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The ability to learn tasks in a sequential fashion is crucial to the de-
velopment of artificial intelligence. Until now neural networks have
not been capable of this and it has been widely thought that catas-
trophic forgetting is an inevitable feature of connectionist models.
We show that it is possible to overcome this limitation and train net-
works that can maintain expertise on tasks which they have not ex-
perienced for a long time. Our approach remembers old tasks by se-
lectively slowing down learning on the weights important for those
tasks. We demonstrate our approach is scalable and effective by
solving a set of classification tasks based on the MNIST hand written
digit dataset and by learning several Atari 2600 games sequentially.

Synaptic consolidation | artificial neural networks | continual learning |
deep learning | artificial intelligence | catastrophic forgetting | stability
plasticity | forgetting.

Achieving artificial general intelligence requires that agents
are able to learn and remember many different tasks

[1]. This is particularly difficult in real-world settings: the
sequence of tasks may not be explicitly labelled, tasks may
switch unpredictably, and any individual task may not recur
for long time intervals. Critically, therefore, intelligent agents
must demonstrate a capacity for continual learning: that is,
the ability to learn consecutive tasks without forgetting how
to perform previously trained tasks.

Continual learning poses particular challenges for artifi-
cial neural networks due to the tendency for knowledge of
previously learnt task(s) (e.g. task A) to be abruptly lost as
information relevant to the current task (e.g. task B) is incorpo-
rated. This phenomenon, termed catastrophic forgetting [2–5],
occurs specifically when the network is trained sequentially
on multiple tasks because the weights in the network that are
important for task A are changed to meet the objectives of
task B. Whilst recent advances in machine learning and in
particular deep neural networks have resulted in impressive
gains in performance across a variety of domains (e.g. [6, 7]),
little progress has been made in achieving continual learning.
Current approaches have typically ensured that data from all
tasks are simultaneously available during training. By inter-
leaving data from multiple tasks during learning, forgetting
does not occur because the weights of the network can be
jointly optimized for performance on all tasks. In this regime—
often referred to as the multitask learning paradigm—deep
learning techniques have been used to train single agents that
can successfully play multiple Atari games [8, 9]. If tasks are
presented sequentially, multitask learning can only be used
if the data are recorded by an episodic memory system and
replayed to the network during training. This approach (of-
ten called system-level consolidation [4]), is impractical for
learning large numbers of tasks, as in our setting it would

require the amount of memories being stored and replayed to
be proportional to the number of tasks. The lack of algorithms
to support continual learning thus remains a key barrier to
the development of artificial general intelligence.

In marked contrast to artificial neural networks, humans
and other animals appear to be able to learn in a continual fash-
ion [10]. Recent evidence suggests that the mammalian brain
may avoid catastrophic forgetting by protecting previously-
acquired knowledge in neocortical circuits [10–13]. When a
mouse acquires a new skill, a proportion of excitatory synapses
are strengthened; this manifests as an increase in the volume
of individual dendritic spines of neurons [12]. Critically, these
enlarged dendritic spines persist despite the subsequent learn-
ing of other tasks, accounting for retention of performance
several months later [12]. When these spines are selectively
“erased”, the corresponding skill is forgotten [10, 11]. This
provides causal evidence that neural mechanisms supporting
the protection of these strengthened synapses are critical to
retention of task performance. These experimental findings—
together with neurobiological models such as the cascade model
[14, 15]—suggest that continual learning in the neocortex relies
on task-specific synaptic consolidation, whereby knowledge is
durably encoded by rendering a proportion of synapses less
plastic and therefore stable over long timescales.

In this work, we demonstrate that task-specific synaptic
consolidation offers a novel solution to the continual learning
problem for artificial intelligence. We develop an algorithm
analogous to synaptic consolidation for artificial neural net-
works, which we refer to as elastic weight consolidation (EWC
for short). This algorithm slows down learning on certain
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Fig. 1. elastic weight consolidation (EWC) ensures task A is remembered whilst
training on task B. Training trajectories are illustrated in a schematic parameter space,
with parameter regions leading to good performance on task A (gray) and on task B
(cream). After learning the first task, the parameters are at θ∗

A. If we take gradient
steps according to task B alone (blue arrow), we will minimize the loss of task B but
destroy what we have learnt for task A. On the other hand, if we constrain each weight
with the same coefficient (green arrow) the restriction imposed is too severe and we
can only remember task A at the expense of not learning task B. EWC, conversely,
finds a solution for task B without incurring a significant loss on task A (red arrow) by
explicitly computing how important weights are for task A.

weights based on how important they are to previously seen
tasks. We show how EWC can be used in supervised learning
and reinforcement learning problems to train several tasks
sequentially without forgetting older ones, in marked contrast
to previous deep-learning techniques.

Results

Elastic weight consolidation. In brains, synaptic consolidation
might enable continual learning by reducing the plasticity of
synapses that are vital to previously learned tasks. We im-
plement an algorithm that performs a similar operation in
artificial neural networks by constraining important param-
eters to stay close to their old values. In this section, we
explain why we expect to find a solution to a new task in
the neighbourhood of an older one, how we implement the
constraint, and finally how we determine which parameters
are important.

A deep neural network consists of multiple layers of linear
projection followed by element-wise non-linearities. Learning
a task consists of adjusting the set of weights and biases θ
of the linear projections, to optimize performance. Many
configurations of θ will result in the same performance [16,
17]; this is over-parameterization makes it likely that there
is a solution for task B, θ∗B , that is close to the previously
found solution for task A, θ∗A. While learning task B, EWC
therefore protects the performance in task A by constraining
the parameters to stay in a region of low error for task A
centered around θ∗A, as shown schematically in Figure 1. This
constraint is implemented as a quadratic penalty, and can
therefore be imagined as a spring anchoring the parameters
to the previous solution, hence the name elastic. Importantly,
the stiffness of this spring should not be the same for all
parameters; rather, it should be greater for parameters that
most affect performance in task A.

In order to justify this choice of constraint and to define
which weights are most important for a task, it is useful to
consider neural network training from a probabilistic perspec-
tive. From this point of view, optimizing the parameters is
tantamount to finding their most probable values given some

data D. We can compute this conditional probability p(θ|D)
from the prior probability of the parameters p(θ) and the
probability of the data p(D|θ) by using Bayes’ rule:

log p(θ|D) = log p(D|θ) + log p(θ)− log p(D) [1]

Note that the log probability of the data given the parameters
log p(D|θ) is simply the negative of the loss function for the
problem at hand −L(θ). Assume that the data is split into
two independent parts, one defining task A (DA) and the other
task B (DB). Then, we can re-arrange equation 1:

log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB) [2]

Note that the left hand side is still describing the posterior
probability of the parameters given the entire dataset, while
the right hand side only depends on the loss function for
task B log p(DB |θ). All the information about task A must
therefore have been absorbed into the posterior distribution
p(θ|DA). This posterior probability must contain information
about which parameters were important to task A and is
therefore the key to implementing EWC. The true posterior
probability is intractable, so, following the work on the Laplace
approximation by Mackay [18], we approximate the posterior
as a Gaussian distribution with mean given by the parameters
θ∗A and a diagonal precision given by the diagonal of the Fisher
information matrix F . F has three key properties [19]: (a)
it is equivalent to the second derivative of the loss near a
minimum, (b) it can be computed from first-order derivatives
alone and is thus easy to calculate even for large models, and
(c) it is guaranteed to be positive semi-definite. Note that this
approach is similar to expectation propagation where each
subtask is seen as a factor of the posterior [20]. Given this
approximation, the function L that we minimize in EWC is:

L(θ) = LB(θ) +
∑

i

λ

2Fi(θi − θ∗A,i)2 [3]

where LB(θ) is the loss for task B only, λ sets how important
the old task is compared to the new one and i labels each
parameter.

When moving to a third task, task C, EWC will try to
keep the network parameters close to the learned parameters
of both task A and B. This can be enforced either with two
separate penalties, or as one by noting that the sum of two
quadratic penalties is itself a quadratic penalty.

EWC extends memory lifetime for random patterns. As an ini-
tial demonstration, we train a linear network to associate
random (i.e. uncorrelated) binary patterns to binary out-
comes. Whilst this problem differs in important ways from
more realistic settings that we examine later, this scenario
admits analytical solutions and thus provides insights into key
differences between EWC and plain gradient descent. In this
case, the diagonal of the total Fisher information matrix is
proportional to the number of patterns observed, thus in the
case of EWC the learning rate lowers as more patterns are
observed. Following [14], we define a memory as retained if its
signal-to-noise ratio (SNR) exceeds a certain threshold. The
top panel of figure 2 shows the SNR obtained using gradient
descent (blue lines) and EWC (red lines) for the first pattern
observed. At first, the SNR in the two cases is very similar,
following a power-law decay with a slope of −0.5. As the
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Fig. 2. Log-log plot of the signal-to-noise ratio for recalling the first pattern after
observing t random patterns. If no penalty is applied (blue), the signal-to-noise ratio
decays as (n/t)0.5 only when t is smaller than the number of synapses n = 1000,
then decays exponentially. When EWC is applied (red), the decay takes a power-
law form for all times. The dashed and solid lines shows the analytic solutions
derived in the S.I. The fraction of memories retained (bottom panel) is defined as the
fraction of patterns whose SNR ratio exceeds 1. EWC results in a higher fraction
of memories being retained when the network is at capacity (t ≈ n). After network
capacity is exceeded (right hand side) EWC performs worse than gradient descent
(see discussion).

number of patterns observed approaches the capacity of the
network, the SNR for gradient descent starts decaying expo-
nentially, whereas EWC maintains a power-law decay. The
exponential decay observed with gradient descent is due to new
patterns interfering with old ones; EWC protects from such
interference and increases the fraction of memories retained
(bottom panel). In the next sections we will show that in
more realistic cases, where input patterns have more complex
statistics, interference occurs more easily with consequently
more striking benefits for EWC over gradient descent.

EWC allows continual learning in a supervised learning con-
text. We next addressed the problem of whether elastic weight
consolidation could allow deep neural networks to learn a set
of more complex tasks without catastrophic forgetting. In par-
ticular, we trained a fully connected multilayer neural network
on several supervised learning tasks in sequence. Within each
task, we trained the neural network in the traditional way,
namely by shuffling the data and processing it in small batches.
After a fixed amount of training on each task, however, we
allowed no further training on that task’s dataset.

We constructed the set of tasks from the problem of classify-
ing hand written digits from the MNIST [21] dataset, according
to a scheme previously used in the continual learning liter-
ature [22, 23]. For each task, we generated a fixed, random
permutation by which the input pixels of all images would be
shuffled. Each task was thus of equal difficulty to each other,
but would require a different solution.

Training on this sequence of tasks with plain stochastic gra-
dient descent (SGD) incurs catastrophic forgetting, as demon-
strated in Figure 3A. The blue curves show performance on
the testing sets of two different tasks. At the point at which
the training regime switches from training on the first task (A)
to training on the second (B), the performance for task B falls
rapidly, while for task A it climbs steeply. The forgetting of
task A compounds further with more training time, and the ad-
dition of subsequent tasks. This problem cannot be countered
by regularizing the network with a fixed quadratic constraint

for each weight (green curves, L2 regularization): here, the
performance in task A degrades much less severely, but task
B cannot be learned properly as the constraint protects all
weights equally, leaving little spare capacity for learning on B.
However, when we use EWC, and thus take into account how
important each weight is to task A, the network can learn task
B well without forgetting task A (red curves). This is exactly
the behaviour described diagrammatically in Figure 1.

Previous attempts to solve the continual learning problem
for deep neural networks have relied upon careful choice of
network hyperparameters, together with other standard regu-
larization methods, in order to mitigate catastrophic forgetting.
However, on this task, they have only achieved reasonable re-
sults on up to two random permutations [22, 23]. Using a
similar cross-validated hyperparameter search as [23], we com-
pared traditional dropout regularization to EWC. We find that
stochastic gradient descent with dropout regularization alone
is limited, and that it does not scale to more tasks (Figure 3B).
In contrast, EWC allows a large number of tasks to be learned
in sequence, with only modest growth in the error rates.

Given that EWC allows the network to effectively squeeze
in more functionality into a network with fixed capacity, we
might ask whether it allocates completely separate parts of
the network for each task, or whether capacity is used in a
more efficient fashion by sharing representation. To assess
this, we determined whether each task depends on the same
sets of weights, by measuring the overlap between pairs of
tasks’ respective Fisher information matrices (see S.I.). A
small overlap means that the two tasks depend on different
sets of weights (i.e. EWC subdivides the network’s weights
for different tasks); a large overlap indicates that weights are
being used for both the two tasks (i.e. EWC enables sharing
of representations). Figure 3C shows the overlap as a function
of depth. As a simple control, when a network is trained on
two tasks which are very similar to each other (two versions
of MNIST where only a few pixels are permutated), the tasks
depend on similar sets of weights throughout the whole network
(grey curve). When then the two tasks are more dissimilar from
each other, the network begins to allocate separate weights
for the two tasks (black line). Nevertheless, even for the large
permutations, the layers of the network closer to the output
are indeed being reused for both tasks. This reflects the fact
that the permutations make the input domain very different,
but the output domain (i.e. the class labels) is shared.

EWC allows continual learning in a reinforcement learning
context. We next tested whether elastic weight consolidation
could support continual learning in the far more demanding re-
inforcement learning (RL) domain. In RL, agents dynamically
interact with the environment in order to develop a policy that
maximizes cumulative future reward. We asked whether Deep
Q Networks (DQNs)—an architecture that has achieved im-
pressive successes in such challenging RL settings [24]—could
be harnessed with EWC to successfully support continual
learning in the classic Atari 2600 task set [25]. Specifically,
each experiment consisted of ten games chosen randomly from
those that are played at human level or above by DQN. At
training time, the agent was exposed to experiences from each
game for extended periods of time. The order of presentation
of the games was randomized and allowed for returning to
the same games several times. At regular intervals we would
also test the agent’s score on each of the ten games, without
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Fig. 3. Results on the permuted MNIST task. A: Training curves for three random permutations A, B and C using EWC(red), L2 regularization (green) and plain SGD(blue).
Note that only EWC is capable of mantaining a high performance on old tasks, while retaining the ability to learn new tasks. B: Average performance across all tasks using
EWC (red) or SGD with dropout regularization (blue). The dashed line shows the performance on a single task only. C: Similarity between the Fisher information matrices as a
function of network depth for two different amounts of permutation. Either a small square of 8x8 pixels in the middle of the image is permuted (grey) or a large square of 26x26
pixels is permuted (black). Note how the more different the tasks are, the smaller the overlap in Fisher information matrices in early layers.

allowing the agent to train on them (Figure 4A).
Notably, previous reinforcement learning approaches to con-

tinual learning have either relied on either adding capacity to
the network [26, 27] or on learning each task in separate net-
works, which are then used to train a single network that can
play all games[8, 9]. In contrast, the EWC approach presented
here makes use of a single network with fixed resources (i.e.
network capacity) and has minimal computational overhead.

In addition to using EWC to protect previously-acquired
knowledge, we used the RL domain to address a broader set of
requirements that are needed for successful continual learning
systems: in particular, higher-level mechanisms are needed to
infer which task is currently being performed, detect and incor-
porate novel tasks as they are encountered, and allow for rapid
and flexible switching between tasks [28]. In the primate brain,
the prefrontal cortex is widely viewed as supporting these ca-
pabilities by sustaining neural representations of task context
that exert top-down gating influences on sensory processing,
working memory, and action selection [29–32].

Inspired by this evidence, we augmented the DQN agents
with extra functionality to handle switching task contexts.
Knowledge of which task is being performed is required for
the EWC algorithm as it informs which quadratic constraints
are currently active, and also which quadratic constraint to
update when the task context changes. In order to infer the
task context, we implemented an online clustering algorithm
that is trained without supervision and is based on the Forget
Me Not (FMN) process [33](see Methods for more details). We
also allowed the DQN agents to maintain separate short-term
memory buffers for each inferred task: these allow action values
for each task to be learned off-policy using an experience replay
mechanism [24]. As such, the overall system has memory
on two time-scales: over short time-scales, the experience
replay mechanism allows learning in DQN to be based on the
interleaved and uncorrelated experiences [24]. At longer time
scales, know-how across tasks is consolidated by using EWC.
Finally, we allowed a small number of network parameters to
be game-specific. In particular, we allowed each layer of the
network to have biases and per element multiplicative gains
that were specific to each game.

We compare the performance of agents which use EWC (red)
with ones that do not (blue) over sets of ten games in Figure 4.
We measure the performance as the total human-normalized
score across all ten games, this measure has a maximum of 10

(at least at human level on all games) and 0 means the agent
is as good as a random agent. If we rely on plain gradient
descent methods as in [24], the agent never learns to play more
than one game and the harm inflicted by forgetting the old
games means that the total human-normalized score remains
below one. By using EWC, however, the agents do indeed
learn to play multiple games. As a control, we also considered
the benefit to the agent if we explicitly provided the agent with
the true task label (Figure 4B, brown), rather than relying
on the learned task recognition through the FMN algorithm
(red). The improvement here was only modest.

While augmenting the DQN agent with EWC allows it to
learn many games in sequence without suffering from catas-
trophic forgetting, it does not reach the score that would have
been obtained by training ten separate DQNs (see Figure
S.I. 1). One possible reason for this is that we consolidated
weights for each game based on a tractable approximation of
parameter uncertainty, the Fisher Information. We therefore
sought to test the quality of our estimates empirically. To do
so, we trained an agent on a single game, and measured how
perturbing the network parameters affected the agent’s score.
Regardless of which game the agent was trained on, we ob-
served the same patterns, shown in Figure 4C. First, the agent
was always more robust to parameter perturbations shaped by
the inverse of the diagonal of the Fisher Information (blue), as
opposed to uniform perturbations (black). This validates that
the diagonal of the Fisher is a good estimate of how important
a parameter is. Within our approximation, perturbing in the
nullspace should have no effect on performance. Empirically,
however, we observe that perturbing in this space (orange) has
the same effect as perturbing in the inverse Fisher space. This
suggests that we are over-confident about certain parameters
being unimportant: it is therefore likely that the chief limita-
tion of the current implementation is that it under-estimates
parameter uncertainty.

Discussion

We present an algorithm, elastic weight consolidation, that
allows knowledge of previous tasks to be protected during
new learning, thereby avoiding catastrophic forgetting. It
does so by selectively decreasing the plasticity of weights,
and thus has certain parallels with neurobiological models
of synaptic consolidation [14, 15]. We implement EWC as
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Fig. 4. Results on Atari task. A: Schedule of games. Black bars indicate the sequential training periods (segments) for each game. After each training segment, performance
on all games is measured. The EWC constraint is only activated to protect an agent’s performance on each game once the agent has experienced 20 million frames in that
game. B: Total human averaged scores for each method across all games. The score is averaged across random seeds and over the choice of which ten games are played (see
S.I.). The human-normalized score for each game is clipped to 1. Red curve denotes the network which infers the task labels using the Forget Me Not algorithm; brown curve is
the network provided with the task labels. The EWC and SGD curves start diverging when games start being played again that have been protected by EWC. C: Sensitivity of a
single-game DQN, trained on Breakout, to noise added to its weights. The performance on Breakout is shown as a function of the magnitude (standard deviation) of the weight
perturbation. The weight perturbation is drawn from a zero mean Gaussian with covariance that is either uniform (black; i.e. targets all weights equally), the inverse Fisher
((F + λI)−1; blue; i.e. mimicking weight changes allowed by EWC), or uniform within the nullspace of the Fisher (orange; i.e. targets weights that the Fisher estimates that
the network output is entirely invariant to). To evaluate the score, we ran the agent for ten full game episodes, drawing a new random weight perturbation for every timestep.

a soft, quadratic constraint whereby each weight is pulled
back towards its old values by an amount proportional to its
importance for performance on previously-learnt tasks. In
analytically tractable settings, we demonstrate that EWC can
protect network weights from interference and thus increase
the fraction of memories retained over plain gradient descent.
To the extent that tasks share structure, networks trained
with EWC reuse shared components of the network. We
further show that EWC can be effectively combined with deep
neural networks to support continual learning in challenging
reinforcement learning scenarios, such as Atari 2600 games.

The EWC algorithm can be grounded in Bayesian ap-
proaches to learning. Formally, when there is a new task
to be learnt, the network parameters are tempered by a prior
which is the posterior distribution on the parameters given
data from previous task(s). This enables fast learning rates on
parameters that are poorly constrained by the previous tasks,
and slow learning rates for those which are crucial.

There has been previous work [34, 35] using a quadratic
penalty to approximate old parts of the dataset, but these ap-
plications have been limited to small models. Specifically, [34]
used random inputs to compute a quadratic approximation
to the energy surface. Their approach is slow, as it requires
re-computing the curvature at each sample. The ELLA al-
gorithm described in [35] requires computing and inverting
matrices with a dimensionality equal to the number of param-
eters being optimized, therefore it has been mainly applied
to linear and logistic regressions. In contrast, EWC has a
run time which is linear in both the number of parameters
and the number of training examples. We could only achieve
this low computational complexity by using a crude Laplace
approximation to the true the posterior distribution of the
parameters. Despite its low computational cost and empirical
successes—even in the setting of challenging RL domains—our
use of a point estimate of the posterior’s variance (as in a
Laplace approximation) does constitute a significant weak-
ness (see Fig 4C). Our initial explorations suggest that one
might improve on this local estimate by using Bayesian neural
networks [36].

While this paper has primarily focused on building an al-
gorithm inspired by neurobiological observations and theories
[14, 15], it is also instructive to consider whether the algo-
rithm’s successes can feed back into our understanding of the
brain. In particular, we see considerable parallels between
EWC and two computational theories of synaptic plasticity.

Cascade models of synaptic plasticity [14, 15] construct
dynamical models of synaptic states in order to understand
the trade-off between plasticity and memory retention. Cas-
cade models have important differences from our approach. In
particular they aim to extended memory lifetimes for systems
at steady state (i.e. the limit of observing an infinite number
of stimuli). As such they allow for synapses to become more
or less plastic and model the process of both retaining and
forgetting. In contrast, we tackle the simpler problem of pro-
tecting the network from interference when starting from an
empty network. In fact in EWC weights can only become more
constrained (i.e. less plastic) with time and thus we can only
model memory retention rather than forgetting. Therefore
when the number of random patterns observed exceeds the ca-
pacity of the network and steady-state is reached, EWC starts
to perform even worse than plain gradient descent. Further,
the EWC model – like standard Hopfield networks [37] – is
prone to the phenomenon of blackout catastrophe when net-
work capacity is saturated resulting in the inability to retrieve
any previous memories or store new experiences. Notably,
we did not observe these limitations under the more realistic
conditions for which EWC was designed – likely because the
network was operating well under capacity in these regimes.

Despite these key differences, EWC and cascade share the
basic algorithmic feature that memory lifetimes are extended
by modulating the plasticity of synapses. While prior work
on cascade models [14, 15] has tied the metaplastic state to
patterns of potentiation and depression events—i.e., synaptic-
level measures—our approach focuses on the computational
principles that determine the degree to which each synapses
might be consolidated. It may be possible to distinguish
these models experimentally, since the plasticity of a synapse
depends on the rate of potentiation events in the cascade
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model, but on task relevance in EWC.
In this respect, the perspective we offer here aligns with a

recent proposal that each synapse not only stores its current
weight, but also an implicit representation of its uncertainty
about that weight [38]. This idea is grounded in observations
that post-synaptic potentials are highly variable in amplitude
(suggestive of sampling from the weight posterior during com-
putation), and that those synapses which are more variable
are more amenable to potentiation or depression (suggestive of
updating the weight posterior). While we do not explore the
computational benefits of sampling from a posterior here, our
work aligns with the notion that weight uncertainty should
inform learning rates. We take this one step further, to em-
phasize that consolidating the high precision weights enables
continual learning over long time scales. With EWC, three
values have to be stored for each synapse: the weight itself,
its variance and its mean. Interestingly, synapses in the brain
also carry more than one piece of information. For example,
the state of the short-term plasticity could carry information
on the variance [38, 39]. The weight for the early phase of plas-
ticity [40] could encode the current synaptic strength, whereas
the weight associated with the late-phase of plasticity or the
consolidated phase could encode the mean weight.

The ability to learn tasks in succession without forgetting
is a core component of biological and artificial intelligence. In
this work we show that an algorithm that supports continual
learning—which takes inspiration from neurobiological models
of synaptic consolidation—can be combined with deep neural
networks to achieve successful performance in a range of chal-
lenging domains. In doing so, we demonstrate that current

neurobiological theories concerning synaptic consolidation do
indeed scale to large-scale learning systems. This provides
prima facie evidence that these principles may be fundamental
aspects of learning and memory in the brain.

Materials and Methods

Full methods for all simulations can be found in the S.I. For the
Atari 2600 experiments, we used an agent very similar to that
described in [41]. The only differences are that we used: (a) a
network with more parameters, (b) a smaller transition table, (c)
task-specific bias and gains at each layer, (d) the full action set
in Atari, (e) a task-recognition model, and (f) the EWC penalty.
Full details of hyper-parameters are described in S.I.. Here we
briefly describe the two most important modifications to the agent:
the task-recognition module, and the implementation of the EWC
penalty.

We treat the task context as the latent variable of a Hidden
Markov Model. Each task is therefore associated to an underlying
generative model of the observations. The main distinguishing
feature of our approach is that we allow for the addition of new
generative models if they explain recent data better than the existing
pool of models by using a training procedure inspired by the forget
me not process[33]( see S.I. for full description). In order to apply
EWC, we compute the Fisher information matrix at each task switch.
For each task, a penalty is added with anchor point given by the
current value of the parameters and with weights given by the Fisher
information matrix times a scaling factor λ which was optimized by
hyperparameter search. We only added an EWC penalty to games
which had experienced at least 20 million frames.
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