest the vmPFC encodes “close-other” representations with high self-relatedness

(Denny et al., 2012), and that ventral parts of the mPFC have been found to activate more

strongly within the context of empathy with respect to the perceived closeness (Meyer et al.,

2012) and innocence (Fehse et al., 2015) of the other. Thus, in line with Numan’s proposal

that more ventral parts of the mPFC might be involved in empathic concern, we suggest

that stimulation of the caregiving pathways will be strongest for mPFC neural populations

which encode a “close-other” that is perceived as having high self-relatedness/similarity

and innocence (located in vmPFC), which are precisely the characteristics possessed by the

conceptualised inner-child within the Self-Attachment framework. Within the context of

empathically-motivated caregiving behaviour, this corresponds to the “strong empathic con-

cern” state that we detailed above. Under the alternative view of mPFC function (proposing

that ventral/dorsal areas encode executed/modelled value (Nicolle et al., 2012)) discussed

previously, then as the adult-self and inner-child distinction is developed (and the idea of

tending to the distressed inner-child is formulated) we might similarly expect progression

towards patterns of activation (in more ventral areas) representing high value of caregiving

behaviour (executed by the adult-self) for the inner-child.

As discussed previously, interactions between the mPOA and the mesolimbic DA system,

along with increased functional connectivity between the amygdala and NAc and VP, have

been observed during the simulation of prosocial acts. In terms of Self-Attachment therapy,

this suggests that we should expect the mPOA-VP and BLMA-VP pathways to be activated

both when the adult-self imagines, and overtly practices, caregiving and bonding behaviours

with the inner-child.
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With repetitive application of the bonding protocols, we hypothesise that the OFC

should increasingly stimulate both inhibitory BLMAi (which inhibit the negatively valent

BLMA	 neurons) and positively valent BLMA⊕, so that caregiving behaviour gradually

comes to be facilitated via a positive (OFC-mediated) rather than negative (BLMA	-

mediated) emotional state. As detailed above, we previously hypothesised that the Self-

Attachment bonding protocols would lead to new stimulus-reward associations in the OFC,

facilitating OXT release and inhibiting stress reactivity in response to social stimuli. Parts

of the OFC have been found to preferentially activate in mothers viewing images of own

vs other infants, with activation levels correlating with self-reported pleasant mood ratings

(Nitschke et al., 2004; Minagawa-Kawai et al., 2009). This region is known more generally

to increase firing in response to stimuli that predict rewards, with activation levels that are

a function of current reward value (Gottfried et al., 2003). In particular we consider a neural

population in the mOFC, lesions to which are known to disrupt stimulus-reward association

learning in the macaque (Walton et al., 2010). Our proposal that increased activation of the

mOFC should result from repeated application of the self-directed bonding protocols also

mirrors the findings discussed above that found increased activation in this area following

compassion training in human subjects.

5.5.1 Additional Regions and Connectivity

In his model of empathically-motivated caregiving behaviour, Numan proposes OFC projec-

tions to the AI and BLMA as additional pathways by which caregiving behaviour might be

modulated by in-group preferences (Numan, 2014, p.279). Based on the previously proposed

role for the OFC in the Self-Attachment bonding protocols, along with findings from the

neuroscience of compassion, we extend our model to incorporate projections from mOFC to

these regions (Fig. 5.9) which are proposed to increase in strength as the bonding protocols

progress. Details of the number of neurons, neuron types and target connection probabilities

and weights for this additional neural group and its synapses are given in Table 5.2.

Sub-

Group

No.

Neurons

Neuron

Type
Target

Connection

Probability

(%)

Weight

mOFC

mOFC exc 7472 21 Excitatory

(RS)
22

21Based on control volume (Lacerda et al., 2004) and density (Rajkowska et al., 1999)
estimates.

22mOFC follows standard neocortical neuron type proportions (see footnote 17).
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AI

mOFC

BLMAi BLMA⊕

Figure 5.9: Additional connectivity emanating from the medial orbitofrontal cortex. The
remaining architecture is as in Fig. 5.3

mOFC exc 3.319 23 175

mOFC inh 13.277 23 55

AI exc 7.058 23 40

AI inh 3.137 23 30

BLMA⊕ 10 9 10

BLMAi 10 9 35

mOFC inh 1868 21 Inhibitory

(FS)
22

mOFC exc 12.5 24 100

mOFC inh 2.632 24 500

Table 5.2: Details of the number of neurons, neuron types and connectivity for the additional
mOFC neuron group. The remaining neuron groups in the model are as before (details given
in Table 5.1). The total number of neurons in the extended model is 35000, with over 32
million synapses.

5.5.2 Desired Network States and Simulation Phases

As described previously, the empathy protocols involve focusing on an image of oneself (the

inner-child) as an infant/child in distress, and empathising with the inner-child in order to

motivate caregiving in the form of the bonding protocols. Here we describe three network

states that are modelled in distinct phases of our simulation below. Based on our previously

23We assume that the mOFC excitatory neurons follow the same neocortical connectivity
profile as in footnote 14.

24mOFC inhibitory neurons are assumed to follow the same neocortical connectivity profile
as in footnote 15.
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proposed model of personal distress and (weak and strong) empathic concern, we suggest

that a typical individual undertaking Self-Attachment therapy might progress through these

phases sequentially as the protocols are undertaken, and the simulations that follow thus

provide predictions for patterns of activity that might be hypothesised to occur (under the

assumption that the previously proposed model of personal distress and empathic concern

states holds, and that the therapy induces the patterns of injected current that are to be

described across each phase). Stimulation of the BLMA	 (now corresponding to a focus

on the stimulus representing the distressed inner-child) across the length of the simulation

is as before (Section 5.3.3), but note that we now have an additional neural group (mOFC)

that receives different amounts of current injection at each time-step (in order to stimulate

different activation levels that are hypothesised to correspond to varying levels of progression

with the bonding protocols).

5.5.2.1 Personal Distress

Initially, on application of the empathy protocols, it may be that there is only a weak

distinction between the self (adult-self) and other (inner-child), i.e. high activity in the

self-pain network and low activity in the other-pain network. Thus, the first state that we

want to capture is that of personal distress within the adult-self. In this state, the adult-

self focuses on the image of the inner-child and mirrors their negative emotional state, but

does not have sufficient self-other distinction in order to distinguish the adult-self from the

inner-child. This may correspond to early stages of the therapy, in which a sufficient self-

other distinction has not yet been developed, and the reaction of the adult-self might thus

be one of distress and withdrawal rather than caregiving. In accordance with the findings

of Zaki et al. described previously, AI and PI activations should be relatively high for for

this state, which involves a form of self-pain. Since personal distress is associated with

withdrawal rather than prosocial behaviour, we should have low activity in the VP (which

drives caregiving behaviour). Relatively high activity in the BLMA	-AI-aMCC network,

along with low activity in the VP, thus defines a network state corresponding to personal

distress.

Current injections for the first simulation phase (t ∈ (0, 10] seconds) are as previously

defined for the personal distress state (Section 5.3.3.1), along with an additional stimulation

of the mOFC (to represent low-levels of reward association with the inner-child stimulus, i.e.

weak progress with respect to the bonding protocols). This corresponds to injecting currents

into random neuron subsets ct(mOFC) ⊆ gt(mOFC) (with |ct(mOFC)| ∼ U{|mOFC| ∗
L, |mOFC| ∗M}).
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5.5.2.2 Strong Empathic Concern With Strengthening Self-Other Distinction

The second state that we want to capture is that of an empathic state with a sufficiently

strong self-other distinction such that caregiving (i.e. the bonding protocols) results as mo-

tivated behaviour. We propose that once an individual has developed a self-other distinction

between the adult-self and inner-child, they can progress from the first state to this second

state, and commence effective application of the bonding protocols. We should again have

activation in the BLMA	 (stimulated by a focusing on the inner-child stimulus), and AI

and aMCC (which form core parts of empathy circuitry). In accordance with the findings

by Zaki et al, AI and PI activations should be relatively low compared to a personal distress

state, whilst aMCC should be roughly the same. In this state, activity in mPFC neurons

encoding other-referential representations should trigger activity in the BLMA⊕-VP and

mPOA-VTA-NAc-VP pathways that facilitate caregiving behaviour.

In particular, we want to capture a transition from personal distress (with weak self-

other distinction) to strong empathic concern (with strong self-other distinction and a close-

other representation). Thus, in addition to current injections into the BLMA	, we also

inject currents into a proportion of neurons in the AI and PI that linearly decreases from

“high” to “low” as the second phase (t ∈ (10, 20] seconds) progresses. This corresponds

to injecting currents into a random subset ct(AI) ⊆ gt(AI) of AI neurons (with |ct(AI)| =

((|AI| ∗ (L − H)) ∗ (t/p)) + |AI| ∗ (2 ∗ H − L), and a random subset ct(PI) ⊆ gt(PI) of

PI neurons (with |ct(PI)| = ((|PI| ∗ (L − H)) ∗ (t/p)) + |PI| ∗ (2 ∗ H − L). In order to

capture increasing activation in the other-pain network, we inject currents into a proportion

of neurons in the aMCC and mPFC that linearly increases from “low” to “high” as a

function of phase progression. This corresponds to injecting currents into a random subset

ct(aMCC) ⊆ gt(aMCC) of aMCC neurons (with |ct(aMCC)| = ((|aMCC|∗(H−L))∗(t/p))+

|aMCC| ∗ (2 ∗L−H); and a random subset ct(mPFC) ⊆ gt(mPFC) of mPFC neurons (with

|ct(mPFC)| = ((|mPFC| ∗ (H − L)) ∗ (t/p)) + |mPFC| ∗ (2 ∗ L−H).

The retrieval of autobiographical memories of familiar others involves activation of re-

gions including the precuneus and PCC (Maddock et al., 2001), which are both regions in

Zaki’s other-pain network. It is therefore possible that conceptualisation protocols involving

the individual actively attempting to associate an image of their younger self in distress with

the conceptualised inner-child ‘other’ result in plasticity effects in circuits involving these

regions, which might in turn account for the change in activation in self- and other-pain

network activity that we have modelled here (in terms of a simple linear shift in current

injection). As we will discuss in Section 5.6, OXT (hypothesised to be released as a result

of the bonding protocols) may also play a role in facilitating this self-other shift. Thus, the

neural mechanisms underlying this transformation are likely to be complex and multifaceted,

and to differ according to the precise conceptualisation techniques that are employed, and

we leave the further detail for future work.
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As in the first phase, current is injected into the mOFC at low levels, corresponding to

network states before which application of the bonding protocols have begun to take effect.

We inject currents into a random subset ct(mOFC) ⊆ gt(mOFC) of mOFC neurons (with

|ct(mOFC)| ∼ U{|mOFC| ∗ L, |mOFC| ∗M}).

5.5.2.3 Compassion

The third network state that we want to capture corresponds to a more compassionate state,

which occurs as a result of effective application of the bonding protocols. Now when the

adult-self focuses on the distressed image of the inner-child, instead of mirroring their nega-

tive affective state, we propose that they will instead have a positive (compassionate) inner

emotional state, and that this state will continue to motivate prosocial bonding behaviour

towards the inner-child.

As discussed previously, we have hypothesised that one effect of the application of the

Self-Attachment bonding protocols is to stimulate activity in neurons of the OFC and

vmPFC representing positive reward and emotion, which in turn inhibit negatively va-

lent representations in the amygdala. Consistent with our proposal, increased activation

of the mOFC (along with the VTA) was a key finding in a study which looked at the

effects of compassion training (Klimecki et al., 2013). In our model of the empathy proto-

cols, this effect corresponds to stimulation of BLMA⊕ by the mPFC (which occurs during

both empathic concern and compassionate states) and mOFC (which occurs uniquely during

compassionate states), and stimulation of BLMAi by mOFC which in turn inhibits BLMA	
(which again occurs uniquely during a compassionate state). The mOFC also stimulates

AI, which is consistent with evidence suggesting a role for the left AI in positive emotion

and maternal behaviour (Craig, 2009, Fig.2). Stimulation of BLMA⊕ and a different (pre-

sumed positively-valent) sub-population of AI neurons, along with inhibition of BLMA	, is

proposed to represent neurally the positively-valent emotional elements of a compassionate

state within the adult-self. This state should also result in continued activation in Numan’s

caregiving pathways, facilitating bonding behavioural responses towards the inner-child.

During the third phase (t ∈ (20, 30] seconds), in addition to current injections into the

BLMA	, we also inject currents into a “low” proportion of neurons in the AI and PI,

to represent low levels of activity in the self-pain network. This corresponds to injecting

currents into a random subset ct(AI) ⊆ gt(AI) of AI neurons (with |ct(AI)| ∼ U{|AI|∗L, |AI|∗
M}), and a random subset ct(PI) ⊆ gt(PI) of PI neurons (with |ct(PI)| ∼ U{|PI|∗L, |PI|∗M}.
To capture a strong self-other distinction, it is also assumed that activity in the other-pain

network is sustained during this phase, so that we inject current into a “high” proportion

of aMCC and mPFC neurons. This corresponds to injecting currents into a random subset

ct(aMCC) ⊆ gt(aMCC) of aMCC neurons (with |ct(aMCC)| ∼ U{|aMCC| ∗M, |aMCC| ∗
H}, and a random subset ct(mPFC) ⊆ gt(mPFC) of mPFC neurons (with |ct(mPFC)| ∼
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Figure 5.10: Mean firing rates for the AI and PI. See text for details.

U{|mPFC| ∗M, |mPFC| ∗H}. To capture application of the bonding protocols, we linearly

increase the proportion of mOFC neurons receiving input across the phase, by injecting

current to a random subset ct(mOFC) ⊆ gt(mOFC) of PI neurons (with |ct(mOFC)| =

((|mOFC| ∗ (H − L)) ∗ (t/p)) + |mOFC| ∗ (3 ∗ L− 2 ∗H). In accordance with the results in

Klimecki et al. (2013), we might also expect elevated VTA activity during this phase.

5.5.3 Simulations

Fig. 5.10 gives the MFR for neurons in the excitatory and inhibitory AI and PI neural

groups. The chart shows that the MFR of AI and PI neurons is highest for the first phase

of the protocol, but drops significantly throughout the second phase (as self-pain inputs are

decreased and other-pain inputs are increased), in accordance with the previously simulated

personal distress and strong empathic concern states. Excitatory/inhibitory AI neurons

drop from a MFR of 1.01/8.01 Hz at 10s (end of the first phase and beginning of the second

phase) to 0.1/1.31 Hz at 20s (the end of the second phase), while excitatory/inhibitory PI

neurons drop from a MFR of 1.05/10.09 at 10s to 0.01/2.52 at 20s. Firing rates for the

AI rise again slightly during the third phase to 0.32/4.97 at 30s due to mOFC input, in

line with a role for this region (particularly in the left hemisphere) in positive emotion and

maternal behaviour (outlined previously).

MFR for neurons in the excitatory and inhibitory aMCC, mPFC and mOFC groups are

shown in Fig. 5.11. The aMCC MFR is relatively flat across the three phases: the MFR

for excitatory/inhibitory aMCC is 1.09/5.06 Hz at 10s, 1.11/6.23 Hz at 20s, and 1.01/4.97

Hz at 30s. Stability across the first and second phases mirrors the previously simulated
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Figure 5.11: Mean firing rates for the aMCC, mPFC and mOFC. See text for details.

personal distress and strong empathic concern states, and is in accordance with the findings

of the experiments described in Section 5.2.2.2 which did not find significant differences in

activation of the aMCC across self and other pain paradigms. The relative decrease in firing

rate for the aMCC during the third phase is consistent with evidence (discussed previously)

that different (more perigenual) areas of the ACC may instead be involved in compassionate

states.

The MFR of the mPFC rises steadily during phase 2 (from 0.73/4.82 Hz at 10s to

1.41/10.07 Hz at 20s) following relative stability in the first phase, and back toward relative

stability in the third phase. The rise in mPFC activation coincides with a strengthening of

the self-other distinction between adult-self and inner-child, which is captured by increas-

ing activation of (more ventral) neurons encoding close-other representations proposed to

be associated with the inner-child. For the mOFC, the MFR is relatively low during the

first and second phases, but rises as the third phase progresses (with the MFR for excita-

tory/inhibitory mOFC neurons rising from near zero at 20s to 1.80/12.17 Hz at 30s). This

rise during the third phase corresponds to progress in the application of the bonding proto-

cols with respect to increasing expectations of reward associated with prosocial motivation

towards the inner-child.

Fig. 5.12 shows the MFR for the three BLMA neural populations. The BLMA	, which

receives a steady input current across all three phases (corresponding to inner-child stimulus

input) has a MFR that is relatively flat during the first phase (0.91 Hz at 10s), but drops as

the self-other distinction becomes stronger during the second phase (to 0.61 Hz at 20s) and

throughout progression of the third phase (to 0.51 Hz at 30s). This drop during the third

phase coincides with a relatively large increase in MFR of the BLMAi (from 3.31 Hz at 20s
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Figure 5.12: Mean firing rates for the three BLMA neural populations. See text for details.

to 13.62 Hz at 30s), whose neurons are stimulated by the mOFC. In contrast, the MFR of

the BLMA⊕ is relatively low during the first phase, but rises for strong self-other distinction

at the end of the second phase (to 7.13 Hz), and again as the third phase progresses (to 9.05

Hz at 30s). During the first and second phases, then, we have relatively low activation in the

mOFC, BLMA⊕ and BLMAi, and relatively high activation in the BLMA	 which, along

with activation in the AI and aMCC, is proposed to correspond to the negatively-valenced

emotional state within the adult-self that is mirrored from the inner-child. During the third

phase, the MFR in the BLMA	 falls significantly, yet rises in the BLMA⊕ and mOFC, and

the mOFC stimulates distinct neurons in the AI. We propose that this pattern of activation

corresponds to a positively-valenced compassionate state within the adult-self, in which

the negatively-valenced, empathically-mirrored emotional state of the previous phases is (at

least somewhat) suppressed.

MFR for the mPOA, VTA, NAc and VP are shown in Fig. 5.13. Activity in the

mPOA, VTA and NAc is relatively low during the first phase, and rises significantly towards

the end of the second phase (as the self-other distinction becomes stronger) and slightly

further across the third phase (with relatively high MFR in the VTA during the third phase

consistent with Klimecki et al. (2013)). These firing patterns are reflected in firing in the VP,

with relatively low MFR in the VP during the first phase (and no firing at 10s); increased

firing at the end of the second phase (with 2.56 Hz at 20s); and relatively high (and rising)

MFR as the third phase progresses (to 3.56 Hz at 30s). An increasing MFR for the VP as the

second phase progresses represents increasing facilitation of caregiving behaviour in response

to a strong empathic concern state, as a result of strengthening self-other distinction. The

MFR for the VP is highest towards the end of the third phase, which corresponds to an
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Figure 5.13: Mean firing rates for the mPOA, VTA, NAc and VP. See text for details.

increase in caregiving behaviour as the internal state of the adult-self transitions from an

empathic state towards a more compassionate one.

5.6 Summary and Future Work

Based on an existing neuroanatomical model of how empathic states can motivate caregiving

behaviour, fMRI data on self- and other-referential processing, and networks involved in

the perception of pain in self and others, we presented a spiking neural model capable

of describing three distinct empathy-related states: personal distress (involving emotional

attunement within the context of a weak self-other distinction), weak empathic concern

(prosocial motivation arising from emotional attunement, a strong self-other distinction,

and perceptions of a relatively distant-other), and strong empathic concern (empathically-

motivated prosocial behaviour arising from representations of a relatively close-other). We

then extended this model to the case of Self-Attachment therapy: an attachment-based

psychotherapy which involves a conceptualised adult-self empathising with an inner-child

in order to motivate bonding behaviour towards them. We used this model to present a

hypothesis as to how Self-Attachment might facilitate a transition within the adult-self from

a state of personal distress, to one of strong empathic concern, to a compassionate stance

towards the inner-child. We aimed to make our model biologically plausible with respect to

connectivity and the relative number, and type, of neurons in each region, however there

are a number of ways that its accuracy might be improved in future iterations.

The first point to note is that our model is highly compartmentalised. We didn’t, for

example, consider a full realisation of self- and other-pain networks, but rather argued
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that current injection into the insular, aMCC and mPFC could feasibly represent activity

in these two networks. Our model can thus be expanded in order to capture in more

detail networks facilitating the perception of pain in self and other as this data becomes

available, and also incorporate additional regions (such as those in the temporal poles,

and the temporoparietal junction, which includes parts of the STS along with the inferior

parietal lobule) that are commonly implicated in studies investigating cognitive empathy,

theory of mind and mentalization (Walter, 2012; Abu-Akel and Shamay-Tsoory, 2011; Frith

and Frith, 2006). Furthermore, we considered only anterior midcingulate parts of the ACC

across empathy and compassion phases, whereas evidence (discussed above) suggests that

more perigenual areas of the ACC are involved in compassionate states.

With respect to the regions that we did consider, our model is still highly simplified.

Although all of our estimates for number of neurons were based on non-clinical human data,

some were inaccurate due to lack of finer data (in particular the mPOA for which we used

the volume of the whole encapsulating anterior-superior hypothalamic region, the PI where

we used a neural density for adjacent AI, and the NAc for which we used an estimate for the

total number of neurons in-spite of the caregiving pathway likely involving neurons more in

the shell region). Furthermore, we defaulted to RS (for mPOA), FS (VP) and IB (VTA)

neuron types in the absence of more detailed models, and typically only considered neuron

types which either form a majority, or have been proposed as crucially important, in each

region.

Due to a lack of human data, we used animal data in order to define connectivity,

although this was not available in all cases. Accuracy of the model can thus be improved

from this perspective as more connection data becomes available, and also by considering

spatial connectivity (Voges et al., 2010) and potentially also laminar and columnar cortical

structures. In addition, we didn’t consider connections between AI and NAc, and mPFC

and NAc. These connections were proposed in Numan’s model to potentiate VP activation

during empathic states, although details regarding axon terminals are for the time being

unknown (Numan, 2014, p.278): future efforts can consider the nature of these additional

connections. Finally, we assumed fixed connectivity weights with current-based synapses

in order to demonstrate the three distinct states of the network, and so future work can

consider conductance-based synapses and plasticity.

Studies that we highlighted have reported heightened AI activation with increasing per-

ceptions of both closeness (Meyer et al., 2012) and in-group membership (Hein et al., 2010)

of the other, and our strong (in contrast to weak) empathic concern state was broadly defined

as involving representations of an other that was perceived as having these characteristics.

Although our model replicated existing data on self and other perceptions of pain in the AI

(with higher activation during the self-pain condition), along with appropriate activation

in the mPFC during weak and strong empathic concern states and appropriate subsequent
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activation in caregiving pathways in each case, activation in the AI across weak and strong

empathic concern states did not significantly differ. Since (as we discussed) the mPFC is

thought to be centrally involved in self-other representations (with more ventral parts en-

coding others with high self-relatedness, including closeness), and since Meyer et al. (2012)

additionally report increased functional connectivity between the mPFC and AI for an em-

pathic response directed towards a close as opposed to distant other, it might be that this

effect is mediated by mPFC projections to AI that involve higher connectivity from ventral

(encoding close-other representations) compared to more dorsal (encoding distant-others)

areas. Future work can thus attempt to improve the model in this regard.

As discussed above, we previously hypothesised that one effect of the Self-Attachment

bonding protocols is to stimulate OXT release from the PVNp, resulting in modulation of

dopamine release in the VTA and enhanced vmPFC-ITC inhibition of the CeA and stress-

related anti-social circuitry. In addition to this effect, we can predict that OXT release

during the bonding protocols might enhance progress in the empathy protocols in a number

of ways. As a result of known effects on receptors in the mPFC, mPOA, NAc and BLMA,

OXT release should in general potentiate caregiving (and suppress withdrawal) motivation

during application of the empathy protocols (Numan, 2014, p.287). In the case of the

BLMA, we have considered the negatively-valent input stimulus as directly stimulating

BLMA	 in personal distress, empathic and compassionate states (with indirect stimulation

of BLMA⊕ occurring in empathic and compassionate states). However, OXT released during

the bonding protocols might serve to facilitate additional and more direct stimulation of

BLMA⊕ (and suppression of BLMA	 via stimulation of BLMAi). This means that we might

expect the input stimulus to directly stimulate mostly BLMA	 neurons during personal

distress, but rather directly stimulate mostly BLMA⊕ neurons during the empathic and

compassionate states. Furthermore, OXT release might serve to strengthen the self-other

distinction. In Colonnello et al. (2013), the ability of participants to differentiate their own

identity was measured while they viewed a photo of themselves morphing into the photo of

an unfamiliar face, with intranasal OXT shortening the time taken to differentiate self from

other.

OXT released as a result of application of the bonding protocols might aid in the tran-

sition from an empathic to compassionately-motivated state in response to viewing the

negatively-valenced inner-child stimulus. We previously hypothesised that OXT-modulated

DA would increase reward predictions and firing rates in the mOFC, but OXT release might

moreover be involved in the suppression of activity in AI areas crucially involved in the for-

mation of negatively-valenced empathic states: Bos et al. (2015) found that empathy-related

activation in the insular was strongly reduced after intranasal OXT in subjects observing

others in pain. These studies highlight the strong interdependence between the bonding

and empathy protocols in Self-Attachment, and the nature by which successful application
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of each is likely to drive progress in the other. Future work can consider in more detail

the effects of OXT release on empathically-motivated bonding, along with individual dif-

ferences with regards to prior attachment experience. Since other types of human bonds

(e.g. pair bonds) are thought to rely on overlapping circuitry between the amygdala, NAc

and VP, and since OXT and DA release into the NAc is thought to result in plasticity that

enhances activation in NAc-VP circuitry that promotes such attractions, future work can

also consider the potential implications for other types of human bonds (Numan and Young,

2016).
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6. Conclusions and Evaluation

Our first main aim was to expand the scope of computational and mathematical under-

standings of the different developmental trajectories that result in the distinct types of

infant attachment. While a series of recent works have begun to explore attachment for-

mation in the form of computational and mathematical models, the area remains relatively

fertile ground - for example, our work is (to the best of our knowledge) the first to provide

a computational account of disorganised attachment formation. Previous work has further-

more not tended to be grounded in computational neuroscience, and has not considered the

large and influential body of work in attachment research concerned with disrupted patterns

of affective communication.

In Chapter 3 we presented a model to account for the emergence of both organised and

disorganised forms of infant attachment within the context of the free energy principle: a

modern, holistic account of brain function. We argued that the fundamental principles of

free energy minimisation and active inference conform to explanations of early infant at-

tachment interactions (in terms of a balancing of exploration and caregiver interaction in

order to achieve homeostatic regulation), and that this was an appropriate framework to

use with respect to capturing a desire for stress reduction (due to links between stress and

uncertainty, and the inherent drive towards the reduction of uncertainty under that frame-

work). We built on an existing decision theoretic model which defined organised infant

attachment in terms of optimal decisions (in response to caregiving attention or inatten-

tion) with respect to internal stress increases and decreases. We began by considering infant

agents that act, perceive and learn in order to minimise free energy over interoceptive states

related to stress, without any a priori knowledge about the responsiveness characteristics of

their particular caregiver. Our model resulted in behaviour resembling the three classical

organised (secure, avoidant and ambivalent) forms of attachment for this infant agent when

they interacted with caregivers with different responsiveness characteristics. In particular,

policies involving sequentially consistent and organised forms of secure (proximity seeking)

behaviour emerged for infants who interacted with caregivers who, with high probability,

reduced infant stress on approach. On the other hand, infants interacting with highly un-

responsive caregivers (who with high probability increased infant stress on approach) came
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to prefer policies consisting of sequentially consistent avoidance, whereas infants interacting

with inconsistent caregivers came to prefer guarded (resistant) proximity seeking behaviour

resembling an element of ambivalence. In accordance with evidence for heightened preva-

lence of ACEs in caregivers of both ambivalent and disorganised infants, we then expanded

on this model to additionally consider exteroceptive cues from the caregiver. We showed

how delivery of a particular exteroceptive cue (which has previously been associated with

caregivers of disorganised infants) that is misleading for the infant with regards to subse-

quent caregiving behaviour could have a disorganising effects in infants of caregivers who,

with high probability, increased infant stress on approach. While empirical evidence sug-

gests links between ACEs and caregivers of ambivalent infants, to the best of our knowledge

no particular ACE items on the AMBIANCE scale have as yet been associated with ambiva-

lent infant attachment. Accordingly, we explored infant behavioural outcomes in response

to various combinations of misleading and ambiguous ACE exteroceptive cues, showing how

a number of combinations of such cues can indeed have an organising (towards ambivalence)

effect in infants of these inconsistent caregivers.

In prior work in the field, the attachment secure-base exploration paradigm was consid-

ered within the context of a robot learning to balance exploration of their environment with

proximity seeking for arousal reduction (Hiolle et al., 2012, 2014). Moreover, strong (i.e.

multiply learned) patterns in a Hopfield network have also previously been proposed as a

model of how an infant might come to conform to a particular pattern of attachment (Edalat

and Mancinelli, 2013; Edalat, 2013a). However, in contrast to our work, these contributions

did not address any specific differences in infant attachment types and their resulting emer-

gent patterns of behaviour in response to caregiver interaction. Buono et al. (2006) and

Stevens and Zhang (2009) considered an infant’s internal state and external behaviour in

response to interaction with a caregiver with varying impact on their physiology in the form

of dynamical systems models. While these works were able to describe organised forms of

attachment in terms of emergent differences in behaviour and internal state, in contrast

to our work they did not consider the (clinically most important) disorganised form of at-

tachment, nor were they grounded in computational neuroscience, or the influential body of

work in the attachment literature on disrupted patterns of affective communication within

insecure attachment dyads.

The most extensive prior work to consider the acquisition of attachment types in response

to environmental impacts on internal state was Petters (2006a). Following Bowlby’s control

systems theory of attachment, the author designed a cognitive agent architecture that could

account for the emergence of secure, avoidant and ambivalent infant attachment defined

in terms of proximity seeking and signalling behaviour. The architecture differs notably

from ours in its level of abstraction: while Petter’s work described organised attachment

formation by means of cognitive levels of processing which explicitly switched the infant’s
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goals (e.g. from exploration to security) based on the impact of external sensory data, we

instead considered an agent with a single ‘goal’ (minimisation of surprise over interoceptive

states related to stress, achieved by the minimisation of free energy) and the emergence

of organised behaviour in response to this, during ISS reunion-type interactions (without

considering the environmental exploration aspect). Although focusing on a broader scenario

than our work here (i.e. capturing the secure-base exploration paradigm), similarly to the

works above Petter’s architecture also did not capture (the clinically most important) dis-

organised forms of infant attachment, nor did it consider the disrupted patterns of affective

communication empirically linked to both disorganisation and ambivalence. Furthermore,

while we captured resistant behaviours in ambivalent infants in terms of a guarding of

caregiving behaviour in order to modulate the impact of this behaviour on internal state,

these architectures instead accounted for ambivalent attachment in the form of prolonged

signalling while in the presence of the caregiver (proposed to correspond to the heightened

and prolonged distress observed in these infants). We instead proposed that this aspect

(heightened and prolonged distress) of ambivalent attachment might be captured under our

model in future work: in line with theories regarding this self-increase in stress in the in-

fant as a strategy for eliciting caregiving attention, we might (for example) introduce an

additional “hyperactivation” action that (with high probability) leads to hidden states as-

sociated with interoceptive observations involving increased internal stress, but which are

also associated with relatively high probability of subsequently achieving caregiving atten-

tion. Our previous effort to synthesise the work of Petters (2006a) and Hiolle et al. (2012)

in the form of an arousal-based neurocognitive architecture (Cittern and Edalat, 2014) did

attempt to explain the acquisition of basic infant attachment behaviour and physiology for

the organised and disorganised types within the secure-base exploration paradigm. Under

that model, arousal levels during environment exploration are driven by a measure of nov-

elty (as in Hiolle et al. (2012)) with an adaptive safe-range distance determining proximity

seeking behaviour (similar to as in Petters (2006a)). While disorganised attachment be-

haviour was captured by us there in terms of the (presumed to be fear induced) freezing

behaviour observed on ISS reunion, we instead captured a different aspect of disorganisa-

tion in our free energy based model described here: namely the inability to form a coherent

and consistent behavioural policy. Unlike that previous work in which disorganised-freeze

behaviour occurred as a result of overtly hostile caregiving behaviour, in our free energy

model of attachment here disorganised policies resulted more specifically from exteroceptive

affective cues that were misleading for the infant with respect to caregiving behaviour that

subsequently would increase infant stress on approach.

As the first computational model of infant attachment formation to be grounded firmly

in computational neuroscience, and additionally the first to consider both disorganisation

(in terms of an inability to form a sequentially consistent/coherent behavioural policy) and
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disrupted patterns of affective communication, our work has helped to bridge the attach-

ment and computational modelling/neuroscience literature. Our model has furthermore

made a new prediction that can be tested empirically: namely that particular combinations

of misleading and ambiguous ACE items on the AMBIANCE scale will lead to the most

organised forms of ambivalent attachment.

A better understanding of attachment formation, from a computational neuroscience per-

spective, was helpful groundwork in achieving our second aim, which was to motivate neuro-

biological hypotheses with respect to the effects of the recently introduced Self-Attachment

psychotherapy. Self-Attachment therapy has proven successful in pre-clinical trials, but in

order to move towards clinical trials (and to refine and improve the therapy going forwards)

a clear and precise account of the neurobiological effects of the therapy on the individual’s

brain is desirable.

In Chapter 4 we presented a neurobiological hypothesis with regards to the underlying

effects of the Self-Attachment bonding protocols, which are concerned with the creation

of an abstract, self-directed bond. Based on a previous neuroanatomical model describing

the control over balance in activation of neural circuitry involved in stress and facilitative

reactivity to social stimuli, along with a computational model describing how reward-driven

updates to representations can reduce activity in circuitry involved in the stress reaction, we

showed how a counter-conditioning procedure (linked to application of the Self-Attachment

bonding protocols) might serve to drive a rebalancing of activity in these circuits. In accor-

dance with neurobiological evidence on parenting and bonding, we considered in particular

how OXT-modulated DA might drive this rebalancing in activation, with additional reward

proposed to be introduced as a result of the representations and activities involved in the

therapy and resulting in DA-encapsulated reward prediction errors that served to strengthen

stress inhibitory pathways. Our model was simulated computationally, and (in alignment

with existing empirical data) we suggested that the resulting rebalancing in activation cor-

responds to the emergence of increasingly secure forms of attachment.

We followed this up in Chapter 5 by considering how empathic states directed towards

the conceptualised inner-child might be used in order to generate motivation for application

of these bonding protocols. Based on an existing neuroanatomical model of how empathic

states can motivate caregiving behaviour, along with data on the neural underpinnings of

self- and other- referential processing, we presented a spiking neural model capable of de-

scribing three distinct empathy-related states: personal distress (involving emotional attune-

ment within the context of a weak self-other distinction), weak empathic concern (prosocial

motivation arising from emotional attunement, a strong self-other distinction, and percep-

tions of a relatively distant-other), and strong empathic concern (empathically-motivated

prosocial behaviour arising from representations of a relatively close-other). This model was

then extended and applied to the case of Self-Attachment therapy, for which we hypoth-
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esised a transition within the adult-self from personal distress, through strong empathic

concern, to a compassionate stance towards the inner-child. We aimed to make our model

as biologically accurate as possible with respect to connectivity and the relative number,

and type, of neurons in each brain region considered.

A couple of previous works had attempted to model psychotherapy within the context

of attachment theory. Edalat and Lin (2014) presented a computational neural model of

mentalization-based psychotherapy from an attachment-developmental perspective, in order

to explain how a rebalancing in activation of neural circuitry might occur in response to the

introduction of additional reward, which was proposed to drive a tendency towards more

deliberative and cognitive forms of decision making. Although focusing on key attachment-

related neural circuitry, in contrast to our work here that model does not consider Self-

Attachment therapy and its protocols directly, but rather how the introduction of additional

reward might encourage more cognitive forms of decision making in individuals who initially

show a tendency towards emotional decision making as a result of adverse early attachment

experience. Edalat (2017a) describes a reinforcement learning procedure in a multi-agent

environment, in which additional reward is supplied in order to incentivise secure behaviour

in an attachment game played by the adult-self and inner-child. This gives a model of the

reward-driven Self-Attachment intervention, however (in contrast to the work here) that

model did not consider in detail the neurobiological regions or processes underpinning the

bonding and empathy protocols involved in the therapy.

We hope that the work undertaken here can be instructive as we progress towards clini-

cal trials; assisting in the clarification of issues such as (for example) along what dimensions

the therapy should be customised for different individuals, and helping to frame clear de-

scriptions of the (hypothesised) effects of the treatment for participants. From a broader

perspective, our work is unique in the sense that it is the first to attempt to combine neu-

robiological data on the self-other distinction, bonding, parenting and empathy in order to

provide a hypothesised model for the creation of fully internalised self-directed attachments,

rudimentary forms of which might also manifest outside of Self-Attachment therapy (Edalat,

2017a).

6.1 Limitations

With respect to our free energy model of infant attachment formation, we were able to

explain basic patterns relating to the emergence of organised attachment in infant agents

who minimise free energy with respect only to their interoceptive states. We furthermore

explained disorganised attachment by disruptions in patterns of affective communication

conveyed by exteroceptive cues. However (as discussed in more depth in Section 3.5) there

are aspects of ambivalent (hyperactivation) and disorganised (e.g. dissociation) attachment
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behaviour that we did not attempt to capture, and there are furthermore many patterns

of disrupted affective communication that have been observed empirically in caregivers but

were not considered here. We also did not attempt to capture processes giving rise to

the intergenerational transmission of attachment types (i.e. the computational mechanisms

dictating how and why a disorganised infant themself tends to become a caregiver of a

disorganised infant later in life), which is an important concern for future work.

We focused on one aspect of the Self-Attachment therapy, which is the creation of an

internalised attachment bond, along with how particular self-other representations might

optimally motivate its creation. Self-Attachment therapy describes a number of other pro-

tocols not considered here, for example the recalling from memory of a previously traumatic

experience which is re-imagined as having an alternative (positive) outcome. Furthermore,

our models with respect to self-directed bonding were highly compartmentalised, focusing

only on brain regions which (according to current research) are thought to be most sig-

nificantly (but by no means solely) involved in this process. Although a large amount of

the data used to motivate our models was from human studies, some was based on animal

research in the absence of research on human brains. Since we are attempting to motivate

a therapy for humans this is clearly a shortcoming, although one that can hopefully be

rectified over the coming years as more data from human studies becomes available. Per-

haps most significantly, although we did consider differences in activation in brain regions

within the model according to attachment types and related disorders (such as BPD), we

did not make any detailed proposals with regards to how the Self-Attachment therapeutic

process might be tailored accordingly (although, in the case of BPD, we did suggest that

the empathy protocols be supplemented with mentalization-based therapies and techniques

in order to assist in the strengthening of self-other distinctions between the adult-self and

inner-child). This is an important consideration moving forwards.

6.2 Future Directions

Our neurobiological understanding of attachment, parenting, bonding, trauma and early

development is increasing rapidly, with the amount of new data continuing to grow at a

fast pace, and so there is much scope for refinement and expansion of the models moving

forwards. In addition, as we discussed in detail in the final sections of each chapter, there

are a number of ways in which the models can be expanded in scope according to currently

available data. With respect to our account of infant attachment formation according to the

free energy principle, we could for example consider additional aspects of ambivalent (hy-

peractivation of stress and attachment system) and disorganised (e.g. freezing/dissociative)

behaviours seen empirically in these infants. As well as considering the remaining types

of exteroceptive cues defined by the ACE dimension of the AMBIANCE scale, we might
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additionally attempt to capture other dimensions of disrupted affective communication on

this scale that have also been associated with the emergence of disorganised and ambivalent

forms of attachment. In the case of disorganised attachment, a more comprehensive account

of patterns of disrupted affective communication may facilitate a distinction in the model

between those infants subclassified as D-Secure and D-Insecure with respect to organised

behavioural tendencies. The scope of the model might also be extended to account for

secure-base environment exploration, hierarchical generative models and contextualisation,

or an account of Self-Attachment driven changes to an individual’s suboptimal attachment

schema. Our models of Self-Attachment therapy, too, might be expanded in scope with re-

spect to existing data: for example, in our model of the Self-Attachment bonding protocols

we did not consider effects of OXT on direct modulation of regions (such as the amygdala)

involved in stress reactivity. Furthermore, evidence suggests a role for VA, a neuropeptide

with a similar chemical structure to OXT which is also released from the PVN, in bonding

and social behaviour more generally. In particular, VA might play roles in selective atten-

tion and the modulation of memory and stress in social situations, and has (under certain

situations) been associated with reduced capacity for forms of empathy (Bachner-Melman

and Ebstein, 2014), all of which might be important considerations within this context.

Particularly interesting would be further consideration of the interplay between application

of the bonding and empathy protocols. According to known effects on receptors in the

mPFC, mPOA, NAc and BLMA, OXT release during self-directed bonding should potenti-

ate caregiving motivation (and might additionally enhance capacities for differentiation of

the adult-self from the inner-child). Evidence suggests that OXT release might also assist

in transition from empathic to compassionate states, via suppression of activity in AI and

BLMA areas involved in formation of negatively-valenced empathic states.

Although we have made suggestions for future enhancements, a key aim now is to test

the hypotheses and predictions presented in this thesis. While the new predictions made by

our free energy model of infant attachment are behavioural in nature, the hypotheses relat-

ing to Self-Attachment therapy involve neurobiological effects within the individual’s brain

which can be tested with neuroimaging. Relevant to this, Barsaglini et al. (2014) conducted

a review of imaging studies on the neurobiological effects on adults of psychotherapy in

comparison to pharmacotherapy. The individual studies included PET and fMRI investiga-

tions into a range of psychotherapeutic treatments (including cognitive-behavioural and vir-

tual reality exposure therapies) on individuals with disorders such as obsessive-compulsive,

unipolar major depressive and post-traumatic stress. In many cases, the authors found

evidence to suggest that the effects of psychotherapy were similar to pharmacotherapy in

terms of changes in both activation in, and functional integration of, brain regions oth-

erwise associated with each disorder. These areas included the amygdala, OFC, mPFC,

cingulate cortex, insular and basal ganglia, all of which are specific regions of interest for
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the Self-Attachment interventions explored in this thesis. Two predictions in particular

that we have made which can be examined empirically in similar neuroimaging studies are

the preferential activation of motivational circuitry in response to empathising with the

inner-child representation (as opposed to alternative representations), and the effects of the

inner-child directed bonding protocols on activation and integration in networks spanning

the OFC/vmPFC and amygdala.

Another important focus for future work, underway now, is the creation of technological

tools to assist in administration of the protocols and potentially enhance their effective-

ness. These include a mobile software application to provide information on the therapy,

instructions for its administration, and tracking of the individual’s progress; and an immer-

sive virtual reality environment in which the individual can experience the Self-Attachment

protocols from the perspectives of both the adult-self and inner-child. We hope that the de-

velopment and functioning of these tools will be informed and aided by the work undertaken

here.
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Voges, N., A. Schüz, A. Aertsen, and S. Rotter (2010). A modeler’s view on the spatial struc-

ture of intrinsic horizontal connectivity in the neocortex. Progress in neurobiology 92 (3),

277–292.
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Wittling, W. and M. Pflüger (1990). Neuroendocrine hemisphere asymmetries: salivary

cortisol secretion during lateralized viewing of emotion-related and neutral films. Brain

and Cognition 14 (2), 243–265.

Wolff, M. S. and M. H. Ijzendoorn (1997). Sensitivity and attachment: A meta-analysis on

parental antecedents of infant attachment. Child development 68 (4), 571–591.

Woodruff, A. R. and P. Sah (2007). Networks of parvalbumin-positive interneurons in the

basolateral amygdala. The Journal of neuroscience 27 (3), 553–563.

Woon, F. L., S. Sood, and D. W. Hedges (2010). Hippocampal volume deficits associated

with exposure to psychological trauma and posttraumatic stress disorder in adults: a

meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry 34 (7),

1181–1188.

World Health Organization (1992). The ICD-10 classification of mental and behavioural

disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organi-

zation.

Yang, Q., R. Gu, P. Tang, and Y.-J. Luo (2013). How does cognitive reappraisal affect the

response to gains and losses? Psychophysiology 50 (11), 1094–1103.

Yang, Q., P. Tang, R. Gu, W. Luo, and Y.-j. Luo (2014). Implicit emotion regulation affects

outcome evaluation. Social cognitive and affective neuroscience 10 (6), 824–31.

Zaki, J. (2014). Empathy: a motivated account. Psychological bulletin 140 (6), 1608.

Zaki, J., J. I. Davis, and K. N. Ochsner (2012). Overlapping activity in anterior insula

during interoception and emotional experience. Neuroimage 62 (1), 493–499.

Zaki, J. and K. Ochsner (2011). You, me, and my brain: Self and other representation in so-

cial cognitive neuroscience. Social neuroscience: Toward understanding the underpinnings

of the social mind , 14–39.

Zaki, J., K. N. Ochsner, J. Hanelin, T. D. Wager, and S. C. Mackey (2007). Different

circuits for different pain: patterns of functional connectivity reveal distinct networks for

processing pain in self and others. Social neuroscience 2 (3-4), 276–291.

195



Zelazo, P. D. and U. Müller (2002). Executive function in typical and atypical development.

In U. Goswami (Ed.), Handbook of childhood cognitive development, pp. 445 – 469. Oxford,

UK: Blackwell.

Zelenko, M., H. Kraemer, L. Huffman, M. Gschwendt, N. Pageler, and H. Steiner (2005).

Heart rate correlates of attachment status in young mothers and their infants. Journal of

the American Academy of Child & Adolescent Psychiatry 44 (5), 470–476.

Zenasni, F., E. Boujut, A. Woerner, and S. Sultan (2012). Burnout and empathy in primary

care: three hypotheses. British Journal of General Practice 62 (600), 346–347.

Zhang, J., J. Muller, and A. McDonald (2013). Noradrenergic innervation of pyramidal cells

in the rat basolateral amygdala. Neuroscience 228, 395–408.

196



A. Appendix For Chapter 3

In this appendix we give details on the ACE dimension of the AMBIANCE scale, and the

discrete formulation of the free energy principle and active inference, both of which were

used in Chapter 3.

A.1 Affective Communication Errors (AMBIANCE)

Here we give further details on the behaviour codes for the three categories (1A,1B,1C) of the

ACE dimension of the AMBIANCE scale (Bronfman et al., 1999; Safyer, 2013, Appendix

G). Behaviours in italics were found to be displayed 3 times more often in mothers of

disorganised infants in Lyons-Ruth et al. (1999).

• 1A: Contradictory signalling to infant

– Voice tone incongruent with message:

∗ Stern voice, but permissive message

∗ Sweet voice with derogatory, demanding, or impatient message

– Verbal content or voice tone incongruent with physical response:

∗ Invites approach verbally then distances

∗ Uses friendly tone while maintaining threatening posture

∗ Says something positive about infant while simultaneously indicating aver-

sion

– Verbal content or voice tone incongruent with facial expression:

∗ Smiles while using stern voice

∗ Exhibits angry facial expression but speaks pleasantly

– Incongruent physical behaviours:

∗ Directs infant to do something then not to do it

∗ Offers then withdraws toy
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∗ Holds affectionately, while simultaneously withdrawing or threatening infant

• 1B: Failure to initiate responsive behaviour to infant cue

– Does not attempt to soothe infant when distressed

– Does not offer comfort when infant falls

– Fails to set appropriate limits around safety

– Ignores cues for pick up

– Does not intervene when infant engages in dangerous behaviour

– Does not respond to clear infant cue (e.g. infant looks at mother and vocalises,

but mother fails to respond; infant shows mother a toy and mother does not

respond)

• 1C: Inappropriate responding to infant signals or needs

– Laughs while infant crying or distressed

– Directs inauthentic affect towards infant (fake over bright affect)

– Ignores infant cue for distance

– Ignores infant’s “no”

– Mother smiles when infant is angry, upset, afraid, or sad

– Attempts to minimise or discount infant’s display of distress or asking for help

(e.g. “what’s the matter” or “oh, you’re okay”)

A.2 Discrete Markovian Formulation of the Free En-

ergy Principle

We follow the mathematical models outlined in Friston et al. (2015) and FitzGerald et al.

(2015) based on a finite discrete partially observable Markov decision process (the derivations

here are given in more detail in those papers). We thus have a finite set of observations (or

observable outcomes)
∼
o∈ O = {1, ...,W}, a finite set of J discrete hidden states

∼
s∈ S =

{1, ..., J} and a finite set of L discrete actions actions
∼
a∈ Ω = {1, ..., L}, where ∼ denotes a

sequence of variables over time. The generative processR defining the environment dynamics

up to current time t is then:

R(
∼
o,
∼
s,
∼
a) = Pr({o0, ..., ot} =

∼
o, {s0, ..., st} =

∼
s, {a0, ..., at} =

∼
a) (A.1)

The agent’s internal model of this process (their generative model) over observations
∼
o∈ O, hidden states

∼
s∈ S and control states

∼
u∈ U is:
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P (
∼
o,
∼
s,
∼
u) = Pr({o0, ..., oT } =

∼
o, {s0, ..., sT } =

∼
s, {u0, ..., uT } =

∼
u) (A.2)

A policy π ∈ {1, ...,K} indexes a sequence of future control states (
∼
u |π) = (ut, ..., uT |π),

and it is assumed that the agent has an approximate posterior distribution Q over hidden

and control states:

Q(
∼
s,
∼
u) = Pr({s0, ..., sT } =

∼
s, {u0, ..., uT } =

∼
u) (A.3)

which is parametrised by (
_
s ,

_
π ), where

_
s∈ [0, 1]J is a J × 1 vector of hidden state expec-

tations, and
_
π∈ [0, 1]K is a K × 1 vector of policy expectations.

The variational free energy F is 1:

F (
∼
o,
_
s ,

_
π ) = EQ[− lnP (

∼
o,
∼
s,
∼
u)−H[Q(

∼
s,
∼
u)]

= − lnP (
∼
o) +KL[Q(

∼
s,
∼
u)||P (

∼
s,
∼
u | ∼o)]

(A.4)

where:

H[P (x)] = EP (x)[− lnP (x)] (A.5)

is the Shannon entropy, and:

KL[Q(x)||P (x)] = EQ(x)[lnQ(x)− lnP (x)] (A.6)

is the Kullback-Leibler divergence, such that minimising free energy minimises an upper

bound on surprise − lnP (
∼
o) (see second rearrangement in Eq. A.4, which upper-bounds

surprise since the KL divergence term cannot be less than zero).

A.2.1 Factorising the Generative Model

The generative model used to model the finite horizon Markovian process up to time t ∈
(0, ..., T ) can be expressed in terms of the following factorisation:

P (
∼
o,
∼
s,
∼
u, γ| ∼a) = P (

∼
o | ∼s)P (

∼
s | ∼a)P (

∼
u |γ)P (γ|α, β) (A.7)

The first factor P (
∼
o | ∼s) implies that observations only depend on the current hidden

state:

P (
∼
o | ∼s) = P (o0|s0)P (o1|s1)...P (ot|st) (A.8)

1See (Friston et al., 2010, Appendix 2) for derivation.
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which is encoded in matrix form as:

∀t : P (ot|st) = A (A.9)

such that P (ot = i|st = j) = Aij .

The second factor P (
∼
s | ∼a) expresses prior beliefs about state transitions (under the

assumption that the agent knows their past actions):

P (
∼
s | ∼a) = P (st|st−1, at)...P (s1|s0, a1)P (s0) (A.10)

with transition probabilities from one state to the next encoded in matrix form as:

∀t : P (st+1|st, ut) = B(ut) (A.11)

and the prior distribution over initial states (i.e. the agent’s prior beliefs with regards to

the environmental hidden state that they will start in) encoded as:

P (s0) = D (A.12)

The third factor P (
∼
u |γ) expresses beliefs about sequences of control states (policies). It

is assumed that the agent has the prior belief that control states will minimise free energy.

The expected negative free energy of a policy Q(π) is defined as the free energy expected

under that policy:

Q(π) =

T∑
τ=t+1

Qτ (π) (A.13)

with:

Qτ (π) = EQ(oτ ,sτ |π)[lnP (oτ , sτ )] +H[Q(sτ |π)]

= {1}W×1 · (A ◦ lnA)
_
s τ (π)− (ln

_
o τ (π)− lnCτ ) ·_o τ (π)

(A.14)

where {1}W×1 is a column vector of ones, A ·B is A>B, A ◦B is the Hadamard (element-

wise) matrix product (i.e. (A ◦B)ij = AijBij), lnA denotes the element-wise logarithm of

matrix A, and:

Q(oτ , sτ |π) = P (oτ |sτ )Q(sτ |π)

= P (oτ |sτ )EQ(st)[P (sτ |st, π)]

= EQ(st)[P (oτ , sτ |st, π)]

(A.15)
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is a posterior predictive distribution over future states and outcomes. The expected states

at time τ under policy π are given by:

_
s τ (π) = B(uτ |π)...B(ut|π)

_
s t (A.16)

and the expected observations at time τ under policy π are:

_
o τ (π) = A

_
s τ (π) (A.17)

The agent also encodes a prior distribution over future outcomes:

P (oτ ) = Cτ (A.18)

which specifies the utility (preference) of each outcome to the agent. We can now associate

the prior probability over control states with the expected negative free energy of that policy:

lnP (
∼
u |γ) = γ ·Q(π) (A.19)

where γ is called the “precision” and encodes the confidence in prior beliefs. This expression

states that a policy is a-priori more likely if its expected free energy is small. For σ a softmax

function, we then have:

P (
∼
u |γ) = σ(γ ·Q) (A.20)

where Q is a K × 1 vector containing the expected negative free energy of each policy at

the current time.

The final factor P (γ|α, β) expresses a prior over precision γ, which is assumed to have a

gamma distribution with shape and rate parameters α and β:

P (γ|α, β) = Gamma(α, β) (A.21)

A.2.2 Minimising Variational Free Energy

If the following factorisation for the approximate posterior distribution is assumed:

Q(
∼
x | _x) = Q(s0|

_
s 0)...Q(sT |

_
s T )Q(ut, ..., uT |

_
π )Q(γ|

_
γ )

Q(γ|
_
γ ) = Gamma(α,

_

β= α/
_
γ )

(A.22)

for
∼
x=
∼
s,
∼
u, γ and

_
x=

_
s ,

_
π ,

_
γ , then:
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EQ[lnP (
∼
o,
∼
x)] = EQ[lnP (ot|st) + lnP (st|st−1, at) + lnP (

∼
u |γ) + lnP (γ|α, β)]

=
_
s t · lnA · ot
+
_
s t · ln(B(at−1)

_
s t−1)

+
_
γ Q· _π

+ (α− 1)(ψ(α)− ln
_

β )− β
_
γ +α lnβ − ln Γ(α)

(A.23)

with B(a0)
_
s 0= D, and where Γ is the gamma function, ψ is the digamma function, and ot

is a W × 1 binary column vector with the index of the non-zero element corresponding to

the agent’s observation at time t; since for γ ∼ Gamma(α, β) we have probability density

function:

P (γ|α, β) = Gamma(α, β) =
βα

Γ(α)
γα−1e−βγ (A.24)

and so:

EQ[lnP (γ|α, β)] = EQ
[
ln

(
βα

Γ(α)
γα−1e−βγ

)]
= α lnβ − ln Γ(α) + EQ[(α− 1) ln(γ)− βγ]

= α lnβ − ln Γ(α) + (α− 1)(ψ(α)− ln
_

β )− β
_
γ

(A.25)

The approximate posterior distribution has entropy:

H[Q(
∼
x | _x)] = EQ[− lnQ(

∼
x | _x)]

= EQ[− lnQ(st|
_
s t)− lnQ(

∼
u | _π )− lnQ(γ|

_
γ )]

= − _
s t · ln

_
s t −

_
π · ln _

π + ln Γ(α) + (1− α)ψ(α)− ln(
_

β ) + α

(A.26)

since:
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EQ[− lnQ(γ|
_
γ )] = EQ

− ln

 _

β
α

Γ(α)
γα−1e−

_

β γ


− α ln

_

β + ln Γ(α)− EQ[(α− 1) ln(γ)−
_

β γ]

= ln Γ(α) + (1− α)ψ(α)− ln(
_

β ) + α

(A.27)

EQ[lnQ(γ|
_
γ )] = EQ

[
ln

(
βα

Γ(α)
γα−1e−βγ

)]
(A.28)

Thus, the variational free energy is given by:

F (
∼
o,
∼
x,
_
x) = −EQ[lnP (

∼
o,
∼
x)−H(Q(

∼
x | _x)]

=
_
s t ·(ln

_
s t − lnA · ot − ln(B(at−1)

_
s t−1))

+
_
π ·(ln _

π −
_
γ Q) + β

_
γ +α(lnα− ln

_
γ − lnβ − 1)

(A.29)

The partial derivatives of the free energy F with respect to
_
s t,

_
π and

_
γ are:

∂F

∂
_
s t

= {1}W×1 + ln
_
s t − lnA · ot − ln(B(at−1)

_
s t−1)−

_
γ · 5_

s
Q· _π (A.30)

∂F

∂
_
π

= {1}K×1 + ln
_
π −

_
γ ·Q (A.31)

∂F

∂
_
γ

= β −Q· _π −
_

β (A.32)

Setting these equal to zero (ignoring the final term in the derivative with respect to hidden

states, for simplicity) and re-arranging gives the variational updates that minimise free

energy:

_
s t = σ(lnA · ot + ln(B(at−1)

_
s t−1)) (A.33)

_
π= σ(

_
γ ·Q) (A.34)

_
γ= α/(β −Q· _π ) (A.35)
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The updates in equations A.34 and A.35 are iterated until convergence (or, and as here, for

a fixed number of N steps).

A.2.3 Learning the Generative Model

Now we consider how the generative model (i.e. the distributions defined by A, B and D)

might be learned. Recall that A•j (i.e. column j of A) encodes the likelihood of observations

given hidden state j. Following the method and derivation in FitzGerald et al. (2015), we

place a Dirichlet prior over each of these multinomial distributions, with concentration

parameters θ:

P (A•j | θ) = Dirichlet(θ•j) (A.36)

Recall also that B(u)•j encodes the likelihood of hidden states at t + 1 given that the

hidden state at time t is j. We similarly place a Dirichlet prior over these distributions,

with concentration parameters φ:

P (B(u)•j | φ(u)) = Dirichlet(φ(u)•j) (A.37)

The following factorisation is assumed for the generative model:

P (
∼
o,
∼
x | ∼a) = P (

∼
o | ∼s,A)P (

∼
s | ∼a,B)P (

∼
u |γ)P (γ|α, β)P (A|θ)P (B|φ) (A.38)

for
∼
x=
∼
s,
∼
u, γ,A,B; and for the approximate posterior:

Q(
∼
x | _x) = Q(s0|

_
s 0)...Q(sT |

_
s T )Q(ut, ..., uT |

_
π )Q(γ|

_
γ )Q(A|

_

θ )Q(B|
_

φ)

Q(γ|
_
γ ) = Gamma(α,

_

β= α/
_
γ )

Q(A|
_

θ ) = Dirichlet(
_

θ )

Q(B|
_

φ) = Dirichlet(
_

φ)

(A.39)

with
_
x=

_
s ,

_
π ,

_
γ ,

_

θ ,
_

φ . Recall that the probability density function of P (A•j | θ) = Dirichlet(θ•j)

is given by:
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P (A•j | θ) = Dirichlet(θ•j) =
Γ(
∑
i θij)∏

i Γ(θij)

∏
i

A
θij−1
ij (A.40)

and thus we have that:

EQ[lnP (A•j | θ)] = EQ

[
ln

(
Γ(
∑
i θij)∏

i Γ(θij)

∏
i

A
θij−1
ij

)]

= EQ

[
ln(Γ(

∑
i

θij))−
∑
i

ln(Γ(θij)) +
∑
i

(θij − 1) ln(Aij)

]
= ln(Γ(

∑
i

θij))−
∑
i

ln(Γ(θij))

+
∑
i

(θij − 1)[ψ(
_

θ ij)− ψ(
∑
i

_

θ ij)]

(A.41)

and:

EQ[lnQ(A•j |
_

θ )] = ln(Γ(
∑
i

_

θ ij))−
∑
i

ln(Γ(
_

θ ij))

+
∑
i

(
_

θ ij −1)[ψ(
_

θ ij)− ψ(
∑
i

_

θ ij)]
(A.42)

(and similarly for EQ[lnP (B•j | φ)] and EQ[lnQ(B•j |
_

φ)]). Therefore, for our generative

model P we have that:
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EQ[lnP (
∼
o,
∼
x)] = EQ[lnP (ot|st, A) + lnP (st|st−1, at, B) + lnP (

∼
u |γ)

+ lnP (γ|α, β) + lnP (A|θ) + lnP (B|φ)]

=
_
s t ·

_

A ·ot

+
_
s t ·

_

B (at−1)
_
s t−1

+
_
γ Q· _π

+ (α− 1)(ψ(α)− ln
_

β )− β
_
γ +α lnβ − ln Γ(α)

+
∑
j

(
ln(Γ(

∑
i

θij))−
∑
i

ln(Γ(θij)) +
∑
i

(θij − 1)[ψ(
_

θ ij)− ψ(
∑
i

_

θ ij)]

)

+
∑
j

(
ln(Γ(

∑
i

φij))−
∑
i

ln(Γ(φij)) +
∑
i

(φij − 1)[ψ(
_

φ ij)− ψ(
∑
i

_

φ ij)]

)
(A.43)

for
_

Aij= EQ[lnAij ] = ψ(
_

θ ij) − ψ(
∑
i

_

θ ij) and
_

Bij= EQ[lnBij ] = ψ(
_

φ ij) − ψ(
∑
i

_

φ ij),

and:

Q(π) =

T∑
τ=t+1

{1}W×1 · (A ◦
_

A)
_
s τ (π)− (ln

_
o τ (π)− lnCτ ) ·_o τ (π) (A.44)

with:

_
s τ (π) = B(uτ |π)...B(ut|π)

_
s t (A.45)

and:

_
o τ (π) = A

_
s τ (π) (A.46)

for Aij = EQ[Aij ] =
_

θ ij /
∑
i

_

θ ij and Bij = EQ[Bij ] =
_

φ ij /
∑
i

_

φ ij . The approximate

posterior distribution has entropy:
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H[Q(
∼
x | _x)] = EQ[− lnQ(

∼
x | _x)]

= EQ[− lnQ(st|
_
s t)− lnQ(

∼
u | _π )− lnQ(

∼
γ |

_
γ )

− lnQ(A|
_

θ )− lnQ(B|
_

φ)]

= − _
s t · ln

_
s t −

_
π · ln _

π + ln Γ(α) + (1− α)ψ(α)− ln(
_

β ) + α

−
∑
j

(
ln(Γ(

∑
i

_

θ ij))−
∑
i

ln(Γ(
_

θ ij)) +
∑
i

(
_

θ ij −1)[ψ(
_

θ ij)− ψ(
∑
i

_

θ ij)]

)

−
∑
j

(
ln(Γ(

n∑
i=1

_

φ ij))−
∑
i

ln(Γ(
_

φ ij)) +
∑
i

(
_

φ ij −1)[ψ(
_

φ ij)− ψ(
∑
i

_

φ ij)]

)
(A.47)

Thus, the variational free energy is given by:

F (
∼
o,
∼
x,
_
x) = −EQ[lnP (

∼
o,
∼
s,
∼
u, γ,A,B)]−H[Q(

∼
x | _x)]

=
_
s t ·(ln

_
s t −

_

A ·ot−
_

B (at−1)
_
s t−1)

+
_
π ·(ln _

π −
_
γ Q) + β

_
γ +α(lnα− ln

_
γ − lnβ − 1)

+
∑
ij

(
(
_

θ ij −θij)
_

Aij + ln Γ(θij)− ln Γ(
_

θ ij)
)

+
∑
j

(
ln Γ(

∑
i

_

θ ij)− ln Γ(
∑
i

θij)

)

+
∑
ij

(
(
_

φ ij −φij)
_

Bij + ln Γ(φij)− ln Γ(
_

φ ij)
)

+
∑
j

(
ln Γ(

∑
i

_

φ ij)− ln Γ(
∑
i

φij)

)
(A.48)

The partial derivatives of the free energy F with respect to
_
s t,

_
π ,

_
γ ,

_

θ ij and
_

φ ij are:

∂F

∂
_
s t

= {1}W×1 + ln
_
s t −

_

A ·ot−
_

B (at−1)
_
s t−1 −

_
γ · 5_

s
Q· _π (A.49)

∂F

∂
_
π

= {1}K×1 + ln
_
π −

_
γ ·Q (A.50)

∂F

∂
_
γ

= β −Q· _π −
_

β (A.51)

∂F

∂
_

θ ij
=
∂
_

Aij

∂
_

θ ij
(
_

θ ij −θij − oti
_
s tj) (A.52)
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∂F

∂
_

φ ij

=
∂
_

Bij

∂
_

φ ij

(
_

φ ij −φij −
_
s ti

_
s t−1j) (A.53)

Setting these equal to zero (ignoring the final term in the derivative with respect to hidden

states, for simplicity) and re-arranging gives the variational updates that minimise free

energy (FitzGerald et al., 2015; Friston et al., 2016):

_
s t = σ(

_

A ·ot+
_

B (at−1)
_
s t−1) (A.54)

_
π= σ(

_
γ ·Q) (A.55)

_
γ= α/(β −Q· _π ) (A.56)

_

θ ij= θij +
∑
t

oti
_
s tj (A.57)

_

φ (u)ij = φ(u)ij +
∑
t

[u = at−1] ·_s ti
_
s t−1j (A.58)

where the Iverson brackets [·] returns one if the expression is true and zero otherwise.

Here we consider learning only of the hidden state initial and transition distributions

(i.e. we assume that the generative model of observations given hidden states is known

and fixed). We assume Y iterations of the learning algorithm, where the initial step of

each iteration returns the agent to a hidden state sampled from the generative process

initial hidden state distribution. Similarly to the hidden state transition model, initial state

beliefs D are assumed to be captured by a Dirichlet distribution with prior concentration

parameters ξ (i.e. P (D | ξ) = Dirichlet(ξ) with
_

Di= EQ[lnDi] = ψ(
_

ξ i)−ψ(
∑
i

_

ξ i)) which

are incrementally updated based on initial hidden state beliefs at each iteration (Friston

et al., 2016). The full process is shown concisely in Algorithm A1.

208



Algorithm A1 Free energy minimisation

input: generative process R
input: generative model prior parameters θ, φ, C, ξ, α, β

initialise:
_
γ= α/β,

_

θ= θ,
_

φ= φ,
_

ξ= ξ
for all y = 1, ..., Y do

sample: s1, o1 ∼ R
for t = 1, ..., T do

if t is 1 then
_
s t ← σ(

_

A ·ot+
_

D)
_
π← σ({1}K×1)

else
_
s t ← σ(

_

A ·ot+
_

B (at−1)
_
s t−1)

end if
Q← {0}K×1
for all π do

for τ = t, ..., T do
_
s τ (π)← B(uτ |π)...B(ut|π)

_
s t

_
o τ (π)← A

_
s τ (π)

Qπ ← Qπ + {1}W×1 · (A ◦
_

A)
_
s τ (π)− (ln

_
o τ (π)− lnCτ ) ·_o τ (π)

end for
end for
for n = 1, ..., N do
_
π← σ(

_
γ ·Q)

_
γ← α/(β −Q· _π )

end for
sample: at ∼

_
π

sample: st+1, ot+1 ∼ R(at, st)
end for
if learn hidden state transition model then

for all u, i, j do
_

φ (u)ij ←
_

φ (u)ij +
∑T
τ=2 [u = aτ−1] ·_s τ i

_
s τ−1j

end for
end if
if learn observation model then

for all i, j do
_

θ ij←
_

θ ij +
∑T
τ=1 oτ i

_
s τ j

end for
end if
if learn initial hidden state model then
_

ξ←
_

ξ +
_
s 1

end if
end for
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B. Appendix For Chapter 4

In this appendix we give details on the algorithms used to train the DBN used in Chapter

4.

B.1 Restricted Boltzmann Machines

An RBM (Smolensky, 1986) is a stochastic generative neural network with X visible units

x and H hidden units h. In the typical case (and as considered here) both x ∈ {0, 1}X and

h ∈ {0, 1}H are binary. The network has parameters θ = {b, c,W}. The weights W between

each visible and hidden unit are symmetric and bidirectional (i.e. Wij = Wji), and there

are no connections between hidden units, and no connections between visible units. Hidden

units have biases b, and visible units have biases c.

The aim is to model a distribution over the input data the network sees. In order to

achieve this, we first define an energy function:

E(x, h) = −h>Wx− c>x− b>h = −
∑
j

∑
k

Wj,khjxk −
∑
k

ckxk −
∑
j

bjhj (B.1)

i.e. each configuration of x and h is assigned a scalar energy. The joint-distribution over

x and h is then:

h

x

W

Figure B.1: Restricted Boltzmann machine with 3 hidden units and 3 visible units
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p(x, h) =
e−E(x,h)

Z
(B.2)

Thus, the probability of some particular configuration is the exponential of the negative en-

ergy for that configuration, over the partition function Z. The partition function (sometimes

called a “normalisation constant”) is the sum of the numerator over all values of x and h:

Z =
∑
x,h

e−E(x,h)
(B.3)

Given these properties, it can be shown that (Fischer and Igel, 2014):

p(hj = 1|x) = σ(bj +
∑
k

Wjkxk) (B.4)

and:

p(xj = 1|h) = σ(cj +
∑
i

Wijhi) (B.5)

where σ is the logistic function:

σ(t) =
1

1 + e−t
(B.6)

B.1.1 Training with Contrastive Divergence

We want to adjust the parameters θ (i.e. the weights and biases) in order to maximise

the probability of the training data x ∈ D. This is equivalent to minimising the average

negative log-likelihood:

min
θ

1

|D|
∑
x∈D
− log p(x; θ) (B.7)

for |D| total training data examples. We use stochastic gradient descent to iteratively update

θ based on the gradient of log p(x) so that the model comes to assign high probability to

those inputs which it has seen. Parameters ϑ ∈ θ are updated over mini-batches T ⊂ D

according to:

211



4ϑ =
α

|T |
∂

∂ϑ

(∑
x∈T

log p(x; θ)

)
− λϑ (B.8)

for learning rate parameter α ∈ R+. In order to achieve models with parameters having small

absolute values, we minus half of the sum of squared parameters (i.e. 1
2 ||θ||

2
) weighted by

λ ∈ R+
0 (i.e. the set of all positive real numbers along with zero) from the objective function

(i.e. negative log likelihood of the training data) being minimised, which results in the −λϑ
term above. The log-likelihood of any particular data point x under the model parametrised

by θ is:

log p(x; θ) = log
∑
h

p(x, h; θ) = log
1

Z

∑
h

e−E(x,h) = log
∑
h

e−E(x,h) − log
∑
x,h

e−E(x,h)

(B.9)

and so for the gradient we have:

∂

∂ϑ
(− log p(x; θ)) = − ∂

∂ϑ

(
log
∑
h

e−E(x,h)

)
+

∂

∂ϑ

log
∑
x,h

e−E(x,h)


=
∑
h

p(h|x)
∂E(x, h)

∂ϑ
−
∑
x

p(x)
∑
h

p(h|x)
∂E(x, h)

∂ϑ

(B.10)

Over mini-batch T ⊂ D with |T | examples we have that the mean of this derivative is:

1

|T |
∑
x(t)∈T

∂

∂ϑ

(
− log p(x(t); θ)

)

=
1

|T |
∑
x(t)∈T

(∑
h

p(h|x(t))∂E(x(t), h)

∂ϑ
−
∑
x

p(x)
∑
h

p(h|x)
∂E(x, h)

∂ϑ

)

=
1

|T |
∑
x(t)∈T

(
Eh
[
∂E(x(t), h)

∂ϑ

∣∣∣∣ x(t)]− Eh,x
[
∂E(x, h)

∂ϑ

]) (B.11)

where the first term Eh
[
∂E(x(t),h)

∂ϑ

∣∣∣ x(t)] is called the “positive phase”, and the second term

Eh,x
[
∂E(x,h)
∂ϑ

]
is called the “negative phase”. We can compute ∂E(x,h)

∂ϑ for the weights:
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∂E(x, h)

∂Wjk
=

∂

∂Wjk

−∑
j,k

Wjkhjxk −
∑
k

ckxk −
∑
j

bjhj

 = −hjxk (B.12)

For the hidden biases b we have that:

∂E(x, h)

∂bj
=

∂

∂bj

−∑
j,k

Wjkhjxk −
∑
k

ckxk −
∑
j

bjhj

 = −hj (B.13)

and for the visible biases c:

∂E(x, h)

∂ck
=

∂

∂ck

−∑
j,k

Wjkhjxk −
∑
k

ckxk −
∑
j

bjhj

 = −xk (B.14)

B.1.1.1 Positive phase

The positive phase is the expectation (over the hidden layer values) of the partial derivative

of the energy E with respect to the parameter ϑ ∈ θ, given the observation x(t). From Eq

(B.12), it follows that:

Eh
[
∂E(x(t), h)

∂Wjk

∣∣∣∣ x(t)] = Eh
[
−hjxk

∣∣∣ x(t)] =
∑

hj∈{0,1}

−hjxk p(hj |x(t); θ) = −xk p(hj = 1|x(t); θ)

(B.15)

which can be written in matrix form as:

Eh[5WE(x, h)|x(t)] = −h(x(t); θ)x(t)
>

(B.16)

where h(x; θ) is a vector containing the probability that each hidden unit hj is equal to 1,

given x:

h(x; θ) =

 p(h1 = 1|x; θ)

...

p(hH = 1|x; θ)

 = σ(b+Wx) (B.17)
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so that the entry at row j, column k in −h(x; θ)x> will be −xk p(hj = 1|x; θ).

For the hidden biases b, from Eq. (B.13) it follows that:

Eh
[
∂E(x(t), h)

∂bj

∣∣∣∣ x(t)] = Eh
[
−hj

∣∣∣ x(t)] =
∑

hj∈{0,1}

−hj p(hj |x(t); θ) = − p(hj = 1|x(t); θ)

(B.18)

which can be written in matrix form:

Eh[5bE(x, h)|x(t)] = −h(x(t); θ) (B.19)

Finally, for the visible biases c, from Eq. (B.14) it follows that:

Eh
[
∂E(x(t), h)

∂ck

∣∣∣∣ x(t)] = Eh
[
−xk

∣∣∣ x(t)] = −xk (B.20)

which can be written in matrix form:

Eh[5cE(x, h)|x(t)] = −x(t) (B.21)

B.1.1.2 Negative phase

The negative phase is the expectation (over the hidden and visible layer values) of the partial

derivative of the energy E with respect to the parameter ϑ ∈ θ, i.e. it is an expectation

under our model’s distribution. Thus, the negative phase is hard to compute (generally

intractable), since it involves a sum over both h and x which grows exponentially in the

number of these units. Therefore this term is typically approximated using a technique

called k-step Contrastive Divergence (CD-k) (Hinton, 2002).

B.1.1.3 Contrastive Divergence

Since the negative phase is generally intractable, we replace the expectation over x with

a point estimate at a sample x̃ from the RBM’s model distribution. We could use Gibbs

sampling (Markov chain Monte Carlo) to obtain unbiased samples x̃ from the RBM dis-

tribution, and then use these samples to obtain an unbiased estimate of the log-likelihood

gradient, since it is easy to perform Gibbs sampling with a RBM given that all units in a

layer are conditionally independent given the other layer. However, this would require lots
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of sampling steps, since we would have to run the Markov chain until reaching the station-

ary distribution of the RBM. Instead, we can use an algorithm called CD-k which involves

a variation on Gibbs sampling. In CD-k we start at the training vector x(t) and run the

Markov chain for only k steps, setting:

x(t,0) := x(t) (B.22)

and:

∀ 0 ≤ i < k : h(t,i) ∼ p(h|x(t,i)) and x(t,i+1) ∼ p(x|h = h(t,i)) (B.23)

In other words, we initialise the visible units with a training sample x(t), giving the first

visible unit configuration of the chain x(t,0). Then we sample all of the hidden units in

parallel, from p(h|x = x(t,0)), to give h(t,0). Then we sample x(t,1) from p(x|h = h(t,0)).

This repeats for k steps. Then, using x(t,k) as our sample x̃(t), our estimate for the negative

phase part of the gradient is:

Eh,x
[
∂E(x, h)

∂ϑ

]
≈ Eh

[
∂E(x̃(t), h)

∂ϑ

∣∣∣∣ x̃(t)] (B.24)

so that the gradient of the negative log-likelihood for one training vector x(t) with respect

to ϑ is approximated by:

∂

∂ϑ

(
− log p(x(t); θ)

)
≈ Eh

[
∂E(x(t), h)

∂ϑ

∣∣∣∣ x(t)]− Eh
[
∂E(x̃(t), h)

∂ϑ

∣∣∣∣ x̃(t)] (B.25)

The gradient descent update rule is decreasing the energy at the training observation

x(t) and its associated hidden layer (positive phase), and increasing the energy at the sample

x̃(t) and its associated hidden layer. Since low energy corresponds to high probability, we

are increasing the probability of observing x(t) with its hidden layer under the model’s

distribution, and at the same time decreasing the probability that x̃(t) will be observed.

Since x̃(t) is not a sample from the stationary distribution, this approximation (Eq. B.25)

is biased. As k →∞ we are guaranteed to get a sample from the equilibrium distribution,

however in practice k = 1 works surprisingly well.

Given a training vector x(t) ∈ D and a contrastive divergence sample x̃(t), the estimate

for the difference between the positive and negative phases for the weights is thus:
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5W
(
− log

(
p
(
x(t)
)))

= Eh
[
5WE(x(t), h)

∣∣∣x(t)]− Eh,x [5WE(x, h)]
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[
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>
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>

(B.26)

so that the stochastic gradient descent update, for some particular mini-batch of training

examples T ⊂ D, is:

4W =
α

|T |
∑
x(t)∈T

(
h(x(t))x(t)

>
− h(x̃(t))x̃(t)

>)
− λW (B.27)

For the hidden biases b we have:

5b
(
− log

(
p
(
x(t)
)))

= Eh
[
5bE(x(t), h)

∣∣∣x(t)]− Eh,x [5bE(x, h)]

≈ Eh
[
5bE(x(t), h)

∣∣∣x(t)]− Eh
[
5bE(x̃(t), h)

∣∣∣x̃(t)]
= h(x(t))− h(x̃(t))

(B.28)

so that:

4b =
α

|T |
∑
x(t)∈T

(
h(x(t))− h(x̃(t))

)
− λb (B.29)

and for the visible biases c we have:

5c
(
− log

(
p
(
x(t)
)))

= Eh
[
5cE(x(t), h)

∣∣∣x(t)]− Eh,x [5cE(x, h)]

≈ Eh
[
5cE(x(t), h)

∣∣∣x(t)]− Eh
[
5cE(x̃(t), h)

∣∣∣x̃(t)]
= x(t) − x̃(t)

(B.30)

so that:

4c =
α

|T |
∑
x(t)∈T

(
x(t) − x̃(t)

)
− λc (B.31)

This gives us the following general algorithm for the gradient descent update of the

weights and biases, using k-step CD for estimation of the gradient and mini-batches:
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Algorithm B1 RBM Training algorithm using CD-k with mini-batches

initialise: W, b, c
initialise: q = 0
for all training epochs do

for all training mini-batches T do
initialise: 4W = {0}X×H , 4b = {0}H×1, 4c = {0}X×1, A = {0}|T |×H
for all x ∈ T do
x(0) ← x
for i = 0, ..., k − 1 do

sample: h(i) ∼ p(h|x(i))
sample: x(i+1) ∼ p(x|h(i))

end for
x̃← x(k)

4W ←4W + h(x)x> − h(x̃)x̃>

4b←4b+ h(x)− h(x̃)
4c←4c+ x− x̃
Ax ← p(h|x)

end for
W ←W + (α/|T |)4W − λW
b← b+ (α/|T |)4 b− λb
c← c+ (α/|T |)4 c− λc
q ← γq + (1− γ)(1/|T |){1}1×|T |A

end for
b← b− η(q − d)

end for
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Figure B.2: A 3 layered deep belief network (with 4 layers of units)

for {0}i×j the i× j matrix of zeros, and {1}i×j the i× j matrix of ones. Note that for the

hidden biases b we have additionally minused another term q − d at the end of each epoch,

weighted by η ∈ R+
0 (this term is sometimes also minused from the weights). This is in order

to encourage sparse hidden unit activations. q ∈ RH is a moving average (parametrised by

γ) of the hidden unit activation probabilities over batches, and d ∈ RH is the desired (target)

probability of each hidden unit being active, with 0 < p ∈ d � 1 (see Hinton (2010) for

further details).

B.2 Deep Belief Networks

A DBN is a multi-layered stochastic generative model that mixes undirected and directed

connections between the units. For a DBN with J layers of hidden units, the network

contains undirected connections W (J) between the top two hidden unit layers h(J) and

h(J−1). There are directed connections W (j) between the remaining hidden unit layers h(j)

and h(j−1), ∀1 < j < J , and directed connections W (1) between the first hidden layer h(1)

and the visible layer x. Additionally, ∀1 ≤ j ≤ J , hidden layer h(j) has biases b(j), and

the visible layer x has biases c. The distribution p(h(3), h(2)) over the top two layers of

units forms an undirected RBM (associative memory), and the layers below form a directed

sigmoid belief network.

An example of a 3-layered DBN (with 4 layers of units) is given in B.2). The full

distribution of this DBN is:

p(x, h(1), h(2), h(3); θ) = p(h(2), h(3))p(h(1)|h(2))p(x|h(1)) (B.32)

for parameters θ = {W (1),W (2),W (3), b(1), b(2), b(3), c}, where:
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p(h(2), h(3)) = exp
(
h(2)

>
W (3)h(3) + b(2)

>
h(2) + b(3)

>
h(3)

)
/Z (B.33)

The conditional distribution of layer h(1) given the layer above, h(2), takes the following

form:

p(h(1)|h(2)) =
∏
j

p(h
(1)
j |h

(2))

p(h
(1)
j = 1|h(2)) = σ(b

(1)
j +W

(2)
j h(2))

(B.34)

and the conditional distribution of layer x given the layer above, h(1), is:

p(x|h(1)) =
∏
i

p(xi|h(1))

p(xi = 1|h(1)) = σ(ci +W
(1)
i h(1))

(B.35)

DBNs are typically trained in a layer-wise fashion, starting with an RBM at the first

level. Starting with the input layer x and the first hidden layer h(1), we firstly train a RBM

on the full set of data. Once the RBM has been trained, then by holding the weights W (1)

and visible biases c fixed, we can now add another hidden layer h(2) and train the weights

W (2) between h(1) and h(2), and biases b(1), as another RBM (with inputs propagated up to

h(1) via feed-forward connections from x). A third (and arbitrarily many) number of RBM

layer(s) can be added in this way, and it has been shown that a variational lower bound on

log p(x) can always be increased with each additional new layer (Hinton et al., 2006).

B.2.1 Sampling

To generate a visible layer sample x̃ ∼ p(x, h(1), h(2), h(3)) from the DBN, we first perform

Gibbs sampling at the top-level RBM to get a sample at layer h(2) from the prior distribution

p(h(3), h(2)), and then activate h(1) based on h(2). Based on this activation of h(1), we

activate x. The result is a data vector x̃, which we refer to as a “generative sample” from

the DBN’s model.

It is possible to generate samples in an auto-associative-like manner by holding some

subset of the lower-level units of the top RBM constant during Gibbs sampling. One option

is to append a class label y to the input to the top level RBM during training B.3, and

then present and hold constant the desired class label during Gibbs sampling to generate a

sample associated with this class (Hinton et al., 2006), which is the approach taken in this

work.
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Figure B.3: Auto-associative sampling in a DBN with class label y
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C. Appendix For Chapter 5

In this appendix we give further details on how the neuron numbers and connection proba-

bilities were calculated in Chapter 5.

C.1 Regional Detail

Below we calculate a number of neurons for each region of our model which is relative to the

proportion of actual neurons that this region has within the human brain, and connectivity

probabilities between pairs of neurons both within and across regions, as well as detailing

the types of neuron (in terms of electrophysiology and firing patterns) that are found in each

region. Neuron numbers are calculated using region volume and neuron density estimates,

which all come from non-clinical human data. Data on connectivity and neuron types are

typically not available for the human brain, and thus our data mostly comes from animal

subjects.

In order to calculate the number of neurons for each region of our model, we start by

estimating the total number of neurons in each human brain region of interest for our model

(estimated as a total of 1,313,268,048 neurons across all regions: details for each individual

region are given in the sections below). Then, based on these estimates and assuming a

total of 35000 neurons in our model, we calculated the relative proportion of neurons for

each region in our model. Finally, these relative region neuron numbers were rounded to

the nearest integer, giving a total of 34997 neurons in our model.

C.1.1 Neocortex

The neocortex is the phylogenetically newest part of the human brain. It has a well-defined

six-layered structure that distinguishes it from the evolutionarily older allocortex (which

has between three and five layers), with layers classified according to the types of neuron

that occupy it and their afferent/efferent connectivity profiles (Kandel et al., 2012, p.345-

346). Although relative differences in layer thickness amongst regions do exist, this laminar

structure is largely homogeneous across the whole neocortex.

221



The AI and aMCC are defined as agranular cortex, which means that they lack a layer IV,

whereas PI has both granular (i.e. with a full layer IV) and dysgranular (with a rudimentary

layer IV) cortical segments (see Sections C.1.2, C.1.3 and C.1.9 for further details). Given

their structure, the AI and aMCC are often considered to be transitory areas between

neocortex and allocortex, however (for simplicity) we consider these regions (along with the

PI, mPFC and mOFC) to be parts of the neocortex, and do not consider in detail differences

in cell composition and connectivity amongst these regions.

C.1.1.1 Neocortical neuron types

The neocortex comprises a large number of different types of neuron, roughly 80% of which

are excitatory and 20% inhibitory (Harris and Shepherd, 2015; Peyrache et al., 2012). The

most common type of excitatory neuron in the neocortex are pyramidal cells, which use

glutamate as their neurotransmitter. They occupy layers II-VI and make up 60-70% of

all neocortical neurons (Connors and Gutnick, 1990). The majority of these pyramidal

cells (70% in the rat study in Dégenètais et al. (2002)) exhibit RS firing characteristics; in

response to steady input current they fire single spikes at a rate that initially slows (adapts)

before stabilising.

In the mouse, the majority (approximately 40%) of inhibitory neocortical neurons are

known to be Parvalbumin-expressing basket or chandelier cells, with similar proportions

believed to apply to humans (Rudy et al., 2011). These cells use GABA as their neuro-

transmitter and, as with pyramidal cells, are present in layers II-VI (Markram et al., 2004).

They exhibit FS dynamics (Rudy et al., 2011), with a frequency of firing in response to sta-

ble input current that is non-adaptive and relatively high frequency compared to pyramidal

cells. Thus, for simplicity, we assume that in all neocortical regions, 80% of neurons are

excitatory RS cells, and the remaining 20% are inhibitory FS cells, as per these majority

types.

C.1.1.2 Neocortical connectivity

We now consider connectivity within and between neocortical regions. For excitatory neo-

cortical neurons targeting neocortical regions, we assume that 50% target distant (i.e. other

region) neurons, and the remaining 50% target local (i.e. same region) neurons (the actual

proportions are unknown). For distant neocortical targets of excitatory neocortical neu-

rons, we assume that 90% target distant excitatory neocortical neurons, and the remaining

10% target distant inhibitory neocortical neurons (Melchitzky et al., 2001). Local targets

of excitatory neocortical neurons are split evenly between excitatory and inhibitory neurons

(Lewis et al., 2002).

For inhibitory neocortical neurons, we assume that 100% of outgoing connections target

local neurons, with 95% of these targeting local excitatory neurons and 5% targeting local
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inhibitory neurons (since interneurons are rarely and sparsely connected (Markram et al.,

2004)). Packer and Yuste (2011) found a local connection probability (for intersomatic

distances less than 200µm) for Parvalbumin basket cells to pyramidal cells of 62% (averaged

across regions), with dense local connectivity that decreased as a function of intersomatic

distance (such that the probability of connection became zero for distances greater than

450µm). Similar data for the BLA suggests a connection probability of 50% for inhibitory

interneurons to local excitatory pyramidal-like neurons (within 120µm), which we roughly

scaled to 10% to take dense local connectivity into account (see Section C.1.4). Based

on this, we use a slightly higher connection probability of 12.5% for inhibitory neocortical

neurons to local excitatory neurons (although we note that this is a very crude estimate).

These connection proportions and probabilities, along with the total number of neurons

within each neocortical region within our model (which gives the total number of possible

connections), allow us to calculate connection probabilities within and between all neocorti-

cal regions. These are detailed below for each specific neocortical region, along with details

of connectivity between between neocortical and non-neocortical regions.

C.1.1.3 Neocortical connectivity example: Anterior Insular

As an example of the method we used to calculate connection probabilities for pairs of

neurons with a neocortical source, we use the AI which we have considered to be part of

the neocortex (see Section C.1.2 for further discussion). We calculated 7765 AI neurons for

our model, of which 80% (6212) are regular-spiking excitatory neurons, and 20% (1553) are

fast-spiking inhibitory neurons. The connection probability of AI inhibitory to AI excitatory

neurons is 12.5%: since the total number of possible connections is 6212 ∗ 1553 = 9647236

this gives 9647236 ∗ 0.125 = 1205904.5 total connections. For AI inhibitory to AI in-

hibitory, the total number of possible connections is 15532 = 2411809, and the number

of connections is thus 0.05 ∗ (1205904.5 ∗ 100/95) = 63468.657894737, giving a connec-

tion probability of 63468.657894737/2411809 = 2.6315789474% (rounded to 2.632% in

the model). The average number of outgoing connections per inhibitory AI neuron is

(9647236 + 63468.657894737)/1553 = 817.3684210526.

AI excitatory neurons project to the AI (which has a total of 6212 excitatory and 1553

inhibitory neurons), aMCC (1329 excitatory and 332 inhibitory), mPFC (9547 excitatory

and 2393 inhibitory) and PI (3106 excitatory and 777 inhibitory), along with excitatory

(negatively valanced) neurons in the BLMA	 (total 76 neurons). We assume that the

average number of outgoing connections per excitatory AI neuron is 817.3684210526 (i.e.

the same as for inhibitory AI neurons, above), giving a total number of outgoing connections

from AI excitatory neurons of 817.3684210526 ∗ 6212 = 5077492.631578751.

The total number of possible connections from AI excitatory neurons to BLMA	 neurons

is 6212 ∗ 76 = 472112 which, given connection probability of 10%, gives a total of 47211.2
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connections from AI excitatory to BLMA	 neurons. Thus, the total number of connections

from AI excitatory neurons to the other neocortical regions (AI, aMCC, mPFC and PI)

is 5077492.631578751 − 47211.2 = 5030281.431578751, with 50% targeting local neurons

in the AI (5030281.431578751 ∗ 0.5 = 2515140.71578947) and the remaining 50% targeting

distant neurons in other neocortical areas (i.e. the aMCC, mPFC or PI). We assume that

the number of connections to each of the aMCC, mPFC and PI is proportional to the total

number of neurons in that region (giving 238572.824448993 connections from AI excitatory

to aMCC, 1718844.66597297 from AI excitatory to mPFC, and 557723.225367513 from AI

excitatory to PI).

The total number of possible connections from AI excitatory to AI excitatory neurons

is 62122 = 38588944, and the total number of possible connections from AI excitatory

neurons to AI inhibitory neurons is 6212 ∗ 1553 = 9647236. The total number of connec-

tions from AI excitatory to other local AI excitatory neurons is 2515140.71578947 ∗ 0.5 =

1257570.357894735, and the total number of connections from AI excitatory to local AI

inhibitory neurons is 2515140.71578947 ∗ 0.5 = 1257570.357894735, corresponding to con-

nection probabilities of 3.259% and 13.036% respectively.

The total number of possible connections from AI excitatory neurons to aMCC excita-

tory neurons is 6212∗1329 = 8255748, and the total number of possible connections from AI

excitatory neurons to aMCC inhibitory neurons is 6212 ∗ 332 = 2062384. The total number

of connections from AI excitatory to aMCC excitatory neurons is 238572.824448993 ∗ 0.9 =

214715.542004094, and the total number of connections from AI excitatory to aMCC in-

hibitory neurons is 238572.824448993 ∗ 0.1 = 23857.282444899, corresponding to connection

probabilities of 2.601% and 1.157% respectively.

The total number of possible connections from AI excitatory neurons to mPFC excitatory

neurons is 6212∗9574 = 59473688, and the total number of possible connections from AI ex-

citatory neurons to mPFC inhibitory neurons is 6212 ∗ 2393 = 14865316. The total number

of connections from AI excitatory to mPFC excitatory neurons is 1718844.66597297 ∗ 0.9 =

1546960.199375673, and the total number of connections from AI excitatory to mPFC in-

hibitory neurons is 1718844.66597297∗0.1 = 171884.466597297, corresponding to connection

probabilities of 2.601% and 1.156% respectively.

The total number of possible connections from AI excitatory neurons to PI excitatory

neurons is 6212 ∗ 3106 = 19294472, and the total number of possible connections from AI

excitatory neurons to PI inhibitory neurons is 6212 ∗ 777 = 4826724. The total number

of connections from AI excitatory to PI excitatory neurons is 557723.225367513 ∗ 0.9 =

501950.902830762, and the total number of connections from AI excitatory to PI inhibitory

neurons is 557723.225367513 ∗ 0.1 = 55772.322536751, corresponding to connection proba-

bilities of 2.602% and 1.155% respectively. The final connection probabilities are all rounded

to 3 decimal places.
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C.1.2 Anterior Insular

C.1.2.1 Number of neurons

An MRI-based estimate for gray matter volume of the human anterior insular for both

schizophrenic and control subjects is given in Makris et al. (2006): we take the control

subject data, which estimated a mean bilateral AI volume of 9.6cm3 = 9600mm3 across

40 male and female subjects aged between 23 and 66 (mean age 40). Our neuron density

estimate comes from BA13 (which is an area in the adjacent PI): Semendeferi et al. (1998)

estimated a density of 30351/mm3 in a postmortem biopsy of a single 75 year old male

subject who did not die of a neurological disease. This gives a total estimate for the number

of neurons in the human AI of 9600 ∗ 30351 = 291, 369, 600. This is 22.1866% of the total

number of biological neurons in our regions of interest, and thus the corresponding number

of AI neurons in our model is set to 7765.

C.1.2.2 Neuron types

The AI is agranular and typically considered transitory cortex (Öngür et al., 2003; Wallis,

2012, Fig. 1), however for simplicity we assume standard neocortical cell composition and

connectivity. For total number of AI neurons in our model 7765, we set 6212 to be excitatory

RS and 1553 inhibitory FS, according to standard neocortical proportions described above

in Section C.1.1.1.

C.1.2.3 Connection probabilities

In our model, in addition to recurrent AI connections, excitatory AI neurons project to PI,

aMCC, mPFC and BLMA	. AI excitatory neurons project locally to AI excitatory and

inhibitory neurons with probabilities 3.259% and 13.036%, respectively. For the distant

neocortical projections, we connect AI excitatory neurons to excitatory and inhibitory PI

neurons with probabilities 2.602% and 1.155%; to excitatory and inhibitory aMCC neurons

with probabilities 2.601% and 1.157%; and to excitatory and inhibitory mPFC neurons

with probabilities 2.601% and 1.156%. We additionally connect AI excitatory neurons to

subcortical BLMA	 neurons with probability 10% (used as a default value since actual

connection probability is unknown).

Inhibitory AI neurons are assumed to project only to local excitatory and inhibitory

AI neurons: we take connection probabilities of 12.5% and 2.632% to local excitatory and

inhibitory neurons, respectively.

The full calculations underlying these connection probabilities is given in the example

calculation in Section C.1.1.3 (the same method was used to calculate connection probabil-

ities for neurons projecting from other neocortical regions).

225



C.1.3 Anterior Midcingulate Cortex

C.1.3.1 Number of neurons

We use the aMCC gray matter volume in Kitayama et al. (2006) (labelled “whole”, and com-

prising BA24 and 32): they used MRI to estimate a total bilateral volume of 2710.9mm3

based on a control sample of 13 men and women. We assume a neuronal density of

23000/mm3, based on the findings in Höistad et al. (2013) who present estimates for

BA24a’,b’,c’ following a postmortem biopsy on 13 male control subjects aged 25 to 65

(mean age 51.9). This gives a total estimate of 62, 350, 700 neurons in the bilateral human

aMCC which, at 4.746% of the total, gives 1661 neurons in the model.

C.1.3.2 Neuron types

The aMCC, as a subpart of the ACC, is agranular and typically considered to be transi-

tionary cortex (Öngür et al., 2003; Wallis, 2012, Fig. 1). However, as for the AI, we assume

standard neocortical cell composition and connectivity. For total number of aMCC neurons

in our model 1661, we set 1329 to be excitatory RS and 332 inhibitory FS, according to

standard neocortical proportions described above in Section C.1.1.1.

C.1.3.3 Connection probabilities

In addition to recurrent aMCC connections, excitatory aMCC neurons project to PI, AI

and mPFC (which are all neocortical targets, see Section C.1.1.2). In our model, aMCC

excitatory neurons project locally to aMCC excitatory and inhibitory neurons with probabil-

ities 3.289% and 13.168%, respectively. For the distant neocortical projections, we connect

aMCC excitatory neurons to excitatory and inhibitory PI, AI and mPFC neurons with

probabilities 0.417% and 0.185% (for all three regions).

Inhibitory aMCC neurons are assumed to project only to local excitatory and inhibitory

aMCC neurons: we use connection probabilities of 12.5% and 2.634% to local excitatory

and inhibitory neurons, respectively.

C.1.4 Amygdala

C.1.4.1 Number of neurons

Garćıa-Amado and Prensa (2012) estimated a total of 5.02 ∗ 106 neurons in the basolateral

(basal) nucleus, and 1.73 ∗ 106 in the basomedial (accessory basal) nucleus, based on post-

mortem biopsy of 7 control male and female subjects aged from 20 to 75 (mean age 52.1).

This gives a total of 6, 750, 000 neurons in our regions of interest within the human amygdala.

We assume that 85% of these are excitatory and the remaining 15% inhibitory (see Section
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C.1.4.2), and that there are the same number of positively and negatively valanced excita-

tory neurons, giving an estimate of 2, 868, 750 for both positively and negatively valanced

excitatory neurons in human amygdala. Since we only consider a population of BLMA in-

hibitory neurons that inhibit only BLMA	, we use an estimate of 506, 250 inhibitory BLMA

neurons. Thus, we have estimated that positively valanced excitatory, negatively valanced

excitatory, and inhibitory neurons correspond to 0.218%, 0.218% and 0.0385% of the total

number of neurons in our regions in interest, respectively. This results in 76 BLMA⊕, 76

BLMA	 and 13 BLMAi neurons in our model.

C.1.4.2 Neuron types

We assume that 85% of neurons in the BLMA are glutamatergic excitatory pyramidal-like

neurons with regular-spiking characteristics, and the remaining 15% of BLMA neurons are

fast-spiking GABAergic inhibitory interneurons (McDonald, 1992; Sah et al., 2003). In our

model, pyramidal neurons constitute those in BLMA⊕ and BLMA	, whilst cells in BLMAi

are interneurons.

C.1.4.3 Connection probabilities

Pyramidal neurons in the basolateral complex of the amygdala (lateral, basolateral and

accessory basal nuclei) are believed to have substantial local projections, mostly to in-

terneurons (IN) but also local pyramidal neurons (PN), whilst interneurons innervate both

local pyramidal cells and other local interneurons (Sah et al., 2003). Vlachos et al. (2011),

in their model of the basolateral nuclei of the amygdala, connect inhibitory PN-PN with

probability 0.01, PN-IN with probability 0.15, IN-PN with probability 0.15, and IN-IN with

probability 0.1, although this is not justified with any neuroscientific data.

Woodruff and Sah (2007) studied connectivity (within and between Parvalbumin IN,

which account for 50% of BLA interneurons; and PN neurons) in the BLA of the mouse.

They found that 47% of the Parvalbumin IN were fast-spiking. In particular, they made

recordings from 160 IN-PIN neuron pairs, with neurons within somatic distance 120µm of

each other. 99 of these pairs were synaptically connected, with 34% (55 of 160) forming a

unidirectional IN-PN inhibitory connection; 12% (19 of 160) having an unreciprocated PN-

IN excitatory connection; and 16% (25 of 160) reciprocally connected. The remaining 38%

(61 of 160) of IN–PN pairs were not connected in any way. This gives connection probabilities

of IN→IN: 26%, IN→PN: 50% and PN→IN: 27.5%. Since they only considered pairs within

somatic distance 120µm, we scale these probabilities down slightly (while roughly keeping

their relative proportions): we connect BLMAi to BLMA	 with probability 10%; BLMA	
to BLMA	 and BLMA⊕ to BLMA⊕ with probability 5%; and BLMAi to BLMAi also with

probability 5%.
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In order to calculate the remaining connection probabilities, we assume that the BLMA

follows neocortical proportions for long-range target proportions, and proportions of excitatory-

inhibitory neocortical targets (see Section C.1.1.2). The BLMA	 group consists of excita-

tory cells which project to local excitatory cells (BLMA	), local inhibitory cells (BLMAi),

and excitatory and inhibitory cells of the AI. Connection probability from BLMA	 to

BLMAi is given at 5% (see above). Since the total number of possible connections from

BLMA	 to BLMAi is 76 ∗ 13 = 988, this gives a total of 988 ∗ 0.05 = 49.4. Following

neocortical target proportions, we assume that there will also be 49.4 total connections

from BLMA	 to BLMA	: for total number of possible connection 762 = 5776, this gives

connection probability (49.4/5776) ∗ 100 = 0.855%. Now, assuming the same local-distant

target proportions as for excitatory neocortex pyramidal cells, we can assume a total of

49.4 ∗ 2 = 98.8 connections to AI cells. Again assuming the same target proportions as in

the neocortex (i.e. of distant neocortex targets, 10% are inhibitory neocortical cells and

90% distant neocortical excitatory cells), this gives a connection probability of 0.008% to

inhibitory AI cells, and 0.019% to excitatory AI cells.

The BLMA⊕ group consists of excitatory cells which project to local excitatory cells

(BLMA⊕), local inhibitory cells (BLMAi), and inhibitory cells in the VP and NAc. As for

the BLMA	, we use connection probability of 5% for BLMA⊕ to BLMAi, and use this (along

with neocortical local target proportions) to calculate a probability of connection 0.855%

for BLMA⊕ to BLMA⊕. Again, assuming neocortical local-distant target proportions (and

assuming that total connections from BLMA⊕ to VP and NAc are proportional to the

number of targets in each area), we calculate connection probability of 0.674% from BLMA⊕
to both VP and NAc.

C.1.5 Medial Prefrontal Cortex

C.1.5.1 Number of neurons

In our model, we are concerned specifically with a subpart of the mPFC that preferentially

activates for other referential processing; activation that is presumed to be required in order

to stimulate the mPFC-mPOA-VTA-NAc-VP, mPFC-BLMA⊕-VP and mPFC-BLMA⊕-

NAc-VP caregiving pathways. Murray et al. (2012) conducted a meta-analysis of studies

concerning self- and other-referential processing, and found evidence for a ventral-dorsal

gradient for such processing in the mPFC. Although other vs self comparisons did not

reveal any mPFC clusters exhibiting preferential activation, self vs control, self vs other and

self vs public other comparisons all revealed preferential activation in the right vmPFC.

Meanwhile, other vs control comparisons revealed preferential activations in three non-

overlapping clusters (one each in the left and right vmPFC, and one in the left dmPFC),

whilst close-other vs control showed increased activation in left vmPFC. Based on this
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analysis, we use a volume estimate of 4528mm3 which comes from the sum of the volumes

of the three non-overlapping clusters found in the other vs control (left dmPFC and left

vmPFC) and self vs control (right vmPFC) contrasts. We tentatively suggest that the area

encoding an optimal close-other representation (with strongest connectivity to our caregiving

pathways) would be located mainly in the left vmPFC (which was preferentially activated

in both the other and close-other contrasts with the control condition).

Rabinowicz et al. (1999) report neural densities in two subparts of BA10 (a part of the

vmPFC) for both left and right hemispheres, in a postmortem biopsy study with 11 male

and female control subjects aged 12 to 24 (mean age 16.7). We average these eight results to

give a density of 2380/0.024mm3 (i.e. 99167/mm3). This, along with our volume estimate,

gives a total of 449, 028, 176 neurons in the human mPFC, which is 34.19% of the total in

our regions of interest, corresponding to 11967 neurons in our model.

C.1.5.2 Neuron types

For total number of mPFC neurons in our model 11967, we set 9574 to be excitatory RS

and 2393 inhibitory FS, according to standard neocortical proportions described above in

Section C.1.1.1.

C.1.5.3 Connection probabilities

mPFC excitatory neurons have local projections to mPFC excitatory and inhibitory neurons,

plus long range projections to neocortical regions aMCC and AI and subcortical regions

BLMA⊕ and mPOA.

Numan also considered projections from mPFC to NAc, although the nature of these

projections was left undefined in his model. In the rat study in Papp et al. (2012), it is

claimed that the mPFC does not directly innervate MSN NAc neurons that directly project

to the VP, whereas the BLA does. Instead, it is proposed that the mPFC might innervate

other MSN in the NAc (i.e. ones that do not directly project to the VP), or alternatively

NAc interneurons. Thus, since the nature of the connectivity was undefined in Numan’s

original model, and since the evidence above seems to suggest more direct connectivity along

the BLMA-NAc-VP pathway compared to the mPFC-NAc-VP pathway, we do not consider

direct projections from the mPFC to the NAc in our initial model.

We connect mPFC excitatory neurons to local mPFC excitatory and inhibitory neurons

with probabilities 3.315% and 13.261% respectively; for long-range neocortical targets, we

connect mPFC excitatory neurons to excitatory and inhibitory neurons in the aMCC with

probabilities 7.459% and 3.318% respectively, and to excitatory and inhibitory neurons in the

AI with probabilities 7.460% and 3.316% (all according to standard neocortical connectivity

patterns defined in Section C.1.1.2). Finally, mPFC excitatory neurons are connected with

subcortical targets in the mPOA and BLMA⊕. Pre- and post-synaptic neurons for these
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Figure C.1: Negative-binomial distributions used to model close- and distant-other represen-
tations in the mPFC. The close-other distribution (r = 7, p = 0.0025) is used to connect the
mPFC to the mPOA and BLMA, and to sample mPFC targets from the other-pain network
encoding close-other representations. The distant-other distribution (r = 14, p = 0.0035)
is used to sample mPFC targets from the other-pain network encoding distant-other repre-
sentations.

projections are connected according to a negative-binomial distribution, with parameters

r = 7 (number of successes) and p = 0.0025 (probability of success in a single trial) (Figs.

C.1, C.2, C.3). This is a discrete distribution intended to model a ventral-dorsal gradient

for self-other representations in the mPFC (i.e. close-other representations, located more

ventrally, have strongest connectivity, whilst neurons encoding self and other representations

have sparser connectivity). Neurons are connected in this manner such that the overall

connection probabilities for each group pairing is 10% (we use this default value in the

absence of connectivity data).

Inhibitory mPFC neurons are assumed to project only to local excitatory and inhibitory

mPFC neurons: we use connection probabilities of 12.5% and 2.632% to local excitatory

and inhibitory neurons, respectively.

C.1.6 Medial Preoptic Area

C.1.6.1 Number of neurons

We use as an estimate of the volume of the mPOA volume estimates for the anterior-superior

hypothalamus (which includes the mPOA along with the diagonal band of broca, sexually

dimorphic nucleus of the preoptic area, and the paraventricular nucleus): Makris et al.

(2013) reports left and right anterior-superior hypothalamus volumes in an MRI study of
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Figure C.2: Connectivity between mPFC and positively valent BLMA neurons: mPFC
neurons close to id 0 (encoding self) and 9574 (encoding other) are connected to positive
BLMA neurons with more sparsity than remaining neurons (encoding close-other).

Figure C.3: Connectivity between mPFC and mPOA neurons: mPFC neurons close to id
0 (encoding self) and 9574 (encoding other) are connected to positive BLMA neurons with
more sparsity than remaining neurons (encoding close-other).
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26 men and 18 women (control, average age 40), giving total bilateral volume 57.5mm3

(averaged over hemispheres and genders). We use neural density 13144/mm3, which is an

average of the densities of the four interstitial nuclei of the anterior hypothalamus (INAH1-4)

reported in Byne et al. (2000) (averaged over nuclei and genders). This gives as an estimate

for the total number of biological neurons 755, 780, which corresponds to 0.0575% of the

total neurons in our regions of interest, thus corresponding to 20 neurons in our model.

C.1.6.2 Neuron types

Very little is known about the types of neuron in the human mPOA, and so we rely here

primarily on rodent data. The rodent mPOA contains a number of different types of neuron,

including those expressing GABA, glutamate and galanin. It has been estimated that 50−
95% of all mPOA neurons are GABAergic (Lonstein and De Vries, 2000; Tabarean et al.,

2005), although precise proportions for other neuron types are (to the best of our knowledge)

currently unknown.

Despite the believed predominance of GABAergic neurons throughout the mPOA, we

only consider glutamatergic neurons here for the following reasons. Firstly, glutamatergic

neurons are believed to form the majority of neurons in the central mPOA, an area that is

thought to be particularly important in maternal behaviour (Tsuneoka et al., 2013) (we do

also note, however, that this study reports that only 6% of central mPOA cells activated

during maternal behaviour were glutamatergic whereas 75% were GABAergic, and that

2.5% of all glutamatergic cells in this area were activated whereas 17.5% of GABAergic cells

were). Secondly, Numan has argued that GABAergic mPOA neurons, although found to be

active during maternal behaviour, are crucially uninvolved in the mPOA-VTA-NAc pathway

in our model [p.188](Numan and Insel, 2003). In particular, he argues that GABAergic

mPOA neurons serve primarily to inhibit both incoming inhibitory synapses, and areas

outside of this pathway, during maternal behaviour, and that this pathway instead primarily

involves glutamatergic projections from mPOA to VTA. A recent study found evidence for

GABAergic projections from mPOA to VTA in addition to the glutamatergic projections

described by Numan although, consistent with Numan, it was reported that a majority of

VTA projecting neurons in the mPOA were glutamatergic (36.55%) rather than GABAergic

(18.26%) (Kalló et al., 2015).

Thus, because of the relatively small volume of the mPOA; the unknown overall propor-

tion of glutamatergic neurons; the unknown electrophysiological properties of these excita-

tory mPOA neurons; and because it is believed that mPOA-VTA projections are primarily

glutamatergic during maternal behaviour, we assume that all 20 mPOA neurons are exci-

tatory RS neurons in our model.
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C.1.6.3 Connection probabilities

Evidence suggests that glutamatergic neurons within the mPOA are self-innervate (Kocsis

et al., 2003). Thus, in addition to projections from mPOA to the VTA, we also consider local

mPOA-mPOA projections. Precise connection probabilities are unknown in both cases, and

so we default to 10% for local projections, and 50% for projections to the VTA (which is

required in order to achieve the desired network dynamics, due to the very low relative

number of neurons in the VTA in our model).

C.1.7 Nucleus Accumbens

C.1.7.1 Number of neurons

We use the estimate of 7, 285, 654 for total number of neurons in the human NAc (control)

given in Wegiel et al. (2014), which is based on a postmortem biopsy of 14 individuals. We

scale this value by 0.95, which is the believed proportion of MSN in the rodent NAc (Shi

and Rayport, 1994). This gives a total of 6921371 MSN NAc neurons, which accounts for

0.527034143% of the total number of biological neurons in our regions of interest, corre-

sponding to 184 NAc neurons in our model.

C.1.7.2 Neuron types

As described above, in the rodent NAc, 95% of neurons are believed to be GABAergic

MSN neurons, with the remaining neurons mainly composed of local-circuit GABAergic

and cholinergic interneurons (Shi and Rayport, 1994; Robison and Nestler, 2011). We only

consider the predominant MSN cells in our initial model, which receive dopaminergic inputs

from the VTA along with glutamatergic input from the BLMA (see Fig. 2 in Russo and

Nestler (2013) for a good diagram of major NAc MSN input sources).

C.1.7.3 Connection probabilities

Tecuapetla et al. (2007) examined 106 MSN-MSN cell pairs (all within distance 100µm) in

Wistar rats: they report that 13% of MSN cells received input from nearby MSN cells. For

the BLMA it was found that IN-IN neurons connect with a probability of 26% (within 120

µm), which we scaled to 5% for our model: assuming again denser local connectivity, this

suggests that a connection probability of about half this (2.5%) is roughly reasonable for

MSN-MSN pairs in the NAc. We use a default connection probability of 10% for NAc to

VP.
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C.1.8 Medial Orbitofrontal Cortex

C.1.8.1 Number of neurons

We use as an estimate for the volume of mOFC 5890mm3, which comes from an MRI study

of 34 male and female subjects (control, mean age 37.03) (Lacerda et al., 2004). Our neural

density estimate of 59500/mm3 comes from Rajkowska et al. (1999) (averaged across rostral

and caudal estimates for all layers), which was a postmortem biopsy study of 12 men and

women (control, mean age 43.3). This gives an estimate of 350, 455, 000 for the total number

of neurons in the human mOFC, which is 26.686% of the total number of neurons in our

regions of interest, corresponding to 9340 neurons in the model.

C.1.8.2 Neuron types

Although the OFC does contain agranular and dysgranular cortical sections, medial regions

are exclusively granular (Henssen et al., 2016). For total number of mOFC neurons in our

model 9340, we set 7472 to be excitatory RS and 1868 inhibitory FS, according to standard

neocortical proportions described above in Section C.1.1.1.

C.1.8.3 Connection probabilities

mOFC excitatory neurons have local projections to mOFC excitatory and inhibitory neu-

rons, plus long range projections to the neocortical region AI and subcortical regions

BLMA⊕ and BLMAi. We connect mOFC excitatory neurons to local mOFC excitatory and

inhibitory neurons with probabilities 3.319% and 13.277% respectively; and mOFC excita-

tory neurons project to long-range neocortical targets in AI with probabilities 7.058% (for

excitatory targets) and 3.137% (for inhibitory targets), according to standard neocortical

connectivity patterns defined in Section C.1.1.2. Connection probabilities between mOFC

and BLMA are unknown: we thus connect mOFC excitatory neurons to both BLMA⊕ and

BLMAi neurons with a default probability of 10%.

Inhibitory mOFC neurons are assumed to project only to local excitatory and inhibitory

mOFC neurons: we use connection probabilities of 12.5% and 2.632% to these local excita-

tory and inhibitory neurons, respectively.

C.1.9 Posterior Insular

C.1.9.1 Number of neurons

We use the bilateral PI gray matter volume of 4800mm3 reported in Makris et al. (2006)

(which is based an average across 40 male and female control subjects aged between 23

and 66, with mean age 40, measured by MRI). Our neuron density estimate comes from

BA13 (a part of the PI): Semendeferi et al. (1998) estimated a density of 30351/mm3 in a
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postmortem biopsy of a single 75 year old male subject who did not die of a neurological

disease. This gives a total estimate of 145, 684, 800 neurons in the bilateral human PI which,

at 11.093% of the total, results in 3883 neurons in our model.

C.1.9.2 Neuron types

In contrast to the agranular AI, the PI contains granular and dysgranular sections of cortex

(Kurth et al., 2010), and is typically considered part of the neocortex. For total number

of PI neurons in our model 3883, we set 3106 to be excitatory RS and 777 inhibitory FS,

according to standard neocortical proportions described above in Section C.1.1.1.

C.1.9.3 Connection probabilities

In addition to recurrent PI connections, excitatory PI neurons project to AI and aMCC

(which are both neocortical targets, see Section C.1.1.2). Posterior parts of the human

Insular do have structural connectivity with the ACC region, particularly to posterior mid-

cingulate cortex (which is adjacent to aMCC) (Ghaziri et al., 2015). In our initial model, for

simplicity, we only consider anterior midcingulate regions of the ACC and assume structural

connectivity (with a more fully realised and compartmentalised model of the ACC suggested

as work for future models).

In our model, PI excitatory neurons project locally to PI excitatory and inhibitory

neurons with probabilities 3.289% and 13.149%, respectively. For the distant neocortical

projections, we connect PI excitatory neurons to excitatory and inhibitory AI excitatory

neurons with probability 2.439% and to inhibitory neurons with probability 1.084%; and to

aMCC excitatory/inhibitory neurons with probabilities 2.438% and 1.085.

Inhibitory PI neurons are assumed to project only to local excitatory and inhibitory

PI neurons: we use connection probabilities of 12.5% and 2.630% to local excitatory and

inhibitory neurons, respectively.

C.1.10 Ventral Tegmental Area

C.1.10.1 Number of neurons

The total number of DA neurons in the human brain is estimated to be 450, 000 (German

et al., 1983), of which 15% are thought to be in the VTA (Düzel et al., 2009), giving 67, 500

VTA DA neurons in total. Since 55% of all VTA neurons are thought to be DA neurons

(Margolis et al., 2006), this gives a total of 122, 727 neurons in the human VTA, which is

0.00829% of all neurons in our regions of interest, resulting in 3 neurons in our model’s

VTA.
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C.1.10.2 Neuron types

The human VTA consists of approximately 55% DA neurons (Margolis et al., 2006), with the

remaining neurons mainly GABAergic (approximately 35% in the rat) and glutamatergic

(approximately 3% in the rat) (Nair-Roberts et al., 2008). Numan identified DA projections

from VTA to NAc as crucial in driving caregiving behaviour. It is known that GABAergic

neurons in the VTA project to cholinergic neurons in the NAc, and that projections from

MSN in the NAc target VTA GABAergic interneurons which regulate VTA DA neuron

activity (Creed et al., 2014). However, for simplicity, and given the relatively small number

of neurons in the region, we only consider DA neurons in the VTA in our initial model.

Above we estimated 67, 500 total DA neurons in the human VTA, which is 0.005% of

all neurons in our regions of interest. Using only this estimate, then for 35, 000 total model

neurons, we would have 2 VTA DA neurons in our model: we instead assume that all 3

VTA model neurons are DA neurons, in order to (slightly) ease our simulatory efforts. DA

neurons in the VTA are known to burst in response to stimuli predicting primary reward

(Overton and Clark, 1997): we use intrinsically bursting neurons as a very basic model of

this.

C.1.10.3 Connection probabilities

The VTA is believed to contain DA receptors whose activation inhibits the firing activity

of dopamine neurons, thus carrying out an auto-inhibitory function (Al-Hasani et al., 2011;

Olijslagers et al., 2006). However, local connection density is largely unknown, and we thus

only consider long-range projections from VTA DA neurons to NAc MSN neurons.

In Bolam and Pissadaki (2012) it is estimated that, in the rat, each VTA DA neuron

synapses onto between 12351 and 29644 MSN neurons in the ventral striatum. The total

number of MSN cells in the striatum is given as 2, 780, 000, and the ventral striatum is taken

to be one fifth of the volume of the total striatum. Based on this, we can crudely estimate

that 2780000/5 = 556000 MSN cells are in the ventral striatum, which means that each DA

VTA neuron synapses onto between 2.22% and 5.33% of ventral striatal MSN neurons.

McClure et al. (2004) reports a control (“unhandled rat”) NAc volume of 6mm3. If

we re-perform the calculations in Bolam and Pissadaki (2012) with this more accurate

volume of 6mm3, we get the volume of NAc per VTA DA neuron of 6/20000 = 0.0003mm3.

Then, the ratio of NAc versus dorsal striatum volume per DA neuron is 0.0003/0.001658 =

0.180940893, and the number of synapses formed by one DA neuron in the NAc is (0.181 ∗
102, 165) = 18492to(0.181 ∗ 245, 103) = 44364. The total number of MSN neurons in the

striatum (one hemisphere) is given as 2, 780, 000, and the total volume of striatum is given as

19.9. Thus, we crudely estimate number of MSN cells in NAc as (2 ∗ 2780000) ∗ (6/19.9) =

1676382. This means that each VTA DA neuron synapses onto approximately (18492 ∗
100/1676382)% = 1.1% to (44364 ∗ 100/1676382)% = 2.6% of NAc MSN neurons in the rat
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brain. In our model, we take the midpoint of this estimate, which is 1.85%.

C.1.11 Ventral Pallidum

C.1.11.1 Number of neurons

Pakkenberg (1990) estimate 350, 000 total neurons in the human VP, based on a postmortem

control sample of 10 men and women aged 41 to 86 (mean age 60.4). This is 0.0267% of the

total number of neurons in our regions of interest, corresponding to 9 neurons in our model.

C.1.11.2 Neuron types

In the rat VP, it is believed that approximately 80% of neurons are GABAergic, and smaller

populations of cholinergic (approximately 20%) and glutamatergic neurons (Root et al.,

2015; Kupchik and Kalivas, 2013). NAc-mediated GABAergic VP projections to the mes-

encephalic locomotor region have long been proposed to be involved in the translation of

limbic motivation signals into motor output (Jordan, 1998; Mogenson, 1987; Brudzynski

et al., 1993). Both increasing and decreasing levels of activation in the VP have been asso-

ciated with goal-directed behaviour (Numan, 2014, p.25-26) such that there are likely to be

two distinct pathways, with inhibition of NAc shell acting to disinhibit (ventromedial) VP

in the first, and stimulation of NAc core inhibiting (dorsolateral) VP in the second (Root,

2013). Since we are concerned primarily with the NAc shell-VP pathway here, we consider

an increased firing rate to correspond to increased motivation for caregiving behaviour. We

only consider GABAergic neurons, which constitute approximately 80% of all VP neurons

(Gritti et al., 1993).

C.1.11.3 Connection probabilities

As detailed above, increased activity in the (ventromedial) VP has been shown to correlate

with goal-directed behaviour. Another perspective for VP activity is put forward by the

experiments on primates in Tachibana and Hikosaka (2012), who found that VP neurons

encoded the expected value associated with upcoming actions, such that the VP provides

expected reward signals that facilitate or inhibit motor output. In our model, we can thus

consider activity in the VP to represent an increase in expected reward associated with

the initiation of caregiving behaviour (which in turn leads to an increase in caregiving

behavioural output which drives application of the bonding protocols), without explicitly

considering the nature of the onward projections that facilitate this behavioural output in

any further detail. We additionally do not consider here projections back to input regions

such as the VTA and NAc (Smith et al., 2009).
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Acronyms

AAI Adult Attachment Interview. 12, 13, 16, 17, 74, 75

ACC Anterior Cingulate Cortex. 18, 23, 25, 79, 96, 97, 107, 115, 116, 122, 126, 190, 199

ACE Affective Communication Errors. 11, 12, 16, 57, 58, 61–71, 129, 161

AI Anterior Insular. 18, 23, 79, 96–100, 105, 106, 108–111, 115, 118, 120–124, 126, 127,

186–190, 192, 193, 198, 199

AMBIANCE Atypical Maternal Behaviour Instrument for Assessment and Classification.

11, 12, 57, 58, 70, 71, 129, 161

aMCC Anterior Midcingulate Cortex. 96–100, 106–111, 115, 120–123, 126, 186–190, 193,

199

ANS Autonomic Nervous System. 18, 20, 22

BA Brodmann Area. 98, 105–107, 189, 190, 193, 198

BLA Basolateral Amygdala Complex, consisting of the Lateral, Basolateral (Basal) and

Basomedial (Accessory Basal) nuclei. 22, 81–85, 87–89, 187, 191, 193

BLMA Basolateral (Basal) and Basomedial (Accessory Basal) nuclei of the Amygdala.

96–98, 103, 104, 112, 117, 118, 123, 127, 191–193, 197, 198

BLMA	 Negatively valenced neurons of the Basolateral and Basomedial nuclei of the

Amygdala. 103, 108, 109, 112, 117, 119–124, 127, 187–189, 191, 192

BLMA⊕ Positively valenced neurons of the Basolateral and Basomedial nuclei of the

Amygdala. 102, 103, 106, 108–110, 112, 117, 120, 121, 123, 124, 127, 191–193, 198

BLMAi Inhibitory interneurons of the Basolateral and Basomedial nuclei of the Amygdala.

102, 103, 112, 117, 121, 123, 127, 191, 192, 198

BPD Borderline Personality Disorder. 16, 17, 75, 116

238



CD-k k-step Contrastive Divergence. 178, 179

CeA Central Nucleus of the Amygdala. 22, 24, 82–84, 87–89, 91, 92, 114, 115, 127

CN Caudate Nucleus. 75, 78, 79

CRH Corticotropin-releasing Hormone. 19, 22, 81, 91, 114, 115

CS Conditioned Stimulus. 22, 82, 85, 87–89

DA Dopamine. 23, 25, 72, 75, 77, 79, 84–86, 89, 91, 92, 98, 104, 105, 114, 117, 127, 128,

199, 200

DBN Deep Belief Network. 81–84, 88, 89, 174, 182, 183

dmH Dorsomedial Hypothalamus. 81, 83, 84, 87, 89, 91, 114

dmPFC Dorsomedial Prefrontal Cortex. 96, 106, 192, 193

EEG Electroencephalography. 20, 21

fMRI Functional Magnetic Resonance Imaging. 20, 21, 74, 75, 78, 98, 130

FS Fast Spiking. 101, 102, 104, 126, 186, 189, 190, 193, 198, 199

GABA γ-Aminobutyric acid. 104, 105, 186, 191, 196, 197, 200, 201

IB Intrinsically Bursting Neuron. 101, 102, 104, 126

ISS Infant Strange Situation. 6–9, 11–13, 16, 20, 21, 26, 28, 31

ITC Intercalated Cells of the Amygdala. 24, 83, 84, 87–89, 91, 92, 115, 127

LC Locus Coeruleus. 18, 22, 81, 83, 114

LH Left Hemisphere. 20, 21, 23, 73, 77

MFR Mean Firing Rate. 111, 112, 122–124

mOFC Medial Orbitofrontal Cortex. 24, 115, 116, 118–124, 127, 186, 198

mPFC Medial Prefrontal Cortex. 19, 23, 79, 96–102, 106, 108–112, 117, 120–123, 126, 127,

186–190, 192–194

mPOA Medial Preoptic Area. 23, 97, 98, 102, 104–106, 108–110, 112, 117, 120, 124, 126,

127, 192–194, 196, 197
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MSN Medium Spiny Neuron. 101, 104, 193, 197, 200

NAc Nucleus Accumbens. 78, 79, 85, 86, 97, 98, 104, 109, 110, 112, 115–117, 120, 124,

126–128, 192, 193, 196, 197, 200, 201

NR Norepinephrine. 18, 22, 83

OFC Orbitofrontal Cortex. 18, 19, 22–25, 73–75, 79, 81–85, 87, 89, 91, 92, 94, 98, 99, 114,

115, 117, 118, 121, 198

OXT Oxytocin. 23, 72, 75–77, 79–81, 84, 86, 89, 91, 92, 114, 115, 118, 127, 128

PCC Posterior Cingulate Cortex. 99, 101

PI Posterior Insular. 98–100, 105, 106, 108–111, 120–122, 126, 186–190, 198, 199

PSNS Parasympathetic Nervous System. 18, 19

PVN Paraventricular Nucleus of the Hypothalamus. 79, 86, 114

PVNm Magnocellular part of the Paraventricular Nucleus of the Hypothalamus. 23, 81,

84, 89, 114

PVNp Parvocellular part of the Paraventricular Nucleus of the Hypothalamus. 22, 81, 83,

84, 87, 89, 91, 114, 127

RBM Restricted Boltzmann Machine. 81, 174, 178, 179, 182, 183

RH Right Hemisphere. 1, 18, 20, 21, 23, 73, 74, 77, 114

RS Regular Spiking. 101, 104, 126, 186, 189, 190, 193, 196, 198, 199

SNc Substantia Nigra pars Compacta. 37, 75, 85

SNS Sympathetic Nervous System. 18, 19, 22

STS Superior Temporal Sulcus. 99, 126

UR Unconditioned Response. 82, 87

US Unconditioned Stimulus. 22, 82, 87–89

VA Vasopressin. 81, 92

vmPFC Ventromedial Prefrontal Cortex. 24, 84, 85, 87–89, 91, 92, 94, 98, 106, 115, 116,

121, 127, 192, 193
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VP Ventral Pallidum. 97, 98, 104, 109, 110, 112, 117, 120, 124, 126–128, 192, 193, 197, 201

VTA Ventral Tegmental Area. 25, 37, 75, 78, 79, 84–86, 97, 98, 104, 105, 109, 110, 112,

117, 120, 124, 126, 127, 192, 196, 197, 199, 200
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