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Abstract

Inference over OWL ontologies with large A-Boxes has been researched as a data management

problem in recent years. This work adopts the strategy of applying a tableaux-based reasoner

for complete T-Box classification, and using a rule-based mechanism for scalable A-Box rea-

soning. Specifically, we establish for the classified T-Box an inference framework, which can

be used to compute and materialise inference results. The inference we focus on is type infer-

ence in A-Box reasoning, which we define as the process of deriving for each A-Box instance

its memberships of OWL classes and properties. As our approach materialises the inference

results, it in general provides faster query processing than non-materialising techniques, at the

expense of larger space requirement and slower update speed. When the A-Box size is suitable

for an RDBMS, we compile the inference framework to triggers, which incrementally update

the inference materialisation from both data inserts and data deletes, without needing to re-

compute the whole inference. More importantly, triggers make inference available as atomic

consequences of inserts or deletes, which preserves the ACID properties of transactions, and

such inference is known as transactional reasoning. When the A-Box size is beyond the capa-

bility of an RDBMS, we then compile the inference framework to Spark programmes, which

provide scalable inference materialisation in a Big Data system, and our evaluation consid-

ers up to reasoning 270 million A-Box facts. Evaluating our work, and comparing with two

state-of-the-art reasoners, we empirically verify that our approach is able to perform scalable

inference materialisation, and to provide faster query processing with comparable completeness

of reasoning.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Modelling information and knowledge has been researched as the problem of Knowledge

Representation (KR) [Sow00] since the 1970’s. Many approaches, such as semantic net-

works [Leh92], frames [Sow14] and Description Logic (DL) [BCM+10], have emerged to

provide a formalised and machine-manageable model for storing knowledge concepts and their

relations as a knowledge base. Furthermore, applications are able to conduct a process of

inference, which derives implicit consequences from the explicitly represented information

and knowledge. Inference is often considered as the most significant feature of knowledge

modelling compared to traditional data modelling, such as the Entity-Relationship (ER)

model [BCN92], the relational model [Cod70] and the Unified Modelling Language (UML)

modelling [Boo05].

The Web Ontology Language (OWL) [MVH04] endorsed by the World Wide Web Con-

sortium (W3C) has become one of most popular KR languages during the last decade.

OWL allows information and knowledge to be expressed as an ontology, and many knowl-

edge fields adopt it for expressing their domain information. Well-known ontologies include

DBpedia [ABK+07], Gene ontology [ABB+00], Music ontology [RASG07], etc. In an OWL

ontology, atomic individuals can be classified into OWL classes, and be connected to each

other by OWL properties. Moreover, OWL provides numerous constructors for ontology

23



24 Chapter 1. Introduction

designers to express various relations and constraints as axioms, such as subsumption, uni-

versal and existential quantifications, and key constraints. In particular, an ontology divides

its represented knowledge and information into schema and data, which are contained in a

Terminological Box (T-Box) and an Assertional Box (A-Box), respectively.

To illustrate OWL, we introduce a beer ontology1 storing information and knowledge about

beers. In its T-Box, we may have three OWL classes, CzechLager, Lager and CzechBeer respec-

tively storing beer individuals which are Czech lagers, general lagers and Czech beers. We may

define a property called hasFlavour to relate beer individuals to some individuals from another

class Flavour. Besides OWL classes and properties, we can specify a more complex relation:

CzechLager ≡ Lager u CzechBeer (1.1)

which defines every individual of CzechLager is some beer which is both a Lager and a CzechBeer.

This relation uses two OWL constructors EquivalentClasses and IntersectionOf (symbolised as

≡ and u in DL, respectively), and because it specifies some schema information of the beer

ontology, it should be a T-Box axiom.

In addition to a T-Box (containing classes, properties and axioms), we can assert some known

facts in an A-Box; for example, an individual CzechPaleLager can be specified as a type of Lager

and a kind of CzechBeer by (1.2) and (1.3), respectively, and another individual CzechDarkLager

can be defined as a member of CzechLager by (1.4).

Lager(CzechPaleLager) (1.2)

CzechBeer(CzechPaleLager) (1.3)
CzechLager(CzechDarkLager) (1.4)

The most recent release OWL 2 [GHM+08] comes with a Direct Semantics [MPSG12] for

interpreting its components, and inference can be computed based on the logical implications

defined by the semantics. Inference tasks, such as computing all subsumption relations con-

tained in a T-Box, are decidable if an ontology is interpreted by the Direct Semantics, because

the underpinning SROIQ DL [Rud11] of the semantics is a decidable fragment of the First-

Order Logic (FOL) [Bar77]. To automatically perform inference, the well-known tableaux

algorithm [Rud11] has been widely adopted by reasoners (i.e. software applications which

1https://github.com/yl12510/thesis/tree/master/beer.owl

https://github.com/yl12510/thesis/tree/master/beer.owl


1.1. Motivation and Objectives 25

offer an inference service), such as Pellet [SPG+07] and Hermit [GHM+14]. The tableaux al-

gorithm reduces every inference task to a problem of satisfiability checking, and verifies the

satisfiability by attempting to establish a tableau. The tableaux algorithm is able to derive all

correct logical consequences for the whole SROIQ DL, and thus tableaux-based reasoners are

known to provide a sound and complete inference service.

Take the T-Box axiom (1.1) as an example, by using the tableaux algorithm, Pellet or Hermit

infers three subsumption relations below from (1.1):

CzechLager v Lager (1.5)

CzechLager v CzechBeer (1.6)
Lager u CzechBeer v CzechLager (1.7)

where (1.5) and (1.6) denote every individual of CzechLager is both a Lager and a CzechBeer,

and (1.7) specifies some individual which belongs to both Lager and CzechBeer should be a

CzechLager. The task of inferring all subsumption relations contained in a T-Box is called

classification, and based on a classified T-Box, a tableaux-based reasoner is also able to de-

termine whether an individual belongs to a particular class, which is known as another inference

task instance checking. For example, since (1.4) asserts CzechDarkLager as a CzechLager, de-

termining whether CzechDarkLager belongs to Lager should result in true because of (1.5).

However, expressing real-world knowledge domains may not necessarily require the full OWL 2

language when they have a simple knowledge schema (i.e. T-Box). Inference over the full OWL

2 is not tractable (i.e. a complexity beyond polynomial time); indeed, most inference tasks, such

as ontology consistency and class expression subsumption have a complexity of N2EXPTIME2-

complete [Krö12a]. In addition, the tableaux algorithm always suffers an issue of inefficiency

when ontologies contain very large A-Boxes, since it needs to verify every A-Box fact for a

particular inference task. This is unacceptable when considering most real-world ontologies,

such as DBpedia and WordNet [Mil95], which usually contain huge numbers of A-Box facts

(e.g. DBpedia has approximately 3 billion A-Box facts as of Sept. 2014, compared to a T-Box

of around 1,200 classes, 2,900 properties and 7,000 logical axioms).

Therefore, research on providing tractable inference for ontologies having a simple T-Box and

2N2EXPTIME is the set of decision problems solvable by a non-deterministic algorithm in O(22
n

) time.
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large A-Boxes has attracted much attention over the recent years, and the essential idea is to

sacrifice the OWL expressivity for desirable computation properties. Indeed, OWL 2 provides

three profiles [MGH+12], namely, OWL 2 EL, OWL 2 QL and OWL 2 RL, each of which is

a subset of the full OWL 2, aiming for particular application scenarios. Among them, QL

and RL especially focus on ontologies with large A-Boxes, while EL addresses large T-Boxes.

The QL profile targets applications whose major inference task is query processing over large

A-Boxes, and in theory it guarantees that conjunctive queries over OWL 2 QL ontologies can

be answered in LOGSPACE3 time by a suitable inference technique. On the other hand, the

RL profile is specified for applications aiming at scalable inference over ontologies with large A-

Boxes. From the viewpoint of inference techniques, rule-based inference [SS11], which uses

some pre-defined reasoning rules for the derivation of implicit consequences, has been widely

applied in many large-scale reasoners, such as DLDB [PZH08], Ontop [BCH+14], Oracle’s RDF

Store [WED+08] and OWLim [KOM05].

Rule-based inference can be further classified into query-rewriting [PUHM09] and ma-

terialised [MNP+14] approaches. Reasoners taking a query-rewriting approach (e.g. Star-

dog [PURDG+12], Ontop, DLDB) rewrite a query over an ontology into some sub-queries over

the base facts in the ontology (according to some reasoning rules), such that not only explicit

but also implicit answers to the query can be computed dynamically. Take the T-Box axiom

(1.1) as an example again, a query-rewriting approach might use the reasoning rules below (in

Datalog) to rewrite queries asking for individuals in CzechLager:

CzechLager(x) :- CzechLagere(x)

CzechLager(x) :- CzechLageri(x)
CzechLageri(x) :- Lager(x),CzechBeer(x)

These reasoning rules specify that individuals of CzechLager should contain extensional and

intensional parts (i.e. CzechLagere(x) and CzechLageri(x)), where the extensional part should

be A-Box facts explicitly asserted to CzechLager, and the intensional part should include indi-

viduals commonly existing in Lager and CzechBeer. Query-rewriting usually considers OWL 2

QL ontologies, and does not need to store implicit derivations because of the dynamic inference.

However, this approach often becomes inefficient when a query is rewritten to many complex

3LOGSPACE is the set of decision problems solvable by a deterministic algorithm in O(log (n)) time.
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sub-queries, and executed frequently.

When the number of the updates to an ontology is significantly fewer than the number of

queries, it might be more efficient to adopt a materialised approach (e.g. Oracle’s RDF Store,

OWLim, WebPIE [UKM+12], RDFox [NPM+15], Minerva [ZML+06, LMZ+07]), which mate-

rialises inference results before asking a query; thus queries can be answered directly from the

materialisation. For example, a materialised approach might translate the T-Box axiom (1.1)

into the following if . . . then . . . rules:

if CzechLager(x) then Lager(x) and CzechBeer(x)

if Lager(x) and CzechBeer(x) then CzechLager(x)

which are used for computing the inference materialisation. Reasoners adopting a materialised

approach usually consider OWL 2 RL ontologies and they require no computation of inference

when a query is executed over their inference materialisation. However, materialising requires

more space than non-materialising (e.g. query-rewriting), and how to materialise the inference

results in a scalable manner, and how to efficiently update the materialisation when there are

some updates to ontologies are two major challenges to a materialised approach.

The hypothesis of this PhD study is that a feasible approach for managing inference over large

ontologies held in databases can be developed, such that inference can be performed in a scalable

manner, and the cost of inference does not introduce an impractical overhead. We wish to

develop an approach that can be used in cooperation with existing database applications, such

as banking, search engines, digital advertising etc., to enhance them with inference capabilities

at an execution-time cost that is realistic to bear in such applications. Our hypothesis is that

in such applications it is more sensible to adopt a materialised approach to inference, based

on the assumption that queries in such applications are much more frequent than updates.

Additionally, since most database applications use a small and static schema to model their

large and dynamic data, we further assume that the T-Box of ontologies is much smaller

compared to the size of the A-Boxes. This enables the use of a tableaux-based reasoner for

complete T-Box inference. Consequently, inference over the A-Box is our focus, and we term

this type inference [MRS12], which is to derive for each instance its membership of classes
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and properties. We also restrict our approach to only consider updates to the A-Box, and

assume the T-Box is static.

By applying a tableaux-based reasoner for T-Box classification, we translate the the classified

T-Box into an inference framework, which is used for computing and materialising the results

of type inference, where queries only need to read the materialisation. The inference frame-

work contains transformation rules handling OWL 2 constructors; in particular, they not

only cover all the OWL 2 RL/RDF rules [Krö12a] (except where the Unique Name As-

sumption (UNA) conflicts, as our approach follows the UNA while OWL does not), but also

handle some extra axioms beyond OWL 2 RL for a more complete inference. Our approach then

acts like a compiler, which is able to implement the inference framework in many mainstream

database systems, such as a Relational Database Management System (RDBMS) (e.g.

Postgres [Mom01] or Microsoft SQL Server [DB87]) or a distributed Big Data system (e.g.

Spark [KKWZ15] or MapReduce [DG08] running over a Hadoop Distributed File System

(HDFS) [Whi15]).

When the A-Box size is small enough to be stored inside an RDBMS, the inference framework

is implemented as an Auto Type Inference Database (ATIDB) containing tables and

triggers, and we call this part of work SQOWL2 [LM13]. When inserts or deletes of A-Box

facts are executed in database transactions over the ATIDB, triggers acting actively as Event

Condition Action (ECA) rules, are automatically invoked by these updates to analyse how

the previous type inference materialisation should be incrementally updated. In a nutshell,

triggers invoked by data inserts materialise derivations computed from the newly inserted data

and the existing materialisation. However, performing type inference from data deletes is

significantly more difficult than handling data inserts, and triggers invoked by deletes conduct

what we call a label & check process [LM15] (a variant of the Delete & Rederive (DRed)

algorithm [GMS93] that can be implemented in an RDBMS). The label & check process first

labels all data that might be affected because of the deletes, and then removes the data that

has been labelled and can not be re-inferred from non-labelled data.

Incremental inference avoids the unnecessary re-computation of the whole inference mate-
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rialisation required by non-incremental reasoners (e.g. Oracle’s RDF Store, the Lite version

of OWLim) or partial-incremental reasoners (e.g. WebPIE, which only performs incremental

inference for dealing with inserts but not deletes). Moreover, the label & check process is able

to handle deletes over recursive views that can be defined in OWL 2 RL ontologies. Also,

inference by the ATIDB is available as atomic consequences of data inserts or deletes, which

preserves the Atomicity, Consistency, Isolation, Durability (ACID) properties [HR83] of

database transactions. Such inference is known as transactional reasoning [MRS12], which

guarantees that the ATIDB can never enter an inconsistent state. However, most reasoners

(e.g. Minerva and Oracle’s RDF Store) fail to provide transactional reasoning, even though

they store the inference inside an RDBMS, as they require a separate inference process which

is often performed outside an RDBMS.

When the A-Box size is too large to be stored in an RDBMS, our inference framework can be

implemented as Spark programmes, which perform type inference for OWL 2 RL ontologies in

an HDFS, and we name this part of work SPOWL. Spark programmes are directly translated

from a classified T-Box, i.e. only axioms contained in the T-Box are compiled into Spark pro-

grammes. This avoids unnecessary rule-matching faced by most large reasoners (e.g. WebPIE,

Cichlid [GWW+15]), which simply evaluate a set of entailment rules no matter whether these

rules are relevant to the input ontology or not. Spark programmes act as non-active if-then

rules, and are able to compute and materialise results of type inference in a scalable manner.

The materialisation is computed by iteratively executing the Spark programmes until no new

inference can be derived. The iterative execution follows an optimised order based on the

bottom-up hierarchy of a T-Box, so that the number of iterations can be reduced.

From the viewpoint of implementation, SQOWL2 gathers all trigger fragments associated with

each table and implements them as a single trigger, which significantly improves the perfor-

mance of type inference compared to SQOWL, which implements the trigger fragments sepa-

rately. SQOWL2 also provides some optimisations, such as adding indexes and Foreign Keys

(FKs) or tuning the ATIDB to use a more efficient execution plan, which improve its perfor-

mance of not only inference computation but also query processing. For SPOWL, it inherits

the light and fast data processing from the Spark framework, which caches data in distributed
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memory as much as possible, and schedules jobs in a more flexible and parallelised manner

than the sequential job scheduling of MapReduce. In a nutshell, SPOWL caches frequently

used datasets to avoid unnecessary re-computation, and for joining a large set of data with a

small set, it partitions the large dataset and copies the small set to each of the partitions, which

reduces the amount of data requiring to be shuffled.

We have also evaluated our work over the well-known Lehigh University Benchmark

(LUBM) [GPH05]. The completeness of our approach was only experimentally evaluated, and

the results show both implementations are able to completely process the 14 LUBM queries

w.r.t. LUBM T-Box and any arbitrary LUBM A-Box. This is often failed to be achieved by

most state-of-the-art rule-based reasoners [SGH10]. SQOWL2’s performance of processing data

inserts, data deletes and queries was further compared to a non-materialising system Stardog

and a materialisation-based system OWLim. Results show that SQOWL2, when compared to

Stardog and OWLim, provides faster query processing than the two comparison systems, at the

expense of slower data updating. With regard to SPOWL, its scalability for handling ontologies

beyond the capability of an RDBMS was evaluated on a small distributed cluster of 9 nodes

running on a cloud computing platform4. The inference materialising and query processing

were both scaled up to run over approximately 270 million A-Box facts.

1.2 Contributions

The primary contribution of the thesis is that from the previous work SQOWL [MRS09,

MRS10], we extend its inference framework and implement the extended framework as two

new systems. The extensions can be summarised as follows:

1. SQOWL2 extends SQOWL, which only handles data inserts, to now also support type

inference from data deletes in an RDBMS. In order to handle data deletes, we modify the

well-known DRed algorithm to assign every piece of data stored in an ATIDB a state.

This state of data allows DRed’s delete & rederive process to be changed to SQOWL2’s

4https://www.doc.ic.ac.uk/csg/services/cloud

https://www.doc.ic.ac.uk/csg/services/cloud
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more efficient label & check process, which updates the inference materialisation from data

deletes in a transactional and incremental manner. The work on SQOWL2 for handling

data updates has been published in [LM15, LM16].

2. SQOWL2 supports type inference over the ontologies expressed in OWL 2 as compared

to SQOWL, which supports OWL 1. In particular, SQOWL2 handles every OWL 2 con-

structor by transforming their constructed axioms into triggers, which surpass the OWL

2 RL/RDF rules. SQOWL2 is conjectured to be a sound and complete implementation

of the OWL 2 RL/RDF rules for type inference over OWL 2 RL ontologies. The work in

this part of the thesis has been published in [LM13, LM14].

3. SPOWL further extends SQOWL2 to support type inference over ontologies with large

A-Boxes that are not small enough for an RDBMS to handle. SPOWL translates OWL

2 axioms into Spark programmes, which compute and materialise the results of type

inference in a Big Data system. In particular, we introduce a new technique of compiling

an OWL ontology directly into Spark programmes that implement the ontology axioms.

SPOWL focuses on scalable type inference for OWL 2 RL ontologies, and thus it sacrifices

the transactional and incremental properties held by SQOWL2.

1.3 Thesis Outline

In the next chapter we provide some background on OWL 2 ontologies; in particular, we outline

the T-Box and A-Box of an ontology, illustrate some simple examples of inference, and we then

introduce in detail how the Direct Semantics interprets every OWL 2 expression and defines

the satisfying conditions for every OWL 2 axiom.

Chapter 3 reviews in detail the inference in OWL 2 as compared to Chapter 2 which only

outlines some inference examples. We first provide a list of inference tasks often considered by

reasoners, and some properties for evaluating a reasoner. Then, we move to a thorough illustra-

tion of tableaux-based inference and rule-based inference (i.e. query-rewriting and materialised

approaches), and also analyse the advantages and disadvantages of these inference techniques.
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Chapter 4 covers the first part of SQOWL2, which performs type inference for OWL 2 from

only data inserts. We start by a motivating example to show some problems that might occur

in type inference, and then move to the details of how an ATIDB is established to perform type

inference from data inserts. In particular, we illustrate a canonical schema for representing

OWL classes and properties, where triggers can be created. We show in detail how all OWL 2

constructors are handled by triggers, and summarise some optimisations that can be used to

further improve SQOWL2.

Chapter 5 focuses on how SQOWL2 performs type inference from data deletes. Like the previous

chapter, we first use a motivating example to address the problem of handling data deletes,

and we also review the DRed algorithm, on which our approach is based. Then, we introduce

a state which we assign to each data item stored in ATIDB, and how the state can be changed

by database updates, which we group as ontology and reasoner updates. Afterwards, the label

& check process is defined in detail by illustrating how this process can be used to solve the

problem addressed in the motivating example. We also illustrate how triggers in Chapter 4 are

extended to fully support both data inserts and deletes. Finally, we analyse SQOWL2 on its

soundness and completeness of type inference.

Chapter 6 changes the attention of type inference from an RDBMS to a Big Data system.

We first show the issue of simply evaluating entailment rules for inference materialisation.

After briefly reviewing the Spark, we outline the architecture of SPOWL, and illustrate the

operation of SPOWL by a small example. Then, a detailed transformation from OWL 2 RL

axioms to Spark programmes is provided. Finally, we illustrate how the Spark programmes can

be executed in an optimised order following the bottom-up hierarchy of a T-Box.

Note that in order to describe SQOWL2 and SPOWL in an implementation-independent man-

ner, the triggers and Spark programmes are all presented in a logical manner in Chapters 4,

5 and 6. The implementation details are provided in Chapter 7. In particular, We show how

physical triggers are created and operated in Transact SQL [KGZ99], and how logical Spark

programmes are implemented into real code. Evaluating the implementations is the second part

of this chapter, we show how experiments are designed and conducted, and provide detailed
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analysis of the results.

Finally, Chapter 8 draws some conclusions and discusses future work.





Chapter 2

Review of Web Ontology Language

2.1 Introduction

In Chapter 1, we have already used the OWL to express certain ontological information, such

as (1.1) – (1.7). As a state-of-the-art KR language, OWL supplies a formalised way of de-

scribing knowledge as ontologies, in a form that is accessible to and processable by machines.

The most recent release, OWL 2, provides two formal semantics, Direct Semantics and

RDF-based Semantics [Sch12], which interpret components in ontologies. Based on the in-

terpretations, inference (a.k.a. reasoning) can be performed to derive implicit consequences

from the knowledge explicitly represented. This thesis focuses on the Direct Semantics, as its

underpinning SROIQ DL is decidable, while the RDF-based Semantics, which is an extension

of D-Entailment [HPS14], has undecidable reasoning [Mot07].

In this chapter, Section 2.2 first provides an overview of how OWL 2 can be used to express

knowledge, and illustrates two important inference tasks (a detailed review of inference tech-

niques and systems is given in Chapter 3). Next, Section 2.3 details the interpretation for OWL

2 expressions, and satisfying conditions for OWL 2 axioms as defined in the Direct Semantics.

Throughout this chapter, we continue to use the beer ontology in examples to illustrate certain

concepts.

35
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2.2 OWL 2 Overview

An OWL 2 ontology expresses knowledge schema in a T-Box and known facts in an A-Box.

2.2.1 Terminological Box

In a T-Box of an ontology, a class, such as CzechLager, Lager and CzechBeer in (1.1), can be

characterised as a unary relation used for denoting a set of individuals, such as CzechPaleLager

and CzechDarkLager in (1.2) – (1.4). In the beer ontology, we may specify another class Ale

containing warm-fermented beer individuals, such as BritishBrownAle and EnglishPorter, and

two additional classes Flavour and Colour, which respectively include beer flavours (e.g. Bitter,

Malty) and beer colours (e.g. Dark, Brown and Pale).

A property in an ontology denotes a binary relation, and it can be an object property or a

data property. An object property relates an individual to another individual, while a data

property relates an individual to a data value. For example, we may specify an object property

hasFlavour to relate beers to their flavours (e.g. CzechPaleLager has a Bitter flavour), and a data

property hasAlcoholLevel to relate beers to their alcohol percentage (e.g. EnglishPorter has 5.4%

alcohol by volume).

OWL 2 also provides numerous constructors (e.g. SubClassOf, PropertyDomain) to express

more complex relations or constraints, which are more naturally called axioms. For example,

a subsumption relation between two classes (e.g. axioms (1.5) and (1.6)) can be specified by a

constructor SubClassOf (symbolised as v in the DL syntax1), which means all individuals in

the subclass are also instances of the super class. In the beer ontology, we may further specify

PaleAle and Porter as two subclasses of Ale by axioms (2.1) and (2.2) in the DL syntax.

PaleAle v Ale (2.1) Porter v Ale (2.2)

Specifying other relations, such as equivalence between classes or properties (using the con-

structor EquivalentClasses or EquivalentProperties), and constraints, such as universal and ex-

1In the thesis, we follow the DL syntax because of its compact format of specifying the formal structure of
ontologies.
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istential restrictions (using constructors AllValuesFrom and SomeValuesFrom) are described in

Section 2.3, where a thorough description of the Direct Semantics is given.

Note that, we denote classes by convention beginning with upper case letters and in a brown

colour, properties by convention starting with lower case letters and in a green colour, and

finally individuals starting with upper case and in a blue colour. Moreover, unless specified,

the term property will refer to an object property, as very few axioms can be specified on a

data property.

2.2.2 Assertional Box

The A-Box of an ontology is used for storing known facts (a.k.a. data) in a knowledge domain

as assertions (or facts). A class fact (using the constructor ClassAssertion) specifies for each

individual its membership of a class, such as specifying CzechPaleLager as an instance of Lager.

A property fact (using the constructor PropertyAssertion) defines for a pair of individuals

its membership of a property, such as specifying 〈CzechPaleLager,Bitter〉 as an instance of

hasFlavour. Moreover, the individuals that are related by a property are often called subjects

of this property, such as CzechPaleLager of hasFlavour. The individuals which a property relates

the subjects to are called objects, such as Bitter of hasFlavour.

In DL, we use the syntax of C(a) for class facts, and the syntax of P (a, b) for property facts.

The facts we have mentioned for the beer ontology so far are summarised as follows (where

(2.10) and (2.11) are two property facts, others are class facts):

Lager(CzechPaleLager) (1.2)

CzechBeer(CzechPaleLager) (1.3)

CzechLager(CzechDarkLager) (1.4)

Ale(BritishBrownAle) (2.3)

Ale(EnglishPorter) (2.4)

Flavour(Bitter) (2.5)

Flavour(Malty) (2.6)

Colour(Dark) (2.7)

Colour(Brown) (2.8)

Colour(Pale) (2.9)

hasFlavour(CzechPaleLager,Bitter) (2.10)

hasAlcoholLevel(EnglishPorter, 5.4%) (2.11)

Note that in most ontologies, such as DBpedia and WordNet, the size of their T-Boxes are
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often quite small as compared with their A-Boxes, which are normally very large (e.g. billions

of facts). We may extend the beer ontology with more facts as follows:

PaleAle(BritishGoldenAle) (2.12)

PaleAle(CreamAle) (2.13)

PaleAle(BlondeAle) (2.14)

Porter(BalticPorter) (2.15)

Porter(EnglishPorter) (2.16)

Porter(AmericanPorter) (2.17)

Flavour(Sweet) (2.18)

Colour(Amber) (2.19)

hasFlavour(EnglishPorter,Malty) (2.20)

hasFlavour(BritishGoldenAle,Bitter) (2.21)

hasColour(EnglishPorter,Dark) (2.22)

hasColour(BalticPorter,Dark) (2.23)

As asserted by (2.12) – (2.14), we introduce three new pale ales: BritishGoldenAle, CreamAle

and BlondeAle, and by (2.15) – (2.17), we have three new porters: BalticPorter, EnglishPorter

and AmericanPorter. In addition, by (2.18) Flavour is extended with one more individual Sweet,

and Colour includes Amber by (2.19). Moreover, property facts (2.20) and (2.21) respectively

specify the flavours of EnglishPorter and BritishGoldenAle, and (2.22) and (2.23) describe the

colours of EnglishPorter and BalticPorter, respectively.

2.2.3 Inference

Inference (a.k.a. reasoning2) can be described as the process of deriving implicit information

from the explicitly specified information, based on the Direct Semantics. It is often considered

as the key difference between knowledge modelling and traditional conceptual modelling such

as the relational and ER models. Inference considered in OWL 2 can be categorised as T-Box

inference and A-Box inference; the former focuses on inference tasks over the knowledge

schema, and the latter addresses inference problems over the ontology data.

In both inference categories, there are more detailed tasks, such as classification in T-Box

inference, and instance checking in A-Box inference. A software system which solves all or

some of these inference tasks is called a reasoner. To solve a particular inference task, different

inference methods can be adopted by a reasoner, and two of them, tableaux-based inference

2We use the two terms interchangeably through this thesis.
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and rule-based inference, are considered as state-of-the-art. The former is used for complete

inference, while the latter is often applied for inference over large A-Boxes.

Here, we give a brief overview of two important inference tasks (i.e. classification and instance

checking), a complete review of all inference tasks and a detailed description about the two

inference methods are provided in Chapter 3.

Classification in T-Box Inference

An important task to consider in T-Box inference is to classify all classes in an ontology, such

that all subsumption relations between classes are identified, so that a class hierarchy can be

established. For example, in the beer ontology, we shall have a class Beer, and Ale and Lager

are two of its subclasses as stated by (2.24) and (2.25) below:

Ale v Beer (2.24) Lager v Beer (2.25)

If we take the two subclasses PaleAle and Porter of Ale in (2.1) and (2.2) into account, using the

transitivity of subsumption relations (i.e. if C v D and D v E, then C v E), we can infer two

new subsumption relations from PaleAle to Beer in (2.26), and from Porter to Beer in (2.27).

PaleAle v Beer (2.26) Porter v Beer (2.27)

Instance Checking in A-Box Inference

Instance checking is an important task in A-Box inference, which checks for whether an

individual belongs to a class or not. For example, using the subsumption relation from PaleAle

to Ale in (2.1), we can verify BritishGoldenAle is an Ale from the A-Box fact (2.12). Indeed,

because of (2.1), CreamAle and BlondeAle, which are instances of PaleAle specified by (2.13)

and (2.14), can also be verified as members of Ale.

Note that instance checking might result in a third status unknown besides true and false,

because OWL 2 follows an open-world assumption (OWA) [Min82] rather than a closed-

world assumption (CWA) [Rei78]. The possibility of an A-Box fact holding is preserved in

the OWA, even if the fact is not recorded, i.e. verifying any unpersisted fact always results in



40 Chapter 2. Review of Web Ontology Language

unknown, whilst in the CWA it would result in false. For example, in the beer ontology (as we

have introduced so far), when checking in the OWA if CreamAle is a Lager, we are unable to give

a true or false value. Hence, we say the fact of Lager(CreamAle) is unknown. OWA contradicts

the CWA (commonly adopted in the field of databases), which assumes that any fact not

recorded should always be evaluated to false. In fact, the answer false is relatively uncommon

in an OWA database, but we will show one example later when looking at DisjointClasses.

Checking whether every individual belongs to a particular class can be extremely inefficient,

when the size of A-Box is large. Therefore, based on instance checking, another inference task,

called instance retrieval is often used when querying all individuals of a class. Instance

retrieval computes all individuals of a particular class. For example, we have already shown the

class Ale so far includes BritishBrownAle, BritishGoldenAle, CreamAle, BlondeAle, BalticPorter,

EnglishPorter and AmericanPorter as its instances. Except BritishBrownAle and EnglishPorter,

which are explicitly asserted as instances of Ale, others are implicitly derived. EnglishPorter as

a member of Ale is a special case, as this fact is not only explicitly specified by (2.4), but also

can be implicitly inferred by (2.2) and (2.16). For this case, even if we remove the explicit fact

(2.4), this fact still holds implicitly.

2.3 The Direct Semantics of OWL 2

As clarified in Section 2.1, the semantics considered in this thesis is the Direct Semantics (a.k.a.

OWL 2 DL), which is based on the SROIQ DL (a decidable fragment of the FOL). To review

OWL 2 DL, we first outline in Section 2.3.1 its interpretation I, which interprets OWL 2

expressions, and defines the conditions for satisfying OWL 2 axioms. Then, Section 2.3.2 and

Section 2.3.3 complete I for all semantics related to classes and properties, respectively.
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2.3.1 Interpretation I of OWL 2 DL

Interpreting OWL 2 expressions

For the three basic ontology components, i.e. classes, properties and individuals, the interpre-

tation I defines them in a set-theoretic way, as shown in Definition 2.1:

Definition 2.1 An interpretation I of OWL 2 DL consists of a non-empty set of objects ∆

(a.k.a. the knowledge universe), and we may use the interpretation as a function on classes,

properties and individuals to assign them some set-theoretic elements of ∆ (denoted as aI, CI

and P I, respectively). In particular, I associates:

• each individual a with an object in the universe3: aI ∈ ∆

• each class C with a set of objects: CI ⊆ ∆

• each property P with a subset of the Cartesian product of the universe: P I ⊆ ∆×∆

OWL 2 expressions can be atomic (i.e. OWL classes and properties), or complex (i.e. expres-

sion formed by combining some basic OWL components and constructors). We denote by C,

D and E for atomic classes, and by P , Q and R for atomic properties, and by CE and PE to

refer general expressions (either atomic or complex).

The expression of C uD (e.g. Lager u CzechBeer in (1.1)) is a complex expression formed by a

constructor IntersectionOf (symbolised as u in DL). C uD expresses that the same individuals

exist in both C and D, and it is interpreted by I as (C u D)I = CI ∩ DI . Because C u D

denotes a set of individuals, we call it a class expression, while a property expression

denotes pairs of individuals. The constructor InverseOf is used to form a (complex) property

expression denoted as P−, which contains inverse pairs of individuals of P , and it is interpreted

by I as (P−)I = {〈y, x〉 | 〈x, y〉 ∈ P I}.

3Remember that OWL 2 does not follow UNA, and indeed by this definition, two individuals may be assigned
to the same object (i.e. aI = bI).
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Satisfying T-Box axioms

Besides interpreting expressions, I defines the truth conditions on which OWL 2 axioms hold.

We denote by I |= axiom for the situation that the axiom holds on some conditions defined in I

(i.e. I satisfies the axiom). For example, the condition on which I satisfies (2.1), a subsumption

relation from PaleAle to Ale, is shown as:

I |= PaleAle v Ale iff PaleAleI ⊆ AleI

which means that I satisfies (2.1) if and only if the objects which I assigns to PaleAle is a

subset of the objects that I associates with Ale (denoted by ⊆).

Satisfying A-Box facts

I also defines the truth condition for satisfying A-Box facts. Satisfying a class fact by I is

denoted as I |= C(a) iff aI ∈ CI . For example, I satisfying that the individual BritishBrownAle

as an instance of Ale (i.e. (2.3)) can be written as:

I |= Ale(BritishBrownAle) iff BritishBrownAleI ∈ AleI

As can be seen, holding a class fact requires that the object assigned to the individual belongs

to the objects assigned to the class (denoted by ∈). Similarly, satisfying a property fact is

written as I |= P (a, b) iff 〈aI , bI〉 ∈ P I . For example, satisfying the property fact EnglishPorter

has a Malty flavour defined by (2.20) can be illustrated as:

I |= hasFlavour(EnglishPorter,Malty) iff 〈EnglishPorterI ,MaltyI〉 ∈ hasFlavourI

2.3.2 Class-related Semantics

As illustrated in Section 2.3.1, OWL 2 expressions (either complex or atomic) can be used

to represent a set of individuals (i.e. class expressions CE interpreted by I as CE
I ⊆ ∆) or

to denote a set of individual pairs (i.e. property expressions PE interpreted as PE
I ⊆ ∆ ×

∆). Then, axioms can be constructed by expressing either a subsumption or an equivalence

relation between two expressions (either between two class expressions or between two property
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expressions). In this section, we focus on class expressions and related axioms, and leave

property expressions and related axioms in Section 2.3.3.

SubClassOf and EquivalentClasses:

As we have already exemplified in Section 2.2.1, the SubClassOf constructor is used to express a

subsumption relation between two atomic classes C and D (e.g. (2.1) and (2.2)). In fact C v D

can be generalised as CE1 v CE2 , where CE1 and CE2 can be either atomic or complex, and we

call CE1 the subclass expression, and CE2 the super-class expression. To satisfy a SubClassOf

axiom, we need to ensure the set of individuals assigned to the subclass expression is a subset

of the set of individuals assigned to the super-class expression, which is defined by I as follows:

I |= CE1 v CE2 iff CE1

I ⊆ CE2

I

An equivalence relation between two class expressions can be formed by another constructor

EquivalentClasses (with the symbol ≡), in order to express that two class expressions specify

exactly the same set of individuals. For example, we may add to the beer ontology a new class

LiquidBread, which is equivalent to the class Beer:

Beer ≡ LiquidBread (2.28)

The truth condition for satisfying CE1 ≡ CE2 is defined as:

I |= CE1 ≡ CE2 iff CE1

I = CE2

I

which means that the set of objects which I assigns to CE1 is exactly the same set of objects

assigned to CE2 . Note that the semantics of an EquivalentClasses axiom CE1 ≡ CE2 is logically

equivalent to two SubClassOf axioms CE1 v CE2 and CE2 v CE1 , i.e.:

I |= CE1 ≡ CE2 iff I |= CE1 v CE2 and I |= CE2 v CE1

IntersectionOf, UnionOf and ComplementOf:

The constructor IntersectionOf can specify a complex class expression denoting common indi-

viduals from two class expressions (denoted as CE1 u CE2 , where CE1 and CE2 can be atomic

or complex). I interprets CE1 u CE2 as the objects which I assigns to both CE1 and CE2 :
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(CE1 u CE2)
I = CE1

I ∩ CE2

I

Besides IntersectionOf which specifies the and logic in the set theory, OWL 2 also provides

UnionOf and ComplementOf to express logical or and not, respectively. Expressions using

UnionOf are denoted as CE1 t CE2 , which represents all elements which belong to CE1 or CE2 ,

and expressions using ComplementOf are denoted as ¬CE, which specifies the set of elements

that are not instances of CE. I interprets the two types of expressions as:

(CE1 t CE2)
I = CE1

I ∪ CE2

I

(¬CE)I = ∆\CE
I

Considering the beer ontology, we may use Ale u Lager to specify the beers which are both an

ale and a lager, Alet Lager to express the beers which are an ale or a lager, and ¬Ale to denote

all individuals that are not ales – might not be a beer (¬Ale u Beer is the proper expression to

denote beers which are not ales). I interprets them as follows:

(Ale u Lager)I = AleI ∩ LagerI

(Ale t Lager)I = AleI ∪ LagerI

(¬Ale)I = ∆\AleI

DisjointClasses and DisjointUnion:

By using the expressions formed by IntersectionOf, UnionOf and ComplementOf, we are able to

express some axioms like DisjointClasses and DisjointUnion. DisjointClasses is used to describe

that several class expressions are disjoint with each other (i.e. they do not share the same

individuals, and thus the intersection of these class expressions should be empty). To denote

an empty set, OWL 2 provides a special class called Nothing (symbolised as ⊥ in DL), which

does not contain any individual. The opposite of an empty set is the universe containing

everything of a knowledge domain, which is represented by another class Thing denoted as >

in DL. I interprets Thing and Nothing as:

ThingI = ∆

NothingI = Ø
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Thus, specifying several classes are disjoint can be made by setting the intersection of them to

a subclass of Nothing. For example, in the beer ontology, we may restrict that ales and lagers

are two different beers, and therefore classes Ale and Lager should not contain the same beer

individuals, which can be specified by (2.29).

Ale u Lager v ⊥ (2.29)

The truth condition for holding such an axiom is defined by I as follows:

I |= Ale u Lager v ⊥ iff AleI ∩ LagerI = Ø

In DL, there might exist more than one way to specify the same type of axioms. For example,

(2.29) can also be expressed as (2.30), which uses the constructor ComplementOf to make Lager

a subset of the complement of Ale.

Lager v ∆\Ale (2.30)

Note that the constructor DisjointClasses is not limited to specify disjointness between only two

class expressions, but a finite number of class expressions. However, using the DL syntax like

(2.29) or (2.30) to specify disjointness between every pair of n class expressions will require

(n − 1)! DL statements contained in an ontology. To mitigate this, a more compact format,

written as DisCla(CE1 , . . . , CEn), is offered by DL, and its satisfying condition is defined as:

I |= DisCla(CE1 , . . . , CEn) iff CEi

I ∩ CEj

I = Ø,where 1 ≤ i < j ≤ n

OWL 2 also provides another constructor DisjointUnion, which can be used to define an atomic

class as a union of some disjoint class expressions. DisjointUnion is actually a syntactic sugar

combining DisjointClasses and UnionOf. For instance, we can define Beer as a union of the two

disjoint classes Ale and Lager by adding an extra axiom (2.31) alongside (2.29) or (2.30).

Beer ≡ Ale t Lager (2.31)

A more compact syntax for representing DisjointUnion is DisUni(C,CE1 , . . . , CEn) (i.e. C as a

union of CE1 , . . . , CEn which are pairwise disjoint). Thus, to make the beer ontology more

concise, (2.29) and (2.31) can be merged as:

DisUni(Beer,Ale, Lager) (2.32)

Recall the aforementioned instance checking question in Section 2.2.3: whether CreamAle be-
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longs to Lager or not? This question was evaluated to unknown, as OWL 2 follows the OWA;

however, because we have added some extra statements, the answer to this question might

need to be reconsidered. Firstly, (2.1) and (2.24) together denote a subsumption hierarchy,

PaleAle v Ale v Beer (i.e. every instance of PaleAle is an Ale and also a Beer). Hence, we can

easily derive that CreamAle is both an Ale and a Beer, because CreamAle has been asserted as

a PaleAle by (2.13). Moreover, the definition of Beer by (2.32) restricts that a Beer can only be

either an Ale or a Lager, which implies that CreamAle cannot be a Lager because it is already

inferred an Ale. Therefore, the fact of Lager(CreamAle) is false now.

The above discussion also highlights the difference between OWA and CWA when modelling an

information domain [GM05]; in OWA, we start to model a knowledge domain from the case that

everything is possible, and then restrict the model by adding more relations and constraints.

However, in CWA, we follow the principle that everything is not true unless we explicitly store

them, then we build up the model by adding more facts.

AllValuesFrom, SomeValuesFrom, HasValue and OneOf:

OWL 2 offers constructors AllValuesFrom (symbolised as ∀) and SomeValuesFrom (symbolised

as ∃) for specifying universal and existential quantification, respectively. AllValuesFrom can be

used to form a class expression ∀P .CE, which defines a set of individuals x such that if x is

related to y by P , then y must be inferred as a member of CE. This is interpreted by I as:

(∀P .CE)I = {x | ∀y : if〈x, y〉 ∈ P I then y ∈ CE
I}

Note that as a result of this interpretation, if there is no pair 〈x, y〉 in P , the expression ∀P .CE

still holds for x.

In the beer ontology, we may use ∀hasFlavour.Flavour to specify that any individual which

hasFlavour relates to is a Flavour, and use ∀hasColour.Colour to specify that any individual

which hasColour relates to is a Colour. Obviously, this is generally true for all objects in the

knowledge domain of beer; therefore, we can specify the universe class Thing as a subclass of

∀hasFlavour.Flavour by (2.33), and as a subclass of ∀hasColour.Colour by (2.34), in order to

apply the two universal quantifications to every individual in the ontology.
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> v ∀hasFlavour.Flavour (2.33) > v ∀hasColour.Colour (2.34)

The axioms (2.33) and (2.34) actually specify the PropertyRange of hasFlavour and hasColour,

respectively. Indeed, PropertyDomain and PropertyRange axioms, which we detail the semantics

later in Section 2.3.3, adopt AllValuesFrom expressions to respectively restrict property subjects

and objects to individuals from particular classes.

An expression formed by SomeValuesFrom specifies an existential quantification. Its DL syntax

∃P .CE defines a set of individuals x such that there exists at least one pair of individuals 〈x, y〉

in P , where the individual y comes from the class expression CE. I interprets ∃P .CE as:

(∃P .CE)I = {x | ∃y : 〈x, y〉 ∈ P I and y ∈ CE
I}

We may set the CE of ∃P .CE to be the universe class Thing, i.e. ∃P .>. We call ∃P .CE in

the case of CE ≡ > unqualified and the expression can be simplified as ∃P ; otherwise, if CE

denotes a class expression other than Thing, we say the expression is qualified. Note that the

unqualified case ∀P for AllValuesFrom expression ∀P .CE, just denotes >. This can be explained

by the interpretation of ∀P :

(∀P )I = {x | ∀y : if〈x, y〉 ∈ P I then y ∈ ∆}

which means that ∀P includes:

1. all individuals x which are related by P (because y ∈ ∆ is always true);

2. all individuals other than x (since ∀P still holds for individuals which are not recorded

as related by P because of the definition of an AllValuesFrom expression).

Thus, ∀P is further interpreted as (∀P )I = ∆.

OWL 2 allows for specifying an atomic class as a subset of, or as equivalent to, a SomeValuesFrom

expression (i.e. C v ∃P .CE or C ≡ ∃P .CE). For example, in the beer ontology, we may restrict

that each individual in Beer must have at least one flavour by:

Beer v ∃hasFlavour.Flavour (2.35)

This axiom is satisfied if the following condition holds:
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I |= Beer v ∃hasFlavour.Flavour iff BeerI ⊆ {x | ∃y : 〈x, y〉 ∈ hasFlavourI and y ∈ FlavourI}

Since (2.33) (the PropertyRange axiom of hasFlavour) already restricts that all the individuals

which hasFlavour relates to must be from Flavour, (2.35) can be simplified as (2.36):

Beer v ∃hasFlavour (2.36)

Note that in (2.35) or (2.36), we only set Beer as a subclass of ∃hasFlavour.Flavour or ∃hasFlavour

rather than making them equivalent (i.e. Beer ≡ ∃hasFlavour.Flavour). The reason is that by

satisfying the equivalence, any individual which is related by hasFlavour to a Flavour is a Beer,

which is too restricted as other foods (not a beer) might also have their flavours recorded.

Finally, a HasValue expression ∃P .{a} denotes a set of individuals x which are related to a

particular individual a by P , and it is interpreted as:

(∃P .{a})I = {x | ∃y : 〈x, y〉 ∈ P I and y = aI}

For example, in the beer ontology, we may express every Porter has a Dark colour by:

Porter v ∃hasColour.{Dark} (2.37)

Again, it would be inappropriate to specify Porter ≡ ∃hasColour.{Dark}, since individuals other

than porters may also have a dark colour. However, we might adopt the use of IntersectionOf

to give a more proper definition of Porter as things which are beers and have a dark colour by:

Porter ≡ Beer u ∃hasColour.{Dark} (2.38)

Note that a HasValue expression ∃P .{a} can be treated as a special SomeValuesFrom expression

∃P .CE, where CE is a class containing just one individual a. Note that from the viewpoint

of inference, there is a significant difference between C v ∃P .{a} and C v ∃P .CE (where

CE contains more than one individual). For C v ∃P .{a}, every individual x in C derives

an instance 〈x, a〉 to P . However, in the case of C v ∃P .CE, for each individual x in C, we

only know it must be related to at lease one individual in CE by P , but which one of them

is unknown. Therefore, including axioms like C v ∃P .CE in an ontology might result in the

inference of anonymous individuals (i.e. non-deterministic reasoning).

Finally, specifying a class by enumerating its included individuals (i.e. {a1 . . . an} in DL) is
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achieved by the constructor OneOf, and this class is called an anonymous class, which is

interpreted as:

({a1 . . . an})I = {a1
I , . . . , an

I}

MinCardinality, MaxCardinality and ExactCardinality:

OWL 2 DL provides three cardinality-related constructors to express restrictions over the num-

ber of different objects to which subjects are related by a property. Expressions produced by

constructors MinCardinality, MaxCardinality and ExactCardinality are denoted as unqualified as

>nP , 6nP and =nP (where n is a natural number), respectively, and I interprets them as:

(>nP )I = {x | #{y | 〈x, y〉 ∈ P I} ≥ n}

(6nP )I = {x | #{y | 〈x, y〉 ∈ P I} ≤ n}

(=nP )I = {x | #{y | 〈x, y〉 ∈ P I} = n}

As can be seen, >nP denotes a set of x which is related to at least n different y by P . Similarly,

6nP specifies a set of x such that there are at most n different y to which P relates x. Finally,

=nP represents a set of x such that there are exactly n different y to which x is related via

P . Cardinality-related expressions can also be qualified, expressed as >nP .CE, 6nP .CE and

=nP .CE in DL. We provide their interpretations as:

(>nP .CE)I = {x | #{y | 〈x, y〉 ∈ P I and y ∈ CE
I} ≥ n}

(6nP .CE)I = {x | #{y | 〈x, y〉 ∈ P I and y ∈ CE
I} ≤ n}

(=nP .CE)I = {x | #{y | 〈x, y〉 ∈ P I and y ∈ CE
I} = n}

Interestingly, an ExactCardinality expression can be semantically represented as the intersec-

tion of a MinCardinality and a MaxCardinality expression (i.e. (=nP )I = (>nP u 6nP )I or

(=nP .CE)I = (>nP .CE u 6nP .CE)I). Intuitively, ∃P .CE is also semantically equivalent to

>1P .CE, and therefore, (2.35) can be alternatively written as:

Beer v >1 hasFlavour.Flavour (2.39)
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2.3.3 Property-related Semantics

In this section, we continue with the semantics related to properties. Unlike class-related

semantics, which are purely constructed between class expressions, OWL 2 standard groups

some semantics, such as PropertyDomain, PropertyRange and ReflexiveProperty into property-

related semantics, even if they are formed between class expressions. Property expressions can

be atomic or complex (denoted as P or PE). Note that PE can be either P or P−, as OWL

2 standard only provides one constructor InverseOf to form a complex property expression.

InverseOf and InverseProperty:

An InverseOf expression P− swaps subjects and objects of P , and it is interpreted as:

(P−)I = {〈y, x〉 | 〈x, y〉 ∈ P I}

In OWL 2, a property can be defined as the inverse of another one, i.e. P ≡ Q−, where we call

P an InverseProperty of Q and vice versa. To satisfy P ≡ Q− is defined as:

I |= P ≡ Q− iff P I = {〈y, x〉 | 〈x, y〉 ∈ QI}

In the beer ontology, we might add a property isFermentedBy, which relates beers to their

fermentation yeasts, and another one fermentsBeer, which relates yeasts to their fermenting

beers. We can express that the two properties are inverse of each other by:

isFermentedBy ≡ fermentsBeer− (2.40)

To satisfy this axiom, the following truth condition must hold:

I |= isFermentedBy ≡ fermentsBeer− iff isFermentedByI = {〈y, x〉 | 〈x, y〉 ∈ fermentsBeerI}

PropertyDomain and PropertyRange:

In the previous section, we have shown examples of PropertyRange axioms, such as (2.33) and

(2.34). Similar to PropertyRange axioms, which restrict the objects of a property to individuals

from some particular class, PropertyDomain axioms apply a similar constraint over the subjects
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of a property. To satisfy PropertyDomain and PropertyRange axioms are respectively specified

as:

I |= > v ∀P−.CE iff ∀x : if 〈x, y〉 ∈ P I then x ∈ CE
I

I |= > v ∀P .CE iff ∀y : if 〈x, y〉 ∈ P I then y ∈ CE
I

As can be seen, PropertyDomain and PropertyRange axioms are actually subsumption relations

between class expressions (i.e. from> to ∀P−.CE and from> to ∀P .CE, respectively). However,

OWL 2 standard considers them as property-related semantics rather than class-related. In the

beer ontology, if we include all yeasts in a new class Yeast, we can specify the PropertyDomain

and PropertyRange axioms for isFermentedBy and fermentsBeer by (2.41) – (2.44):

> v ∀isFermentedBy−.Beer (2.41)

> v ∀isFermentedBy.Yeast (2.42)

> v ∀fermentsBeer−.Yeast (2.43)

> v ∀fermentsBeer.Beer (2.44)

Note that specifying the PropertyDomain of P is equivalent to specifying the PropertyRange of

P−. The DL syntax for defining the PropertyDomain of P as CE can be alternatively expressed as

Dom(P ,CE), and similarly, setting the PropertyRange of P as CE can be written as Rng(P ,CE).

There might be multiple class expressions defining the domain or range of a property (i.e.

Dom(P ,CE1), . . . ,Dom(P ,CEn) or Rng(P ,CE1), . . . ,Rng(P ,CEn)). In this case, we should note

that this actually restricts subjects or objects to the intersection of these class expressions

(defined by their interpretations below), and not the union of them.

(Dom(P ,CE1), . . . ,Dom(P ,CEn))I = (Dom(P ,CE1 u . . . u CEn))I

(Rng(P ,CE1), . . . ,Rng(P ,CEn))I = (Rng(P ,CE1 u . . . u CEn))I

Thus, in the beer ontology, restricting the PropertyDomain of hasFlavour and hasColour to be

instances from Ale or Lager should be expressed as:

Dom(hasFlavour,Ale t Lager) (2.45) Dom(hasColour,Ale t Lager) (2.46)

rather than as:

Dom(hasFlavour,Ale)

Dom(hasFlavour, Lager)

Dom(hasColour,Ale)

Dom(hasColour, Lager)

which actually mean Dom(hasFlavour,Ale u Lager) and Dom(hasColour,Ale u Lager).
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SubPropertyOf, EquivalentProperties, and DisjointProperties:

Analogous to SubClassOf, EquivalentClasses and DisjointClasses, OWL 2 DL provides construc-

tors SubPropertyOf, EquivalentProperties, and DisjointProperties to respectively define relations

of subsumption, equivalence and disjointness among property expressions. In DL, one prop-

erty expression stated as a sub property of another is expressed as PE1 v PE2 , two properties

equivalent to each other is denoted as PE1 ≡ PE2 , and DisPro(PE1 , . . . , PEn) is used for spec-

ifying that some property expressions are pairwise disjoint. Note that although the form of

CE1 u CE2 v ⊥ is a proper DL statement to denote two disjoint classes, a similar expression

like PE1 u PE2 v ⊥ for specifying two disjoint properties is disallowed [Rud11] (as ⊥ does not

denote an empty set of the Cartesian product of the knowledge universe). Instead, the syntax

of DisPro(PE1 , . . . , PEn) should be used for representing DisjointProperties. We list the truth

conditions for satisfying the three types of relations as:

I |= PE1 v PE2 iff PE1

I ⊆ PE2

I

I |= PE1 ≡ PE2 iff PE1

I = PE2

I

I |= DisPro(PE1 , . . . , PEn) iff PEi

I ∩ PEj

I = Ø where 1 ≤ i < j ≤ n

We can illustrate these constructors by adding the following axioms to the beer ontology.

hasColour v hasDescription (2.47)

hasFlavour v hasDescription (2.48)

hasFlavour ≡ hasTaste (2.49)

DisPro(hasTaste, hasColour) (2.50)

where (2.47) and (2.48) are two SubPropertyOf axioms, which set hasColour and hasFlavour

as two sub properties of a new property hasDescription, (2.49) defines another new property

hasTaste equivalent to hasFlavour, and finally (2.50) specifies that hasTaste and hasColour are

disjoint with each other.

PropertyChain and TransitiveProperty:

A new feature from OWL 2 compared with OWL 1 is the ability to concatenate a chain

of properties by using the constructor PropertyChain (symbolised as ◦). Concatenating two

properties PE1 and PE2 denotes a set of 〈x, z〉 such that 〈x, y〉 and 〈y, z〉 are respectively in PE1
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and PE2 . For instance, we might add to the beer ontology: 1) a property brewedIn to relate

beers to the places where the beers are brewed; 2) a property locatedIn which relates places to

their upper-level places; 3) two A-Box facts asserted as (2.51) and (2.52):

brewedIn(MunichDunkel,Munich) (2.51) locatedIn(Munich,Germany) (2.52)

Thus, if we have brewedIn ◦ locatedIn concatenating brewedIn and locatedIn, the pair of indi-

viduals 〈MunichDunkel,Germany〉 will be included in this PropertyChain expression. We might

additionally specify a subsumption relationship from brewedIn ◦ locatedIn to brewedIn as:

brewedIn ◦ locatedIn v brewedIn (2.53)

Hence 〈MunichDunkel,Germany〉 will be derived as an instance of brewedIn because of (2.53).

The most general PropertyChain expression is to concatenate an arbitrary number of property

expressions, which is denoted as PE1 ◦ PE2 ◦ . . . ◦ PEn , and I interprets this as:

(PE1 ◦ PE2 ◦ . . . ◦ PEn)I = {〈x0, xn〉 | 〈x0, x1〉 ∈ PE1

I , 〈x1, x2〉 ∈ PE2

I , . . . , 〈xn−1, xn〉 ∈ PEn

I}

On the other hand, a special usage of PropertyChain is to make an atomic property as a super

property of a PropertyChain expression concatenating itself (i.e. P ◦ P v P ). This gives the

property the semantics of transitivity, which means that if 〈x, y〉 and 〈y, z〉 are in P , then

〈x, z〉 is also its instance, and P is called a TransitiveProperty. The truth condition for satisfying

a transitive property P is:

I |= P ◦ P v P iff ∀x, y, z : if〈x, y〉 ∈ P and 〈y, z〉 ∈ P then 〈x, z〉 ∈ P

Note that specifying a transitive property can be alternatively written as Tra(P ) in DL. Thus

in the beer ontology, we can set locatedIn as a TransitiveProperty by (2.54) or (2.55):

locatedIn ◦ locatedIn v locatedIn (2.54) Tra(locatedIn) (2.55)

Considering the A-Box fact (2.52) and another fact (2.56) below, we can derive a new fact

(2.57) because of the transitivity of locatedIn.

locatedIn(Germany,Europe) (2.56) locatedIn(Munich,Europe) (2.57)

The transitivity can be also understood as a characteristic of a property P . Other allowed prop-

erty characteristics are SymmetricProperty, FunctionalProperty, ReflexiveProperty, etc., which we

now define.
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SymmetricProperty and AsymmetricProperty:

A property P is a SymmetricProperty when it is the case that if 〈x, y〉 is in P , then 〈y, x〉 also

belongs to P . We denote a symmetric property by P ≡ P− or a simpler syntax Sym(P ), and

satisfying a SymmetricProperty P is defined as:

I |= P ≡ P− iff ∀x, y : if 〈x, y〉 ∈ P I then 〈y, x〉 ∈ P I

In the beer ontology, we could have a SymmetricProperty named adjacentPlace by (2.58) or (2.59)

to relate places to their adjacent places. Intuitively, the symmetry of adjacentPlace expresses

that if a place x is adjacent to a place y, then y must be adjacent to x.

adjacentPlace ≡ adjacentPlace− (2.58) Sym(adjacentPlace) (2.59)

As Germany and Belgium are adjacent to each other, if we assert one of (2.60) and (2.61), the

other will be automatically inferred as a result of the symmetry.

adjacentPlace(Germany,Belgium) (2.60) adjacentPlace(Belgium,Germany) (2.61)

An AsymmetricProperty by contrast means that if 〈x, y〉 is in a property P , then 〈y, x〉 must

not be an instance of P ; in other words, P must not contain 〈x, y〉 and 〈y, x〉 at the same

time. In DL, the asymmetry of a property is specified by making the property disjoint with its

InverseOf expression, denoted by DisPro(P , P−) or Asy(P ). The truth condition for satisfying

an AsymmetricProperty P is defined as:

I |= DisPro(P , P−) iff ∀x, y : if 〈x, y〉 ∈ P I then 〈y, x〉 /∈ P I

In the beer ontology, since hasDescription relates beers to their descriptions, which cannot be

inversely interpreted, this property should be specified asymmetric by (2.62) or (2.63).

DisPro(hasDescription, hasDescription−) (2.62) Asy(hasDescription) (2.63)

Note that from (2.62) or (2.63), hasFlavour (also its equivalent property hasTaste) and hasColour,

which are sub properties of hasDescription, will implicitly obtain the semantics of asymmetry.

Indeed, if any sub property of an AsymmetricProperty P contains symmetric tuples (i.e. 〈x, y〉

and 〈y, x〉), these tuples will be derived as instances of P , which conflicts with the asymmetry.
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ReflexiveProperty and IrreflexiveProperty:

The semantics of reflexivity mean that an individual is related to itself by some property.

OWL 2 provides a HasSelf expression ∃P .Self, formed by using the special class Self, to denote

the individuals relating to themselves by P . I interprets ∃P .Self as:

(∃P .Self)I = {x | 〈x, x〉 ∈ P I}

The reflexivity can be either universally or locally specified. Universal reflexivity expresses that

all individuals in the knowledge domain (i.e. ∆) are related to themselves by a property. In DL,

the universal reflexivity is specified by setting > as a subclass of ∃P .Self, i.e. > v ∃P .Self, or

alternatively be written as Ref(P ). We call such a property P a ReflexiveProperty, and satisfying

a ReflexiveProperty P is defined as:

I |= > v ∃P .Self iff ∀x ∈ ∆ : 〈x, x〉 ∈ P

Local reflexivity (a.k.a. SelfRestriction) by contrast is expressed as C v ∃P .Self, which specifies

that only individuals from a local class C (i.e. not all individuals from the knowledge universe)

are related to themselves by P . Satisfying local reflexivity should follow:

I |= C v ∃P .Self iff ∀x ∈ C : 〈x, x〉 ∈ P

We can even make C equivalent to a HasSelf expression (i.e. C ≡ ∃P .Self); consequently, not

only any individual x in C will infer a tuple 〈x, x〉 to P , but also any tuple of the form 〈y, y〉

of P will derive y as a member of C.

Irreflexivity is the negation of reflexivity, and an IrreflexiveProperty P , denoted as > v ¬∃P .Self

or Irr(P ), must not relate any individual x to the same individual itself. I satisfies an

IrreflexiveProperty P on the following condition:

I |= > v ¬∃P .Self iff ∀x ∈ ∆ : 〈x, x〉 /∈ P I

The property hasDescription in the beer ontology can be naturally specified with the semantics

of irreflexivity by (2.64) or (2.65), because it is not semantically sensible to relate a beer to

itself through hasDescription.

> v ¬∃hasDescription.Self (2.64) Irr(hasDescription) (2.65)
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Analogous to asymmetry, the irreflexivity of hasDescription is inherited by its sub properties

hasFlavour, hasTaste and hasColour.

FunctionalProperty and InverseFunctionalProperty:

FunctionalProperty is a special case of using the MaxCardinality, where each subject in a func-

tional property is related to at most one object through this property. Denoting P as a

FunctionalProperty uses the DL syntax > v 61P or Fun(P ). A functional property should

satisfy the following condition:

I |= > v 61P iff ∀x, y, z : if 〈x, y〉 ∈ P I and 〈x, z〉 ∈ P I then y = z

To explain the condition, it is necessary to introduce another constructor SameIndividual, which

can be used to specify that multiple individuals refer to the same knowledge object, even though

their names are different. Recall that in Definition 2.1, the interpretation I associates each

individual a with an object a in the knowledge domain. Expressing multiple individuals are

the same, expressed as =(a1, . . . , an), means that I maps these individuals to the same object:

I |= =(a1, . . . , an) iff ai
I = aj

I where 1 ≤ i < j ≤ n

Note that this contradicts the UNA, which requires that individuals with different names do

not refer to the same object. Specifying that individuals do not refer to the same object can

use DifferentIndividuals, denoted as 6=(a1, . . . , an), for which the satisfying condition is:

I |= 6=(a1, . . . , an) iff ai
I 6= aj

I where 1 ≤ i < j ≤ n

by which I maps individuals a1, . . . , an to all different objects in the knowledge domain. Apply-

ing DifferentIndividuals over all individuals in an ontology is semantically equivalent to applying

the UNA. Considering the truth condition for satisfying > v 61P , it defines that if the same

individual is related to two individuals by P , then the two individuals are the same (i.e. they

are assigned to the same object in the knowledge universe).

If the inverse of P is a FunctionalProperty, we call P an InverseFunctionalProperty, denoted as

> v 61P− or InvFun(P ) and satisfying this should follow the following condition:

I |= > v 61P− iff ∀x, y, z : if 〈y, x〉 ∈ P I and 〈z, x〉 ∈ P I then y = z
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HasKey:

The constructor HasKey is provided by OWL 2 DL, but not in the SROIQ DL, and it allows

multiple properties P1 . . . Pn together to uniquely identify an individual in a class C, which is

denoted as HasKey(C, (P1 . . . Pn)). The satisfying condition is:

I |= HasKey(C, (P1 . . . Pn)) iff ∀x, y, z1, . . . , zn :

if 〈x, z1〉 ∈ P1
I , . . . , 〈x, zn〉 ∈ Pn

Iand 〈y, z1〉 ∈ P1
I , . . . , 〈y, zn〉 ∈ Pn

I then x = y

which means that if both x and y are related to z1 . . . zn by P1 . . . Pn, respectively, then x and

y are the same.

NegativePropertyAssertion:

Finally, OWL 2 DL allows users to explicitly specify that a property P does not contain 〈x, y〉

as its instance (i.e. ¬P (x, y)); therefore I does not assign such a tuple to this property:

I |= ¬P (x, y) iff 〈x, y〉 /∈ P I

2.4 Summary

In this chapter, we have reviewed the complete Direct Semantics of the most recent release of

the OWL 2 language by using the interpretation I of this semantics. We choose the Direct

Semantics rather than the RDF-based Semantics to ensure the inference decidability. One

reason why the RDF-based Semantics brings undecidable reasoning is because it interprets

classes as members of the knowledge universe, while the Direct Semantics interprets classes

as subsets of the knowledge universe. Therefore, the RDF-based semantics allows the case of

specifying a class as a member of another class, which is disallowed in the Direct Semantics.

The Direct Semantics plays a significant role in ontology inference, the details of which are

reviewed in the next chapter.





Chapter 3

Review of Inference

3.1 Introduction

In Section 2.2.3 of Chapter 2, we have provided a brief overview of inference (a.k.a. reason-

ing), which is the process of deriving implicit consequences from explicitly expressed knowledge.

Being able to perform inference is usually considered as a key difference of OWL from more

traditional database modelling languages.

Inference over ontologies can be divided into T-Box and A-Box inference, where the T-Box

inference focuses on the schema of the ontology, and the A-Box inference concentrates

on the data-related inference. In each category, different inference tasks are considered;

for instance, classification of atomic classes, which builds the hierarchy of all classes in an

ontology, belongs to the T-Box inference, and realisation, which derives for each individual its

most specific membership of classes, is a task of the A-Box inference. A system that is able

to perform some of (or all) the inference tasks is called a reasoner. To perform inference,

different inference techniques, such as the tableaux algorithm and rule-based inference,

are adopted by reasoners.

In this chapter, Section 3.2 first introduces inference tasks that are commonly considered in

OWL 2 DL. Then, Section 3.3 reviews the tableaux algorithm, and analyses its advantage of

complete T-Box inference, and disadvantages of intractable A-Box inference. Next, Section 3.4

reviews rule-based inference which aims for tractable inference over large A-Boxes.

59
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3.2 Inference Tasks

For a given ontology O and an axiom, we denote by O |= axiom that this axiom can be

inferred from existing statements in O based on some semantics. We use O 6|= axiom for the

case that the axiom cannot be inferred from the existing statements contained in O based

on those semantics. Since we adopt the OWL 2 interpreted by Direct Semantics (i.e. OWL

2 DL), the inference we consider is based on the interpretations of OWL 2 expressions and

truth conditions for holding OWL 2 axioms defined by the interpretation I in Definition 2.1.

Moreover, an inference task is global, if it considers the whole ontology as input. In OWL

2 DL, global inference tasks include global consistency, classification of atomic classes and

realisation. By contrast, local inference tasks take a fragment of an ontology as input, and

they include subclass relationship, class equivalence, class satisfiability, instance checking and

instance retrieval.

3.2.1 Global Inference Tasks

Global consistency

An ontology O is said to be consistent, if it has at least one interpretation which satisfies all

axioms contained in this ontology; such an interpretation is also called a model of O. Because

we adopt the Direct Semantics1 of OWL 2 (i.e. the I of OWL 2 DL which we have reviewed in

Chapter 2), global consistency can be understood as checking as to whether all axioms in O can

be satisfied based on I. An inconsistent ontology contains at least one axiom that cannot be

satisfied by I; for example, from (2.64), I satisfies that hasDescription is an IrreflexiveProperty if

hasDescription does not relate any individuals to themselves. Therefore, adding any fact of the

form hasDescription(x, x) will result the beer ontology entering into an inconsistent state. As

global consistency is a global inference task, it requires considering T-Box axioms and A-Box

facts together.

Classification of atomic classes

1We adopt I of OWL 2 DL as the ontology model in this thesis.
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Atomic classes, such as PaleAle, Porter and Lager, are atomic concepts which denote sets of

individuals. They are not like complex class expressions (e.g. CE1uCE2 , CE1tCE2 and ∀P .CE),

which are formed by combining atomic classes and constructors. The classification of them is

the process of computing the hierarchy of all atomic classes included in an ontology; in other

words, the derivation of all subsumption relations among all the atomic classes. Classification

of atomic class is a T-Box inference task, as it focuses on the schema of an ontology.

Realisation

While the previous task classifies all atomic classes, realisation can be described as the process

of classifying all individuals. This task derives for every individual its most specific atomic

classes. An atomic class C is more specific than another one D, if C is the subclass of D (i.e.

C v D). In order to demonstrate this inference task, we add to the beer ontology the following

T-Box axioms:

BrownBritishBeer v Ale (3.1)

BrownBritishBeer ≡ Beer u ∃hasColour.{Brown} u ∃brewedIn.{Britain} (3.2)

which introduce a class BrownBritishBeer as a subclass of Ale, and define this class as British-

brewed beers that have a Brown colour.

For the beer individual BritishBrownAle, since we have already asserted it as an Ale by (2.3), it

should be implicitly derived as a Beer, because every ale is a beer defined by (2.24). If we have

another two A-Box facts (3.3) and (3.4):

hasColour(BritishBrownAle,Brown) (3.3) brewedIn(BritishBrownAle,Britain) (3.4)

we can derive BritishBrownAle as a BrownBritishBeer (i.e. O |= BrownBritishBeer(BritishBrownAle))

because of (3.2). Thus, through the task of realisation, the membership of BritishBrownAle is

now more specific to BrownBritishBeer than to Ale. Note that, this example only shows the

realisation over one individual; however, as a global inference task, realisation should repeat

for every individual in an ontology.
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3.2.2 Local Inference Tasks

Subclass relationship and Class equivalence

The inference task subclass relationship checks for a given ontology O and a SubClassOf

axiom C v D (between two atomic classes) whether O |= C v D or O 6|= C v D. For

example, in the beer ontology, the two SubClassOf axioms (3.5) and (3.6) below are satisfied

(i.e. O |= Ale v LiquidBread and O |= Lager v LiquidBread) because Ale and Lager are both

subclasses of Beer defined by (2.24) and (2.25), and Beer and LiquidBread are specified equivalent

by (2.28).

Ale v LiquidBread (3.5) Lager v LiquidBread (3.6)

Besides Ale and Porter, all subclasses of Beer (e.g. PaleAle and BrownBritishBeer) are also sub-

classes of LiquidBread (i.e. equivalent classes share the same subclasses). The subsumption

PaleAle v Lager is an example of O 6|= C v D (i.e. O 6|= PaleAle v Lager); PaleAle as a subclass

of Ale cannot be a subclass of Lager because Ale is disjoint with Lager defined by (2.29).

The inference task class equivalence determines for a given ontology O and a class equivalence

axiom C ≡ D (between two atomic classes) whether O |= C ≡ D or O 6|= C ≡ D. Since C ≡ D

can be interpreted as C v D and D v C, checking a class equivalence can be transformed as

checking its equivalent two subclass relationships. Because both subclass relationship and class

equivalence focus the structure of an ontology, we classify the two tasks into T-Box inference.

Class satisfiability

A class C is satisfiable if it is not empty (i.e. C 6≡ ⊥); and a class which cannot contain any

individual is called unsatisfiable (i.e. C v ⊥). For example, if we make a class SpecialBeer

a subclass of both Ale and Lager (i.e. SpecialBeer v Ale, SpecialBeer v Lager), from (2.29), we

will infer SpecialBeer v ⊥, and therefore, SpecialBeer is unsatisfiable. Thus this inference task

checks whether a given class (except Nothing) is satisfiable or unsatisfiable.

Instance checking and Instance retrieval

As we have already illustrated in Section 2.2.3 of Chapter 2, these two inference tasks are
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considered in A-Box inference. Instance checking is the process of determining for a given

class C and a given individual a, whether a belongs to C or not (i.e. to check O |= C(a) or

O 6|= C(a)). The checking could result in unknown as OWL 2 follows the OWA, so true means

O |= C(a), unknown and false means O 6|= C(a). In some circumstances, such as computing

answers to a query executed over an ontology, it is more useful and efficient to retrieve all

instances of a class or property, rather than checking whether a particular instance belongs to

a class or property. The task of instance retrieval fits this case, and it derives for each class

all of its individuals. Instance retrieval is quite useful in many practical applications, and to

return all the instances belonging to a particular class is a frequent computation task when

querying the ontological data.

3.2.3 Inference Properties of Reasoners

Software which is able to perform all or some of the above inference tasks is called a reasoner.

Reasoners based on different inference techniques can be divided into different groups, such

as tableaux-based reasoners and rule-based reasoners, which are detailed in Section 3.3 and

Section 3.4, respectively. For a set of inference tasks performed by a reasoner, the three inference

properties listed below are often used for evaluating the reasoner.

• Soundness:

A reasoner R is sound for a given ontology O and a set of inference tasks T , if O entails

all the results computed by R for T . We may denote this by O |= {axioms}RT , where

{axioms}RT is the set of derivations computed by R w.r.t. O and T .

• Completeness:

A reasoner R is complete for a given ontology O and a set of inference tasks T , if R

is able to derive all possible consequences for the tasks T entailed by O. We denote this

by O′T ⊆ {axioms}RT , where O′T is the set of consequences for T entailed by O, and

{axioms}RT is the set of results computed by R w.r.t. O and T .

• Complexity:
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For a given ontology O, the complexity for computing a set of inference tasks T by

a reasoner R is also an important property for evaluating R. We focus on tractable

inference, which can be described as R is able to process T for O in polynomial time.

Tractable inference is particularly important in practical inference systems. Since the

OWL 2 DL is decidable, but can be N2EXPTIME-complete, three profiles (i.e. sub-

languages) of OWL 2 (i.e. OWL 2 EL, OWL 2 QL and OWL 2 RL) are introduced to

limit the full use of OWL 2, so that tractable inference can be achieved. We review the

three profiles in Section 3.4.1.

3.3 Tableaux-based Inference

Tableaux-based inference relies on the tableaux algorithm, which reduces every inference task

to a problem of consistency checking. The algorithm verifies the consistency by attempting to

construct a tableau which represents a model for the ontology; the ontology is consistent if the

constructing process terminates without finding any inconsistency. The tableaux algorithm is

known to provide sound and complete inference for ontologies expressed in the SROIQ DL, on

which the OWL 2 DL is based. Illustrating how the tableaux algorithm can be used to reason

the full SROIQ DL is very complicated, so instead we choose the ALC DL, which is a simple

fragment of SROIQ DL that only allows class expressions constructed by >, ⊥, ¬, u, t, ∀

and ∃. In this section, we first outline the ALC DL, and afterwards use it to demonstrate the

tableaux algorithm.

3.3.1 ALC ontologies

ALC defines a subset of ontologies expressed in SROIQ DL, which is the logical underpinning

of the Direct Semantics. Each of the DL acronyms (e.g. A, C and Q) corresponds to some

DL constructors and axiom types, and a full list of the DL acronyms is summarised in Ta-

ble 3.1. As can be seen, ALC ontologies allow the use of atomic classes (including Thing and

Nothing), complex classes (using IntersectionOf, UnionOf, ComplementOf, AllValuesFrom and
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Table 3.1: The family of DL acronyms

code corresponding DL constructors and axiom types

AL

- atomic class, top class >
- complex classes C uD, ∀P .C, ∃P
- subclass (C v D) and class equivalence (C ≡ D) axioms
- assertions of the form C(a), P (a, b), =(a, b), and 6=(a, b)

ALC

AL plus:
- bottom class ⊥
- complex classes C, (C tD), ∃P .C
- class disjunction DisCla(C1, . . . , Cn), and class disjoint union DisUni(D,C1, . . . , Cn)

S ALC plus:
- property transitivity Tra(P )

H - subproperty (P v Q) and property equivalence (P ≡ Q) axioms

R

H plus:
- top property and bottom property
- local reflexivity restriction ∃P .Self
- property disjunction DisPro(P1, . . . , Pn)
- reflexivity Ref(P ), irreflexivity Irr(P ) of properties
- symmetry Sym(P ), and asymmetry Asy(P ) of properties
- chain subproperty axioms P1 ◦ · · · ◦ Pn v Q
- negative property assertions: ¬P (a, b)

O - has-value restrictions ∃P .{a}, nominals {a} (i.e. OneOf)

I - inverse properties P−

F - functional restriction 61P

N - unqualified cardinality restrictions 6nP , =nP , >nP

Q - qualified cardinality restrictions 6nP .C, =nP .C, >nP .C

SomeValuesFrom), axioms (expressing SubClassOf, EquivalentClasses and DisjointClasses), and

assertions (specifying ClassAssertion, PropertyAssertion, SameIndividual and DifferentIndividuals).

3.3.2 Tableaux algorithm

In principle, the tableaux algorithm reasons an ontology by attempting to establish a tableau for

the ontology, and such a tableau exists if the establishment process terminates without deriving

any contradiction (i.e. inconsistency). As a result, inference becomes the task of checking

whether an ontology is consistent or not, and indeed the inference tasks listed in Section 3.2

can all be reduced to a task of consistency checking. Before giving the detailed description

of the tableaux algorithm, we first outline how inference tasks can be reduced. Moreover, to

simplify the illustration of the tableaux algorithm, we adopt the Negation Normal Form

(NNF) [Hor97] of an ALC ontology, which is logically equivalent to the ontology.
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Reducing Inference Tasks

The tableaux algorithm uses the fact that inference tasks in Section 3.2 can be reduced to

checking whether an ontology is consistent or not. For example, for the inference task of Subclass

relationship, verifying O |= C v D is logically equivalent to verifying that O∪{C(x)u¬D(x)}

(where x is a new individual that does not appear in O) is inconsistent. Intuitively, for the

inference task of Class equivalence, O |= C ≡ D holds if and only if both O |= C v D and

O |= D v C hold, which can be eventually reduced as two consistency checking problems. We

summarise below how other local inference tasks can be translated to the task of consistency

checking (the three global inference tasks can be reduced to repeated local inference tasks;

for example, the task of Classification of atomic classes, which finds all subsumption relations

between atomic classes, can be processed by repeatedly performing the Subclass relationship

for every possible subsumption relation in the ontology).

• Class consistency : O |= C v ⊥ if and only if O ∪ {C(x)} is inconsistent, where x is a

new individual that does not appear in O.

• Instance checking : O |= C(a) if and only if O ∪ {¬C(a)} is inconsistent.

• Instance retrieval : retrieving all instances of a class C needs to check for all individuals

ai in O, whether O |= C(ai), each of which is an instance checking task.

Negation Normal Form

In order to simplify the demonstration of the tableaux algorithm, we list the NNF of the

ALC ontologies in Table 3.2. An ontology O is logically equivalent to its NNF ONNF . For

example, a subsumption CE1 v CE2 and its (¬CE1 t CE2)NNF are respectively interpreted as

(∀x)(CE1(x)→ CE2(x)) and (∀x)(¬CE1(x) ∨ CE2(x)), which are logically equivalent.

Tableaux algorithms for ALC

The tableau of an ALC ontology is defined in Definition 3.1.
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Table 3.2: ALC to NNF

ALC NNF
=⇒ ALCNNF

CE1 v CE2

NNF
=⇒ (¬CE1 t CE2)NNF

C
NNF
=⇒ C

¬C NNF
=⇒ ¬C

¬¬CE
NNF
=⇒ (CE)NNF

CE1 t CE2

NNF
=⇒ (CE1)NNF t (CE2)NNF

CE1 u CE2

NNF
=⇒ (CE1)NNF u (CE2)NNF

¬(CE1 t CE2)
NNF
=⇒ (¬CE1)NNF u (¬CE2)NNF

¬(CE1 u CE2)
NNF
=⇒ (¬CE1)NNF t (¬CE2)NNF

∀PE.CE
NNF
=⇒ ∀PE.(CE)NNF

∃PE.CE
NNF
=⇒ ∃PE.(CE)NNF

¬∀PE.CE
NNF
=⇒ ∃PE.(¬CE)NNF

¬∃PE.CE
NNF
=⇒ ∀PE.(¬CE)NNF

Definition 3.1 A tableau of an ALC ontology consists of:

• a set of nodes, each of which represents an individual (or an anonymous individual)

• a set of directed edges between pairs of nodes: if individuals represented by the nodes are

related by a property, and the corresponding edge represents the property

• for each node x, a set L(x) of class expressions, all containing x as their class instance

• for each pair of nodes 〈x, y〉, a set L(x, y) of property expressions, all containing 〈x, y〉 as

their property instance

Suppose we have an ALC ontology OALC = {C(a), C v ∃P .D,D v E}, and its NNF is

{C(a),¬C t ∃P .D,¬D t E}. Since now there is only one present individual a, and the class

expression including a is just C, the tableau of the OALC is initialised as:

L(a) = {C}

where there is one node a representing the individual a, and the L(a) now only includes C. If

we consider an instance checking that whether OALC |= (∃P .E)(a) or OALC 6|= (∃P .E)(a), the

tableaux algorithm will first reduce this inference task to a consistency checking problem, i.e. to

check OALC ∪ ¬(∃P .E)(a) is consistent or not; if not, then OALC |= (∃P .E)(a) will be a logical

consequence from OALC. Since the NNF of ¬(∃P .E)(a) is ∀P .(¬E)(a), then OALC∪¬(∃P .E)(a)
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can be denoted in NNF as {C(a), ∀P .(¬E)(a),¬Ct∃P .D,¬DtE}. Consequently, the tableau

of OALC ∪ ¬(∃P .E)(a) is updated to include ∀P .(¬E) in L(a):

L(a) = {C,∀P .(¬E)}

Next, we consider ¬C t ∃P .D. Firstly, ¬C t ∃P .D denotes a T-Box axiom, which should be

applicable for every individual (including a), so L(a) is updated to {C,∀P .(¬E),¬C t∃P .D}:

L(a) = {C,∀P .(¬E),¬C t ∃P .D}

Secondly, because this expression denotes a semantics of disjunction (i.e. non-determinism),

either ¬C or ∃P .D can be added to L(a). However, the option of adding ¬C into L(a) im-

mediately generates a contradiction, because C is already in L(a) (i.e. ¬C contradicts C).

Therefore, we choose the other option which adds ∃P .D into L(a), and the L(a) becomes

{C,∀P .(¬E),¬C t ∃P .D, ∃P .D}:

L(a) = {C,∀P .(¬E),¬C t ∃P .D, ∃P .D}

Adding ∃P .D brings the semantics that a must be related to some anonymous x (which must

be a member of D) by P ; therefore, we can continue to update the tableau as:

L(a) = {C,∀P .(¬E),¬C t ∃P .D, ∃P .D}

L(x) = {D}, L(a, x) = {P}

where there is a new node x representing x, and a direct edge P from a to x which represents

P . Moreover, L(x) = {D} and L(a, x) = {P} is included in the tableau, as x must be an

instance of D, and P relates a to x.

Afterwards, we consider the T-Box axiom ¬D t E in OALC ∪ ¬(∃P .E)(a), the axiom can be

added to L(x) which is consequently updated to L(x) = {D,¬DtE}. Again, ¬DtE denotes

a disjunction, we have two options of adding ¬D or E to L(x). However, the first option of

adding ¬D contradicts D which is already in L(x), and we move to the second option of adding

E. Hence, the tableau constructed so far is displayed as:

L(a) = {C,∀P .(¬E),¬C t ∃P .D, ∃P .D}

L(x) = {D,¬D t E,E}, L(a, x) = {P}

Here, notice that ∀P .(¬E) in L(a) expresses the semantics that every individual (including x)
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to which a is related by P must be a member of ¬E. Thus, ¬E has to be added to L(x),

which contradicts E already in L(x). This contradiction is not avoidable, as we do not have

another option (i.e. the tableau construction terminates with a contradiction). Back to the

inference task of checking that whether OALC |= (∃P .E)(a) or not, since OALC ∪¬(∃P .E)(a) is

checked as inconsistent, we will obtain the A-Box fact (∃P .E)(a) as a valid consequence, i.e.

OALC |= (∃P .E)(a).

To sum up the tableaux algorithm, it reduces each inference task to the problem of consistency

checking, which is performed by constructing a tableau. The tableau construction is failed if

an unavoidable contradiction happens; otherwise, the construction succeeds. Here we list in

Figure 3.1 how the tableau is built from all ALC expressions, whereas a complete introduction

considering SROIQ DL can be found in [HKR09].

• T-Box Axioms CE: if CE 6∈ L(x), then add CE into L(x)

• CE1 u CE2 : if CE1 u CE2 ∈ L(x) and {CE1 , CE2} 6⊆ L(x), then add both CE1 and CE2

into L(x)

• CE1 t CE2 : if CE1 t CE2 ∈ L(x) and {CE1 , CE2} ∩ L(x) = Ø, then add CE1 or CE2 into
L(x)

• ∃P .CE: if ∃P .CE ∈ L(x) and there is no such an individual y that P ∈ L(x, y) and
CE ∈ L(y), then:

1. add a new node y representing y

2. add P into L(x, y)

3. add CE into L(y)

• ∀P .CE: if ∀P .CE ∈ L(x) and there is a node y with P ∈ L(x, y) and CE 6∈ L(y), then
add CE into L(y)

Figure 3.1: Handing u, t, ∀ and ∃ by tableaux algorithm

3.4 Rule-based Inference

Tableaux-based reasoners are known to provide sound and complete inference, but they often

become inefficient when handling large A-Boxes [MS06]. Take the inference task instance

retrieval as an example, the tableaux algorithm will conduct an instance checking for every
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individual and every OWL class. This is intractable when ontologies have a large number of

A-Box facts; therefore, large reasoners usually adopt another inference technique called rule-

based inference, where certain inference tasks can be achieved by applying some reasoning

rules over bulk of A-Box facts, rather than each of them individually. Rule-based inference

often requires to sacrifice the full expressiveness of OWL 2 for some desirable computational

properties. In this section, we first review the three OWL 2 profiles, especially the QL and

RL profiles, which aim to support applications considering large A-Boxes. Then, we illustrate

query-rewriting approaches and materialised approaches, which are two major categories of

rule-based inference.

3.4.1 OWL 2 Profiles

The most recent OWL 2 release has more expressive power compared to its predecessor, OWL

1, because it introduces some new features to represent more complex relations and constraints.

Consequently, OWL 2 ontologies require more complex inference. However, in some circum-

stances, applications might not need the full expressive power of OWL 2. and they might focus

only on some of the inference tasks reviewed in Section 3.2. Therefore, OWL 2 further provides

OWL 2 EL, OWL 2 QL and OWL 2 RL as its three sub-languages, each of which targets some

particular applications, and guarantees tractable inference for some inference tasks.

In particular, the EL profile benefits applications which deal with ontologies that have numer-

ous classes and/or properties. The QL profile targets applications whose major inference task

is query processing over large A-Boxes of data. Finally, the RL profile also aims for applica-

tions which deal with ontologies having large volumes of data, over which scalable inference

is particularly required. In this review, we omit the details of OWL 2 EL, because the thesis

focuses on ontologies with a small and static T-Box (but with large A-Boxes).

OWL 2 QL

OWL 2 QL is introduced mainly for applications which handle ontologies with large-scale

instance data, and in which query processing is the most important inference task. By using
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a suitable inference technique, sound and complete conjunctive query processing over OWL 2

QL ontologies can be performed in LOGSPACE time w.r.t. the size of data (i.e. A-Box). The

logical underpinning of OWL 2 QL is DL-LiteR [CDGL+07] (a DL fragment), where the use of

SameIndividual is not supported, and thus practical inference problems related to not using the

UNA are avoided. OWL 2 QL can be extended with features from other members of DL-Lite

family, such as DL-LiteA (which extends DL-LiteR with FunctionalProperty), but the UNA has

to be additionally adopted in order to guarantee LOGSPACE time query processing.

This OWL 2 QL profile plays an important role in the topic of Ontology-based Data Access

(OBDA) [PK03]. In OBDA explicit facts in A-Boxes are stored in a database (e.g. an RDBMS);

then T-Box axioms in an OWL 2 QL ontology are used to rewrite a query to some sub-queries,

which computes implicit answers (not materialised) alongside explicit answers (materialised)

to the original query. This strategy does not materialise the implicit answers, but dynamically

processes queries by rewriting them, which is known as query-writing or backward-chaining

inference [UVHSB11].

OWL 2 QL restricts the use of the full OWL 2 by not only specifying the set of supported expres-

sions, but also the positions of an axiom in which these expressions are allowed to occur. In Ta-

ble 3.3, we summarise for OWL 2 QL the class and property expressions it supports, and restric-

tions depending on their positions in axioms of the DL form SubExpression v SuperExpression (or

LeftHandExpression v RightHandExpression). For instance, some constructors such as UnionOf

are totally disallowed in order to avoid non-deterministic inference. Moreover, when using

SomeValuesFrom to form a subclass expression, the existential restriction has to be unqualified

(i.e. ∃PE). Also when using the constructor IntersectionOf to form a super-class expression; the

class expressions (i.e. CE1 or CE2 in CE1 u CE2) concatenated by the constructor must also be

expressions supported on the right-hand of QL (denoted as CRE1 and CRE2).

Because of these restrictions, only limited axioms listed in Table 3.4 are expressible in OWL

2 QL ontologies. For example, since the UnionOf constructor is not allowed, specifying the

axiom of CE1 t CE2 v CE3 is not possible. In summary, the QL profile does not support

axioms FunctionalProperty, InverseFunctionalProperty, IrreflexiveProperty, TransitiveProperty and
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Table 3.3: Class & property expressions and restrictions in OWL 2 QL and OWL 2 RL

Exp. Constructor DL Syntax
OWL 2 QL OWL 2 RL

Sub-Exp. Super-Exp. Sub-Exp. Super-Exp.

Class Exp.

Thing > 3 3 7 7

Nothing ⊥ 3 3 3 3

AtomicClass C 3 3 3 3

IntersectionOf CE1 u CE2 7 CRE1 u CRE2 CLE1 u CLE2 CRE1 u CRE2

UnionOf CE1 t CE2 7 7 CLE1 t CLE2 7

ComplementOf ¬CE 7 ¬CLE 7 ¬CLE

AllValuesFrom ∀PE.CE 7 7 7 ∀PE.CRE

SomeValuesFrom
∃PE 3 3 3 7

∃PE.CE ∃PE.> ∃PE.CRE ∃PE.CLE 7

HasSelf ∃PE.Self 7 7 3 3

HasValue ∃PE.{a} 7 7 3 3

MaxCardinality
6nPE 7 7 7 61PE

6nPE.CE 7 7 7 61PE.CLE

OneOf {a1 . . . an} 7 7 3 7

Property Exp.
AtomicProperty PA 3 3 3 3

InverseOf PA
− 3 3 3 3

PropertyChain, and HasKey. With regard to assertions, the use of SameIndividual is forbidden

in order to obey the UNA; furthermore, using NegativePropertyAssertion is disallowed.

OWL 2 RL

OWL 2 RL sacrifices some expressivity of the OWL 2 for inference scalability. The RL profile

is inspired from the Description Logic Program (DLP) [GHVD03] and pD* [tH05], and it

enables applications to perform inference through a forward-chaining mechanism [KWE10].

OWL 2 RL essentially supports all constructors of OWL 2 (except ReflexiveProperty and

DisjointUnion), but restricts the use of them in a syntactic manner (i.e. in axioms of the form

SubExpression v SuperExpression, the supported constructors in the left-hand expressions are

different from the supported ones which are allowed in the right-hand expressions). Again, we

list in Table 3.3 and Table 3.4 the detailed restrictions in OWL 2 RL of using constructors

and supported axioms, respectively. In general, the RL profile does not allow the use of the

class Thing (i.e. >), and thus the constructor ReflexiveProperty is not permitted. Moreover,

UnionOf can only be used to construct a subclass but not a super class, in order to avoid non-

deterministic inference, so that the use of DisjointUnion is disallowed. Unlike the QL profile,
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Table 3.4: Axioms supported in OWL 2 QL and OWL 2 RL

Axiom Constructor DL Syntax OWL 2 QL OWL 2 RL

C
la

ss
A

xi
om

s SubClassOf CE1 v CE2 CLE v CRE CLE v CRE

EquivalentClasses CE1 ≡ CE2 CLE1 ≡ CLE2 3

DisjointClasses DisCla(CE1 . . . CEn) DisCla(CLE1 . . . CLEn) DisCla(CLE1 . . . CLEn)
UnionOf CE1 t CE2 v CE3 7 CLE1 t CLE2 v CRE

DisjointUnion DisUni(C,CE1 . . . CEn) 7 7

P
ro

p
er

ty
A

xi
om

s

SubPropertyOf PE1 v PE2 3 3

EquivalentProperties PE1 ≡ PE2 3 3

DisjointProperties DisPro(PE1 . . . PEn) 3 3

InverseProperties PE1 ≡ PE2
− 3 3

PropertyDomain Dom(PE, CE) Dom(PE, CRE) Dom(PE, CRE)
PropertyRange Rng(PE, CE) Rng(PE, CRE) Rng(PE, CRE)
FunctionalProperty Fun(PE) 7 3

InverseFunctionalProperty InvFun(PE) 7 3

ReflexiveProperty Ref(PE) 3 7

IrreflexiveProperty Irr(PE) 7 3

SymmetricProperty Sym(PE) 3 3

AsymmetricProperty Asy(PE) 3 3

TransitiveProperty Tra(PE) 7 3

PropertyChain PE1 ◦ . . . ◦ PE1 v PE 7 3

HasKey HasKey(CE , PE1
. . . PEn

) 7 HasKey(CLE , PE1
. . . PEn

)

A
ss

er
ti

on
s ClassAssertion CE(a) 3 CRE(a)

PropertyAssertion PE(a1, a2) 3 3

SameIndividual =(a1 . . . a2) 7 3

DifferentIndividuals 6=(a1 . . . a2) 3 3

NegativePropertyAssertion ¬PE(a1, a2) 7 3

the RL profile does not allow SomeValuesFrom to construct the super-class expression, which

prevents the RL profile from deriving anonymous individuals. With regard to universal quan-

tifications, the RL profile only allows the use of AllValuesFrom to form a super-class expression,

but not in a subclass expression. Note that QL and RL profiles overlap each other (i.e. RL 6⊆

QL and QL 6⊆ RL).

A key feature of OWL 2 RL is that ontological axioms expressed in this profile can be trans-

formed into logical implications; for instance, the axiom Rng(PE, CRE) can be transformed as

a logical implication PE(x, y) → CRE(y), where variables x and y are universally quantified.

Realisation and instance retrieval are the most important inference tasks considered in this

profile, and can be performed by implementing logical implications to entailment rules, which

are used to derive and materialise valid conclusions (i.e. inferred information). As compared to
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query-rewriting approaches, the inference results are computed and materialised before execut-

ing a query (which is called a materialised approach), both explicit and implicit information

can be simply viewed by queries without a rewriting process.

3.4.2 Query-rewriting Approach

A query-rewriting approach usually considers OWL 2 QL ontologies, over which sound and com-

plete query processing can be provided (more precisely answering the conjunctive queries)

in LOGSPACE time. In contrast to a materialised approach, query-rewriting starts from a

query executed over the ontological data, and by using the axioms contained in the ontology,

the query is rewritten to a set of sub-queries, which return not only explicitly stored data,

but also implicitly derivations as answers to the query. As a result, there is no need to store

the inference consequences in query-rewriting, so that it requires less space than materialising

all inference results. In addition, the sub-queries which are rewritten from the original query

can be expressed in SQL, which enables existing RDBMSs to answer queries with ontological

augmentation. However, as queries are processed dynamically, this approach often becomes in-

efficient in the case that original queries are complex (i.e. queries need to be rewritten to many

sub-queries, which makes computation of query answers very difficult and time-consuming) or

the case that certain queries are executed frequently and repeatedly.

The simplest form of a query can be specified by replacing the individual names of A-Box

assertion with variables (e.g. Beer(x) or hasColour(x, y)), which retrieves for all instances of a

class or property (query processing is closely related to the inference task of instance retrieval).

This simplest form is called a query atom, and a conjunctive query can be constructed by

conjunctively connecting several query atoms. For example, the conjunctive query Beer(x) ∧

hasColour(x, ’Dark’) searches for beer individuals which have a dark colour. Note that, we can

replace some variables in query atoms with constant values (i.e. Beer(x) ∧ hasColour(x, ’Dark’)

logically means Beer(x) ∧ hasColour(x, y) ∧ y=’Dark’). If we assume, instances of Beer and

hasColour are stored in two tables Beer(id) and hasColour(domain, range), respectively. This

conjunctive query can be intuitively translated as the following SQL query:
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SELECT id

FROM Beer JOIN hasColour

ON Beer.id = hasColour.domain

AND hasColour.range = ’Dark’

Inference systems adopting a query-rewriting approach include DLDB, Ontop and Stardog. In

order to demonstrate the process of rewriting queries, we take the inference system DLDB as

an example, and consider the axioms (2.24), (2.25) and (2.28). DLDB stores the A-Box facts of

an ontology inside an RDBMS, and it uses views as a method to rewrite executed queries. For

example, to answer queries retrieving instances of the class Beer, DLDB translates the three

axioms into the following views (expressed in a Datalog style):

Beer(x) :- Beere(x)

Beer(x) :- Beeri(x)

Beeri(x) :- Ale(x)

Beeri(x) :- Lager(x)

Beeri(x) :- LiquidBread(x)

As can be seen, the view Beer (representing the class Beer) includes both extensional (i.e. explicit

facts) and intensional (i.e. inferred facts) sets which are denoted as Beere(x) and Beeri(x),

respectively, where the intensional one consists of data taken from views Ale(x), Lager(x) and

LiquidBread(x). By using the views, any query retrieving instances of the class Beer will include

not only explicitly asserted facts, but also derived assertions. Since inside an RDBMS, views

are often used as the mechanism for rewriting queries, systems like DLDB and Ontop can be

alternatively classified as view-based inference [MRS12]. Continuing with the example, now for

only considering the three axioms, the view of LiquidBread is:

LiquidBread(x) :- LiquidBreade(x)

LiquidBread(x) :- LiquidBreadi(x)

LiquidBreadi(x) :- Beer(x)

where the intensional view LiquidBread contains the view Beer(x). Note that, in query-rewriting

approaches, there might exist mutual recursions (e.g. the above view definitions Beer(x) and

LiquidBread(x) recursively include the other).
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3.4.3 Materialised Approach

A materialised approach usually focuses on (but is not limited to) OWL 2 RL ontologies,

and considers realisation and instance retrieval (which can be more generally interpreted as

type inference as we have defined) as the most significant inference tasks. Inference systems

which adopt this approach include Oracle RDF Store, OWLim, Minerva, RDFox, WebPIE,

DynamiTE [UMJ+13], Cichlid and SQOWL. Axioms in the RL profile can be interpreted as

logical implications, which are translated into entailment rules by a materialised approach. The

entailment rules are then applied to the ontologies, in order to compute and materialise the

memberships of class and property instances. As a consequence, any query on the ontology

is directly executed over the materialised facts, so that dynamically computing the answers to

queries is no longer required. This benefits applications where queries are asked frequently.

However, since a materialised approach stores both explicit and implicit facts for a given on-

tology, it requires more space than query-rewriting approaches. Moreover, if the data of the

ontology is often updated, how the materialisation can be incrementally updated raises another

challenge for materialised approaches.

Entailment rules can be written in the form if 〈premise〉 then 〈conclusion〉, which captures

the semantics (i.e. logical implications) of OWL 2 RL axioms. Take the PropertyRange axiom

(denoted as Rng(PE, CRE) in DL) as an example, the logical implication implies if an individual

x is related to y by PE, then y must be inferred as an instance of the class expression CRE;

consequently, an entailment rule can be obtained as:

if PE(x, y) then CRE(y)

Note that the free variables x and y in the field of 〈premise〉 are universally quantified. In-

stantiating this entailment rule over the axiom (2.33), which defines the PropertyRange of the

property hasFlavour, results in an entailment rule:

if hasFlavour(x, y) then Flavour(y)

Therefore, all object values contained in hasFlavour will be inferred as members of the class

Flavour. Thus, through a materialised approach, many instance memberships can be computed
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at once, which is more efficient than the task of instance checking, which checks for each instance

individually.

An instantiated rule is applicable to an ontology if the ontology has instances matching the

respective 〈premise〉 of the rule, and as a result, the 〈conclusion〉 can be added as implicit

derivations to the ontology. Thus checking which entailment rules are applicable vitally influ-

ences the performance of an inference system using a materialised approach. The RL profile

comes with a set of entailment rules, called OWL 2 RL/RDF rules, and a materialised approach

can instantiate them, and then apply the instantiated rules over the data of the ontology, so

that implicit information can be derived and materialised.

Note that, a materialised approach should guarantee that the order of applying the set of

entailment rules does not change the overall inference result, if there are multiple choices of

applying these rules. This requires that in the set of entailment rules, applying one of them

does not prevent the application of any others. Such a property is formally called mono-

tonicity [KSH12], which holds for the set of OWL 2 RL/RDF rules, and an inference system

providing this property is then called a monotone inference system.

3.5 Summary

In this chapter, we have introduced inference tasks commonly considered in OWL 2, and re-

viewed two types of inference methods, which are tableaux-based inference and rule-based

inference. Tableaux-based inference relies on the tableaux algorithm which first reduces all

inference tasks to the problem of consistency checking, and then solves the inference tasks

through a tableau construction process. Tableaux algorithm is known to provide sound and

complete inference for ontologies expressed in SROIQ. However, tableaux-based inference

suffers an inefficiency problem when ontologies have large A-Boxes.

An alternative approach called rule-based inference provides tractable inference. Rule-based

inference performs inference by using a set of reasoning rules. OWL 2 provides three profiles,

in which the QL and RL profiles focusing on handling large volumes of data, which is a focus
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of the work in this thesis. The two profiles restrict the use of the full OWL 2 in different ways,

in order to support certain applications with desired computational properties. Applications

which care most about query processing might adopt a query-rewriting approach and focus

more on the OWL 2 QL ontologies, and conjunctive query processing can be performed in

LOGSPACE time. In a query-rewriting approach, queries over ontologies are rewritten to

some sub-queries, which dynamically compute but do not materialise the inferred results. This

differentiates query-rewriting from the materialised approach, that computes and materialises

inference results before executing a query, especially for ontologies in the RL profile, which

aims for scalable inference. A query-rewriting approach requires less space than a materialised

approach, but it will be inefficient when queries are difficult to rewrite or have been executed

repeatedly.

If we compare tableaux-based with rule-based inference, the former definitely handles more

DL constructs than the latter, since the tableaux algorithm covers all SROIQ. Rule-based

inference usually provides only sound inference due to the separation of T-Box and A-Box, as

the data size considered is often very large (which makes considering T-Box and A-Box together

impossible in practice). A detailed analysis of incomplete inference because of this separation

is provided in Section 5.6 of Chapter 5. Thus rule-based inference usually considers ontologies

expressed in a restricted sub-language of OWL 2. Note that, our approach focuses inference

in databases, where schemas are often simple and static compared to the large and dynamic

base data, and queries are more frequent than updates. This leads our approach to taking a

materialised approach.



Chapter 4

Type Inference from Data Inserts

4.1 Introduction

Type inference derives for each instance its membership of classes or properties. It differs

from the inference task instance retrieval (which we described in Section 3.2.2 of Chapter 3)

on it not only derives the memberships of class instances, but also of property instances. Type

inference systems over large ontologies can be classified into query-rewriting and materialised

approaches, as shown in Figure 4.1. Systems using query-rewriting (e.g. DLDB, Stardog, Ontop

and Lutz et al. [LTW09]) store only explicit facts and conduct inference only when there is a

query executed over the ontology. A consequence of using query-rewriting is that no incremental

type inference is required. DLDB, Ontop and Lutz et al. store data inside an RDBMS, and

can be considered as transactional reasoning systems, as they use views inside the RDBMS as

the method to rewrite executed queries. By contrast, Stardog is not an RDBMS-based system,

and therefore provides non-transactional reasoning.

Type inference systems based on materialised approaches store both explicit and implicit data,

in order to provide a fast query processing service [MRS12]. Most materialisation-based systems

perform inference outside of an RDBMS, and this offer non-transactional reasoning, even in

cases where they still choose an RDBMS as the data container. WebPIE, as an example

inference engine, applies the MapReduce model to build the inference mechanism for RDF

semantics [HPS14] and OWL ter Horst semantics [tH05] on top of a Hadoop cluster. WebPIE

79
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Query-Rewriting Materialisation

Non-RDBMS

RDBMS

Incremental

Non-
incremental
or partially
incremental

Transactional

Stardog

DLDB, Ontop,
Lutz et al.

OWLim
DynamiTE
RDFox

SQOWL2

WebPIE

Minerva
Orel

Oracle’s
RDF
Store

Figure 4.1: Categories of Type Inference Systems

only supports incremental data loading, but not incremental deleting. OWLim is another

triple-store system, which uses a file system instead of an RDBMS as a container for storing

semantic data. Its standard and enterprise versions support incremental data loading and

deleting, but not in a transactional manner. RDFox adopts a so-called Backward/Forward

algorithm [MNPH15] (can be more efficient than DRed in certain cases) to achieve incremental

inference without using an RDBMS, and it is, therefore, not a transactional reasoning system.

DynamiTE is another system handling both incremental inserts and deletes w.r.t. the minimal

RDFS reasoning [MVPG09], by using proposed variants of the Counting and DRed algorithms

in [GMS93]. Again, it does not adopt an RDBMS as its mechanism of inference computation

and closure storage. Minerva only uses an RDBMS to hold the materialised results generated by

an extra reasoner outside the RDBMS, so we do not consider it as a transactional or incremental

inference system. Oracle’s RDF store, by contrast, loads the explicit data in advance, and then

uses inference rules to generate an inference closure of the loaded data. Although the inference

is inside the database, it is not performed in an incremental manner. Similar to Oracle’s RDF

store, Orel [KMR10] also uses a relational database to compute and store an inference closure,

and their inference rules address the EL and the RL profiles of OWL 2.

This chapter focuses on type inference in an RDBMS, and this part of work is called SQOWL2,

which we believe is unique in providing transactional reasoning combined with materialisation
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of the inferred data. In our approach, we adopt a tableaux-based reasoner for the classification

over the T-Box of an ontology, and then we used the classified T-Box to build an ATIDB, which

contains tables and triggers. When A-Box facts are loaded into or removed from the ATIDB,

the inserts and deletes cause triggers to be invoked, which performs type inference in a trans-

actional and incremental manner. Note that as a materialised approach, we mainly focus

on axioms expressed in OWL 2 RL, but we also analyse some cases (i.e. using SomeValuesFrom

to form a superclass expression, MinCardinality, ReflexiveProperty and SelfRestriction) which are

beyond that profile, in order to demonstrate that our approach is not limited to OWL 2 RL.

SQOWL2 extends the previous work SQOWL supporting type inference for OWL 1 only after

inserts were made to an RDBMS, to now perform type inference for OWL 2 after both inserts

and deletes. In this chapter, we focus on type inference from data inserts, while handling deletes

is provided in Chapter 5. We first use a motivating example to illustrate what problems might

occur in type inference in Section 4.2. Then, Section 4.3 briefly introduces the overview of

the approach. Section 4.4 describes how SQOWL2 establishes for a given ontology a canonical

schema, where triggers can be created. Section 4.5 then details how the triggers are generated

from OWL 2 axioms. In Section 4.6, we provide some optimisations that can be applied to

further improve SQOWL2, and finally Section 4.7 summarises this chapter.

4.2 Motivating Example

Type inference is very similar to the DL inference task instance retrieval, which computes

all individuals contained in a class. Besides computing all instances of classes, type inference

also derives all instances of properties. Thus, type inference plays an important role when

querying the information in an ontology. To address the problem of type inference, we consider

again the axiom (1.1) in the beer ontology.

CzechLager ≡ Lager u CzechBeer (1.1)

which expresses that a CzechLager is something that is both a Lager and a CzechBeer. This

axiom can be replaced during the classification with the three SubClassOf axioms (1.5) – (1.7)
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by a tableaux-based reasoner, such as Pellet, Hermit and FaCT++ [TH06].

CzechLager v Lager (1.5)

CzechLager v CzechBeer (1.6)

Lager u CzechBeer v CzechLager (1.7)

Lager(CzechPaleLager) (1.2)

CzechBeer(CzechPaleLager) (1.3)

CzechLager(CzechDarkLager) (1.4)

where (1.5) denotes every CzechLager is a Lager, (1.6) denotes every CzechLager is a CzechBeer,

and finally (1.7) represents that some beer which is both a Lager and a CzechBeer is a CzechLager.

Suppose individuals from the three classes are stored in tables CzechLager, Lager and CzechBeer

in an RDBMS, and CzechPaleLager as a Lager specified by the above A-Box fact (1.2) has been

already recorded in the database shown as S0 in Figure 4.2.

T4.1: CzechBeer(CzechPaleLager) Lager(CzechPaleLager)
CzechBeer(CzechPaleLager)
CzechLager(CzechPaleLager)

S1

Lager(CzechPaleLager)

S0

Figure 4.2: T4.1: inserting CzechBeer(CzechPaleLager)

If a database transaction T4.1 inserts the above A-Box fact (1.3), then CzechPaleLager should

be viewed not only in tables Lager and CzechBeer, but also in CzechLager because of (1.7) (i.e.

CzechPaleLager should be inferred as a CzechLager), and the database should be updated to S1.

Now we further consider another transaction T4.2 which loads (1.4) as a database insert, the

expected change of the database is illustrated in Figure 4.3.

T4.2: CzechLager(CzechDarkLager)
Lager(CzechPaleLager)

CzechBeer(CzechPaleLager)
CzechLager(CzechPaleLager)

Lager(CzechDarkLager)
CzechBeer(CzechDarkLager)
CzechLager(CzechDarkLager)

S2

Lager(CzechPaleLager)
CzechBeer(CzechPaleLager)
CzechLager(CzechPaleLager)

S1

Figure 4.3: T4.2: inserting CzechLager(CzechDarkLager)

As a result of type inference, CzechDarkLager should be viewed as not only a CzechLager but

also a Lager and CzechBeer because of (1.5) and (1.6) (i.e. the database should be incrementally

updated from S1 to S2).



4.3. SQOWL2 Overview 83

However, many approaches which store ontological data in an RDBMS, such as Oracle’s RDF

Store and Minerva, will make the inference be detached from transaction processing of the data.

Take T4.1 inserting (1.3) as an example, after CzechBeer(CzechPaleLager) has been inserted,

these approaches need to perform a separate inference process to infer CzechPaleLager as a

CzechLager. Thus, they fail to provide what has been termed as transactional reasoning,

where inference from data updates by the database transactions should be available as part of

the atomic action of the transactions. Considering transactional reasoning in the above example,

viewing CzechLager(CzechPaleLager) should be an atomic result of T4.1 rather than requiring an

additional inference process. In other words, any other transaction Tc simultaneously executed

with T4.1 should view the database as either S0 or S1 but not any other intermediate state

(i.e. the statement CzechBeer(CzechPaleLager) u ¬CzechLager(CzechPaleLager) should always

evaluate as false).

Performing type inference from data deletes is a significantly more complex problem. For

instance, for a fact that is implicitly inferred, deleting it might cause the database to be in-

consistent. In the above example, in the database state S1 or S2, deleting the derived fact

CzechLager(CzechPaleLager) contradicts what can be inferred from (1.7), (1.2) and (1.3); there-

fore, attempting such a delete should be rejected. Furthermore, in S2, removing CzechDarkLager

as a CzechLager (i.e. deleting the A-Box fact (1.4)) might appear to lead to a view update prob-

lem [Dat00], i.e. which one of Lager and CzechBeer should CzechDarkLager be deleted from?

Due to the difficulties, most inference systems do not handle deletes in an incremental manner.

For example, the Lite version of OWLim needs to re-compute the whole inference closure every

time there is a delete instead of incrementally updating the existing closure. SQOWL2 for

performing type inference from data deletes is detailed in Chapter 5, and in this chapter we

focus on how SQOWL2 builds an ATIDB for handling data inserts.

4.3 SQOWL2 Overview

In this section, we give an overview of SQOWL2, which provides service of type inference in

a transactional and incremental way in an RDBMS. We first introduce the approach architec-
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ture, which separates T-Box and A-Box inference. Then, we use the motivating example in

Section 4.2 to demonstrate the process of transforming an ontology into tables and triggers,

both of which form an ATIDB.

4.3.1 SQOWL2 Architecture

As shown in Figure 4.4, SQOWL2 follows a materialised inference architecture which sepa-

rates T-Box and A-Box inference. Although this separation might result in incomplete reason-

ing [Krö12b] (which we will exemplify in Section 5.6), it is not abnormal in other reasoners,

such as DLDB and Minerva, which perform inference over large A-Boxes. For the first phase of

T-Box inference, we use a tableaux-based reasoner due to its complete classification inherited

from the tableaux algorithm. Examples of such reasoners include Pellet, Hermit and FaCT++,

and a detailed comparison of them is provided in [Abb12]. We choose Pellet from them, because

it is well-documented, and known to provide sound and complete reasoning, but there is no

restriction for us to use other tableaux-based reasoners. The classification gives us complete

subsumption relations w.r.t. the T-Box, and such a classified T-Box is used for building the

ATIDB in three steps:

RDBMS
(e.g.	Microsoft	SQL	Server)

③ Handle updates 
from A-Box facts 
or database users

T-BoxOWL
Documents

Classified
T-Box

A-Box

① Establish ATIDB with tables 

② Generate triggers for each table

Figure 4.4: Approach Architecture for Type Inference in an RDBMS

1. Classes and properties, as unary and binary relations, are transformed into tables with

one and two columns, respectively (i.e. C ; C(id) and P ; P (domain, range), where
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C and P denote class and property tables, respectively). In our motivating example, the

three classes CzechLager, CzechBeer and Lager are mapped to three tables CzechLager(id),

CzechBeer(id) and Lager(id), respectively. These tables representing classes and properties

form the basic schema of the ATIDB.

2. SQOWL2 creates triggers for each table, based on the axioms related to the class or

property, which the table represents. In this process, the semantics of the axioms are

captured by the triggers. Here, we only demonstrate triggers in a logical manner by

using ECA rules of the form when 〈event〉 if 〈condition〉 then 〈action〉. We call triggers

expressed in such a logical way logical triggers, which can be implemented as physical

triggers in different RDBMSs, such as Postgres or Microsoft SQL Server.

3. The established ATIDB is ready to accept data updates (inserts especially in this chapter)

either translated from A-Box facts, or directly from database users. When there is an

update executed over a table, triggers associated with this table will be automatically

invoked to perform the process of type inference. Trigger invoking naturally preserves

the ACID properties in an RDBMS, and consequently, SQOWL2 supports transactional

reasoning.

Here, it is worth mentioning that, we only use tableaux-based reasoners for classifying the T-

Boxes of which the size is suitable for tractable classification (i.e. fewer than hundreds of classes,

properties and axioms are contained in a T-Box), and consequently benefit from their com-

plete T-Box inference. When dealing with very large T-Boxes, such as SNOMED-CT [Don06],

SQOWL2 can be adjusted to use other types of reasoners, such as [DK09] and TrOWL [TPR10]

(the former uses an RDBMS to classify ontologies based on a simpler ELH DL fragment, and

the latter offers tractable support for all the expressive power of OWL 2).

4.3.2 Type Inference from Data Inserts by Triggers

We use the motivating example (i.e. the T-Box axiom (1.1) and A-Box facts (1.2), (1.3) and

(1.4)) to demonstrate the above three steps of establishing an ATIDB. As we have already
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introduced, (1.1) is classified as three new SubClassOf axioms (1.5) – (1.7), and classes which

appear in these axioms are represented as tables CzechLager(id), CzechBeer(id) and Lager(id).

For the classified axiom (1.5), asserting any fact x about a CzechLager, implies that x is also a

Lager, which we implement as the trigger:

when +CzechLager(x) then Lager(x)

The “+” symbol before CzechLager(x) indicates that this is an after trigger, which in SQL

means something that is executed after the datum x has been put into a table. More specifically,

the above trigger means that after x has been inserted into the table CzechLager, another

insertion will be generated by the trigger to insert the same x into the table Lager. Very

similarly for the axiom (1.6), we implement another trigger:

when +CzechLager(x) then CzechBeer(x)

which will be invoked to insert x to the table CzechBeer, after the same x has been put into

CzechLager. However, the axiom (1.7) is more complex as it expresses a subsumption relation

between the IntersectionOf expression Lager u CzechBeer and the atomic class CzechLager, and

when either Lager or CzechBeer is asserted for including a fact x, the existence of the same fact

x in the other class must be checked before we can assert that x is a CzechLager. Thus, this

axiom creates an after trigger for each of the tables Lager and CzechBeer as follows:

when +Lager(x) if CzechBeer(x) then CzechLager(x)

when +CzechBeer(x) if Lager(x) then CzechLager(x)

The insertion of the data x to CzechLager from the above triggers will again fire the two after

triggers created on CzechLager. However, this results in infinite loops, since the fact of x as a

Lager and a CzechBeer would lead to the fact of x as a CzechLager, which in turn leads to x

being asserted as a Lager and a CzechBeer again. To prevent this, SQOWL2 creates for each

table a before trigger (indicated by the “−” prefix as shown in the below triggers for Lager,

CzechBeer and CzechLager), which is invoked before inserting the actual data into the table.

when −Lager(x) if ¬Lager(x) then Lager(x)

when −CzechBeer(x) if ¬CzechBeer(x) then CzechBeer(x)

when −CzechLager(x) if ¬CzechLager(x) then CzechLager(x)
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As can be seen, these before triggers validate that the data does not exist before attempting

an insert, and consequently duplicate insertions and infinite loops are avoided.

4.3.3 SQOWL2 Features

As shown in Section 4.3.2, triggers are automatically invoked to perform type inference whenever

there is an insert executed over tables in the ATIDB. Besides the ability to provide transactional

reasoning, which preserves ACID properties, SQOWL2 has the following features:

• As a materialised approach, the materialising inference results might require much more

space than non-materialising approaches, such as Ontop and DLDB (especially if there

are numerous implicit facts being derived); however, the materialised closure would make

query processing much faster, because queries only need to simply read the materialised

views rather than compute the answer dynamically,

• Type inference provided by SQOWL2 is conducted in an incremental way, as each new

insert captured by triggers causes all additional facts which can be derived from the

combination of the new insert and existing data to be added into the ATIDB. Thus,

triggers being invoked by new inserts will analyse how the previous inference closure

should be incrementally updated because of the new inserts rather than re-computing

and materialising the whole inference closure.

• Due to the separation of T-Box and A-Box inference, even by applying a complete reasoner

(i.e. a tableaux-based reasoner), we still miss those T-Box axioms that need to be inferred

by considering both T-Box and A-Box together. Consequently, the inference provided by

SQOWL2 is incomplete. We make a conjecture, demonstrated by later experimental

evaluation, that the type inference over OWL 2 RL ontologies is complete.
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4.4 Establishing the ATIDB Schema

In Section 4.3, we have already given an overview of SQOWL2 for establishing an ATIDB

which is able to perform type inference. The ability of inference by SQOWL2 mainly comes

from the triggers translated from OWL 2 axioms. Before we thoroughly demonstrate the

trigger generation in Section 4.5, this section first outlines how we establish a relational schema

(representing OWL classes and properties), where triggers can be created later.

4.4.1 Canonical Schema

We call the relational schema a canonical schema, which contains tables with one or two

columns. In the canonical schema, OWL classes which denote unary relations are represented

as one-column tables, and OWL properties denoting binary relations are represented as two-

column tables. More precisely, for an atomic class C, SQOWL2 creates a table C(id), and

the column id is set as the Primary Key (PK) because we follow the UNA. Similarly, for

an atomic property P , we create a table with two columns as P (domain, range), and we set

(domain, range) as a compound PK for this table. Thus, building the canonical schema can be

summarised as the following two rules (where underlining a column or columns means setting

them as a key):

C ; C(id); P ; P (domain, range)

In addition to the above two rules, for SubClassOf axioms between two atomic classes, and

SubPropertyOf axioms between two atomic properties, we add FKs (symbolised as
fk⇒) detailed

in the rules below to represent the semantics of subsumption:

SubClassOf : C v D ; C(id)
fk⇒ D(id)

SubPropertyOf : P v Q ; P (domain, range)
fk⇒ Q(domain, range)

For instance, if we only consider (2.24) and (2.25), which are two SubClassOf axioms denoting

Ale and Lager as two subclasses of Beer, and (2.47) and (2.48), which are two SubPropertyOf

axioms denoting hasColour and hasFlavour as two sub properties of hasDescription, the canonical

schema is generated as follows. The three classes and three properties are mapped to the
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following tables:

Ale ; Ale(id)

Lager ; Lager(id)

Beer ; Beer(id)

hasColour ; hasColour(domain, range)

hasFlavour ; hasFlavour(domain, range)

hasDescription ; hasDescription(domain, range)

Moreover, from axioms (2.24), (2.25), (2.47) and (2.48), we obtain four FKs:

Ale v Beer ; Ale(id)
fk⇒ Beer(id)

Lager v Beer ; Lager(id)
fk⇒ Beer(id)

hasColour v hasDescription ; hasColour(domain, range)
fk⇒ hasDescription(domain, range)

hasFlavour v hasDescription ; hasFlavour(domain, range)
fk⇒ hasDescription(domain, range)

4.5 Generating Logical Triggers

Now, the ATIDB is with the canonical schema established, and we are ready to generate triggers

from axioms in a classified T-Box. As we have already illustrated in Section 4.3, triggers can be

invoked either before or after an insert to the ATIDB, so that type inference is automatically

performed. We denote triggers logically by ECA rules, and we demonstrate the transformation

process from OWL to logical triggers as:

OWL ; when 〈event〉 if 〈condition〉 then 〈action〉

where 〈event〉 in this chapter denotes the insert of an A-Box fact1 to a table representing a

particular class or property. We introduce two types of events: if 〈event〉 begins with the

symbol “−”, then 〈condition〉 and 〈action〉 are executed before the insert; while for the 〈event〉

prefixed with a “+” symbol, 〈condition〉 and 〈action〉 are executed after the insert. We call

the former before triggers, and the latter after triggers. The field of 〈condition〉 contains

Datalog-style queries, and only if they are evaluated as true, should the 〈action〉, which is one

of insert, ignore and rollback, be executed.

1As we illustrate in Chapter 5, for handling deletes, 〈event〉 and 〈action〉 can also denote a delete of an A-Box
fact or an update of data state.
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4.5.1 OWL Classes and Properties

Due to the open-world nature of inference, the same fact might be repeatedly inferred; thus,

the most basic trigger we create for each class or property table is to ignore duplicated inserts

(recall that from the canonical schema, every class C and every property P result as a table

C(id) and a table P (domain, range), respectively). These triggers are created based on the

following transformation rules:

Class: C ; when −C(x) if ¬C(x) then C(x) else ignore

Property: P ; when −P (x, y) if ¬P (x, y) then P (x, y) else ignore

Based on the two rules, a before trigger is created for each class or property table, and it is

invoked before an insert is actually done. The before trigger checks the existence of the data

which users attempt to insert; it will allow the insert if the data is not present in the table;

otherwise, it will ignore the insert. Note that in logical triggers, free variables in the field of

〈condition〉, such as x in if ¬C(x) or x and y in if ¬P (x, y), are universally quantified.

4.5.2 The Semantics of Class Axioms

We list in this section how logical triggers are generated from class-related axioms (e.g. SubClassOf,

EquivalentClasses and DisjointWith axioms). As our approach restricts itself to focus on the OWL

2 RL profile, we ignore the analysis for some semantics which are not allowed in this profile,

although we have reviewed them in Section 2.3.2 of Chapter 2.

SubClassOf and EquivalentClasses:

Class-related axioms are formed by specifying a subsumption relation (i.e. SubClassOf) between

two class expressions as CE1 v CE2 . For the moment, we only discuss the special case of using

SubClassOf to relate two atomic classes (i.e. C v D). The transformations from the more

general case of CE1 v CE2 (e.g. an AllValuesFrom axiom C v ∀P .CE) to triggers are eventually

demonstrated later in this section. The transformation rule for handling C v D is:

SubClassOf: C v D ; when +C(x) if true then D(x)



4.5. Generating Logical Triggers 91

As can be seen, the “+” symbol in the field of 〈event〉 identifies this trigger as an after trigger,

which is invoked after x has been inserted to the subclass table C, and an attempt at inserting

x to the super-class table D is generated. We set the 〈condition〉 to true (the trigger can be

simplified as when +C(x) then D(x)), because the attempt at inserting D(x) will be checked

anyway by the before trigger created on D. Take (2.24) as an example, this axiom expresses a

subsumption relation from Ale to Beer, and one after trigger should be generated:

Ale v Beer ; when +Ale(x) then Beer(x)

For the constructor EquivalentClasses, we also only discuss the case of using it to connect two

atomic classes C ≡ D, rather than the general case of relating two class expressions CE1 ≡ CE2 .

Because the equivalence relation can be classified as two subsumption relations, C ≡ D is

translated as two logical after triggers:

EquivalentClasses: C ≡ D ; when +C(x) then D(x)

when +D(x) then C(x)

Thus, after a data item has been inserted into one of the tables which represent the two

equivalent classes, triggers will attempt an insert of the same data to the other class table. For

example, the axiom (2.28), which identifies that Beer and LiquidBread are EquivalentClasses,

results in two after triggers:

Beer ≡ LiquidBread ; when +Beer(x) then LiquidBread(x)

when +LiquidBread(x) then Beer(x)

DisjointClasses, UnionOf and DisjointUnion:

OWL 2 RL allows an ontology user to express the fact that several classes do not contain the

same individuals (i.e. these classes are DisjointClasses denoted as DisCla(C1, . . . , Cn)). As we

have introduced in Chapter 3, if any two classes from C1, . . . , Cn contain the same individuals,

the ontology will result in an inconsistent state by a tableaux-based reasoner. Therefore, when

transforming these semantics into triggers, the trigger created on each table representing each

of C1, . . . , Cn will check before an insert to determine whether the insert of data is already

present in other tables, if so the insert will be rolled back. The transformation rule is:
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DisjointClasses: DisCla(C1, . . . , Cn) ; when −Ci(x) 1 ≤ i ≤ n

if C1(x) or . . . or Ci−1(x) or Ci+1(x) or . . . or Cn(x)

then rollback

Note that there is a difference for handling DisCla(C1, . . . , Cn) between a tableaux-based rea-

soner and SQOWL2. A tableaux-based reasoner will raise an inconsistent warning if any two

classes Ci and Cj (where i 6= j) in the disjoint class list C1, . . . , Cn contain the same individ-

ual x. However, SQOWL2 prevents the ATIDB entering an inconsistent state by rolling back

database transactions which attempt to store x in both Ci and Cj simultaneously: 1) if two

separate database transactions attempt to insert x into Ci first and then Cj (or into Cj before

Ci), respectively, the first transaction will be allowed but the second one will be rolled back.

In this case, the ATIDB might end differently if we load the facts as separate transactions in

different orders; 2) if the two inserts are gathered as one database transaction, the whole trans-

action will be rolled back. We argue this difference between SQOWL2 and a tableaux-based

reasoner is just operational but not fundamental.

In the beer ontology, we have the axiom (2.29) to specify Ale and Lager are disjoint from each

other, and the transformation rule which deals with this axiom is:

DisCla(Ale, Lager) ; when −Ale(x) if Lager(x) then rollback

when −Lager(x) if Ale(x) then rollback

With regard to DisjointUnion, an axiom formed by this constructor actually denotes an equiv-

alent relation between an atomic class and a union of several disjoint classes. This constructor

is not allowed in OWL 2 RL, as this profile only allows the UnionOf expression to be a subclass

expression but not a super-class expression. For example, DisUni(C,D1, D2) expresses a class C

is the DisjointUnion of D1 and D2, which is the simpler form of the following two DL statements:

D1 uD2 v ⊥ C ≡ D1 tD2

where the left-hand statement expresses D1 and D2 are disjoint from each other, and the right-

hand statement expresses the equivalence between C and the UnionOf D1 and D2 (which can

be alternatively expressed as two axioms D1tD2 v C and C v D1tD2). However, OWL 2 RL
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does not allow D1 tD2 as a super-class expression (i.e. C v D1 tD2 is not allowed), because

this brings non-deterministic inference (i.e. for a fact of x in C, we cannot determine which one

of D1 and D2 or even both of them the fact x belongs to). Thus, if an ontology beyond OWL 2

RL contains DisUni(C,D1, D2), triggers generated by the transformation rule below are unable

to capture the semantics of C v D1 tD2.

DisjointUnion: DisUni(C,D1, D2) ; when −D1(x) if D2(x) then rollback

when −D2(x) if D1(x) then rollback

when +D1(x) then C(x)

when +D2(x) then C(x)

The first two triggers capture the semantics of D1 uD2 v ⊥ (i.e. DisjointClasses), and the last

two triggers are translated from the semantics D1 t D2 v C, which is equivalent to D1 v C

and D2 v C. In the beer ontology, the axiom (2.32), which defines Beer as the DisjointUnion of

Ale and Lager, will be translated into four triggers as follows:

DisUni(Beer,Ale, Lager) ; when −Ale(x) if Lager(x) then rollback

when −Lager(x) if Ale(x) then rollback

when +Ale(x) then Beer(x)

when +Lager(x) then Beer(x)

As can be seen, the two before triggers are exactly the same as those ones transformed from

DisCla(Ale, Lager) shown before, and the two after triggers are the same as the triggers created

from (2.24) and (2.25), respectively.

AllValuesFrom, SomeValuesFrom, HasValue and OneOf:

OWL 2 RL allows expressions constructed by AllValuesFrom (i.e. ∀P .CE), SomeValuesFrom (i.e.

∃P .CE), HasValue (i.e. ∃P .{a}); however, it restricts the positions that these expressions can

appear in a subsumption relation. For example, OWL 2 RL only allows an AllValuesFrom

expression ∀P .CE to be a super class (i.e. C v ∀P .CE), but not a subclass (i.e. ∀P .CE v C).

The semantics of C v ∀P .CE specifies that if an instance x of C appears in 〈x, y〉 of P , then y

must be inferred as a member of CE. Thus, the transformation rule for C v ∀P .CE is:
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AllValuesFrom: C v ∀P .CE ; when +C(x) if P (x, y) then CE(y)

when +P (x, y) if C(x) then CE(y)

The trigger on C guarantees that after x has been inserted into C, the trigger will attempt an

insert of y into CE if 〈x, y〉 is present in the table P ; the other trigger on P will attempt an

insert of y into CE after inserting 〈x, y〉 into P if x is already in C.

For the case of ∀P .CE v C, it is interesting to mention that even if this case was permitted

in OWL 2 RL, we actually could not perform any type inference from it. The reason is that,

due to the OWA, even if ∀P .CE v C holds for a set of x (i.e. for all existing 〈x, y〉 in P , y is

in CE), there might still exist some not yet recorded 〈x, z〉 in which z is not a member of CE.

Therefore, the transformation rule for ∀P .CE v C generates no triggers:

AllValuesFrom: ∀P .CE v C ; −

With regard to a SomeValuesFrom expression ∃P .CE, OWL 2 RL restricts the expression as

only a subclass expression (i.e. ∃P .CE v C) but not a super-class expression (i.e. C v ∃P .CE).

The semantics of ∃P .CE v C means that if there exists some 〈x, y〉 with y as an instance of

CE, then x should be inferred as a member of C; thus, the transformation rule is specified as:

SomeValuesFrom: ∃P .CE v C ; when +P (x, y) if CE(y) then C(x)

when +CE(y) if P (x, y) then C(x)

Thus, after 〈x, y〉 has been inserted into P , the trigger on P checks for the presence of y in CE,

and if so, it will insert x into C. The other trigger on CE checks for the existence of 〈x, y〉 in

P after inserting y into CE, and if so it will attempt an insert of x into C.

The semantics of C v ∃P .CE states that for every x in C, the property P must contain at

least one tuple 〈x, y〉 in which y comes from CE. However, this might result in inference of

anonymous individuals (i.e. non-deterministic inference). To explain this, suppose we have

an instance x in C, and there is no tuple 〈x, y〉 recorded in P . Based on the semantics of

C v ∃P .CE, we only know there must be at least one tuple 〈x, y〉 (y is an instance of CE)

which is not yet recorded in P . However, we cannot determine which individual in CE the y

refers to; therefore, the transformation rule generates no triggers from C v ∃P .CE:
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SomeValuesFrom: C v ∃P .CE ; −

Alternatively, if there is no 〈x, y〉 recorded in P (or there is 〈x, y〉 in P but without recording

y as a member of CE), we can insert a tuple 〈x, 〉 after such a data item x has been inserted

into C, in order to preserve the existential semantics of C v ∃P .CE. This will provide more

complete answers to queries asking for the subjects of P . However, if later such 〈x, y〉 with y

from CE is recorded in P , the tuple 〈x, 〉 should be removed. This alternative way results in

triggers:

SomeValuesFrom: C v ∃P .CE ; when +C(x) if ¬P (x, y) or P (x, y),¬CE(y) then P (x, )

when −P (x, y) if P (x, ), CE(y) then ¬P (x, ), P (x, y)

when −CE(y) if P (x, ), P (x, y) then ¬P (x, )

As can be seen, the after trigger on C is used for inserting 〈x, 〉 into P , and two before triggers

on P and CE are used for checking if P (x, ) should be removed. Note that for the case of

C v ∃P , since the SomeValuesFrom expression is unqualified, we will remove P (x, ) as soon as

a tuple like 〈x, y〉 is inserted into P ; thus the transformation rule should be modified as:

SomeValuesFrom: C v ∃P ; when +C(x) if ¬P (x, y) then P (x, )

when −P (x, y) if P (x, ) then P (x, y)

As a special case of SomeValueFrom, a HasValue expression ∃P .{a} replaces the CE in ∃P .CE

by a class containing only one individual {a}. In other words, CE is defined by enumerating

its contained individuals by using the constructor OneOf. Since the individual a is the only

member of this anonymous class, and it is explicitly defined, there is no restriction in OWL

2 RL in terms of using ∃P .{a} i.e. both C v ∃P .{a} and ∃P .{a} v C are allowed, and the

transformation rules for dealing with both are:

HasValue: C v ∃P .{a}; when +C(x) then P (x, a)

∃P .{a} v C ; when +P (x, a) then C(x)

The after trigger on C attempts an insert of 〈x, a〉 into P after x has been inserted into C; the

after trigger on P will attempt an insert of x into C after 〈x, a〉 has been inserted into P . For

example, in the beer ontology, we have an axiom (2.37), which denotes Porter as a subclass of

∃hasColour.{Dark}, and the transformation rule for this is:
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Porter v ∃hasColour.{Dark}; when +Porter(x) then hasColour(x, ”Dark”)

As we have just mentioned, the constructor OneOf can be used to define an anonymous class by

enumerating all of its included individuals (expressed as {a1 . . . an}). For such an anonymous

class, we create a table named by concatenating all of its individuals’ names, and also store

exactly the individuals defined by OneOf. Then, we create a before trigger to prevent inserts

which attempt to add other individuals not in the enumeration (where Cac denotes the table

name for the anonymous class):

OneOf: {a1 . . . an}; when −Cac(x) if ¬Cac(x) then rollback

Cardinality:

OWL 2 RL has a restriction on using cardinality-related constructors. In essence, it only

supports the use of C v 6nP and C v 6nP .CE where n = 0/1. When n = 0 in the

unqualified case of C v 6nP , any individual x from the class C must not appear in any tuple

of 〈x, y〉 in P ; thus, the transformation rule is:

MaxCardinality: C v 60P ; when −C(x) if P (x, y) then rollback

when −P (x, y) if C(x) then rollback

The first trigger checks whether 〈x, y〉 is already in P before inserting x into C, if so the

transaction will be rolled back. The second trigger will roll back an insert of 〈x, y〉 to P if x has

been stored in C. These two triggers together prevent the ATIDB from entering an inconsistent

state. For the qualified case C v 60P .CE, it is slightly more complicated, as in order to keep

the ontology consistent, we should ensure for each x in C, there is no such 〈x, y〉 in P where y

is in CE. This causes the transformation rule to generate three triggers:

MaxCardinality: C v 60P .CE ; when −C(x) if P (x, y), CE(y) then rollback

when −P (x, y) if C(x), CE(y) then rollback

when −CE(y) if C(x), P (x, y) then rollback

The first two triggers are similar to the two triggers created from C v 60P , but add additional

checking of y in CE in the field of 〈condition〉. Because of the non-qualification, the third trigger
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will be created on the table CE as shown above, which rolls back any insert of y to CE, if C(x)

and P (x, y) are true.

With respect to n = 1 in the unqualified axiom C v 61P , we recall its satisfying condition

defined by I of the Direct Semantics:

I |= C v 61P iff ∀x ∈ CI , y ∈ ∆, z ∈ ∆ : if〈x, y〉 ∈ P I and 〈x, z〉 ∈ P I then y = z

which results in an inference of a SameIndividual axiom, i.e. for every x in C, if such tuples 〈x, y〉

and 〈x, z〉 both exist in P , then we can infer y and z are same individuals. However, since our

approach adopts the UNA, which specifies that individuals with different names do not refer

to the same object, C v 61P will be translated to two before triggers on tables C and P :

MaxCardinality: C v 61P ; when −C(x) if count[P (x, )] > 1 then rollback

when −P (x, y) if C(x), P (x, z), z 6= y then rollback

These triggers essentially roll back any insert which will make the ATIDB violate the UNA.

The trigger on C will roll back an insert of x, if x is already related to at least two different

individuals (i.e. count[P (x, )] > 1). The trigger on P will not allow an insert of 〈x, y〉, if x is

in C and is already related to some other z by P .

The qualified case is expressed as C v 61P .CE, and the satisfying condition is:

I |= C v 61P .CE iff ∀x ∈ CI , y ∈ CE
I , z ∈ CE

I : if〈x, y〉 ∈ P I and 〈x, z〉 ∈ P I then y = z

Hence, in order to obey the UNA, we need to ensure that P relates any individual x from C

to at most one individual from CE. Therefore, the transformation rule for C v 61P .CE will

generate three triggers on each of C, P and CE:

MaxCardinality:

C v 61P .CE ;

when −C(x) if count[P (x, y), CE(y)] > 1 then rollback

when −P (x, y) if C(x), P (x, z), CE(y), CE(z), y 6= z then rollback

when −CE(z) if C(x), P (x, y), P (x, z), CE(y), y 6= z then rollback

IntersectionOf:

OWL 2 RL allows the specifying of a class as equivalent to an IntersectionOf expression between

several class expressions, which can be either atomic or complex, but should obey the usage
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restrictions defined in the language profile. The general DL syntax for this is C ≡ CE1u. . .uCEn ;

for example, axiom (1.1) defines CzechLager as the IntersectionOf classes Lager and CzechBeer.

By applying a tableaux-based reasoner, the statement C ≡ CE1 u . . . u CEn is classified to

C v CE1 u . . . u CEn and CE1 u . . . u CEn v C. The former can be simply interpreted as n

SubClassOf axioms C v CEi
where 1 ≤ i ≤ n:

C v CE1 u . . . u CEn ; C v CEi
where 1 ≤ i ≤ n

Translating each of C v CEi
(1 ≤ i ≤ n) into triggers has been already demonstrated previously.

However, the subsumption relation from an IntersectionOf expression CE1 u . . .uCEn to a class

C (e.g. the axiom (1.7)) is more complex to translate into triggers, as after executing each insert

of x into one of CEi
(1 ≤ i ≤ n), triggers should check whether all other CEj

(j 6= i) holds for

x, and if so, the x should be inserted into C. We specify the transformation rule as:

IntersectionOf: CE1 u . . . u CEn v C ;

when trigger(CEi
) 1 ≤ i ≤ n if holds(CE1), . . . , holds(CEn) then C(x)

where the trigger() function specifies the tables to trigger on, and the holds() function maps

each component CEi
(1 ≤ i ≤ n) of the IntersectionOf expression into predicate logic:

trigger(C) := +C(x) holds(C) := C(x)

trigger(∃P .{a}) := +P (x, a) holds(∃P .{a}) := P (x, a)

trigger(∃P .CE) := +P (x, y) and +CE(y) holds(∃P .CE) := P (x, y), CE(y)

Note that we omit certain cases that CEi
(1 ≤ i ≤ n) are expressions which are not allowed

in OWL 2 RL, such as AllValueFrom expressions ∀P .CE. As an example of using the above

transformation rule, axiom (1.7) (i.e. LageruCzechBeer v CzechLager) will be expanded out as:

when trigger(Lager) if holds(Lager), holds(CzechBeer) then CzechLager(x)

when trigger(CzechBeer) if holds(Lager), holds(CzechBeer) then CzechLager(x)

and continuously expanding the trigger() and holds() functions gives:

when +Lager(x) if Lager(x),CzechBeer(x) then CzechLager(x)

when +CzechBeer(x) if Lager(x),CzechBeer(x) then CzechLager(x)

If we remove the redundant check on Lager and CzechBeer in the 〈condition〉 of the first and sec-
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ond triggers, respectively, we will obtain the two triggers we have illustrated for the axiom (1.7)

in Section 4.3.2.

4.5.3 The Semantics of Property Axioms

In this section, we address the transformations rules which handle property-related axioms. As

we have reviewed in Chapter 2, some of these axioms are actually relations between sets of

individuals (e.g. PropertyDomain, PropertyRange, etc.), and not between sets of tuples.

InverseOf and InverseProperty:

Unlike complex class expressions, which can be formed by numerous constructors provided

by OWL, complex property expressions can be only InverseOf expressions, which are denoted

as P− in DL. P− specifies a set of tuples which swap the subjects and objects in P . A very

common usage of InverseOf is to make an atomic property P equivalent to the InverseOf another

property Q (i.e. P ≡ Q−). Such a usage defines P as an InverseProperty of Q and vice versa.

Handling P ≡ Q− (two properties are inverse of each other) by SQOWL2 is achieved by the

following transformation rule:

InverseProperty: P ≡ Q− ; when +P (x, y) then Q(y, x)

when +Q(x, y) then P (y, x)

After 〈x, y〉 has been inserted into one of the property tables, the trigger will attempt an insert

of 〈y, x〉 into the other property table. For example, SQOWL2 generates the two triggers below

from (2.40), which defines isFermentedBy and fermentsBeer are InverseOf each other:

isFermentedBy ≡ fermentsBeer− ; when +isFermentedBy(x, y) then fermentsBeer(y, x)

when +fermentsBeer(x, y) then isFermentedBy(y, x)

Note that the before triggers created on all property tables prevent the insertion of duplicated

tuples, so that the two after triggers created from P ≡ Q− will not cause an infinite loop.
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PropertyDomain and PropertyRange:

Apart from using InverseOf to specify two inverse properties, expressions formed by this con-

structor can be used to express other types of axioms. PropertyDomain axioms > v ∀P−.CE1

use the InverseOf expression P− to restrict the subject values of a property P to individuals of

a particular class CE1 . Based on the semantics, an after trigger is generated on P to trigger

an insert of x to CE1 after 〈x, y〉 has been inserted into P . A PropertyRange > v ∀P .CE2 , by

contrast, restricts the object values of P to a particular class CE2 . Another trigger should be

created on P to insert y into CE2 after 〈x, y〉 has been stored in P . Such a transformation

process is shown as:

PropertyDomain: > v ∀P−.CE1 ; when +P (x, y) then CE1(x)

PropertyRange: > v ∀P .CE2 ; when +P (x, y) then CE2(y)

Recalling the AllValuesFrom axiom C v ∀P .CE, which has been analysed when C is an atomic

class (i.e. not >), both PropertyDomain and PropertyRange axioms can be treated as special

cases of C v ∀P .CE where C is set as >. Thus x and y in the above two triggers are all

universally quantified.

For example, the axioms (2.41) and (2.42) respectively specifying the PropertyDomain and

PropertyRange of the property isFermentedBy are translated to an after trigger:

> v ∀isFermentedBy−.Beer

> v ∀isFermentedBy.Yeast
; when +isFermentedBy(x, y) then Beer(x),Yeast(y)

As can be seen from this transformation rule, we merge two logical triggers into one, as the

attempt at inserting both x into Beer and y into Yeast are after persisting 〈x, y〉 in the same

table isFermentedBy. Note that as we will show in Chapter 7, if multiple after triggers are

required after inserting into the same table, we merge them together as one single after trigger.

A similar merging rule also applies when generating before triggers. This leads to a more

efficient implementation of the physical triggers.
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SubPropertyOf, EquivalentProperties and DisjointProperties:

To express relations of subsumption, equivalence and disjointness between property expres-

sions (can be atomic or complex), we use constructors SubPropertyOf, EquivalentProperties and

DisjointProperties (analogous to SubClassOf, EquivalentClasses and DisjointClasses), respectively.

Here, we only discuss the case of atomic properties, axioms involving complex properties are

illustrated later when explaining specific constructors.

The DL syntax P v Q shows that the property P is a SubPropertyOf another property Q,

which specifies that instances contained in P must be also in Q. P v Q results in an after

trigger on P , which attempts an insert of 〈x, y〉 into Q, after 〈x, y〉 has been inserted into P :

SubPropertyOf: P v Q ; when +P (x, y) then Q(x, y)

For example, the two SubPropertyOf axioms (2.47) and (2.48) in the beer ontology are translated

into two after triggers:

hasColour v hasDescription ; when +hasColour(x, y) then hasDescription(x, y)

hasFlavour v hasDescription ; when +hasFlavour(x, y) then hasDescription(x, y)

Due to the fact that an equivalence relation can be treated as two subsumption relations,

translating an EquivalentProperties axiom P ≡ Q (specified below) is equivalent to translating

two SubPropertyOf axioms P v Q and Q v P .

EquivalentProperties: P ≡ Q ; when +P (x, y) then Q(x, y)

when +Q(x, y) then P (x, y)

The two after triggers ensure that tables P and Q store exactly the same instances. For example,

in the beer ontology, the EquivalentProperties axiom (2.49) is mapped into two after triggers:

hasFlavour ≡ hasTaste ; when +hasFlavour(x, y) then hasTaste(x, y)

when +hasTaste(x, y) then hasFlavour(x, y)

Finally, the disjointness is represented by using the constructor DisjointProperties, and DL

provides a syntax of DisPro(P1, . . . , Pn) to denote properties P1, . . . , Pn are disjoint from each

other. The semantics of disjointness is achieved by before triggers, which reject inserts of the

same 〈x, y〉 to one of the properties, if 〈x, y〉 has already been inserted to one of the other
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disjoint properties. Translating DisPro(P1, . . . , Pn) into before triggers is defined as:

DisjointProperties:

DisPro(P1, . . . , Pn) ;

when −Pi(x, y) 1 ≤ i ≤ n

if P1(x, y) or . . . or Pi−1(x, y) or Pi+1(x, y) or . . . or Pn(x, y)

then rollback

For example, the axiom (2.50) is translated into two before triggers:

DisPro(hasTaste, hasColour) ; when −hasTaste(x, y) if hasColour(x, y) then rollback

when −hasColour(x, y) if hasTaste(x, y) then rollback

Again, similar to DisjointClasses, triggers generated from DisjointProperties prevent the ATIDB

entering an inconsistent state. If the same 〈x, y〉 is inserted into tables P1 . . . Pn (representing

DisjointProperties P1 . . . Pn), simultaneously as separate database transactions, only the first

transaction of insert will be allowed and the others will be rolled back; if these inserts are

gathered as one database transaction, the whole transaction will be rolled back.

PropertyChain and TransitiveProperty:

PropertyChain is a new feature of OWL 2 compared with OWL 1, and it allows a property to

be defined as a super property of a concatenation of two or more properties (P1 ◦ . . . ◦Pn v P ).

We shall first discuss the simplest case that P1 ◦ P2 v P where the chain concatenates two

properties. P1 ◦ P2 essentially denotes a set of 〈x, z〉 such that there exists some 〈x, y〉 in P1

and 〈y, z〉 in P2. Thus when making P1 ◦ P2 a sub property of P , such tuples 〈x, z〉 should be

inferred as members of P . SQOWL2 translates P1 ◦ P2 v P into two after triggers:

PropertyChain: P1 ◦ P2 v P ; when +P1(x, y) if P2(y, z) then P (x, z)

when +P2(y, z) if P1(x, y) then P (x, z)

The trigger on P1 will check if tuples 〈y, z〉 exist in P2 after 〈x, y〉 has been inserted into P1,

and if so, it will attempt to insert 〈x, z〉 into P . The other trigger on P2 will insert 〈x, z〉 into

P , if 〈x, y〉 is in P1 after 〈y, z〉 has been inserted into P2. In the beer ontology, (2.53) specifying

that brewedIn is a super property of the PropertyChain concatenating brewedIn and locatedIn is

transformed as:
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brewedIn ◦ locatedIn v brewedIn ; when +brewedIn(x, y) if locatedIn(y, z) then brewedIn(x, z)

when +locatedIn(y, z) if brewedIn(x, y) then brewedIn(x, z)

A special case of P1 ◦ P2 v P is to make the property P a super property of P ◦ P , which

concatenates the property itself, and this P is then called a TransitiveProperty. The axiom

P ◦ P v P gives the property the semantics of transitivity, so that if 〈x, y〉 and 〈y, z〉 are in P ,

then 〈x, z〉 must belong to P . Therefore, a TransitiveProperty P results in two after triggers:

TransitiveProperty: P ◦ P v P ; when +P (x, y) if P (y, z) then P (x, z)

when +P (y, z) if P (x, y) then P (x, z)

For instance, the transformation rule for the TransitiveProperty locatedIn (i.e. axiom (2.54)) is:

locatedIn ◦ locatedIn v locatedIn ; when +locatedIn(x, y) if locatedIn(y, z) then locatedIn(x, z)

when +locatedIn(y, z) if locatedIn(x, y) then locatedIn(x, z)

In general, PropertyChain can be used to concatenate more than two properties (i.e. P1◦. . .◦Pn),

and then a property P can be defined as its super property (i.e. P1 ◦ . . . ◦Pn v P ). Translating

such an axiom into triggers is more complex, and is specified as follows:

P1 ◦ . . . ◦ Pn v P ; when +P1(x, y) if P
′

2,n(y, z) then P (x, z)

when +Pn(y, z) if P
′

1,n−1(x, y) then P (x, z)

when +Pi(p, q) 1 < i < n if P
′

1,i−1(x, p), P
′

i+1,n(q, z) then P (x, z)

where P ′m,n(x, y) = Pm(x, x1), Pm+1(x1, x2), . . . , Pn(xn−1, y)

where the first two triggers respectively deal with the case that if there is an insertion to the

first and last property tables in the PropertyChain (i.e. P1 and Pn), the triggers will treat the

remaining subchains as a join unit and search data matched from the unit. The third trigger

handles the insertion to the middle subchains (i.e. not P1 or Pn) by creating two join units and

then fetching the matching data from them.

SymmetricProperty and AsymmetricProperty:

Although OWL 2 only provides the constructor InverseOf to form complex property expres-

sions, numerous characteristics can be assigned to a property, such as transitivity we have
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just introduced. Besides TransitiveProperty, OWL 2 provides several constructors, namely

SymmetricProperty, AsymmetricProperty, ReflexiveProperty, IrreflexiveProperty, FunctionalProperty

and InverseFunctionalProperty, to characterise a property.

In OWL 2 RL, a property can be symmetric, and such a property is called SymmetricProperty. A

property P is defined as symmetric by expressing an equivalence relation between the property

and its InverseOf expression (i.e. P ≡ P−). Thus a SymmetricProperty P must contain 〈y, x〉 if

it includes 〈x, y〉, and translating the semantics of symmetry into triggers is specified as:

SymmetricProperty: P ≡ P− ; when +P (x, y) then P (y, x)

An after trigger on P will insert 〈y, x〉 into P after 〈x, y〉 has been inserted. Take the symmetric

property adjacentPlace (i.e. (2.58)) as an example, the transformation rule is specified as:

adjacentPlace ≡ adjacentPlace− ; when +adjacentPlace(x, y) then adjacentPlace(y, x)

Thus, if we load the A-Box fact (2.60) as an insert of 〈Germany,Belgium〉 into adjacentPlace,

an insert of 〈Belgium,Germany〉 to adjacentPlace will also be executed, which makes the A-Box

fact (2.61) materialised in the ATIDB.

By contrast, an AsymmetricProperty P (i.e. DisPro(P , P−)) must not contain 〈y, x〉 if 〈x, y〉 has

already been asserted as a fact of this property. Thus, the transformation rule for DisPro(P , P−)

is specified below, in order to keep the ATIDB consistent:

AsymmetricProperty: DisPro(P , P−) ; when −P (x, y) if P (y, x) then rollback

For instance, the AsymmetricProperty hasDescription specified by (2.62) is translated into a

before trigger on the property table hasDescription:

DisPro(hasDescription, hasDescription−) ;

when −hasDescription(x, y) if hasDescription(y, x) then rollback

ReflexiveProperty, IrreflexiveProperty and SelfRestriction:

As we have reviewed in Chapter 2, OWL 2 provides a special class called Self to represent the

semantics of reflexivity, and uses the expression of ∃P .Self to denote a set of individuals x

which are related to themselves by P . OWL 2 allows two types of reflexivity, namely universal
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and local reflexivity. A property assigned with universal reflexivity is called a ReflexiveProperty

(denoted as > v ∃P .Self in DL), which relates every individual in the ontology to the individual

itself. In order to transform the semantics of universal reflexivity, we could create a table

Thing(id) for the class Thing to include all individuals in an ontology, and generate a trigger on

this table which attempts an insert of 〈x, x〉 into P after each insertion of x to Thing.

ReflexiveProperty: > v ∃P .Self ; when +Thing(x) then P (x, x)

This could lead the table Thing to be a very large size, since Thing has to include all individuals

in an ontology, and this might make SQOWL2 not scalable when handling large A-Boxes.

Indeed, the RL profile does not allow the use of the class Thing nor ReflexiveProperty. Instead,

rather than having the extra table Thing, we create for every class table C (not Thing) an after

trigger below, which will attempt to insert 〈x, x〉 into P , after x has been inserted into C:

ReflexiveProperty: > v ∃P .Self ; when +C(x) then P (x, x)

OWL 2 RL does allow the semantics of local reflexivity, which is expressed by a constructor

called SelfRestriction. Its DL denotation C v ∃P .Self represents the semantics that every

individual x from a class C is related to itself by the property P . Thus, to capture this

semantic, an after trigger should be created on the table C, and after x has been inserted into

C a tuple of 〈x, x〉 should be inserted into P . We may even specify a subsumption relation

from ∃P .Self to C (i.e. ∃P .Self v C). This requires another after trigger on P , which attempts

to insert x into C after 〈x, x〉 has been inserted into P . The two triggers are specified as:

SelfRestriction: C v ∃P .Self ; when +C(x) then P (x, x)

∃P .Self v C ; when +P (x, x) then C(x)

OWL 2 RL allows the use of IrreflexiveProperty to specify that a property does not relate

any individual to the same individual. Consequently, we create a before trigger below for an

IrreflexiveProperty P (i.e. > v ¬∃P .Self) to roll back any insert of 〈x, x〉.

IreflexiveProperty: > v ¬∃P .Self ; when −P (x, y) if x = y then rollback

Therefore, the IrreflexiveProperty hasDescription defined by (2.64) will be transformed as follows:

> v ¬∃hasDescription.Self ; when −hasDescription(x, y) if x = y then rollback
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FunctionalProperty, InverseFunctionalProperty and HasKey:

The semantics of a FunctionalProperty implies that if the same individual x is related to two

individuals y and z by this property, then y and z are the same individuals (i.e. SameIndividual

axioms). To specify that multiple individuals with different names actually refer to the same

knowledge object is an important feature of OWL. However, this contradicts the UNA, which

states that individuals with different names are different (i.e. which is equivalent to applying

DifferentIndividuals over all individuals in OWL). As SQOWL2 follows the UNA (like most

database systems), we should reject the inserts which lead to the inference of SameIndividual

axioms. Thus, inserting 〈x, z〉 into P representing a FunctionalProperty should be rolled back if

〈x, y〉 is already stored in P and y 6= z, and this results in a before trigger:

FunctionalProperty: > v 61P ; when −P (x, z) if P (x, y), z 6= y then rollback

With regard to an InverseFunctionalProperty P , it specifies that the inverse of P is functional

(denoted as > v 61P− in DL). In other words, if two individuals y and z are both related to

the same individual x by P , then y and z are the same individuals. This again contradicts the

UNA, and we handle an InverseFunctionalProperty P by the following trigger:

InverseFunctionalProperty: > v 61P− ; when −P (z, x) if P (y, x), z 6= y then rollback

HasKey(C, (P1 . . . Pn)), as another new feature introduced by OWL 2, specifies that multiple

properties P1 . . . Pn together uniquely identify an individual in a class C (we may call P1 . . . Pn

key properties of C, and call C the key class of P1 . . . Pn). Here, to simplify the illustra-

tion of triggers, we consider a HasKey axiom specifying two key properties for a class (i.e.

HasKey(C, (P1 P2))). This implies that if two individuals x and y from C are respectively

related to z1 and z2 by P1 and P2, then x and y are the same individuals. Again, we create the

triggers below to roll back any inserts which violate the UNA.
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HasKey(C, (P1 P2)) ; when −P1(x, z1)

if C(x), C(y), P1(y, z1), P2(y, z2), P2(x, z2), x 6= y

then rollback

when −P2(x, z2)

if C(x), C(y), P1(y, z1), P2(y, z2), P1(x, z1), x 6= y

then rollback

when −C(x)

if C(y), P1(y, z1), P2(y, z2), P1(x, z1), P2(x, z2), x 6= y

then rollback

NegativePropertyAssertion

Finally, OWL 2 RL allows the specification that certain facts 〈x, y〉 are not in a property P by

using the constructor NegativePropertyAssertion. This is denoted as ¬P (x, y) in DL, and should

result in a before trigger on the table P to reject the insert of 〈x, y〉 to this table:

NegativePropertyAssertion: ¬P (x, y) ; when −P (x, y) then rollback

4.6 Optimisation

In this section, we further illustrate some optimisations focusing on functional properties, in-

verse functional properties, and key properties. The optimisations enable SQOWL2 to build a

more conventional schema in the ATIDB, that is similar to those that would be created via

a conventional design process into the Third Normal Form (3NF) [Bat89] schema, and will

allow SQOWL2 to be adapted so that it can be used to generate triggers on top of existing

relational schemas (as opposed to generating new schemas with associated triggers).
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4.6.1 Canonical Schema to Conventional Schema

SQOWL2 uses the fact that a FunctionalProperty can be stored in the same table which repre-

sents the PropertyDomain of the property [BB93], to improve the canonical schema to a more

conventional schema. Similarly, we may store all KeyProperties and related triggers to the table

representing their KeyClass, and store an InverseFunctionalProperty and related triggers to the

table representing its PropertyRange.

Thus after establishing a canonical schema as we have introduced in Section 4.4.1, if the ontology

contains properties characterised as a FunctionalProperty or an InverseFunctionalProperty (i.e.

the InverseOf expression of a property is a FunctionalProperty) or a KeyProperty (i.e. properties

that together can uniquely identify a knowledge object), we alter the canonical schema by

1) storing a FunctionalProperty as an extra column of its PropertyDomain table; 2) storing a

InverseFunctionalProperty as an extra column of its PropertyRange table; 3) storing KeyProperties

of a HasKey axiom to the class table in which individuals they can uniquely identify.

If a FunctionalProperty P is stored in the table which represents the PropertyDomain C (i.e. in a

table C(id, P )), inserting 〈x, z〉 and 〈x, y〉 is not allowed because it violates the PK constraint,

so that the UNA is preserved without the need of those triggers defined for the functionality of

P . A similar analysis applies for InverseFunctionalProperty and KeyProperties. In general, if we

have i functional properties P1, . . . , Pi, all of which contain a class C as their PropertyDomain,

j inverse functional properties Q1, . . . , Qj containing the same C as their PropertyRange, k key

properties R1, . . . , Rk which together uniquely identify individuals in the same C, then we store

the class and properties as a single table:

C(id, P1, . . . , Pi, Q1, . . . , Qj, R1, . . . , Rk)

Thus facts P1(x, a1), . . . , Pi(x, ai), Q1(b1, x), . . . , Qj(bj, x) and R1(x, c1), . . . , Rk(x, ck) are stored

as one tuple C(x, a1, . . . , ai, b1, . . . , bj, c1, . . . , ck). Moreover, as a result of the schema change,

FKs or triggers created on P1, . . . , Pi, Q1, . . . , Qj, R1, . . . , Rk in the canonical schema are trans-

ferred to the table C(id, P1, . . . , Pi, Q1, . . . , Qj, R1, . . . , Rk).

Take the beer ontology as an example, we may set the property hasColour as a FunctionalProperty
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(i.e. one beer can have at most one colour) by either (4.1) or (4.2):

> v 61 hasColour (4.1) Fun(hasColour) (4.2)

If we additionally recall the PropertyDomain of hasColour, which is defined as Ale or Lager

by (2.46), we could map hasColour to an extra column of its PropertyDomain tables (i.e.

Ale(id, hasColour) and Lager(id, hasColour)), rather than having three separate tables (i.e. Ale(id),

Lager(id) and hasColour(domain, range)) in the canonical schema.

However, since (2.32) makes Beer equivalent to the DisjointUnion of Ale and Lager, a tableaux-

based reasoner also infers Beer as the PropertyDomain of hasColour. To build the conventional

schema, we will translate hasColour as an extra column of the table Beer rather than Ale or

Lager. The reason for this is that the semantics of column hasColour in Beer can be inherited

by Ale and Lager because of the FKs Ale(id)
fk⇒ Beer(id) and Lager(id)

fk⇒ Beer(id). In general,

if a FunctionalProperty P has two domain classes C and D, and C is more specific than D (i.e.

C v D), P is stored as an extra column of the table D representing the more general class D.

Thus if we take the fragment of the beer ontology considered in Section 4.4.1 (i.e. (2.24),

(2.25), (2.47) and (2.48)) again, by considering the additional axioms (2.32), (2.46) and (4.1),

the canonical schema in Section 4.4.1 can be optimised to the following conventional schema:

Ale(id) Lager(id) Beer(id, hasColour)

hasFlavour(domain, range) hasDescription(domain, range)

Ale(id)
fk⇒ Beer(id) Lager(id)

fk⇒ Beer(id)

Beer(id, hasColour)
fk⇒ hasDescription(domain, range)

hasFlavour(domain, range)
fk⇒ hasDescription(domain, range)

4.7 Summary

In this chapter we have shown SQOWL2 for providing type inference especially when inserting

the A-Box facts of an ontology. SQOWL2 separates T-Box inference and A-Box inference, and

we apply a tableaux-based reasoner for the T-Box inference, in order to obtain a complete set

of subsumption relations w.r.t. the T-Box. Then, we take the classified T-Box as an input,
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and output an ATIDB with tables and triggers. Such an ATIDB is ready to accept any in-

serts translated from A-Box facts or database users. When data is inserted into a table in

ATIDB, triggers associated with this table are automatically invoked to perform type infer-

ence. SQOWL2 supports type inference in a transactional and incremental manner, and more

specifically, it supports (but is not limited to) the RL profile of the recent OWL 2 release. As

a materialised approach, it computes the result of inference before executing queries, and con-

sequently offers fast query processing. However, SQOWL2 is not suitable when the inference

closure is extremely large compared with the original A-Box, nor the circumstances in which

updates are much more frequent than queries.



Chapter 5

Type Inference from Data Deletes

5.1 Introduction

In Chapter 4, we have detailed how the work SQOWL2 performs type inference when knowledge

facts are added as data inserts into the ATIDB. However, to have a comprehensive approach

suitable for normal knowledge processing, we must also handle deletes to the knowledge bases.

Incrementally updating the inference closure from data deletes is a more difficult problem than

handling inserts. First, removing an inferred fact without removing the facts which infer it

makes the knowledge base inconsistent. Second, a fact might be inferred in multiple ways, and

the fact cannot be removed unless all inference ways are no longer valid. Third, facts might

recursively depend on each other, and removing such facts might cause infinite loops.

In this chapter, we provide SQOWL2 which is extended to support type inference from data

deletes. The inference materialisation is incrementally updated by implementing a variant

of the well-known DRed algorithm in triggers (we call the variant label & check). With

SQOWL2 to handle inserts and deletes, transactional reasoning is supported. In Section 5.2,

we use a motivating example to illustrate what issue of type inference might occur from data

deletes. Section 5.3 then provides a review of the DRed algorithm, on which SQOWL2 is based,

alongside another deleting algorithm called Counting. Next, in Section 5.4, we illustrate how

SQOWL2 deals with the motivating example, and Section 5.5 details triggers generated from

OWL 2 RL axioms for handling deletes. Section 5.6 analyses the soundness and completeness

111
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of SQOWL2, and finally Section 5.7 summarises this chapter.

5.2 Motivating Example

To illustrate the problems after facts are deleted from an ontology, we consider a T-Box com-

posed of the axioms (2.24) and (2.28) which have been introduced in Chapter 2, and a new

SubClassOf axiom (5.1):

Ale v Beer (2.24)

Beer ≡ LiquidBread (2.28)
IrishBeer v LiquidBread (5.1)

in which, (2.24) specifies that every ale is a beer, (2.28) defines that a beer is equivalent to

a liquid bread, and (5.1) introduces a new type of liquid bread called IrishBeer. As we have

described in Chapter 4, individuals from the four classes in these axioms are stored in tables

Ale, Beer, LiquidBread and IrishBeer in the ATIDB. Now, suppose four transactions T5.1 – T5.4

below are executed in order:

T5.1 : Ale(IrishRedAle)

T5.2 : IrishBeer(IrishRedAle)

T5.3 : ¬Ale(IrishRedAle)

T5.4 : ¬IrishBeer(IrishRedAle)

where T5.1 inserting an A-Box fact Ale(IrishRedAle), T5.2 inserting another IrishBeer(IrishRedAle),

T5.3 deleting the fact Ale(IrishRedAle), and finally T5.4 removing IrishBeer(IrishRedAle). The

expected changes of the ATIDB is illustrated in Figure 5.1.

The first transaction T5.1 should update the ATIDB from the state S0 to S1. After insert-

ing the fact Ale(IrishRedAle), because of (2.24) and (2.28), IrishRedAle should be derived not

only as an Ale, but also as a Beer and a LiquidBread. Thus, the data of IrishRedAle not only

appears in the table Ale, but also in tables Beer and LiquidBread. Here, if we recall the trans-

actional reasoning (i.e. inference results should be available as a part of the atomic action of

a database transaction), any other transaction Tc which is concurrent with T5.1 should view

the ATIDB either as S0 or S1, but not any intermediate state. For instance, a sample query

Ale(IrishRedAle) ∧ ¬Beer(IrishRedAle) should always evaluate to false in Tc.

The second transaction T5.2 should add the fact of IrishBeer(IrishRedAle) into the ATIDB, which
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T5.3: ¬Ale(IrishRedAle)

Ale(IrishRedAle)
Beer(IrishRedAle)

LiquidBread(IrishRedAle)

S1S0

IrishBeer(IrishRedAle)
Beer(IrishRedAle)

LiquidBread(IrishRedAle)

S3
Ale(IrishRedAle)

IrishBeer(IrishRedAle)
Beer(IrishRedAle)

LiquidBread(IrishRedAle)

S2

T5.1: Ale(IrishRedAle)

T5.2: IrishBeer(IrishRedAle)T5.4: ¬IrishBeer(IrishRedAle)

Figure 5.1: Motivating Example of Type Inference from Data Deletes

is then updated to S2 (i.e. IrishRedAle should be viewed from all the four tables). Note that,

from axioms (5.1) and (2.28), IrishRedAle is derived again as a member of LiquidBread and Beer.

However, the derivations were already made after executing T5.1, and thus should not be added

to the ATIDB repeatedly.

The third transaction T5.3 removing Ale(IrishRedAle), should only delete IrishRedAle from the

table Ale, but not from tables Beer and LiquidBread (i.e. the ATIDB is changed to S3). Note

that although IrishRedAle was inserted into Beer and LiquidBread because of T5.1 inserting

Ale(IrishRedAle), the two facts can still be derived from IrishBeer(IrishRedAle) and axioms (2.28)

and (5.1), even though T5.3 removes Ale(IrishRedAle). However, after executing T5.4, which

deletes IrishBeer(IrishRedAle), the two inferred facts must be removed, and the ATIDB is re-

turned to the empty state.

Moreover, it is important to mention that any attempts at deleting implicit facts, such as

deleting Beer(IrishRedAle) or LiquidBread(IrishRedAle) when the ATIDB is in states S1, S2 and

S3, should be rejected. Such deletes would make the ATIDB inconsistent, because claiming no

such facts exist contradicts what can be inferred from the knowledge base.
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5.3 Review of Incremental View Maintenance

Incremental type inference from data inserts and deletes is often known as the problem of

incrementally maintaining materialised views in the database field, which has been researched

for more than thirty years. As stated in [KM91], the problem of incremental view maintenance

is different from Truth Maintenance [Doy79] (a.k.a. Belief Revision [Gär03]) considered

in the context of Artificial Intelligence. When new updates alter the existing knowledge, truth

maintenance revises some old beliefs to keep the knowledge base consistent. If we consider the

motivating example in Section 5.2, when deleting Beer(IrishRedAle) or LiquidBread(IrishRedAle)

from S1, a truth maintenance approach might delete the existing belief Ale(IrishRedAle) to

maintain the consistency.

In the context of incremental view maintenance, two well-known algorithms Counting and

DRed described in [GMS93] are commonly adopted by many reasoners [VSM03, UMJ+13,

MNPH15]. DRed is known to handle deletes over recursive views, and thus can support OWL

2 RL constructs, such as EquivalentClasses and TransitiveProperty, whilst the Counting algorithm

may not correctly deal with recursive views [NY83].

5.3.1 Counting Algorithm

The Counting algorithm introduces for each A-Box fact stored in a database an extra field called

count, which stores the number of different supports for this fact appearing in the database. In

other words, the count represents how many times a fact has been inferred and asserted (here

we do not consider repeated explicit facts, i.e. a fact can be explicitly asserted at most once).

When loading A-Box facts into a database, the Counting algorithm not only materialises the

inference closure, but also keeps accumulating the count of each fact. At the stage of data

deleting, some derivations of a fact might be invalid because of the deletions, which causes the

algorithm to decrease the count of the fact. When the count of a fact drops to zero, this fact

must be removed, since there is no longer any support for the fact to be in the database.

To illustrate the Counting algorithm, take the T-Box axiom (2.24) (i.e. Ale v Beer) as an



5.3. Review of Incremental View Maintenance 115

example. Because of this subsumption, for an individual x appears in the class Beer, x needs

to be explicitly asserted as a Beer or to be recorded as an Ale (or both of them). This can be

expressed as a Datalog rule:

Beer(x) :- Ale(x)

Thus if we load two A-Box facts Ale(IrishRedAle) and Beer(IrishRedAle), the views Ale and Beer

built by the Counting algorithm should be:

Ale = {〈IrishRedAle, 1〉} Beer = {〈IrishRedAle, 2〉}

where IrishRedAle in Ale has a count of 1, as only the A-Box fact Ale(IrishRedAle) contributes

to the count. The count of IrishRedAle in Beer should be 2, because not only this is explicitly

asserted by Beer(IrishRedAle), but also it can be inferred once from IrishRedAle in Ale. Now, if

we remove Ale(IrishRedAle), the Counting algorithm decrements the count of IrishRedAle in Ale

to 0, which indicates IrishRedAle must be removed from Ale. Due to the absence of IrishRedAle in

Ale, one support for holding Beer(IrishRedAle) is lost, which decreases the count of IrishRedAle in

Beer by 1. If we continue removing the explicit fact Beer(IrishRedAle), the count of IrishRedAle

in Beer should be decrease to 0, which means IrishRedAle must be removed from Beer.

However, the Counting algorithm may not be able to correctly deal with recursive views, as

shown in [NY83]. To explain this, consider an additional axiom (2.28) (i.e. Beer ≡ LiquidBread)

with the above example. The equivalence relation between Beer and LiquidBread brings another

way of inferring facts to Beer (i.e. inferring from LiquidBread besides inferring from Ale). The

equivalence also specifies that facts which appear in LiquidBread might be derivations from Beer.

We specify this as Datalog rules:

Beer(x) :- Ale(x)

Beer(x) :- LiquidBread(x)
LiquidBread(x) :- Beer(x)

As can be seen, views Beer and LiquidBread recursively depend on each other, which results

in infinite loops when building up the count of data items in the two views. Indeed, when

the count of x in Beer increments by 1, the count of the same x in LiquidBread should be also

increased by 1, which will increase the count of x in Beer by 1 again.
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5.3.2 DRed Algorithm

Unlike the Counting algorithm, the DRed algorithm does not store any additional information

(e.g. the count for each fact) when loading the explicit facts and materialising the total inference

closure. The DRed algorithm contains two phases, which are over-deletion and rederivation.

When an explicit fact is deleted, the over-deletion phase first ‘over deletes’ all facts which have a

derivation from this explicit fact, and then the phase of rederivation ‘rederives’ some facts which

have been over-deleted in the previous phase, but can still be inferred from the remaining facts.

One important feature of DRed is this algorithm can handle deletions over recursive views.

To illustrate the DRed algorithm, take the T-Box axioms (2.24), (2.28) and (5.1) in Section 5.2

as an example again. If we further load three A-Box facts Ale(IrishRedAle), IrishBeer(IrishRedAle)

and Ale(BritishBrownAle) (asserted by (2.3)), the DRed algorithm will establish views Ale,

IrishBeer, Beer and LiquidBread as:

Ale = {BritishBrownAle, IrishRedAle}

IrishBeer = {IrishRedAle}

Beer = {BritishBrownAle, IrishRedAle}

LiquidBread = {BritishBrownAle, IrishRedAle}

As can be seen, because of the three explicit A-Box facts, BritishBrownAle and IrishRedAle

are present in Ale, and IrishRedAle is recorded in IrishBeer. BritishBrownAle and IrishRedAle

appearing in Beer and Liquid are because of inference. Since DRed does not need to store the

count of each fact, the infinite loop experienced by the Counting algorithm is avoided here,

though Beer and LiquidBread recursively infer facts to each other.

Now suppose we remove the A-Box fact Ale(IrishRedAle), DRed not only deletes IrishRedAle

from Ale, but also ‘over deletes’ IrishRedAle from Beer and LiquidBread, because the deleted

fact can infer the over-deleted facts. Then, the rederivation phase computes as to whether the

deleted IrishRedAle in Ale, Beer and LiquidBread can still be inferred from the remaining facts.

Therefore, IrishRedAle is rederived into Beer and LiquidBread, as IrishRedAle in IrishBeer can still

infer them. If we further remove the fact IrishBeer(IrishRedAle), IrishRedAle in IrishBeer, Beer
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and LiquidBread is ‘over deleted’ first; however, none of them can be rederived.

The two algorithms have their advantages and disadvantages. From the viewpoint of inserting

facts, the Counting algorithm needs to not only infer and store implicit facts, but also to

increment the count of each fact. However, the DRed only materialises the inference closure

without storing such additional information. At the stage of deleting facts, the Counting

algorithm simply decrements the count of affected facts, and removes them if their counts drop

to zero; by contrast, the DRed algorithm requires to perform two phases to handle the deletes,

which is less efficient. Another key difference between the two algorithms is that DRed is known

to support deletes over recursive views, while the Counting algorithm does not. Thus DRed

can be used to handle OWL 2 RL axioms, such as EquivalentClasses and TransitiveProperty.

5.4 SQOWL2 for Data Deletes

In this section, we show how SQOWL2 in Chapter 4 can be extended to additionally support

deletes. Following the same approach architecture shown in Figure 4.4, for a classified T-

Box obtained by a tableaux-based reasoner, SQOWL2 establishes an ATIDB with tables and

triggers, which is able to perform type inference in a transactional and incremental manner.

Tables in the ATIDB are either unary relations mapped from OWL classes or binary relations

translated from OWL properties. Triggers in the ATIDB are created from OWL axioms and

demonstrated as ECA rules of the form when 〈event〉 if 〈condition〉 then 〈action〉. The ATIDB

is able to load the A-Box data as inserts, and moreover, accepts additions and deletions to the

A-Box launched by database users expressed as updates on the tables which denote the classes

and properties.

In particular for handling data deletes, which is the new feature compared to Chapter 4, the

triggers automatically launch a label & check process, which first recursively labels all data

items that have a derivation from the data in the deletes. Then the second phase checks as

to whether the labelled data can be inferred or not from non-labelled data; if so we keep this

data; otherwise, we remove it. In order to perform the process of label & check, we introduce
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a state for each data item stored in the ATIDB (described in Section 5.4.1), and identify two

types of inserts/deletes, namely ontology and reasoner inserts/deletes (in Section 5.4.2). Then,

in Section 5.4.3, we use the motivating example to show how the new triggers materialise the

inference closure with the consideration of the data state, when T5.1 and T5.2 are executed over

the ATIDB. Afterwards, Section 5.4.4 demonstrates how the label & check process is performed

for handling T5.3 and T5.4 in the motivating example.

5.4.1 The State of Each Data Item

In the ATIDB, SQOWL2 views each individual x in a class C as an item of data denoted as

C(x), and each data item is specified as passing through four states (i.e. ø, e, i and d) by certain

database operations, as shown in Figure 5.2. Similarly, a property fact P (x, y) is viewed as an

item of data P (x, y), which passes through the same four states in the ATIDB.

C(x)∅

C(x)d
C(x)i

C(x)ewhen C(x)e
Start Rollback

Rollback

when C(x)e

when C(x)i

when C(x)i

when C(x)i

when C(x)e
when ¬C(x)i

when ¬C(x)i

when ¬C(x)e

when ¬C(x)e, when ¬C(x)i

inferable

non-inferable
when ¬C(x)e

Figure 5.2: Data state transitions

In particular, the data item C(x) with each state of ø, e, i and d has the following semantics:

• C(x)ø: a class fact which does not hold, and therefore is not yet materialised in the table

C, which represents the class C, in the ATIDB
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• C(x)e: a class fact which is materialised in the ATIDB, because an explicit A-Box fact

defines it

• C(x)i: a class fact which is materialised in the ATIDB, since it can be implicitly inferred

from other facts

• C(x)d: one of the supporting arguments for storing a class fact in the ATIDB has been

lost, and the check phase which determines whether the fact is still inferable from other

facts should be launched

5.4.2 Ontology Inserts/Deletes & Reasoner Inserts/Deletes

Each of the four states can be transitioned to another by insert or delete operations. We clas-

sify these operations into two categories, which are ontology inserts/deletes and reasoner

inserts/deletes:

• An ontology insert describes an event that some user or application is inserting into

the ATIDB a new explicit fact, and such an insert is captured by the trigger when C(x)e

• A reasoner insert identifies an event that some implicit facts have been inferred by a

reasoner from the existing facts, and the reasoner has attempted to insert these implicit

facts into the ATIDB. A reasoner insert is detected by the trigger when C(x)i

• An ontology delete is an event in which some user or application is deleting an explicit

fact from the ATIDB, and such a delete is captured by when ¬C(x)e

• A reasoner delete describes an event that when some evidences for persisting a fact in

the ATIDB have been removed, detected by the trigger when ¬C(x)i

The two categories of operations change the state of each data item, and possible state transi-

tions are also outlined in Figure 5.2. Firstly, for ontology or reasoner inserts:

• For C(x)ø, which denotes a fact not stored in the ATIDB, an ontology insert of C(x)e

transitions C(x)ø to C(x)e, and a reasoner insert of C(x)i updates C(x)ø to C(x)i. The
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state ø is essentially a logical denotation which we mainly use for ease of expressing a

fact absent from the ATIDB, and it is unnecessary to explicitly store this state from the

viewpoint of implementation (shown in Chapter 7).

• For C(x)i, which identifies a fact materialised with the implicit state, repeated reasoner

inserts of C(x)i do not modify the state, in order to avoid duplicated derivations which

are based on C(x)i. However, an ontology insert of C(x)e gives the fact explicit semantics,

which updates C(x)i to C(x)e.

• For C(x)e, which means a fact stored with the explicit state, a reasoner insert of C(x)i

does not modify the state, so that duplicated inference is prevented. Here, in order

to implement normal database semantics, attempting further ontology inserts of C(x)e

results in a rollback.

Secondly, for ontology or reasoner deletes:

• For C(x)ø, which logically denotes an absent data item, ontology or reasoner deletes are

both ignored, in order to match the normal database semantics that deleting data which

is not present causes no errors.

• For C(x)i, executing an ontology delete ¬C(x)e results in the ATIDB entering into an

inconsistent state, because being no C(x) by the ontology delete conflicts with what can

be derived from other data stored in the ATIDB, and such an ontology delete should be

rolled back. However, a reasoner delete ¬C(x)i updates C(x)i to C(x)d, in order to label

the data for checking, as it might still be inferable from other items of data.

• For C(x)e, an ontology delete ¬C(x)e modifies it to C(x)d, since the data might still be

derivable even after deleting its explicit supporting argument. However, a reasoner delete

¬C(x)i does not lead to any change, because only ontology deletes are able to remove the

explicit semantics.

• For the state of C(x) is changed to d (i.e. the fact is labelled), a further recursive labelling

process is launched to attempt reasoner deletes over other data items which depend on
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C(x)d. After the labelling process is finished, all data items with d are subject to a check

process, which determines whether they can still be inferred from non-labelled data (i.e.

data items in state e or i). If so, we update C(x)d to C(x)i; otherwise, C(x)d is removed

from the ATIDB (i.e. C(x)d is logically changed to C(x)ø).

5.4.3 Materialising Type Inference with Data State

Considering the data state introduced for enabling SQOWL2 to handle deletes, when A-Box

facts are loaded into the ATIDB, not only type inference should be computed and materialised,

but also the state of each data should be correctly identified. Thus, the triggers which we have

defined in Chapter 4 should be improved, and here we show the improvements by using the

motivating example in Section 5.2.

Ale(IrishRedAle)e
IrishBeer(IrishRedAle)∅
Beer(IrishRedAle)∅

LiquidBread(IrishRedAle)∅

S0a

when Ale(IrishRedAle)e

T5.1: Ale(IrishRedAle)

Ale(IrishRedAle)e
IrishBeer(IrishRedAle)∅
Beer(IrishRedAle)i

LiquidBread(IrishRedAle)i

S1
Ale(IrishRedAle)e

IrishBeer(IrishRedAle)∅
Beer(IrishRedAle)i

LiquidBread(IrishRedAle)∅

S0b

when Beer(IrishRedAle)i

when LiquidBread(IrishRedAle)i

when Beer(IrishRedAle)i

Ale(IrishRedAle)∅
IrishBeer(IrishRedAle)∅
Beer(IrishRedAle)∅

LiquidBread(IrishRedAle)∅

S0

Figure 5.3: T5.1: insert Ale(IrishRedAle)

Figure 5.3 gives the detailed execution process of T5.1 shown as an atomic transition in Fig-

ure 5.1. It shows that T5.1 changes the ATIDB from S0 to S1 via two intermediate states S0a

and S0b . Firstly, inserting Ale(IrishRedAle) (i.e. an ontology insert of Ale(IrishRedAle)e) into the

ATIDB S0 is checked by a before trigger:

when −Ale(x)e if ¬Ale(x)e then Ale(x)e
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Because Ale(IrishRedAle)ø is true (the data is not yet stored in the ATIDB S0), the insert is

therefore permitted, and updates the ATIDB to S0a . The SubClassOf axiom (2.24) is translated

into an after trigger:

when +Ale(x)e∨i then Beer(x)i

Thus after Ale(IrishRedAle)e is materialised, this after trigger is fired to attempt a reasoner

insert of Beer(IrishRedAle)i, which is detected by a before trigger created on Beer:

when −Beer(x)i if ¬Beer(x)i then Beer(x)i

Because Beer(IrishRedAle)ø is true in S0a , the reasoner insert of Beer(IrishRedAle)i is allowed

by the above before trigger, and the ATIDB is updated from S0a to S0b . An EquivalentClasses

axiom can be logically treated as two SubClassOf axioms; therefore, the axiom (2.28) is mapped

into two after triggers:

when +Beer(x)e∨i then LiquidBread(x)i

when +LiquidBread(x)e∨i then Beer(x)i

After the ATIDB is changed to S0b , materialising Beer(IrishRedAle)i causes another reasoner

insert of LiquidBread(IrishRedAle)i, which updates the state of LiquidBread(IrishRedAle) from ø

to i (i.e. S0b is updated to S1), because of the following before trigger on LiquidBread:

when −LiquidBread(x)i if ¬LiquidBread(x)i then LiquidBread(x)i

Note that after storing LiquidBread(IrishRedAle)i, the after insert trigger on LiquidBread gener-

ates the reasoner insert of Beer(IrishRedAle)i again. However, this repeated reasoner insert is

ignored, because Beer(IrishRedAle)i is already materialised in S1 (i.e. the ATIDB stays at S1),

so that duplicated inference is avoided.

Ale(IrishRedAle)e
IrishBeer(IrishRedAle)e
Beer(IrishRedAle)i

LiquidBread(IrishRedAle)i

S2

when IrishBeer(IrishRedAle)e

T5.2: IrishBeer(IrishRedAle) when LiquidBread(IrishRedAle)i

Ale(IrishRedAle)e
IrishBeer(IrishRedAle)∅
Beer(IrishRedAle)i

LiquidBread(IrishRedAle)i

S1

Figure 5.4: T5.2: insert IrishBeer(IrishRedAle)
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Figure 5.4 illustrates the execution process of T5.2, inserting IrishBeer(IrishRedAle). T5.2 is treated

as an ontology insert of IrishBeer(IrishRedAle)e, which changes the state of IrishBeer(IrishRedAle)

from ø to e (i.e. S1 is updated to S2), as IrishBeer(IrishRedAle)ø is true in S1. After this, the

after insert trigger on IrishBeer from the axiom (5.1):

when +IrishBeer(x)e∨i then LiquidBread(x)i

attempts a new reasoner insert of LiquidBread(IrishRedAle)i. As LiquidBread(IrishRedAle)i is

already true in S2, such a reasoner insert is ignored by the before insert trigger on LiquidBread

(i.e. the ATIDB remains at S2).

5.4.4 Label & Check for Data Deletes

Executing an ontology delete over an item of data in state i without deleting the explicit facts

which infer the data causes inconsistencies in the ATIDB. Therefore, such ontology deletes

should be rolled back, and we specify for Beer and LiquidBread the following two before triggers:

when −¬Beer(x)e if Beer(x)i then rollback

when −¬LiquidBread(x)e if LiquidBread(x)i then rollback

When the ATIDB is in S0, S1 or S2, the above triggers result in executing an ontology delete

to Beer(IrishRedAle)i or to LiquidBread(IrishRedAle)i to rolling back the deletion. In essence, we

only permit attempting an ontology delete to data in state e, i.e. C(x)e or P (x, y)e. However,

executing ontology deletes over C(x)e or P (x, y)e only removes the explicit semantics, and

because they might also be implicitly derived, a label & check process detailed below should

be launched to verify whether they can still be derived.

Label: when a user or application attempts to delete C(x)e, we create a before delete trigger

on C to convert this ontology delete to an update of C(x)e to C(x)d. This update labels

C(x) in state d, and the label process might cascade to other data which depends on C(x) by

attempting reasoner deletes to data inferred from C(x)e. For example, as (2.24) means that

individuals in Ale infer the same in Beer, when a data item x in Ale is labelled, a reasoner delete

to the same x in Beer should be conducted by the following after trigger created on Ale:
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when +Ale(x)d then ¬Beer(x)i

This reasoner delete is then handled by a before delete trigger created on Beer shown as follows:

when −¬Beer(x)i if Beer(x)i then Beer(x)d

As can be seen, if Beer(x)i is true, attempting a reasoner delete to x in Beer will be converted

as an update of Beer(x)i to Beer(x)d, i.e. the labelling process cascades. Note that, the after

delete trigger on Ale and the before delete trigger on Beer can be merged as a single after delete

trigger on Ale shown as:

when +Ale(x)d if Beer(x)i then Beer(x)d

Analogous to this trigger, the axiom (5.1), which expresses a subsumption relation from IrishBeer

to LiquidBread, generates another after delete trigger on IrishBeer as:

when +IrishBeer(x)d if LiquidBread(x)i then LiquidBread(x)d

Moreover, the EquivalentClasses axiom (2.28)) is translated into two after delete triggers on

tables Beer and LiquidBread:

when +Beer(x)d if LiquidBread(x)i then LiquidBread(x)d

when +LiquidBread(x)d if Beer(x)i then Beer(x)d

We now take T5.3, which removes Ale(IrishRedAle), as an example to show how the label process

cascades to all inferred facts from Ale(IrishRedAle); a detailed execution is given in Figure 5.5.

T5.3, which conducts an ontology delete to Ale(IrishRedAle), first changes Ale(IrishRedAle)e to

Ale(IrishRedAle)d moving the ATIDB from S2 to S2a . This labelling generates a reasoner delete

of Beer(IrishRedAle)i, which updates Beer(IrishRedAle)i to Beer(IrishRedAle)d, and the ATIDB is

consequently changed to S2b . Afterwards, the after delete trigger created on Beer attempts a

reasoner delete of LiquidBread(IrishRedAle)i, which changes the data state to d, and the ATIDB

enters S2c (i.e. the labelling process because of T5.3 removing Ale(IrishRedAle) is finished).

Check: All labelled data items (i.e. in state d) are checked as to whether they are still implicitly

inferable or not from non-labelled data items (i.e. stated in e or i). For labelled data which

is still inferable, its state d is changed to i; otherwise, the data is removed (which is logically
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Ale(IrishRedAle)e
IrishBeer(IrishRedAle)e
Beer(IrishRedAle)i
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T5.3: ¬Ale(IrishRedAle) when ¬Ale(IrishRedAle)e
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Figure 5.5: T5.3: delete Ale(IrishRedAle)

interpreted as changing d to ø). To realise the check process, we create for each table a Datalog-

style inference rule containing all inference logic to the table (denoted as CInt(x) for a class

table or PInt(x, y) for a property table). Next, the check is processed by invoking the following

trigger created on each table (the “⊕” symbol specifies the check phase should start after all

the labelling has finished):

when ⊕C(x)d if CInt(x) then C(x)i else C(x)ø

when ⊕P (x, y)d if PInt(x, y) then P (x, y)i else P (x, y)ø

Note that, the inference rule for a table is omitted, if the table contains no inference logic,

such as the case for tables Ale and IrishBeer when only taking axioms (2.24), (2.28) and (5.1)

into account. However, for tables Beer and LiquidBread, their inference rules includes their

subclasses and equivalent classes:

BeerInt(x) :- Ale(x)e∨i

BeerInt(x) :- LiquidBread(x)e∨i

LiquidBreadInt(x) :- IrishBeer(x)e∨i

LiquidBreadInt(x) :- Beer(x)e∨i

Continuing the execution of T5.3 in Figure 5.5, the check phase starts from Ale(IrishRedAle)d in

S2c . As AleInt(x) is empty, Ale(IrishRedAle)d is updated to Ale(IrishRedAle)ø (i.e. Ale(IrishRedAle)

is removed), and the ATIDB enters S2d . Beer(IrishRedAle)d is checked next, and because the data

IrishRedAle in Ale is in state ø and in LiquidBread is in state d, it is updated to Beer(IrishRedAle)ø,

which causes the ATIDB to change from S2d to S2e . Then, LiquidBread(IrishRedAle)d is checked
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and updated with the implicit state i because of IrishBeer(IrishRedAle)e (i.e. the ATIDB moves

from S2e to S2f ). Due to the occurrence of LiquidBread(IrishRedAle)i, the after insert trigger on

LiquidBread for conducting a reasoner insert of Beer(IrishRedAle)i is invoked, and changes the

ATIDB from S2f to S3, ending the whole label & check process for T5.3. Analogous to processing

T5.3, applying the label & check process to T5.4 changes the ATIDB back to the empty state S0.

5.5 Triggers and Inference Rules for OWL 2 RL axioms

In the previous section, we have demonstrated how SQOWL2 performs type inference from

data updates, especially from data deletes, by using the motivating example. In fact, not

only SubClassOf and EquivalentClasses axioms in the motivating example, but also all the other

OWL 2 RL axioms are covered by SQOWL2. Note that, because the UNA is adopted by our

approach, we do not allow the use of the constructor SameIndividual, which implies that one

knowledge object shares two individual names. To avoid verbose description, we choose some

typical constructors in OWL 2 RL to illustrate how triggers and inference rules are generated,

and summarise how other RL constructors are implemented in Table 5.1 and 5.2.

5.5.1 OWL Classes and Properties

As demonstrated in Figure 5.2, ontology and reasoner inserts/deletes change a data item in the

ATIDB passing though four data states. The data transitions are achieved by invoking before

triggers. Firstly, for ontology and reasoner inserts, before insert triggers for every class table

are specified as follows:

Class: C ; when −C(x)e

when −C(x)i

if C(x)ø∨i then C(x)e

if C(x)e then rollback

if C(x)ø then C(x)i

if C(x)e∨i then ignore

and very similarly, before insert triggers on a property table are specified as follows:
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Property: P ; when −P (x, y)e

when −P (x, y)i

if P (x, y)ø∨i then P (x, y)e

if P (x, y)e then rollback

if P (x, y)ø then P (x, y)i

if P (x, y)e∨i then ignore

Ontology inserts are detected by when −C(x)e or when −P (x, y)e, and will be able to change

the state of an item of data from state ø or i to state e, in order to give the data explicit

semantics. An ontology insert should be rolled back if a data item is already in state e, to match

the normal database semantics which rejects a repeated insert of the same data. However, for

reasoner inserts, which are detected by when −C(x)i or when −P (x, y)i, the triggers will be

able to change the state of data to i only when the data is in state ø; when the data is in state e

or i the before triggers will ignore the reasoner inserts, since the inserted data is already known

to the ATIDB.

Secondly, for ontology and reasoner deletes, we create before delete triggers to ignore, rollback

or label the data which is intended for deletion (i.e. update the data to be in state d). In

particular, the before triggers for handling deletes over a class table are:

Class: C ; when −¬C(x)e

when −¬C(x)i

if C(x)ø then ignore

if C(x)i then rollback

if C(x)e then C(x)d

if C(x)ø∨e then ignore

if C(x)i then C(x)d

The triggers detect ontology deletes over a class table by when −¬C(x)e, which can then

update a data item in state e to d, and capture reasoner deletes by when −¬C(x)i, which can

then change an item of data in state i to d. Ontology deletes will be ignored, if the data being

deleted is not present (i.e. in state ø), or will be rolled back if they attempt to delete data

in state i (preventing the ATIDB entering inconsistent state). Moreover, reasoner deletes will

be ignored if the data is in state ø or e. Before triggers for ontology or reasoner deletes over

property tables are similar:
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Property: P ; when −¬P (x, y)e

when −¬P (x, y)i

if P (x, y)ø then ignore

if P (x, y)i then rollback

if P (x, y)e then P (x, y)d

if P (x, y)ø∨e then ignore

if P (x, y)i then P (x, y)d

Note that all the triggers above have the purpose of labelling data, possibly cause cascade of

labelling some other data items. When the label process is finished over all affected data items,

the next step is to check as to whether the labelled data is still inferable. This is conducted by

an after trigger created on each class and property table:

Class: C ; when ⊕C(x)d if CInt(x) then C(x)i else C(x)ø

Property: P ; when ⊕P (x, y)d if PInt(x, y) then P (x, y)i else P (x, y)ø

Recall that these triggers perform checking after all the labelling has been finished as specified

by the “⊕” symbol. If an item of data is still inferable from the inference rule for this table, it

will be updated to be in state i; otherwise, it will be removed from the ATIDB (i.e. the state

is updated to ø).

5.5.2 The Semantics of Class Axioms

Apart from constructors SubClassOf and EquivalentClass, the handling of which has already

been illustrated in Section 5.4, we choose another four typical constructors DisjointClasses,

AllValuesFrom, IntersectionOf, and OneOf to show how other class-related constructors in OWL

2 RL can be mapped to triggers and inference rules. The handling of the remaining class-related

constructors are listed in Table 5.1.

DisjointClasses: OWL 2 RL uses DisjointClasses to state that several classes do not share the

same individual as exemplified by the axiom (2.29), which specifies that Ale and Lager are

disjoint with each other. As we have explained, a before trigger should be created on each of

the DisjointClasses tables, to prevent inconsistencies in the ATIDB. Here, since we introduce the

state of the data, the transformation rule for mapping DisCla(C1, . . . , Cn) into triggers should
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Table 5.1: Triggers and inference rules generated from class axioms

DL Syntax Triggers Inference Rules

∃P .CE v C

when +P (x, y)e∨i if CE(y)e∨i then C(x)i
when +CE(y)e∨i if P (x, y)e∨i then C(x)i
when +P (x, y)d if CE(y)e∨i∨d then ¬C(x)i
when +CE(y)d if P (x, y)e∨i∨d then ¬C(x)i

CInt(x) :- P (x, y)e∨i, CE(y)e∨i

C v ∃P .{a}
when +C(x)e∨i then P (x, a)i
when +C(x)d then ¬P (x, a)i

PInt(x, a) :- C(x)e∨i

∃P .{a} v C
when +P (x, a)e∨i then C(x)i
when +P (x, a)d then ¬C(x)i

CInt(x) :- P (x, a)e∨i

C v ∃P .Self
when +C(x)e∨i then P (x, x)i
when +C(x)d then ¬P (x, x)i

PInt(x, x) :- C(x)e∨i

∃P .Self v C
when +P (x, x)e∨i then C(x)i
when +P (x, x)d then ¬C(x)i

CInt(x) :- P (x, x)e∨i

>nP v C

when +P (x, y)e∨i

when +P (x, y)d

if count[P (x, )e∨i]≥n
then C(x)i
if count[P (x, )e∨i∨d]≥n
then ¬C(x)i

CInt(x) :- count[P (x, )e∨i]≥n

>nP .CE v C

when +P (x, y)e∨i

when +CE(y)e∨i

when +P (x, y)d

when +CE(y)d

if count[P (x, y)e∨i, CE(y)e∨i]≥n
then C(x)i
if count[P (x, y)e∨i, CE(y)e∨i]≥n
then C(x)i
if count[P (x, y)e∨i∨d, CE(y)e∨i∨d]≥n
then ¬C(x)i
if count[P (x, y)e∨i∨d, CE(y)e∨i∨d]≥n
then ¬C(x)i

CInt(x) :- count[P (x, y)e∨i, CE(y)e∨i]≥n

be refined to deal with the state of data as:

DisCla(C1, . . . , Cn) ; when −Ci(x)e∨i 1 ≤ i ≤ n

if C1(x)e∨i or . . . or Ci−1(x)e∨i or Ci+1(x)e∨i or . . . or Cn(x)e∨i

then rollback

Thus, ontology or reasoner inserts to a class table are rolled back if the data of the inserts

already exists in state e or i in one of the other disjoint-class tables. Also as can be seen from

the above triggers, no reasoner insert is generated, which means no implicit fact can be derived

from DisjointClasses axioms. Therefore, the inference rule for the table which represents each

of the disjoint classes should be empty, and when a data item in one of the tables is labelled,

the label process will not cascade because of the semantics of DisjointClasses.

Note that compared to the triggers for handling inserts illustrated in Chapter 4, the refined

triggers need to detect ontology or reasoner inserts (i.e. when C(x)e∨i). Another difference is
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in the 〈condition〉 field, the refined trigger needs to verify the condition over data in state e or

i, which is unnecessary for triggers in Chapter 4.

AllValuesFrom: as we have reviewed in Chapter 2, denotes itself in DL as ∀P .CE, which specifies

a set of individuals x, such that if x is related to some y by a property P , then the individuals y

always belong to CE. The RL profile only allows using ∀P .CE as a super-class expression (i.e.

C v ∀P .CE), because using it as a subclass expression does not infer anything, as we analysed

in Section 4.5.2. For C v ∀P .CE, triggers for inserts are refined as:

AllValuesFrom: C v ∀P .CE ; when +C(x)e∨i if P (x, y)e∨i then CE(y)i

when +P (x, y)e∨i if C(x)e∨i then CE(y)i

Recall that C v ∀P .CE implies that for any individual x of C, if x appears in 〈x, y〉 of P , then

y should be derived as an instance of CE. Therefore, the trigger on the table C will detect

the ontology or reasoner inserts of x (i.e. when +C(x)e∨i), and after these inserts have been

executed, if 〈x, y〉 is in state e or i and P (i.e. if P (x, y)e∨i), then a reasoner insert of CE(y)i

should be attempted (i.e. then CE(y)i). Similarly, the reasoner insert of CE(y)i should also be

generated by another trigger on the table P , after ontology or reasoner inserts of 〈x, y〉 to P

(i.e. when P (x, y)e∨i) have been executed, and C(x) is in state e or i. Note that, as we have

clarified in Section 4.5.1, free variables in the field of 〈condition〉, such as the y which appears

in if P (x, y)e∨i, are universally quantified.

When considering the label phase of handling deletes, two triggers C and P are specified:

AllValuesFrom: C v ∀P .CE ; when +C(x)d if P (x, y)e∨i∨d then ¬CE(y)i

when +P (x, y)d if C(x)e∨i∨d then ¬CE(y)i

When C(x) is updated to be in state d, the trigger on C will check if P (x, y) is in state e, i

or d, and if so the trigger will attempt a reasoner delete ¬CE(y)i. This reasoner delete might

cause the labelling to cascade to CE(y), which depends on the state of CE(y). Similarly, the

trigger P will conduct a reasoner delete ¬CE(y)i after P (x, y) is labelled in state d, if C(x) is

in state e, i or d. With regard to the check phase, the inference rule of the table CE is:

CEInt
(y) :- C(x)e∨i, P (x, y)e∨i

which selects the y appearing in non-labelled 〈x, y〉 of P where x is non-labelled in C.
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IntersectionOf: as we have detailed in Section 4.5.2, OWL 2 RL supports the IntersectionOf

axiom C ≡ CE1 u . . . u CEn in which each of CE1 . . . CEn must meet the profile restrictions.

This axiom is classified by a tableaux-based reasoner into n + 1 SubClassOf axioms (e.g. (1.1)

is classified into axioms (1.5) – (1.7)):
n subsumption axioms︷ ︸︸ ︷

C v CE1 . . . C v CEn

CE1 u . . . u CEn v C︸ ︷︷ ︸
1 subsumption axiom

where the first n SubClassOf axioms (i.e. C v CEj
, 1 ≤ j ≤ n) result in the following triggers:

C v CEj
1 ≤ j ≤ n ; when +C(x)e∨i then CEj

(x)i

when +C(x)d then ¬CEj
(x)i

Triggers on C will attempt reasoner inserts of x to all of the tables CEj
(1 ≤ j ≤ n), after x has

been inserted into C, and will attempt reasoner deletes of x from CEj
(1 ≤ j ≤ n), after C(x)

is updated to be in state d. Thus, transforming axioms (1.5) and (1.6), which are classified

from (1.1), simply result in the following triggers:

when +CzechLager(x)e∨i then Lager(x)i,CzechBeer(x)i

when +CzechLager(x)d then ¬Lager(x)i,¬CzechBeer(x)i

For checking, the inference rule for each CEj
(1 ≤ j ≤ n) will include non-labelled x in C:

CEjInt
(x) :- C(x)e∨i (1 ≤ j ≤ n)

Take (1.5) and (1.6) as examples again, the inference rules for tables Lager and CzechBeer

include non-labelled data in CzechLager:

LagerInt(x) :- CzechLager(x)e∨i CzechBeerInt(x) :- CzechLager(x)e∨i

For the last subsumption axiom CE1 u . . . u CEn v C, after a data item x is inserted into one

of CEj
(1 ≤ j ≤ n), a reasoner insert of x to the table C can only be attempted, if x is present

in every other CEk
(k 6= j) in state e or i. Also, after x is labelled in one of CEj

(1 ≤ j ≤ n), a

reasoner delete of x from C can only be conducted, if x is in state e, i or d in every other CEk

(k 6= j). Thus, the last subsumption axiom results in the following triggers:
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CE1 u . . . u CEn v C ; when +CEj
(x)e∨i 1 ≤ j ≤ n

if CE1(x)e∨i, . . . , CEj−1
(x)e∨i, CEj+1

(x)e∨i, . . . , CEn(x)e∨i then C(x)i

when +CEj
(x)d 1 ≤ j ≤ n

if CE1(x)e∨i∨d, . . . , CEj−1
(x)e∨i∨d, CEj+1

(x)e∨i∨d, . . . , CEn(x)e∨i∨d

then ¬C(x)i

Therefore, transforming the axiom (1.7) gives us the following triggers for attempting reasoner

inserts and reasoner deletes:

when +Lager(x)e∨i if CzechBeer(x)e∨i then CzechLager(x)i

when +CzechBeer(x)e∨i if Lager(x)e∨i then CzechLager(x)i

when +Lager(x)d if CzechBeer(x)e∨i∨d then ¬CzechLager(x)i

when +CzechBeer(x)d if Lager(x)e∨i∨d then ¬CzechLager(x)i

By considering the last subsumption axiom, the inference rule of the table C should include

all common data items in state e or i in all of CEj
(1 ≤ j ≤ n); therefore, the inference rule is

demonstrated as:

CInt(x) :- CE1(x)e∨i, . . . , CEn(x)e∨i

Consequently, from the axiom (1.7), the inference rule of the table CzechLager below includes

non-labelled individuals in both tables CzechBeer and Lager.

CzechLagerInt(x) :- CzechBeer(x)e∨i, Lager(x)e∨i

Indeed, as we illustrated in the motivating example in Section 4.2, handling deletes over

IntersectionOf axioms is a difficult problem, especially when deleting an individual x from

C in the axiom C ≡ CE1 u . . . u CEn , as argued in [Dat00], which may result in a view update

problem: how do we determine which CEj
should the x be deleted from? SQOWL2 overcomes

this, as in the label process we label every x in state i to state d in all CE1 . . . CEn , and after-

wards during the check phase, all such labelled data items will be checked as to whether they

are still inferable or not.

For the last constructor which we select for explanation, OneOf {a1 . . . an}, we first create an

anonymous table (named by concatenating the names of enumerated individuals, and we denote
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the table by Cac) containing exact individuals defined in {a1 . . . an} as data items in state e (i.e.

Cac = {a1e . . . ane}). Moreover, triggers on Cac for handling inserts and deletes are specified as:

OneOf: {a1 . . . an}; when −Cac(x)e then rollback

when −Cac(x)i if x /∈ {a1 . . . an} then rollback else ignore

when −¬Cac(x)e if x ∈ {a1 . . . an} then rollback else ignore

when −¬Cac(x)i then ignore

As can be seen, attempting an ontology insert of Cac(x)e is always rolled back, no matter

whether x is in {a1 . . . an} or not. Indeed, if x is equal to one of {a1 . . . an}, an ontology insert

of Cac(x)e should be rolled back, as C(a1)e . . . C(an)e are all true. If x is not one of {a1 . . . an},

an ontology insert of Cac(x)e should also be rolled back, as this insert violates the OneOf axiom

{a1 . . . an}. For a reasoner insert of Cac(x)i, if x is not one of {a1 . . . an} the reasoner insert

should also be rolled back; otherwise, the reasoner insert will be ignored to avoid duplicated

inference. With regard to deletes, we will roll back any ontology delete to C(a1)e . . . C(an)e

unless the OneOf axiom {a1 . . . an} is removed from the T-Box (however, updates to T-Box are

beyond the scope of this thesis); otherwise, an ontology delete to data not in C(a1)e . . . C(an)e

will be ignored to match the normal database semantics. Moreover, we ignore any reasoner

delete to C(a1)e . . . C(an)e as reasoner deletes will not affect data in state e.

5.5.3 The Semantics of Property Axioms

This section continues with the definition of triggers and inference rules based on property-

related axioms. We again only choose several typical constructors to illustrate the refined

triggers which take data state into account, and the mapping of the other constructors into

triggers and inference rules is summarised in Table 5.2.

PropertyDomain and PropertyRange: an atomic property may explicitly restrict its subject or

object values to individuals from a particular OWL class. For instance, axioms (2.41) and (2.42)

respectively define the PropertyDomain and PropertyRange of isFermentedBy to classes Beer and

Yeast. Therefore, after an ontology or reasoner insert of 〈x, y〉 into the table isFermentedBy

(representing the property isFermentedBy), one reasoner insert of x should be attempted to
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Table 5.2: Triggers and inference rules generated from property axioms

DL Syntax Triggers Inference Rules

P ≡ Q−

when +P (x, y)e∨i then Q(y, x)i
when +Q(x, y)e∨i then P (y, x)i
when +P (x, y)d then ¬Q(y, x)i
when +Q(x, y)d then ¬P (y, x)i

QInt(y, x) :- P (x, y)e∨i
PInt(y, x) :-Q(x, y)e∨i

DisPro(P ,Q)
when −P (x, y)e∨i if Q(x, y)e∨i then rollback

when −Q(x, y)e∨i if P (x, y)e∨i then rollback
−

P ≡ P−
when +P (x, y)e∨i then P (y, x)i
when +P (x, y)d then ¬P (y, x)i

PInt(y, x) :- P (x, y)e∨i

DisPro(P , P−) when −P (x, y)e∨i if P (y, x)e∨i then rollback −
> v ¬∃P .Self when −P (x, x)e∨i then rollback −
¬P (x, y) when −P (x, y)e∨i then rollback −

Beer, and another reasoner insert of y should be conducted to Yeast. This is achieved by the

following trigger (note that we merge the trigger for (2.41) and the trigger for (2.42) into one

single trigger, as they share the same 〈event〉 and 〈condition〉):

when +isFermentedBy(x, y)e∨i then Beer(x)i,Yeast(y)i

Similarly, another trigger specified below is used for handling deletes, and it conducts two

reasoner deletes ¬Beer(x)i and ¬Yeast(y)i, after changing the state of P (x, y) to d.

when +isFermentedBy(x, y)d then ¬Beer(x)i,¬Yeast(y)i

Finally, the inference rules for tables Beer and Yeast should include x and y contained in non-

labelled tuples 〈x, y〉 of the table isFermentedBy, respectively:

BeerInt(x) :- isFermentedBy(x, y)e∨i

YeastInt(y) :- isFermentedBy(x, y)e∨i

In general, we summarise below the transformation rule for generating triggers and inference

rules for PropertyDomain:

PropertyDomain: > v ∀P−.CE1 ; when +P (x, y)e∨i then CE1(x)i

when +P (x, y)d then ¬CE1(x)i

CE1Int
(x) :- P (x, y)e∨i

and for PropertyRange as follows:
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PropertyRange: > v ∀P .CE2 ; when +P (x, y)e∨i then CE2(y)i

when +P (x, y)d then ¬CE2(y)i

CE2Int
(y) :- P (x, y)e∨i

SubPropertyOf: specifies subsumption relations between properties, and a SubPropertyOf axiom

P v Q generates two triggers on P and one inference rule for Q:

SubPropertyOf: P v Q ; when +P (x, y)e∨i then Q(x, y)i

when +P (x, y)d then ¬Q(x, y)i

QInt(x, y) :- P (x, y)e∨i

As can be seen, one of the triggers on P attempts reasoner inserts to Q (i.e. the super-property

table) after inserting (either ontology or reasoner inserts) data into P (i.e. the sub-property

table); the other one attempts reasoner deletes over Q, if some data items in P are labelled. In

addition, we specify the inference rule associated with Q to include non-labelled 〈x, y〉 in P .

TransitiveProperty: a transitive property, such as locatedIn defined by the axiom (2.54), will have

〈x, z〉 as its instance, if (x, y) and (y, z) exist in this property. Thus, we define the following

transformation rule to generate triggers and the inference rule for the semantics of transitivity.

TransitiveProperty: P ◦ P v P ; when +P (x, y)e∨i if P (y, z)e∨i then P (x, z)i

when +P (y, z)e∨i if P (x, y)e∨i then P (x, z)i

when +P (x, y)d if P (y, z)e∨i∨d then ¬P (x, z)i

when +P (y, z)d if P (x, y)e∨i∨d then ¬P (x, z)i

PInt(x, z) :- P (x, y)e∨i, P (y, z)e∨i

The triggers ensure that: 1) after each ontology or reasoner insert to a transitive property table

P , the triggers will compute new transitive tuples, and attempt reasoner inserts of the new

tuples to the table P ; 2) a tuple will be changed to be in state d if other tuples which derive it

because of transitivity are labelled for deletion. Finally, for a TransitiveProperty P , the inference

rule can be defined as PInt(x, z) :- P (x, y)e∨i, P (y, z)e∨i.

PropertyChain: OWL 2 RL allows the specification of a property as a super property of a

PropertyChain concatenating two or more properties. Here, we discuss handling the most general
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situation P1 ◦ . . . ◦ Pn v P , and triggers for handling inserts to P1 . . . Pn are refined as:

P1 ◦ . . . ◦ Pn v P ; when +P1(x, y)e∨i if P ′2,n(y, z)e∨i then P (x, z)i

when +Pn(y, z)e∨i if P ′1,n−1(x, y)e∨i then P (x, z)i

when +Pj(p, q)e∨i 1 < j < n if P ′1,j−1(x, p)e∨i, P
′
j+1,n(q, z)e∨i then P (x, z)i

where P ′m,n(x, y)e∨i = Pm(x, x1)e∨i, Pm+1(x1, x2)e∨i, . . . , Pn(xn−1, y)e∨i

The first and second triggers handle ontology or reasoner inserts to the first and last sub-

chain property, respectively. They will join the remaining subchains (i.e. P ′2,n(y, z)e∨i and

P ′1,n−1(x, y)e∨i) to derive new reasoner inserts to P . The third trigger deals with ontology or

reasoner inserts to one of the middle subchains Pj (where 1 < j < n). The subchains before Pj

and after Pj are respectively joined, in order to attempt reasoner inserts if new tuples in P are

derived. Furthermore, the triggers for labelling are specified as:

P1 ◦ . . . ◦ Pn v P ; when +P1(x, y)d if P ′2,n(y, z)e∨i∨d then ¬P (x, z)i

when +Pn(y, z)d if P ′1,n−1(x, y)e∨i∨d then ¬P (x, z)i

when +Pj(p, q)d 1 < j < n if P ′1,j−1(x, p)e∨i∨d, P
′
j+1,n(q, z)e∨i∨d then ¬P (x, z)i

where P ′m,n(x, y)e∨i∨d = Pm(x, x1)e∨i∨d, Pm+1(x1, x2)e∨i∨d, . . . , Pn(xn−1, y)e∨i∨d

Finally, for the check phase, the inference rule of the table P is specified as:

PInt(x, y) :- P1(x, x1)e∨i, P2(x1, x2)e∨i, . . . , Pn(xn−1, y)e∨i

Take the axiom (2.53) as an example, which defines the property brewedIn as a super property

of brewedIn ◦ locatedIn, the following triggers are specified for handling ontology or reasoner

inserts to brewedIn and locatedIn:

when +brewedIn(x, y)e∨i if locatedIn(y, z)e∨i then brewedIn(x, z)i

when +locatedIn(y, z)e∨i if brewedIn(x, y)e∨i then brewedIn(x, z)i

and the triggers defined below for the purpose of labelling:

when +brewedIn(x, y)d if locatedIn(y, z)e∨i∨d then ¬brewedIn(x, z)i

when +locatedIn(y, z)d if brewedIn(x, y)e∨i∨d then ¬brewedIn(x, z)i

and the following inference rule on the table brewedIn for the purpose of checking:

brewedInInt(x, z) :- brewedIn(x, y)e∨i, locatedIn(y, z)e∨i
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Note that, in Table 5.1 and Table 5.2, we omit the axioms that do not result in the creation of

triggers and inference rules.

5.6 Soundness & Completeness of SQOWL2

An inference system is sound if an ontology entails all derivations inferred by the system,

and a complete inference system means that for a given ontology, the system is able to infer

all possible derivations entailed by the ontology. When considering the general inference w.r.t.

OWL 2 RL ontologies interpreted by the Direct Semantics, SQOWL2 is conjectured to be sound

but incomplete. First, to verify the soundness of our approach, we essentially need to check

for valid inputs SQOWL2 is able to compute valid inference outputs. This has already been

illustrated in Section 5.5.2 and Section 5.5.3, in which all class-related and property-related

semantics are axiomatically implemented as triggers.

With regard to completeness, SQOWL2 is conjectured to be a complete implementation of

the OWL 2 RL/RDF rules for type inference w.r.t. OWL 2 RL interpreted by the Direct

Semantics. This can be derived by using the Theorem PR11 in [MGH+12], which defines

the requirements for an OWL 2 RL reasoner to return all and only the correct answers to

certain kinds of query. Indeed, except where the UNA conflicts, all the OWL 2 RL/RDF

rules are implemented as triggers in the ATIDB. All the inference tasks (i.e. type inference)

and query types (i.e. conjunctive queries) which we consider exactly satisfy the requirements in

Theorem PR1. Furthermore, as shown later in Chapter 7, we empirically verify the completeness

conjecture of our approach by comparing SQOWL2 with a tableaux-based reasoner, and by

processing the exhaustive test suites generated by SyGENiA [SGH10].

With regard to general inference (i.e. beyond type inference), our approach is incomplete,

mainly because of separating the T-Box and A-Box inference. Certain T-Box subsumption

relations might not be derived because of this separation, as inferring these relations would

require both T-Box and A-Box statements together [Krö12b]. For instance, in an ontology

containing some T-Box axioms A v ∃P .{b} and ∃P .B v C, we cannot infer A v C without an

1The content of Theorem PR1 can be found in Appendix B.
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A-Box fact B(b). Nevertheless, losing this subsumption relation does not make type inference

incomplete, i.e. SQOWL2 is still able to infer C(x) from A(x) by invoking triggers generated

for A v ∃P .{b} and ∃P .B v C without A v C. Furthermore, as we consider the case that

the size of the T-Box is much smaller than the size of A-Boxes, it becomes possible to combine

a tableaux-based reasoner and a rule-based inference engine. Sample systems that adopt this

combination include DLEJena [MB10] and Minerva. As addressed in [MB08], the combination

gives more complete subsumption relations than evaluating the OWL 2 RL/RDF rules.

Another difference, which we have already addressed, between our approach and other OWL

reasoners is the adoption of UNA, which does not allow the case that two different knowl-

edge objects share the same individual name. This is semantically equivalent to applying

DifferentIndividuals to all individuals contained in an ontology, which implies SameIndividual,

or other constructors which may derive SameIndividual axioms, such as FunctionalProperty,

InverseFunctionalProperty and HasKey), cannot be used. The adoption of the UNA is not abnor-

mal in rule-based systems, because their logical underpinning in Datalog follows the UNA and

the CWA. However, SQOWL2 extends this to follow the OWA, as we have already illustrated,

such as how we handle the case of ∀P .CE v C with the consideration of OWA.

5.7 Summary

This chapter has described how SQOWL2 performs type inference from both inserts and deletes

to the A-Box of ontologies. This is based on a variant of the DRed algorithm, which inherits

the ability of handling recursive views. Such ability enables SQOWL2 to deal with all OWL 2

RL axioms, except the SameIndividual due to our adoption of UNA. We introduce four states

to a data item in the ATIDB, and identify two types of database operations, and how these

operations update a data item from one state to another. We have also provided an analysis

about the soundness and completeness of SQOWL2. Again, the type inference is performed by

invoking pre-established triggers, which incrementally analyse how the previous materialisation

should be updated when updates are executed. Such inference preserves the ACID properties

of transactions, and therefore satisfies transactional reasoning.
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Type Inference over Big Data

6.1 Introduction

In Chapter 4 and Chapter 5, we have already described how our approach performs type

inference for OWL 2 ontologies the size of which is small enough to fit in an RDBMS (i.e.

SQOWL2). We have focused on the problem of updating the inference materialisation, from

data inserts and data deletes, in a transactional and incremental manner by using triggers. In

this chapter, we introduce how our approach handles large ontologies which are too large to be

stored in an RDBMS by using Spark programmes in a Big Data system (i.e. SPOWL).

We often call large-scale ontologies Web of Data, such as Freebase [Goo16], UniProt [Con15]

and DBpedia, which have very large A-Boxes (e.g. the latest uncompressed Freebase dataset

contains 1.9 billion triples and is about 250GB in size). Type inference over the sheer size of

ontologies challenges the scalability of inference. Thus we move our concentration from trans-

actional and incremental inference in an RDBMS to scalable inference for large-scale ontologies.

To handle the extremely large Web of Data, many reasoners have adopted a Big Data system

running a distributed computation engine, such as Hadoop and Spark, to store the Web of Data

and to compute the inference results. State-of-the-art large-scale reasoners, such as WebPIE

and Cichlid, usually load the explicit A-Box facts into a Big Data system first, and then com-

pute and materialise the inference closure by evaluating a set of entailment rules, such as RDFS

entailment rules [MVPG09] and OWL ter Horst rules [tH05].

139
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To illustrate the evaluating process, we consider a fragment of the beer ontology composed of

T-Box axioms (2.1) and (2.24), and A-Box facts (2.4) and (2.13), which we show again as:

PaleAle v Ale (2.1)

Ale v Beer (2.24)

Ale(EnglishPorter) (2.4)

PaleAle(CreamAle) (2.13)

Entailment rules can be expressed in the format of if 〈antecedent〉 then 〈consequent〉; for

example, in the set of RDFS entailment rules, the rule used for inferring class hierarchies is:

if C1 v C2, C2 v C3 then C1 v C3

which will infer C1 as a subclass of C3, if C1 is a subclass of C2 and C2 is a subclass of C3.

We may call this entailment rule a schema rule, because it outputs new T-Box axioms as

the 〈consequent〉. Thus evaluating schema rules basically performs some T-Box inference. For

instance, if we evaluate this above schema rule over (2.1) and (2.24) by matching the two T-Box

axioms to the rule 〈antecedent〉, the T-Box axiom (2.26) will be derived:

PaleAle v Beer (2.26)

Another type of entailment rule takes some A-Box facts together with T-Box axioms as the

〈antecedent〉 and infers some new A-Box facts defined in the 〈consequent〉. We may call them

data rules, evaluating which performs A-Box inference. For example, the following data rule

will infer an individual a of C1 as a member of C2, if C1 is a subclass of C2:

if C1 v C2, C1(a) then C2(a)

Thus if we evaluate this data rule over the T-Box axiom (2.1) and the A-Box fact (2.13), we

can derive a new A-Box fact that CreamAle is an instance of Ale:

Ale(CreamAle) (6.1)

Similarly, further evaluating this data rule over (2.24) and (2.4), and over (2.24) and (6.1),

gives two new A-Box facts that EnglishPorter and CreamAle are two instances of Beer:

Beer(EnglishPorter) (6.2) Beer(CreamAle) (6.3)

In a nutshell, the evaluating process checks as to whether there are some T-Box and A-Box

statements matching the 〈antecedent〉 of some entailment rules; if so, statements defined in

their 〈consequent〉 are obtained as new derivations. Entailment rules commonly adopted by
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materialised approaches are RDFS entailment rules and OWL ter Horst rules; both of which

cover some features of OWL 2 RL. The former contains 13 rules and can be reduced to 6 rules

which are sufficient to preserve the key functionality of RDF reasoning [MVPG09]. OWL ter

Horst rules consist of 24 rules, which are able to deal with a subset of more complex relations

or constraints expressed in OWL 2 RL.

Large-scale reasoners (especially for those which use a materialised approach) often apply a

semi-naive evaluation [AHV95], which iteratively evaluates a set of entailment rules, until no

new inference can be computed. This often leads to an inefficiency issue, due to the overhead

of rule matching [Krö12a]. Moreover, the evaluation usually sacrifices too much inference

completeness due to the avoidance of a tableaux-based reasoner, even when the T-Box is quite

simple [MB10].

This chapter presents how our approach SPOWL performs type inference for the Web of Data.

For a given large ontology, SPOWL generates Spark programmes from the classified T-Box by a

tableaux-based reasoner, and executes these programmes iteratively to compute and materialise

the results of type inference, until no further inference can be derived.

In SPOWL, using a tableaux-based reasoner not only gives us a complete T-Box inference w.r.t.

a given T-Box, but also ensures that Spark programmes are only generated for those axioms

contained in the T-Box. This completely avoids evaluating entailment rules unrelated to a

given large ontology. Moreover, the Spark programmes directly take relevant A-Box data as

their inputs, which requires no rule matching process. We also provide an optimised order for

iteratively executing the Spark programmes, in order to minimise the number of iterations until

Spark programme execution can terminate (i.e. when no further inference can be derived).

SPOWL also inherits the light and fast data processing from Spark, which caches data as

Resilient Distributed Datasets (RDDs) in distributed memory as much as possible on

a cluster of machines, compared to Hadoop MapReduce, which requires to frequently write

intermediate results to disk and thus causes an I/O overhead. In addition, Spark uses what it

termed a Directed Acyclic Graph (DAG) scheduler for job scheduling, which is more flexible

for parallelising jobs than Hadoop, which follows a linear-flow job scheduling of MapReduce.



142 Chapter 6. Type Inference over Big Data

Note that unlike SQOWL2 which uses triggers to perform type inference, Spark does not

provide transactions, so transactional reasoning is not supported in SPOWL. Moreover, we

take the assumption that the large ontologies subject to materialising inference are consistent;

otherwise, the materialising process should result in a warning alongside an empty materialisa-

tion [KMR10]. Also the Spark programmes described in this chapter is rather logical, and the

physical implementation details are provided in Section 7.4 of Chapter 7.

The rest of this chapter is organised as follows. Section 6.2 reviews the distributed computation

engine Spark, on which the content of this chapter is based. Section 6.3 provides an overview of

how SPOWL translates a classified T-Box into Spark programmes. In Section 6.4, we present

the transformation rules for mapping all OWL 2 RL constructors into Spark programmes, and

then we describe an optimised order for executing these Spark programmes, so that the iteration

times of executing them can be minimised. Finally, Section 6.5 summarises this chapter.

6.2 Review of Spark

Spark is a distributed computation engine for fast cluster computing by using in-memory data

processing. It is currently implemented in three programming languages, which are Scala, Java

and Python. Spark uses its DAG scheduler to optimise job computation, and it can read/write

data from/into an HDFS or other distributed file systems, such as Amazon S31, HBase [Geo11]

and Cassandra [LM11]). Comparing Spark to other distributed computation frameworks, such

as Hadoop, Pig [ORS+08] and Hive [TSJ+09], we adopt Spark due to its ability to cache data

in distributed memory to eliminate I/O overhead, and Spark’s more flexible and parallelised

job scheduling.

6.2.1 RDD & DAG scheduler

One key functionality of Spark is the ability to cache data as RDDs in the distributed memory

of a cluster of machines. Spark provides for each RDD two types of operations, which are

1https://aws.amazon.com/s3/

https://aws.amazon.com/s3/
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transformations and actions. Performing a transformation over an existing RDD will create

a new RDD, and the existing one is called a parent of the new RDD. For example, the

transformation filter (with a filter function) on RDD1 will create a new RDD2 containing filtered

results of RDD1. The following Spark code in Python2 shows the use of filter (where lambda

is a Python construct for creating anonymous functions at runtime, and as will be shown in

our later examples, it is frequently used to construct functions in other Spark transformations,

such as map and join):

RDD2 = RDD1.filter(lambda line : ”spowl” in line)

by which RDD2 will include the lines of RDD1 that contain the string ”spowl”. Thus, RDD1 is a

parent of RDD2. Spark creates for each RDD a DAG including all parents of the RDD, which

forms a logical execution plan for generating the RDD. Thus the DAG of RDD2 includes RDD1.

With regard to actions, each of them executed on an RDD returns a particular value of the

RDD; for example, the following code calls an action called count on RDD2, which returns the

number of lines contained in RDD2.

RDD2.count()

Spark adopts a lazy evaluation for RDD computation, which means that transformations

recorded in the DAG of an RDD will not be executed until an action is called. In the above

example, the filter transformation which creates RDD2 from RDD1 will not be executed until

the count action is called on RDD2. However, the lazy evaluation might be inefficient, if some

action is frequently called over an RDD which has a complex DAG, because the RDD will be

re-computed from the beginning of its DAG every time when calling the action. To overcome

this, such an RDD can be cached in memory by Spark actions cache or persist, so that the

RDD will be only computed for the first time an action is called, and afterwards, Spark will

use the cached RDD from memory without unnecessary re-computation.

2In this thesis, we use the syntax of Python to show Spark programmes.
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6.2.2 Spark vs. Hadoop

Hadoop is an open-source framework providing distributed storage and processing for large

datasets on clusters of commodity machines. It offers an HDFS for the distributed data

storage, and implements the MapReduce programming model for distributed computation

called Hadoop MapReduce. The HDFS stores datasets into large blocks and distributes

the datasets over the clusters of machines. For a computation job, the Hadoop MapReduce

processes it via a Map phase followed by a Reduce phase. Data is firstly loaded by several

mappers, where some intermediate key-value pairs are generated based on specified map func-

tions. The intermediate pairs are then shuffled to different reducers (based on the keys), where

the final result is calculated based on defined reduce functions.

The first difference of Spark from Hadoop MapReduce is that Spark caches data in distributed

memory as much as possible, unlike Hadoop that needs to write/read intermediate results

to/from disk and thus often suffers from an I/O overhead. The second difference is about the

job scheduling between Hadoop and Spark which is illustrated in Figure 6.1.

Figure 6.1: Job Scheduling between Hadoop (left) and Spark (right)

As can be seen, Hadoop schedules jobs as a linear flow, by which jobs should be executed

sequentially (although each job can still be parallelised). However, the DAG scheduling provided

by Spark plans jobs in a more flexible and parallelised manner (i.e. independent jobs in DAG

scheduling can be computed in parallel). Moreover, if there are multiple jobs depending on

the same job (e.g. the job a in Figure 6.1), the result of this job can be cached in memory by

Spark, so that it can be used repeatedly without re-computation.
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6.3 SPOWL Overview

The section briefly outlines SPOWL, which has a very similar architecture to SQOWL2. We

also illustrate how Spark programmes are generated from a classified T-Box and then applied

to the loaded data, so that the results of type inference can be computed and materialised.

6.3.1 SPOWL Architecture

Figure 6.2 shows the architecture of SPOWL, which performs type inference over large ontolo-

gies in three steps:

Distributed	Data	Storage
(e.g.	HDFS)

T-BoxOWL
Documents

Classified
T-Box

① Spark Programme Generation

A-Box1

A-Boxn

•••

② Initial Load

③ Type Inference

Figure 6.2: Approach Architecture for Type Inference in a Big Data System

1. After performing the classification by some tableaux-based reasoner, SPOWL compiles

the classified T-Box to Spark programmes, which can be executed later over data loaded

in a distributed data storage, such as an HDFS.

2. Explicit A-Box facts of a large ontology are initially loaded in the distributed storage

system. We currently only consider an HDFS for storing ontological data, but this can

be extended to any other Spark supported distributed storage systems.

3. We execute the Spark programmes compiled from T-Box axioms over the loaded data, so

that the results of type inference are computed and persisted in the HDFS.
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6.3.2 Approach Demonstration

In order to demonstrate the above three steps, we consider the following fragment of the beer

ontology:

PaleAle v Ale (2.1)

Ale v Beer (2.24)

Beer ≡ Ale t Lager (2.31)

Dom(hasFlavour,Ale t Lager) (2.45)

hasFlavour ≡ hasTaste (2.49)

Ale(EnglishPorter) (2.4)

PaleAle(CreamAle) (2.13)

hasTaste(BalticPorter,Malty) (6.4)

Except (6.4), which is a new A-Box fact, others have been specified previously. For the five

T-Box axioms, a tableaux-based reasoner classifies them as some additional axioms shown as

follows (we omit the classified axioms which are irrelevant to type inference of the three A-Box

facts (2.4), (2.13) and (6.4)):

PaleAle v Beer (2.26)

Dom(hasFlavour,Beer) (6.5)

hasTaste v hasFlavour (6.6)

hasFlavour v hasTaste (6.7)

where (2.26), classified from (2.1) and (2.24), is a SubClassOf axiom from PaleAle to Beer, axiom

(6.5), obtained from (2.31) and (2.45), specifies the PropertyDomain as Beer, and finally axioms

(6.6) and (6.7) are two new SubPropertyOf axioms obtained from (2.49).

We may start the generation of Spark programmes from (6.6). Assume the two properties

are represented by two RDDs hasTasterdd and hasFlavourrdd, and after loading the A-Box

fact (6.4), hasTasterdd contains (BalticPorter,Malty) and hasFlavourrdd is an empty RDD. The

SubPropertyOf axiom (6.6) is transformed into the following Spark programmes:

hasFlavourrdd = hasFlavourrdd.union(hasTasterdd)

by which a union transformation on hasFlavourrdd is performed to merge hasFlavourrdd with

(BalticPorter,Malty) contained in hasTasterdd.

The PropertyDomain axiom (6.5) denotes that subjects of pairs in hasFlavourrdd should be in-

ferred as data items in Beerrdd which represents the class Beer. This can be performed by:

Beerrdd = Beerrdd.union(hasFlavourrdd.map(lambda (subject, object) : subject))
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where a map transformation is first applied on hasFlavourrdd to map (subject, object) pairs in

hasFlavourrdd to a set containing only (subject), and then a union transformation is called to

merge Beerrdd with the selected set of (subject). Thus Beerrdd will include the subject value

BalticPorter of (BalticPorter,Malty) contained in hasFlavourrdd.

Similarly to SubPropertyOf axioms, for SubClassOf axioms, Spark programmes should merge

the RDD representing the super class with data items contained in the RDD representing the

subclass. Thus, axioms (2.1) and (2.24) are compiled to:

Alerdd = Alerdd.union(PaleAlerdd)

Beerrdd = Beerrdd.union(Alerdd)

Suppose the A-Box facts (2.4) and (2.13) are already loaded into Alerdd and PaleAlerdd rep-

resenting the class Ale and PaleAle, respectively. By executing the above Spark codes, Alerdd

will be merged with CreamAle contained in PaleAlerdd alongside its explicit data EnglishPorter.

Similarly, Beerrdd will have EnglishPorter and CreamAle as its new data items in addition to

BalticPorter.

Note that the order of executing Spark programmes should be in a bottom-up manner fol-

lowing the T-Box hierarchy, which reduces the number of iterations needed to terminate the

inference materialisation. For example, if we first execute Beerrdd = Beerrdd.union(Alerdd) for

(2.24) before executing Alerdd = Alerdd.union(PaleAlerdd) for (2.1), then we need to execute

Beerrdd = Beerrdd.union(Alerdd) again, to ensure that Beerrdd includes the data items inferred

to Alerdd from PaleAlerdd. The fragment of the beer ontology we have used in this section is

fairly simple, and we will introduce in Section 6.4.3 how an optimised order of executing Spark

programmes is specified from all OWL 2 RL axioms.

6.4 Materialising Inference Closure for OWL 2 RL

We now thoroughly show how all OWL 2 RL constructors are compiled to Spark programmes;

in particular, the compiling for class-related axioms is illustrated in Section 6.4.1, and the

compiling for property-related axioms is provided in Section 6.4.2. Finally, we describe in
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Section 6.4.3 an optimised order of executing these programmes.

6.4.1 Compiling for OWL 2 RL Class-related Axioms

SPOWL represents OWL classes and properties as Spark RDDs (i.e. C ; Crdd and P ;

Prdd). Crdd contains data items in the form of (id), while Prdd contains pairs in the form of

(domain, range) (which Spark treats as key-value pairs). At the stage of initial loading, the A-

Box facts are split into different class and property RDDs, which contain explicit facts asserted

to these classes and properties, respectively. These RDDs will then have data added to them

to include the implicit data derived from some OWL 2 RL axioms.

SubClassOf and EquivalentClasses:

We discuss first the case of using SubClassOf to construct subsumption relations between atomic

classes (i.e. C v D), and the subsumption between complex expressions (i.e. CE1 v CE2)

are discussed when we move to other constructors. Compiling C v D, as we have already

discussed in Section 6.3.2, should ensure Drdd represents the super class D and includes data

items contained in Crdd representing the subclass C. The Spark programme executes the union

transformation to merge Drdd with Crdd, so that Drdd will not only have its already contained

data items but also data in Crdd.

SubClassOf: C v D ; Drdd = Drdd.union(Crdd)

As an EquivalentClasses axiom C ≡ D is logically equivalent to two SubClassOf axioms C v D

and D v C, the transformation rule for compiling C ≡ D into Spark programmes is intuitively:

EquivalentClasses: C ≡ D ; Drdd = Drdd.union(Crdd)

Crdd = Crdd.union(Drdd)

Thus, after executing the above Spark programmes, Crdd and Drdd will contain exactly the

same data items.
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AllValuesFrom, SomeValuesFrom, HasValue and SelfRestriction:

OWL 2 RL only allows the expression formed by AllValuesFrom (i.e. ∀P .CE) to appear as a

super-class expression (i.e. C v ∀P .CE). The axiom C v ∀P .CE expresses that for every x

in C, if x is related to some y by P , then y should be inferred as an instance of CE. Such an

axiom is compiled into the Spark programmes:

AllValuesFrom: C v ∀P .CE ; CEimp
= Crdd.map(lambda xc : (xc, xc)).join(Prdd)

.map(lambda (xk, (xc, yp)) : yp)

CErdd
= CErdd

.union(CEimp
)

The Spark programmes first compute the set of data items y such that x is in Crdd and (x, y) is

in Prdd. This is achieved by two map transformations and one join transformation. Firstly, data

items xc in Crdd is mapped to key-value pairs (xc, xc) by .map(lambda xc : (xc, xc)), which is then

joined with pairs (of the form (xp, yp)) of Prdd by .join(Prdd). This join, called on key-value pairs

of (xc, xc) and (xp, yp), will look for the case that xc = xp and return a dataset of (xk, (xc, yp))

pairs with all pairs of elements for each key. The (xk, (xc, yp)) pairs are then mapped to a set

containing only yp by .map(lambda (xk, (xc, yp)) : yp). The set of yp is what we need to compute,

and should be added into CErdd
by a union transformation. Note that we store in CEimp

the set

of yp which needs to be inferred to CErdd
for a neat illustration of Spark programmes; however

Spark does support the nested usage, which means the above programmes can be written as:

CErdd
= CErdd

.union(Crdd.map(lambda xc : (xc, xc)).join(Prdd).map(lambda (xk, (xc, yp)) : yp))

To further explain the Spark programmes compiled from AllValuesFrom, we consider an axiom:

BritishBeer v ∀brewedIn.BritishPlaces (6.8)

which specifies that all British beers are brewed in a place in Britain, and some A-Box facts:

BritishBeer(EnglishIPA) (6.9)

BritishBeer(ScottishExport) (6.10)

BritishBeer(IrishStout) (6.11)

brewedIn(EnglishIPA,England) (6.12)

brewedIn(ScottishExport, Scotland) (6.13)

brewedIn(MunichHelles,Munich) (6.14)

where (6.9) – (6.11) defines EnglishIPA, ScottishExport and IrishStout as British beers, (6.12)

specifies EnglishIPA is brewed in England, (6.13) denotes ScottishExport is brewed in Scotland,
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and (6.14) expresses MunichHelles is brewed in Munich.

Suppose BritishBeer, brewedIn and BritishPlaces are respectively transformed into three RDDs

BritishBeerrdd, brewedInrdd and BritishPlacesrdd, and after loading A-Box facts (6.9) – (6.14) into

them, the three RDDs should be:

BritishBeerrdd = {EnglishIPA, ScottishExport, IrishStout}

brewedInrdd = {(EnglishIPA,England), (ScottishExport, Scotland), (MunichHelles,Munich)}

BritishPlacesrdd = {}

By applying the transformation rule for C v ∀P .CE, the T-Box axiom (6.8) is compiled into:

BritishPlacesimp =

BritishPlacesrdd =

BritishBeerrdd.map(lambda xc : (xc, xc)).join(brewedInrdd)

.map(lambda (xk, (xc, yp)) : yp)

BritishPlacesrdd.union(BritishPlacesimp)

which we may explain step by step. First, the map transformation called on BritishBeerrdd will

map each data item xc to a key-value pair (xc, xc):

BritishBeerrdd.map(lambda xc : (xc, xc)) =

{(EnglishIPA,EnglishIPA), (ScottishExport, ScottishExport), (IrishStout, IrishStout)}

Then, joining BritishBeerrdd.map(lambda xc : (xc, xc)) with brewedInrdd (containing key-value

pairs (xp, yp)) will give us a set of (xk, (xc, yp)) pairs:

BritishBeerrdd.map(lambda xc : (xc, xc)).join(brewedInrdd) =

{(EnglishIPA, (EnglishIPA,England)), (ScottishExport, (ScottishExport, Scotland))}

As can be seen, for the pair (IrishStout, IrishStout) in BritishBeerrdd.map(lambda xc : (xc, xc)), the

key value IrishStout does not match any key in brewedInrdd, and similarly, MunichHelles of the pair

(MunichHelles,Munich) in brewedInrdd does not match any key in BritishBeerrdd.map(lambda xc :

(xc, xc)). Therefore, the joined result will not include them.

Furthermore, applying the map transformation which selects yp from (xk, (xc, yp)) pairs in

BritishBeerrdd.map(lambda xc : (xc, xc)).join(brewedInrdd) gives us BritishPlacesimp as:

BritishPlacesimp = {England, Scotland}
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Finally, merging BritishPlacesrdd with BritishPlacesimp will result BritishPlacesrdd in:

BritishPlacesrdd = {England, Scotland}

which means the two individuals England and Scotland are inferred as members of BritishPlaces.

With regard to the constructor SomeValuesFrom, recalling that OWL 2 RL only allows ex-

pressions formed by it to be a subclass expression (i.e. ∃P .CE v C), which specifies if an

individual x is related to some y of CE by P , then x should be inferred as a member of C.

Thus, ∃P .CE v C are compiled to Spark programmes as:

SomeValuesFrom: ∃P .CE v C ; Cimp = Prdd.map(lambda (xp, yp) : (yp, xp))

.join(CErdd
.map(lambda yce : (yce, yce)))

.map(lambda (yk, (xp, yce)) : xp)

Crdd = Crdd.union(Cimp)

Here, for (xp, yp) pairs in Prdd, we need to first swap the position of xp and yp to form key-value

pairs of (yp, xp) by .map(lambda (xp, yp) : (yp, xp)), so that they can be joined with (yce, yce)

pairs formed from data items yce in CErdd
by .map(lambda yce : (yce, yce)). The join between

them will check for yp = yce and return a set of (yk, (xc, yce)) pairs, in which we need to select

the set of items xc by .map(lambda (yk, (xc, yce)) : xc). Finally, Crdd is merged with Cimp, which

contains the set of items xc.

The HasValue expression ∃P .{a} can be either set as a subclass expression (i.e. ∃P .{a} v C) or

a super-class expression (i.e. C v ∃P .{a}) in OWL 2 RL. We specify the transformation rule

below for compiling the former case into Spark programmes:

HasValue: ∃P .{a} v C ; Cimp = Prdd.filter(lambda (xp, yp) : yp == ”a”)

.map(lambda (xp, yp) : xp)

Crdd = Crdd.union(Cimp)

As ∃P .{a} v C expresses that if an individual x is related to a constant individual a by P , then

x will be derived as an instance of C, the Spark programmes first call a filter transformation to

select the set of (xp, a) pairs contained in Prdd, and then use a map transformation to project

xp from (xp, a) pairs. Finally, the set of xp should be added into Crdd. For the case of setting
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∃P .{a} as a super-class expression, the transformation rule is specified as:

HasValue: C v ∃P .{a}; Pimp = Crdd.map(lambda xc : (xc, a))

Prdd = Prdd.union(Pimp)

which first forms (xc, a) pairs for every item of data xc in Crdd, and then such pairs should

be included in Prdd. This captures the semantics of C v ∃P .{a}, which ensures that every

individual x from the class C is related to a by the property P .

Finally, for using SelfRestriction to express the semantics of local reflexivity, OWL 2 RL does

not restrict its position in an axiom. As can be seen from the below transformation rule for

compiling C v ∃P .Self (i.e. the SelfRestriction is used for constructing a subclass expression),

we use Pimp to store pairs (xc, xc) for data items xc in Crdd representing the class C. Then, we

call the union transformation to merge Prdd with Pimp.

SelfRestriction: C v ∃P .Self ; Pimp = Crdd.map(lambda xc : (xc, xc))

Prdd = Prdd.union(Pimp)

On the other hand, when using SelfRestriction to form a subclass expression (i.e. ∃P .Self v C),

compiling such an axiom to Spark programmes is specified as:

SelfRestriction: ∃P .Self v C ; Cimp = Prdd.filter(lambda (xp, yp) : xp == yp)

.map(lambda (xp, yp) : xp)

Crdd = Crdd.union(Cimp)

which first select the set of pairs (xp, yp) where xp is equal to yp from Prdd, and then merge Crdd

with xp from these pairs.

UnionOf and IntersectionOf:

In order to avoid non-deterministic inference, in OWL 2 RL the UnionOf expression can only

be set as a subclass expression. For example, we can use this constructor to form a union of

two atomic classes C and D, and then set this union as a subclass of another class E. The

axiom C tD v E is compiled into the following Spark programmes:
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UnionOf: C tD v E ; Eimp = Crdd.union(Drdd)

Erdd = Erdd.union(Eimp)

which first creates Eimp containing the union of data items in both Crdd and Drdd, which

represent the classes C and D, respectively. Then, Erdd which represents the class E is merged

with Eimp by using the RDD transformation union.

Note that for handling a more general case of setting a union of arbitrary numbers of atomic

or complex class expressions as a subclass of another class (i.e. CE1 t . . . t CEn v E), Spark

programmes first respectively load data from CE1 . . . CEn as CEirdd
(where 1 ≤ i ≤ n), then

union them together to construct Eimp, which is finally included in Erdd. Such a transformation

rule is specified as (where sc is a SparkContext object used for parallelising Spark jobs):

UnionOf: CE1 t . . . t CEn v E ; Eimp = sc.union([CE1rdd
, . . . , CEnrdd

])

Erdd = Erdd.union(Eimp)

With regard to IntersectionOf, OWL 2 RL allows setting the expressions formed by this con-

structor, such as C u D which denotes common individuals of classes C and D, either as a

subclass expression (e.g. C uD v E) or a super-class expression (e.g. E v C uD). Recall that

the latter is classified as SubClassOf axioms; for example, E v C uD is classified to E v C and

E v D, and compiling these SubClassOf axioms has been described already. We then focus on

the case of C uD v E, which is compiled into Spark programmes:

IntersectionOf: C uD v E ; Eimp = Crdd.intersection(Drdd)

Erdd = Erdd.union(Eimp)

which use Eimp to include the common data in both Crdd and Drdd (which represent classes C and

D, respectively) through an RDD transformation intersection. Then, Eimp is added into Erdd,

which denotes the class E. Again, for a more general usage of IntersectionOf CE1u. . .uCEn v E,

we specify the transformation rule as follows:

IntersectionOf: CE1 u . . . u CEn v E ; Eimp = CE1rdd
.intersection(CE2rdd

)

. . . .intersection(CEnrdd
)

Erdd = Erdd.union(Eimp)
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The Spark programmes will merge Erdd with Eimp which contains common data items in

CE1rdd
. . . CEnrdd

(representing CE1 . . . CEn , respectively).

MinCardinality:

OWL 2 RL does not allow the use of MinCardinality. However, as SPOWL handles some extra

axioms beyond OWL 2 RL, we illustrate how the unqualified and qualified use of this constructor

are supported by SPOWL. When an unqualified MinCardinality expression is set as a subclass

of another class (i.e. >nP v C), we compile it to the following Spark programmes:

MinCardinality: >nP v C ; Cimp = Prdd.countByKey().filter(lambda (xp, xpcount) : xpcount ≥ n)

.map(lambda (xp, xpcount) : xp)

Crdd = Crdd.union(Cimp)

As can be seen, we first call a countByKey transformation on Prdd, which returns a set of pairs

(xp, xpcount), where xpcount is the count of each key xp of key-value pairs (xp, yp) in Prdd. Then

we select the keys xp from the set of (xp, xpcount) whose xpcount is greater than or equal to n (by

a filter and a map). Finally, the selected set of xp (stored in Cimp) is added into Crdd.

When a qualified MinCardinality expression is used as a subclass of another class (i.e. >nP .CE v

C), we need to first select the set of individuals x which are related by P to at least n different

individuals y from CE, and then infer the set of x as new members of C. We specify the

transformation rule for compiling >nP .CE v C to Spark programmes as:

MinCardinality: >nP .CE v C ; Cimp = CErdd
.map(lambda yce : (yce, yce))

.join(Prdd.map(lambda (xp, yp) : (yp, xp)))

.map(lambda (yk, (yce, xp)) : (xp, yk))

.countByKey()

.filter(lambda (xp, xpcount) : xpcount ≥ n)

.map(lambda (xp, xpcount) : xp)

Crdd = Crdd.union(Cimp)

As can be seen, before calling the countByKey transformation, the Spark programmes first need
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to perform a join between Prdd and CErdd
in order to select the set of (xp, yp) pairs of Prdd where

yp is in CErdd
. Afterwards, the Spark programmes are similar to the handling of >nP v C,

which first obtain the (xp, xpcount) pairs by the countByKey transformation, and then select the

keys xp from the set of (xp, xpcount) whose xpcount is greater than or equal to n. Finally, the

Spark programmes merge Crdd with the selected set of xp stored in Cimp.

6.4.2 Compiling for OWL 2 RL Property-related Axioms

Moving our attention from class-related axioms to property-related axioms, we again focus on

the case of using them under OWL 2 RL restrictions, and specify the transformation rules

which compile them into Spark programmes.

PropertyDomain and PropertyRange:

Recalling that a PropertyDomain axiom is expressed in DL as > v ∀P−.CE1 , which specifies

the semantics that the subjects x in tuples 〈x, y〉 of P must be inferred as members of CE1 . A

transformation rule compiles this into the following Spark programmes:

PropertyDomain: > v ∀P−.CE1 ; CE1imp
= Prdd.map(lambda (xp, yp) : xp)

CE1rdd
= CE1rdd

.union(CE1imp
)

which first use the RDD transformation map to select all xp from (xp, yp) in the property RDD

Prdd into CE1imp
, which is then added into CE1rdd

representing the domain class CE1 .

A PropertyRange axiom > v ∀P .CE2 specifies that the objects y from tuples 〈x, y〉 of P should

be inferred as instances of CE2 . The axiom is compiled into the following Spark programmes:

PropertyRange: > v ∀P .CE2 ; CE2imp
= Prdd.map(lambda (xp, yp) : yp)

CE2rdd
= CE2rdd

.union(CE2imp
)

which select the objects yp from (xp, yp) contained in Prdd as CE2imp
, which is then merged into

CE2rdd
representing the range class CE2 .
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SubPropertyOf and EquivalentProperties:

Analogous to handling SubClassOf, the transformation rule for compiling SubPropertyOf be-

tween two atomic properties P v Q is specified as:

SubPropertyOf: P v Q ; Qrdd = Qrdd.union(Prdd)

The Spark programmes use the union transformation to add all pairs contained in the sub-

property RDD (i.e. Prdd) into the super-property RDD (i.e. Qrdd). Similarly to class equivalence,

an equivalent relation between two properties can be classified as two subsumption relations

between them, thus the transformation for compiling P ≡ Q is a union of two transformation

rules for compiling P v Q and Q v P :

EquivalentProperties: P ≡ Q ; Qrdd = Qrdd.union(Prdd)

Prdd = Prdd.union(Qrdd)

The Spark programmes ensure that Prdd and Qrdd which represent the two properties contain

the same set of pairs, so that the semantics of property equivalence is realised.

SymmetricProperty and InverseProperty:

Both SymmetricProperty and InverseProperty use the InverseOf expression P−, where tuples

in P− swap the subjects and objects of tuples in P . A SymmetricProperty axiom is formed

by specifying an equivalence between a property and the property’s InverseOf expression (i.e.

P ≡ P−), while an InverseProperty axiom specifies that a property is equivalent to another

property’s InverseOf expression (i.e. P ≡ Q−). We first specify the following transformation

rule for compiling P ≡ P−:

SymmetricProperty: P ≡ P− ; Pimp = Prdd.map(lambda (xp, yp) : (yp, xp))

Prdd = Prdd.union(Pimp)

The Spark programmes first map (xp, yp) pairs contained in Prdd (representing the property

P ) to a set of (yp, xp) pairs and store them in Pimp. Afterwards, the symmetry semantics is

achieved by merging Pimp as a part of Prdd.

Next, the transformation rule for compiling P ≡ Q− is:
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InverseProperty: P ≡ Q− ; Pimp = Qrdd.map(lambda (xq, yq) : (yq, xq))

Prdd = Prdd.union(Pimp)

Qimp = Prdd.map(lambda (xp, yp) : (yp, xp))

Qrdd = Qrdd.union(Pimp)

The Spark programmes first create Pimp containing inverse pairs of Qrdd, and merge Prdd with

Pimp. Secondly, another Qimp containing inverse pairs from Prdd is created and added into Qrdd.

PropertyChain and TransitiveProperty:

Recall the new feature PropertyChain (symbolised as ◦) released in OWL 2, which can be used

for concatenating multiple properties. For instance, P1 ◦ P2 denotes a set of 〈x, z〉 such that

〈x, y〉 is in P1 and 〈y, z〉 is in P2. A PropertyChain can be set as a sub property of another (or

even one of the properties which were used to form the concatenation). Take P1 ◦ P2 v P as

an example, Spark programmes which are compiled from this axiom are:

PropertyChain: P1 ◦ P2 v P ; Pimp = P1rdd .map(lambda (xp1 , yp1) : (yp1 , xp1)).join(P2rdd)

.map(lambda (yk, (xp1 , zp2)) : (xp1 , zp2))

Prdd = Prdd.union(Pimp)

In the Spark programmes, we first map pairs (xp1 , yp1) in P1rdd to a set of inverse pairs (yp1 , xp1),

which are joined with (yp2 , zp2) pairs of P2rdd . The join between them will check for yp1 = yp2

and generate a set of (yk, (xP1 , zp2)) pairs, which are mapped to (xp1 , zp2) pairs stored in Pimp.

Then, Prdd should be merged with Pimp to include derivations from P1 ◦ P2.

For a more general case that P1 ◦ . . . ◦Pn v P , we need to repeatedly perform a similar joining

process, in order to create Pimp, which contains derived pairs (x, y) from joining pairs (x, x1)

of P1rdd , (x1, x2) of P2rdd . . . (xn−1, y) of Pnrdd
. Afterwards, Prdd should be merged with Pimp.

Thus the transformation rule for compiling this axiom is:
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PropertyChain:

P1 ◦ . . . ◦ Pn v P ;

Pimp = P1rdd .map(lambda (x, x1) : (x1, x)).join(P2rdd)

.map(lambda (x1k , (x, x2)) : (x2, x)).join(P3rdd)

. . .

.map(lambda (xn−2k , (x, xn−1)) : (xn−1, x)).join(Pnrdd
)

.map(lambda (xn−1k , (x, y)) : (x, y))

Prdd = Prdd.union(Pimp)

Another typical usage of the PropertyChain is to characterise a property P as a TransitiveProperty

by P ◦ P v P . A TransitiveProperty P will contain 〈x, z〉, if it contains both 〈x, y〉 and 〈y, z〉.

Computing the transitive closure for such P has been researched by many studies, such as

[DLSW99] and [PDR05]. We adopt a simple recursive-doubling method described in [LRU14],

and the Spark programmes compiled from this method are:

TransitiveProperty:

P ◦ P v P ;

while True do

Pimp = Prdd.map(lambda (xp, yp) : (yp, xp)).join(Prdd)

.map(lambda (yk, (xp, zp)) : (xp, zp))

if Pimp.isEmpty() then break

Prdd = Prdd.union(Pimp)

end

As can be seen, in each iteration of the simple recursive-doubling method, a self join on Prdd

(which initially contains explicit tuples of P ) is performed to see whether new transitive pairs

(xp, zp) can be computed (from pairs (xp, yp) and (yp, zp)). If so, the new pairs are stored in Pimp

(i.e. Pimp is not empty), which is merged into Prdd at the end of this iteration, and the updated

Prdd will be used for the next iteration. Otherwise, if no transitive tuples can be calculated (i.e.

Pimp is empty), the computation of transitive closure terminates.

To determine the number of iterations required for computing a transitive closure, we interpret

a TransitiveProperty as a graph, where each vertex x represents an individual x, an arc from x

to y, denoted as Arc〈x, y〉, represents x is explicitly related to y by P , and a path from x to y,

Path〈x, y〉, denotes that x is explicitly or implicitly related to y by P (i.e. through one or more

arcs y is reachable from x in the graph). Thus, computing the transitive closure for P can be
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interpreted as the problem of computing all Path〈x, y〉 in the graph of this property.

The number of iterations required to terminate the computation depends on the longest path

in a graph of P . If the length of an arc Arc〈x, y〉 is set as 1, the length of Path〈x, y〉 is

the number of arcs from x to y. For example, in the graph of P , if there are arcs Arc〈x, a〉,

Arc〈a, b〉 and Arc〈b, y〉, then y is reachable from x via a and b, and such a path Path〈x, y〉

is of the length 3. Note that for the case that y is reachable from x by more than one path,

we consider the shortest one as its length. Continuing with the example, if the graph further

contains arcs Arc〈x, c〉 and Arc〈c, y〉, then y is also reachable from x via c, and the length

Path〈x, y〉 should be 2, which is shorter than 3. If the longest path in a graph is of length d,

a simple recursive-doubling method requires log2 d iterations at most to finish computation of

the transitive closure. However, unless d of a graph is pre-known, an extra iteration (i.e. totally

log2 d + 1 iterations) is necessarily required to check as to whether Pimp is empty.

6.4.3 Optimised Order of Executing Spark Programmes

As we have introduced in Section 6.4.1 and Section 6.4.2, OWL 2 RL axioms are individually

compiled into Spark programmes by transformation rules. For a given ontology, materialising

its inference closure can be achieved by iteratively executing through the Spark programmes

compiled from the classified T-Box axioms, until no new inference can be derived. Thus we

would expect that the materialising process terminates with the fewest iterations of executing

the Spark programmes. This requires the programmes to be executed in a bottom-up manner

following the T-Box hierarchy. When materialising inference closure for large ontologies on a

cluster of distributed machines, even one more iteration will impact significantly on the total

performance, due to overheads of scheduling, starting and terminating distributed computation

jobs. Thus, in this section, we introduce how SPOWL arranges the order of executing the Spark

programmes, in order to reduce the number of iterations.

We define that a transformation rule TR1 is higher than another one TR2 (or TR2 is lower

than TR1), if TR1 takes data inferred from TR2 as its input. For example, if we have a T-

Box hierarchy composed of two SubClassOf axioms C1 v C2 and C2 v C3, the transformation
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rule for compiling C1 v C2 (denoted as TRC1vC2) is lower than the transformation rule for

C2 v C3 (denoted as TRC2vC3), as the new data inferred because of C1 v C2 contribute to

the inference of C2 v C3. To minimise the materialising iterations, we should execute the

Spark programmes generated from the lowest transformation rules to the highest one. Thus,

executing Spark programmes compiled from TRC1vC2 before TRC2vC3 should terminate the

materialisation with only one iteration; however, executing programmes from C2 v C3 before

C1 v C2 might require two iterations.

In order to obtain an optimised execution order, we first divide the transformation rules for

OWL 2 RL axioms into three groups as shown in Figure 6.3:

Figure 6.3: Dependence among transformation rules

1. The first group contains transformation rules which infer new data items to class RDDs

from class RDDs, taking no property RDDs as input. Transformation rules fall into

this group are those for compiling axioms C v D, C ≡ D, C1 t . . . t Cn v D and

C1 u . . . u Cn v D (where C, D and C1 . . . Cn are all atomic classes).

2. The second group of transformation rules infer new data to property RDDs from property

RDDs, taking no class RDDs as input. Such transformation rules are those for handling

P v Q, P ≡ Q, P ≡ P−, P ≡ Q−, P ◦ P v P and P1 ◦ . . . ◦ Pn v P (where P , Q and

P1 . . . Pn are all atomic properties).

3. Finally, transformation rules in the third group compute new data items to class RDDs

from property RDDs, or infer new data items to property RDDs from class RDDs.

(a) Transformation rules which take some class RDDs as input (or part of the input)

and generate new data to property RDDs are those for compiling C v ∃P .{a} and

C v ∃P .Self.
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(b) Transformation rules which compute new data to class RDDs from some property

RDDs are those for handling C v ∀P .CE, ∃P .CE v C, ∃P .{a} v C, ∃P .Self v C,

>nP v C (and >nP .D v C), > v ∀P−.CE and > v ∀P .CE.

Transformation rules from the first group (inferring data to class RDDs from class RDDs)

are independent of the rules from the second group (inferring data to property RDDs from

property RDDs). Therefore, in each of the first two groups, we can follow the class hierarchy or

the property hierarchy as the bottom-up manner. We illustrate this by taking property axioms

P1 v P2, P2 ◦ P2 v P2 and P2 v P3 as an example, the property hierarchy is displayed in

Figure 6.4.

Figure 6.4: Acyclic property hierarchy

As the property hierarchy is acyclic, transformation rules should be executed as the order

of TRP1vP2 followed by TRP2◦P2vP2 followed by TRP2vP3 . Indeed, from TRP1vP2 , new data

items are inferred to P2rdd from P1rdd , and the transitive closure of P2rdd is then computed (i.e.

executing Spark programmes compiled from TRP2◦P2vP2); next, the transitive closure is merged

into P3rdd by using TRP2vP3 .

Figure 6.5: Cyclic property hierarchy

However, if we consider an extra property axiom P3 ≡ P1
−, the property hierarchy in Figure 6.4

becomes cyclic as shown in Figure 6.5. For a cyclic hierarchy, we cannot determine which

transformation rule is the lowest; therefore, we could randomly select one of them as the

first one to execute. Suppose we choose the TRP1vP2 as the first transformation rule again,
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after executing TRP1vP2 , we should then sequentially consider TRP2◦P2vP2 and TRP2vP3 . Here,

due to the extra axiom P3 ≡ P1
−, which might infer new data to P1rdd , so TRP1vP2 might

need to be executed again, and so does TRP2◦P2vP2 and TRP2vP3 . In essence, the execution

should terminate whenever there is no new inference to the input RDDs taken by a particular

transformation rule.

Transformation rules in the third group bring the inference from class RDDs to property RDDs

or vice versa, which makes it difficult for SPOWL to determine an optimised order. However,

since PropertyDomain and PropertyRange axioms (inferring data from property RDDs to class

RDDs) are frequently used in most ontologies, we tend to consider transformation rules in the

first group are higher than those in the second group. Therefore, in general, our approach

adopts an optimised order of executing transformation rules as:

1. Spark programmes compiled from the second group of transformation rules are executed

to infer new data from property RDDs to property RDDs following the property hierarchy.

2. Spark programmes deriving inference from property RDDs to class RDDs are executed.

Note that since transformation rules involved in this step might depend on each other,

we also execute them from lower transformation rules to higher rules.

3. Spark programmes generated from the first group of transformation rules are processed

to derive new data from class RDDs to class RDDs following the class hierarchy.

4. Whenever the ontology contains axioms which could derive new inference from class RDDs

to property RDDs, we check whether new data items are inferred because of them; if so we

re-conduct the previous three steps until the input taken by higher-level transformation

rules contains no newly inferred data.

6.5 Summary

To sum up, this chapter has described how our work SPOWL compiles OWL 2 RL axioms

to Spark programmes, which support type inference over large ontologies. Unlike most large
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reasoners which simply evaluate a set of entailment rules for materialising the inference clo-

sure, SPOWL compiles a classified T-Box to Spark programmes, which are used for inference

materialisation. Moreover, compared to reasoners using Hadoop, SPOWL benefits from Spark

which uses distributed memory as much as possible, and schedules jobs in a more flexible and

parallelised manner by the DAG scheduler.

In particular, we have specified transformation rules for compiling all OWL 2 RL axioms into

Spark programmes, which can be divided into three groups. We have introduced an opti-

mised order of executing the three groups of Spark programmes, which might reduce execution

iterations until the computation of inference closure can terminate.

However, our approach restricts itself to consider simple and small T-Boxes, while ontologies

with complex and large structure (e.g. SNOMED-CT and Gene ontology) are beyond the scope

of SPOWL. Also, if dependencies among the Spark programmes contain many cycles, an opti-

mised order of execution is difficult to obtain, but this is highly unlikely in real-world ontologies.

As the Spark programmes are presented in a logical format, implementation of them to real

code is provided in Chapter 7, along with some tuning strategies.





Chapter 7

Implementation & Evaluation

7.1 Introduction

In Chapters 4, 5 and 6, we have described our approach, SQOWL2 and SPOWL, in an

implementation-independent way. In particular, triggers defined in SQOWL2 and Spark pro-

grammes specified in SPOWL are presented in a logical format. In this chapter, we further

present the implementation details of SQOWL2 in Section 7.2 and of SPOWL in Section 7.4,

which respectively describe how logical triggers are translated into physical triggers, and how

logical Spark programmes are implemented into real code. From the perspective of adopting

our approach into standard database applications in which the number of queries is much larger

than the number of updates, we have also evaluated the two implementations, by conducting a

series of experiments and analysing the experiment results. In particular, in the evaluation of

SQOWL2 detailed in Section 7.3, we experimentally verify our hypothesis that, when compared

to non-materialising inference, materialising inference results leads to faster query processing

at the expense of slower data updating. In addition, the results show that the overhead due to

inference by SQOWL2 is not impractical to apply to database applications, and is much less

than one order of magnitude in size. Moreover, we empirically test the soundness and com-

pleteness of SQOWL2 over the benchmark data. Since SPOWL performs inference over much

larger ontologies, the scalability of inference materialisation and query processing is instead

our focus when evaluating SPOWL in Section 7.5. We conduct experiments over much larger

datasets, and evaluation results show that SPOWL scaled linearly for inference materialisation

165
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and quadratically for query processing. Finally, Section 7.6 summarises this chapter.

7.2 Implementation of SQOWL2

In this section, we review the implementation details of SQOWL2. In particular, Section 7.2.1

details a front-end and a back-end schema used for representing data state, which are essen-

tial for handling data updates especially deletes. After that, in Section 7.2.2, we thoroughly

illustrate how physical triggers are created from logical triggers. Finally, in Section 7.2.3 we

summarise some optimisations which we adopt to improve the performance of SQOWL2. Note

that all SQL statements follow the syntax of Transact SQL, the variant of the SQL language

used by Microsoft SQL Server.

7.2.1 Two Schemas to Represent Data and State

In Section 5.4.1, we have introduced a logical state (i.e. ø, e, i and d) for each item of data

stored in the ATIDB, in order to perform type inference from data updates especially deletes.

To implement data state, in the canonical schema, which contains one-column class tables and

two-column property tables, we can simply add an extra column st (representing the data state)

to each class or property table, based on the following mapping:

Class: C ; C(id, st)

Property: P ; P (domain, range, st)

Tables can be implemented in an RDBMS by some SQL CREATE TABLE statements. For

example, based on the above mapping rule from an OWL class to a table, the statement for

creating the table Beer representing the OWL class Beer is:

CREATE TABLE Beer(

id VARCHAR(100) NOT NULL,

st CHAR(1) NOT NULL,

CONSTRAINT Beer_PK PRIMARY KEY (id))

Note that, in the above statement, setting a key (e.g. id) is achieved by a PRIMARY KEY

constraint. Another sample SQL statement which creates the table hasDescription for the OWL
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property hasDescription is:

CREATE TABLE hasDescription(

domain VARCHAR(100) NOT NULL,

range VARCHAR(100) NOT NULL,

st CHAR(1) NOT NULL,

CONSTRAINT hasDescription_PK PRIMARY KEY (domain,range))

Moreover, SubClassOf axioms between atomic classes and SubPropertyOf axioms between atomic

properties should be mapped as FKs. For example, because Ale is specified as a subclass of

Beer by (2.24), when creating the table Ale for Ale, a FOREIGN KEY constraint implementing

Ale(id)
fk⇒ Beer(id) should be added:

CREATE TABLE Ale(

id VARCHAR(100) NOT NULL,

st CHAR(1) NOT NULL,

CONSTRAINT Ale_PK PRIMARY KEY (id),

CONSTRAINT Ale_SubOf_Beer FOREIGN KEY (id) REFERENCES Beer(id))

Similarly, since hasColour is a sub property of hasDescription defined by (2.47), when creating

the table hasColour, hasColour(domain, range)
fk⇒ hasDescription(domain, range) is added as:

CREATE TABLE hasColour(

domain VARCHAR(100) NOT NULL,

range VARCHAR(100) NOT NULL,

st CHAR(1) NOT NULL,

CONSTRAINT hasColour_PK PRIMARY KEY (domain,range),

CONSTRAINT hasColour_SubOf_hasDescription FOREIGN KEY (domain,range)

REFERENCES hasDescription(domain,range))

The FK constraints capture the semantics of SubClassOf or SubPropertyOf by validating that

data items contained in the subsumee are always in the subsumer. This is already achieved by

triggers which attempt an insert of data items to the subsumer table after the same items of

data have been inserted to the subsumee table. As we will illustrate in Section 7.3, enabling FK

checking would slow down the performance of data loading and removing, but would improve

the query processing. Therefore, we would disable the FK checking when SQOWL2 is subject

to data inserts and deletes. and re-enable them when SQOWL2 is subject to query processing.

However, in some use cases we might only want to show users or applications the data items,

but not their states, as exposing the state columns will expose the implementation details.
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In order to allow this, we establish another schema, called a front-end schema alongside the

canonical schema (which we treat as a back-end schema), as outlined in Figure 7.1.

Front-end Schema SF Back-end Schema SB

SF.C
id

individual1
individual2

SB.C
id st

individual1 e
individual2 i

SF.P
domain range

d1 r1
d2 r2

SB.P
domain range st

d1 r1 e
d2 r2 i

Figure 7.1: Front-end and back-end schemas

The back-end schema (which is denoted by SB) consists of materialised tables storing both data

items and their states, whereas the front-end schema (which is denoted by SF) contains views

showing users or applications only the data items stored in SB.

We apply the standard SQL CREATE VIEW statements for creating views in SF, which follows

the mappings from OWL classes and properties to Datalog rules:

C ; SF.C(id) :- SB.C(id, st)

P ; SF.P (domain, range) :- SB.P (domain, range, st)

Therefore, the tables SB.Beer, SB.Ale, SB.hasDescription and SB.hasColour result in four views

SF.Beer, SF.Ale, SF.hasDescription and SF.hasColour, which can be created by:

CREATE VIEW SF.Beer AS

SELECT id FROM SB.Beer

CREATE VIEW SF.Ale AS

SELECT id FROM SB.Ale

CREATE VIEW SF.hasDescription AS

SELECT domain,range FROM SB.hasDescription

CREATE VIEW SF.hasColour AS

SELECT domain,range FROM SB.hasColour

Note that only the front-end schema SF is exposed to database users for showing the conceptual

views of an ontology, and also for accepting ontology inserts and deletes, which are then mapped

onto SB, where the process of type inference is performed.
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7.2.2 Implementing Logical Triggers as Physical Triggers

Recall that logical triggers can be divided into two types denoted by the “−” or “+” prefix

in their fields of 〈event〉. INSTEAD OF triggers in Transact SQL (or BEFORE triggers in

PL/pgSQL [Mom01]) are used to implement triggers with “−” prefixed events, and AFTER

triggers are used for triggers having “+” events. The logical triggers presented in Chapter 4

and Chapter 5 are a platform-independent method of writing triggers, and are then translated

by SQOWL2 into physical triggers. In order to illustrate the implementation of physical triggers

from logical triggers in detail, we reconsider the T-Box axioms (2.24) (i.e. Ale v Beer), (2.28)

(i.e. Beer ≡ LiquidBread) and (5.1) (i.e. IrishBeer v LiquidBread) used in Section 5.2.

Implementing Triggers for Inserts

Ontology inserts, which are executed over views in SF, will be automatically transferred to the

corresponding tables in SB by the RDBMS. For example, if we attempt two ontology inserts of

v1 and v2 into the view SF.Ale, which are displayed as the following SQL INSERT statement:

INSERT INTO SF.Ale(id)

VALUES (’v1’),(’v2’)

This INSERT statement will be mapped by the RDBMS into the following SQL statement:

INSERT INTO SB.Ale(id,st)

VALUES (’v1’,null),(’v2’,null)

which is executed on SB.Ale (in Schema SB). The two inserts on SB.Ale are then captured by

the BeforeInsertSBAleTrigger (detailed in Figure 7.2) created on SB.Ale.

The BeforeInsertSBAleTrigger contains three parts:

1. if the data is already present and has been explicitly stated (i.e. the data is already

persisted in state e), the transaction of inserting such data will be rolled back, in order

to avoid repeated ontology inserts.

2. if the data is already present and has been implicitly stated (i.e. the data is persisted in

state i), then the data will be updated to explicit state, in order to give it the explicit
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CREATE TRIGGER BeforeInsertSBAleTrigger

ON SB.Ale INSTEAD OF INSERT AS BEGIN

-- part 1: rollback repeated ontology inserts

IF EXISTS (SELECT *

FROM inserted

JOIN SB.Ale

ON inserted.id=SB.Ale.id

AND SB.Ale.st=’e’

AND inserted.st IS NULL)

RAISERROR(’ERROR MESSAGE’, 10, 1)

ROLLBACK TRANSACTION

RETURN

-- part 2: update implicit data with state e

UPDATE SB.Ale SET st=’e’

WHERE SB.Ale.id IN

(SELECT SB.Ale.id

FROM SB.Ale

JOIN inserted

ON SB.Ale.id=inserted.id

AND inserted.st IS NULL

AND SB.Ale.st=’i’)

-- part 3: persist data if it does not exists

INSERT INTO SB.Ale(id,st)

SELECT DISTINCT id,COALESCE(st,’e’)

FROM inserted

WHERE inserted.id NOT IN

(SELECT id FROM SB.Ale)

END

Figure 7.2: Before insert trigger on SB.Ale

semantics (i.e. i is updated to e).

3. if the data is simply not present (i.e. the data is logically in state ø), an insert of the new

data with the explicit state e will be performed.

Supposing that v1 and v2 are not stored in the ATIDB, the original SQL statement which inserts

the two items of data is transformed into the following SQL statement:

INSERT INTO SB.Ale(id,st)

VALUES (’v1’,’e’),(’v2’,’e’)

which inserts 〈v1, e〉 and 〈v2, e〉 into SB.Ale, and stores v1 and v2 in state e in SB.Ale.

Our implementation in an RDBMS has another important feature: all triggers are implemented

with table-level semantics (which treats multiple data items in bulk) rather than row-level
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semantics (which treats multiple data items individually), in order to improve the performance

of type inference. Take the physical trigger AfterInsertSBAleTrigger (shown in Figure 7.3) on

SB.Ale for the logical trigger when +Ale(x)e∨i then Beer(x)i (specified for (2.24)) as an example:

CREATE TRIGGER AfterInsertSBAleTrigger

ON SB.Ale AFTER INSERT AS

BEGIN

-- generate reasoner inserts to SB.Beer

INSERT INTO SB.Beer(id,st)

SELECT DISTINCT id,’i’

FROM inserted

END

Figure 7.3: After insert trigger on SB.Ale

If there are multiple data items inserted into SB.Ale, all of these items of data will be gathered

as one reasoner insert into SB.Beer rather than inserting each of them separately. Therefore,

after storing v1 and v2 in SB.Ale, the AfterInsertSBAleTrigger will be fired to produce another

SQL statement shown as follows:

INSERT INTO SB.Beer(id,st)

VALUES (’v1’,’i’),(’v2’,’i’)

which inserts 〈v1, i〉 and 〈v2, i〉 into SB.Beer, so that v1 and v2 are stored in state i in SB.Beer.

The inference process should cascade to the table SB.LiquidBread because of the logical trigger

when +Beer(x)e∨i then LiquidBread(x)i as a result of the axiom (2.28). This is conducted

by the AfterInsertSBBeerTrigger shown in Figure 7.4 (similar to AfterInsertSBAleTrigger), i.e.

AfterInsertSBBeerTrigger captures the insert of 〈v1, i〉 and 〈v2, i〉 into SB.Beer, and afterwards

inserts the same two tuples to SB.LiquidBread.

CREATE TRIGGER AfterInsertSBBeerTrigger

ON SB.Beer AFTER INSERT AS

BEGIN

-- generate reasoner inserts to SB.LiquidBread

INSERT INTO SB.LiquidBread(id,st)

SELECT DISTINCT id,’i’

FROM inserted

END

Figure 7.4: After insert trigger on SB.Beer

Note that after persisting 〈v1, i〉 and 〈v2, i〉 in SB.LiquidBread, the persistence will be captured

by the after trigger on this table (i.e. AfterInsertSBLiquidBreadTrigger). As the two classes
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LiquidBread and Beer are equivalent, the semantics of this equivalence results in a repeated

reasoner insert of 〈v1, i〉 and 〈v2, i〉 to SB.Beer as illustrated in Figure 7.5.

CREATE TRIGGER AfterInsertSBLiquidBreadTrigger

ON SB.LiquidBread AFTER INSERT AS

BEGIN

-- generate reasoner inserts to SB.Beer

INSERT INTO SB.Beer(id,st)

SELECT DISTINCT id,’i’

FROM inserted

END

Figure 7.5: After insert trigger on SB.LiquidBread

However, the reasoner insert is duplicated and will be ignored by a before insert trigger

created on SB.Beer (we omit the definition of this physical trigger as it is very similar to

BeforeInsertSBAleTrigger shown in Figure 7.2).

Implementing Triggers for Deletes

Moving our attention to implementing triggers for deletes, our implementation needs to guar-

antee that the labelling process finishes before conducting the checking process, i.e. for ontology

deletes of some data items, inferred data from them must be all labelled before checking. In

order to control the labelling and checking (which are processed in SB), we create for each view

in SF a ‘before delete’ trigger (a.k.a. an INSTEAD OF DELETE trigger in Transact SQL), such

as BeforeDeleteSFAleTrigger shown in Figure 7.6 for handling ontology deletes over SF.Ale.

Each ‘before delete’ trigger should consist of three essential parts:

1. the first part is used to detect inconsistent ontology deletes, which are those attempting

to delete an item of data in the implicit state i. A rollback of the transaction attempting

such inconsistent ontology deletes should be conducted.

2. The functionality of the second part is to trigger the labelling process, and as exemplified

in the BeforeDeleteSFAleTrigger, such a process is mapped to an SQL UPDATE statement.

We show later how triggers in SB handle the UPDATE statement, so that the labelling

process cascades to all data items which depend on the ontology delete.
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CREATE TRIGGER BeforeDeleteSFAleTrigger

ON SF.Ale INSTEAD OF DELETE AS

BEGIN

-- part1: rollback inconsistent deletes

IF EXISTS

(SELECT *

FROM deleted

JOIN SB.Ale

ON deleted.id=SB.Ale.id

AND SB.Ale.st=’i’)

RAISERROR(’ERROR MESSAGE’, 10, 1)

ROLLBACK TRANSACTION

RETURN

-- part2: start labelling process

UPDATE SB.Ale

SET st=’d’

WHERE id IN (SELECT id FROM deleted)

AND st=’e’

-- part3: start checking process

DELETE FROM SB.Ale

WHERE st=’d’

END

Figure 7.6: Before delete trigger on SF.Ale

3. The third part is used for checking, which is achieved by starting an SQL DELETE. Again,

the DELETE statement will be captured by some other triggers in SB, so that the checking

cascades to all labelled data items in the same order that these data items were labelled.

Note that the third part can only start the checking phase, when the second part is finished

(i.e. the whole set of data which has an inferring logic from the data of the ontology delete is

updated to state d). To illustrate this, we continue with the example of ontology inserting v1

and v2 to SF.Ale (i.e. tuples 〈v1, e〉 and 〈v2, e〉 are materialised in SB.Ale, and tuples 〈v1, i〉 and

〈v2, i〉 are materialised in both SF.Beer and SF.LiquidBread). Suppose we now delete v1 from

SF.Ale. Such an ontology delete should be executed as an SQL DELETE statement:

DELETE FROM SF.Ale

WHERE id =’v1’

Since 〈v1, e〉 is stored in SB.Ale, the above ontology delete is legal, but a labelling process should

be conducted. Thus, part 2 of the BeforeDeleteSFAleTrigger changes this to an SQL UPDATE:
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UPDATE SB.Ale

SET st=’d’

WHERE id=’v1’

AND st=’e’

which updates 〈v1, e〉 in SB.Ale to 〈v1, d〉. This state update is then detected by an after update

trigger AfterUpdateSBAleTrigger on SB.Ale shown in Figure 7.7, which continues the labelling.

CREATE TRIGGER AfterUpdateSBAleTrigger

ON SB.Ale AFTER UPDATE AS

BEGIN

-- labelling cascades to SB.Beer

UPDATE SB.Beer

SET st=’d’

WHERE st=’i’

AND id IN (SELECT id

FROM inserted

WHERE st=’d’)

END

Figure 7.7: After update trigger on SB.Ale

Because v1 is implicitly stored in the table SB.Beer (i.e. 〈v1, i〉 is materialised in SB.Beer), this

trigger will generate another SQL UPDATE statement:

UPDATE SB.Beer

SET st=’d’

WHERE id=’v1’

AND st=’i’

which will further update the state of v1 in SB.Beer to d. Similarly, this update in SB.Beer will

be captured by another after update trigger created on this table, which continues to label the

same data v1 in the table SB.LiquidBread (i.e. 〈v1, d〉 is stored in SB.LiquidBread). At this point,

the cascade of the labelling process terminates.

Because the labelling has finished, part 3 of the BeforeDeleteSFAleTrigger can now launch the

check process by attempting to execute an SQL DELETE statement:

DELETE FROM SB.Ale

WHERE st=’d’

which in our example attempts to delete v1 from SB.Ale. Note that this DELETE statement is

just used for conducting the checking, but whether to delete or not still depends on a before

delete trigger created on SB.Ale, which is the BeforeDeleteSBAleTrigger shown in Figure 7.8:
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CREATE TRIGGER BeforeDeleteSBAleTrigger

ON SB.Ale INSTEAD OF DELETE AS

BEGIN

-- part1: keep inferable data

-- no action required

-- part2: remove non-inferable data

DELETE FROM SB.Ale

WHERE st=’d’

END

Figure 7.8: Before delete trigger on SB.Ale

This trigger essentially updates the state of data items which are still derivable to i (defined in

part 1), and deletes the data which is non-inferable (specified in part 2). Since we only consider

axioms (2.24), (2.28) and (5.1), the inference rule created for SB.Ale is empty (i.e. no action is

required in part 1 of BeforeDeleteSBAleTrigger), and part 2 of BeforeDeleteSBAleTrigger simply

delete v1 from SB.Ale, because v1 is in state d.

CREATE TRIGGER AfterDeleteSBAleTrigger

ON SB.Ale After DELETE AS

BEGIN

-- checking cascades to SB.Beer

DELETE FROM SB.Beer

WHERE SB.Beer.id IN (SELECT id

FROM deleted)

AND SB.Beer.st=’d’

END

Figure 7.9: after delete trigger on SB.Ale

Analogous to labelling, the check phase should also cascade over the same data items that were

labelled. Thus, we create an after delete trigger on the table SB.Ale (i.e. AfterDeleteSBAleTrigger

shown in Figure 7.9), which detects the deletion of v1, and cascades the check to the same data

stored in the table SB.Beer by attempting an SQL DELETE statement below over SB.Beer:

DELETE FROM SB.Beer

WHERE st=’d’

Again, a before delete trigger on SB.Beer named BeforeDeleteSBBeerTrigger shown in Figure 7.10

(similar to BeforeDeleteSBAleTrigger) handles the attempt at deleting v1 from SB.Beer.

This time, since data in SB.Beer might be inferred from both SB.Ale and SB.LiquidBread, part

1 of BeforeDeleteSBBeerTrigger is not empty, and should check the data under the attempt at
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CREATE TRIGGER BeforeDeleteSBBeerTrigger

ON SB.Beer INSTEAD OF DELETE AS

BEGIN

-- part1: keep still inferable data

UPDATE SB.Beer

SET st=’i’

WHERE st=’d’

AND id IN (SELECT id

FROM SB.Ale

WHERE st<>’d’

UNION

SELECT id

FROM SB.LiquidBread

WHERE st<>’d’)

-- part2: remove non-inferable data

DELETE FROM SB.Beer

WHERE st=’d’

END

Figure 7.10: Before delete trigger on SB.Beer

deleting (v1 in our example) can still be inferred or not. Because v1 is not present in SB.Ale,

and was updated to 〈v1, d〉 in SB.LiquidBread, it cannot be derived and should be deleted by

part 2 of BeforeDeleteSBBeerTrigger.

If we continue the checking of v1 in the table SB.LiquidBread, we find that v1 should be removed

from SB.LiquidBread as v1 is not stored in tables SB.Beer nor SB.IrishBeer. Thus, the checking

phase caused by deleting v1 from SF.Ale is finished (i.e. the third part of BeforeDeleteSFAleTrigger

terminates), and so does the whole process of handling this ontology delete (i.e. DELETE FROM

SF.Ale WHERE id=’v1’).

7.2.3 Optimisation in SQOWL2

Indexes & Foreign Keys

Most reasoners over ontologies with large A-Boxes consider query processing as the most im-

portant inference task. As a materialised approach, queries handled by SQOWL2 only need to

read the inference materialisation. In addition, we may use indexes and FKs provided by an

RDBMS to further improve the performance of query processing.

Firstly, in the back-end schema SB, we create for every class table C an index on the column



7.3. Evaluation of SQOWL2 177

(id), and for every property table P two indexes on (domain, range) and (range, domain).

Indexes will benefit queries, especially when selecting specific rows from tables, or requiring

results to be sorted in a particular order. Secondly, besides creating the FKs for SubClassOf

and SubPropertyOf as described in Section 7.2.1, we further add FKs for PropertyDomain and

PropertyRange axioms, based on the following rules:

PropertyDomain: > v ∀P−.CE1 ; P (domain)
fk⇒ CE1(id)

PropertyRange: > v ∀P .CE2 ; P (range)
fk⇒ CE2(id)

FKs representing PropertyDomain and PropertyRange axioms are especially useful when joining

between property tables and the tables denoting their domains and ranges. Note that these

indexes and FKs not only optimise SQOWL2 in terms of query processing, but also type

inference, in particular when triggers verify the queries specified in their 〈condition〉 fields.

Conventional Schema

As we have discussed in Section 4.6.1, when a given ontology contains FunctionalProperty,

InverseFunctionalProperty and HasKey axioms, the canonical schema (i.e. the back-end schema

SB) can be optimised to store information in what may be regarded as a more conventional

schema. This allows SQOWL2 to be adapted so that it can be used to create triggers on top

of existing relational schemas (as opposed to generating new schemas with associated triggers).

In a nutshell, if we have i functional properties P1, . . . , Pi, all of which contain a class C as

their PropertyDomain, j inverse functional properties Q1, . . . , Qj containing the same C as their

PropertyRange, k key properties R1, . . . , Rk which together uniquely identify individuals in the

same C, then we store the class and properties as a single table:

C(id, P1, . . . , Pi, Q1, . . . , Qj, R1, . . . , Rk)

7.3 Evaluation of SQOWL2

This section evaluates SQOWL2 by comparing it to a non-materialising reasoner, Stardog

and a materialising reasoner, OWLim, in order to experimentally verify the hypothesis that
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materialising inference results leads to faster query processing at the expense of slower data

updating. We chose Stardog and OWLim mainly because these two state-of-the-art reasoners

provide community versions which are free for evaluation. Unlike SQOWL2, which uses an

RDBMS as its data storage, the two comparison reasoners both store and access their data

outside of an RDBMS (i.e. in a file system provided by the operating system), and consequently

they do not perform inference in a transactional manner. Indeed, we believe SQOWL2 is unique

in providing transactional reasoning combined with materialisation of the inferred data. In the

evaluation, all experiments were processed on a machine with Intel i7-2600 CPU @ 3.40GHz, 8

Cores, and 16GB of memory, running Microsoft SQL Server 2014. SQOWL2 used OWL API

v3.4.3 for ontology loading and Pellet v2.3.1 for classification. For the comparison reasoners,

we used OWLim-Lite v5.4.6486 and Stardog-Community v2.2.1.

We evaluated the three systems by comparing their speed of data loading, data deleting and

query processing. Each experiment was repeated 10 times, for which the average value is re-

ported. The benchmark data we used is the well-known LUBM, which describes the knowledge

in a university domain. LUBM was chosen because it has been widely used for evaluating large

inference systems [ZML+06, LMZ+07, PZH08, WED+08, GWW+15, PURDG+12, BCH+14,

GWW+15]. LUBM has a small T-Box, and the capability of customising the size of the data

generated. The T-Box of LUBM consists of 43 OWL classes, 32 OWL properties, and approxi-

mately 200 axioms. Besides the T-Box, the benchmark provides 14 queries which are numbered

as Q1 – Q14 in this chapter. LUBM also offers a data generator, which is able to create A-Boxes

of factual data of different sizes. In this chapter, a set of A-Boxes containing n universities is

denoted by LUBM-n, in which each university has approximately 100,000 class and property

facts.

The second evaluation task of SQOWL2 is on the inference soundness and completeness. We

used SQOWL2 to process the 14 LUBM queries, and compared the results to those of Pellet,

which is a tableaux-based reasoner known to provide sound and complete answers to the 14

queries. However, since the 14 LUBM queries are not exhaustive enough [SGH10], in order to

further test the completeness level of our system, we additionally utilised SQOWL2 to answer

more exhaustive test suites generated by SyGENiA, a system used for empirically benchmarking
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the completeness of a reasoner. For a given query and a T-Box, SyGENiA generates a test suite

containing a number of A-Box files that check all possible inference logic which generates results

to this query w.r.t. the T-Box. Therefore, for a query and a T-Box, successfully passing the

test suite means a reasoner is complete to answer this query over any arbitrary A-Box data of

the tested ontology.

7.3.1 Performance of Incremental Type Inference

Performance of Data Loading

We firstly used the LUBM data generator to produce four datasets LUBM-25, LUBM-50,

LUBM-100 and LUBM-200 with increasing sizes. Then, we used each system to load the four

datasets and recorded the time they required, which is shown in Table 7.11. Results show that

for each system loading time increased linearly from LUBM-25 to LUBM-200, which implies

that all of the three systems provided scalable data loading.

Table 7.1: Data loading time (s)

LUBM-25 LUBM-50 LUBM-100 LUBM-200
SQOWL2 583 1,115 2,133 4,465
OWLim 79 160 336 743
Stardog 14 26 51 n/a

Table 7.2 further provides the calculated speed of loading LUBM-25 – LUBM-200 by the three

inference systems, based on the results shown in Table 7.1.

Table 7.2: Data loading speed (inserts/s)

LUBM-25 LUBM-50 LUBM-100 LUBM-200
SQOWL2 5,684 5,966 6,176 5,978
OWLim 42,067 41,623 39,946 35,933
Stardog 242,323 262,752 271,332 n/a

As can be seen, the speed of loading different sizes of data by each system was stable; for

example, SQOWL2 was able to load data at approximately 6,000 inserts/s for all datasets.

1Since the size of LUBM-200 exceeds the license limitation of Stardog-Community, we do not include related
performance results in Table 7.1 – Table 7.5 by writing n/a for not available.
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The fastest one among the three systems was Stardog, because the system implements the

query-rewriting approach, and there is no need to perform inference when loading the data.

The slowest one was SQOWL2, because type inference by this system is performed as part

of database transactions with full ACID properties (i.e. in a transactional manner), and the

result of inference from loaded data is materialised in an RDBMS. We measured the overheads

associated with providing ACID properties for database updates, and we found that even with

no inference considered (i.e. we loaded the datasets with triggers disabled), the speed in the

SQL Server database used for benchmarking was at about 14,600 inserts/s, which is slightly

more than twice as faster as 6,000 inserts/s (i.e. the speed when SQOWL2 considered inference).

Therefore, as compared to normal database operations in an RDBMS, the inference process

provided by SQOWL2 causes a significant, but not impractical, overhead.

Performance of Data Deleting

After the four datasets (i.e. LUBM-25 – LUBM-200) have been loaded into the three inference

systems, we used each of them to process several random deletes of A-Box data, and the

performance is summarised in Table 7.3.

Table 7.3: Data deleting speed (deletes/s)

LUBM-25 LUBM-50 LUBM-100 LUBM-200
SQOWL2 305 581 420 224
Stardog 29,268 28,759 28,903 n/a

In the above table, we only show the average speed of executing deletes by SQOWL2 and

Stardog but omit the performance of OWLim, because the Lite version of OWLim does not

handle data deletes in an incremental way, i.e. OWLim-Lite computes and materialises the

whole inference again if any data is deleted. Indeed, as we recorded, even over the smallest

LUBM-25, using OWLim to delete a random data item needed approximately 15 seconds for not

only deleting this item of data, but also re-computing the inference closure. However, as shown

in Table 7.3, SQOWL2 on average was able to process 305 deletes per second over LUBM-25,

which was about 3ms for each deletion. Due to the fact that query-rewriting approaches do

not perform inference when inserting or deleting facts, the speed of data deleting over the
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four datasets by Stardog was stable, and also was much faster than a materialised approach

SQOWL2, which incrementally updates the inference materialisation.

Moreover, it needs to be noticed that the label & check process decreased the speed of handling

deletes by SQOWL2 when processing deletes from smaller datasets in comparison with larger

ones. For example, SQOWL2 was able to perform about 581 deletes/s over LUBM-50 in

comparison with 420 deletes/s over LUBM-100. However, there is an exception to this, which

was from LUBM-25 to LUBM-50, SQOWL2’s data deleting speed increased from 305 deletes/s

to 581 deletes/s, and the reason as investigated was because the RDBMS switched to a more

efficient execution plan. Because of the cost of type inference, SQOWL2 caused a significant

overhead when comparing with itself without providing inference (but with indexes created),

whose speed of processing deletes was at approximately 20,000 deletes/s.

7.3.2 Performance of Query Processing

For query processing, we converted each LUBM query from the format of SPARQL [HSP13]

to an SQL query (or a Spark query programme shown in Section 7.5.2)2. Here we take Q1 as

an example to show how its equivalent SQL query is executed by SQOWL2.

Figure 7.11 shows Q1 in SPARQL, which queries for some individuals ?X which are members

of the class GraduateStudent and are related by the property takesCourse to the individual

<http://www.Department0.University0.edu/GraduateCourse0>.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

{?X rdf:type ub:GraduateStudent .

?X ub:takesCourse

<http://www.Department0.University0.edu/GraduateCourse0>}

Figure 7.11: LUBM Query 1 in SPARQL

The SQL query converted from this SPARQL query is given in Figure 7.12. Since both ex-

2A complete list of the 14 LUBM queries in SPARQL can be found in http://swat.cse.lehigh.edu/

projects/lubm/queries-sparql.txt, and the translation of them to SQL and Spark can be found in https:

//github.com/yl12510/thesis/tree/master/lubm.

http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
https://github.com/yl12510/thesis/tree/master/lubm
https://github.com/yl12510/thesis/tree/master/lubm
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plicit and implicit facts of GraduateStudent and takesCourse are respectively materialised in

tables GraduateStudent and takesCourse, to compute the answers, the SQL query essentially

need to perform a join between the two tables on the columns GraduateStudent.id and

takesCourse.domain, and the values of the column takesCourse.range should be equal to

’<http://www.Department0.University0.edu/GraduateCourse0>’.

SELECT GraduateStudent.id

FROM GraduateStudent

JOIN takesCourse

ON GraduateStudent.id = takesCourse.domain

AND takesCourse.range =

’<http://www.Department0.University0.edu/GraduateCourse0>’

Figure 7.12: LUBM Query 1 in SQL

Soundness & Completeness

In order to empirically evaluate the soundness and completeness of our system, instead of

comparing to the two rule-based systems Stardog and OWLim, we compare SQOWL2 to a

complete reasoner Pellet. We used SQOWL2 to answer the 14 LUBM queries over LUBM-

1, and answers to the queries generated by SQOWL2 are exactly the same as the complete

reasoner Pellet. Therefore, our system is sound and complete for processing the 14 queries over

LUBM-1. However, this simple evaluation has two disadvantages. First, in order to compare

with a tableaux-based reasoner, the datasets should be limited to a suitable size (e.g. LUBM-1)

that can be handled by the tableaux-based reasoner. Secondly, the A-Box data generated by

LUBM is argued to be not exhaustive enough in [GMSH12], because the data might not cover

all inference logic that generates answers to a query. Thus, we cannot be sure whether our

system is sound and complete when answering LUBM queries w.r.t. any arbitrary A-Boxes.

To further evaluate the soundness and completeness (especially the completeness, as soundness

can be trivially verified by checking that each trigger produces valid outputs from valid inputs)

of our system, we further used SQOWL2 to process the test suites generated by SyGENiA for

the LUBM T-Box and the 14 queries. In a nutshell, for the T-Box and every query, SyGENiA

generates a test suite containing a number of A-Boxes, each of which represents an inference

case that generates answers to this query; for instance, the test suite for Q6 has 169 A-Boxes.



7.3. Evaluation of SQOWL2 183

Therefore, the completeness level of an inference system for answering a query w.r.t. a T-

Box can be calculated as dividing the number of passed inference cases in this test suite by

the number of all inference cases contained in this test suite. In our experiments, SQOWL2

passed all inference cases of every test suite which SyGENiA generates for each LUBM query;

therefore it is complete to answer the 14 queries w.r.t. the T-Box and any arbitrary LUBM

A-Boxes. As found in [SGH10], the most complete rule-based system out of four evaluated

was OWLim. Our tests show OWLim still only provides incomplete answers to Q6, Q8 and

Q10 at the completeness level of 0.96, 0.93 and 0.96 respectively. Take Q6 as an example, the

incompleteness is because OWLim partially supports the inference which includes existential

quantification.

Efficiency

To evaluate the efficiency of query processing, we launched each of the three inference systems

to simulate a load of cycling through the 14 LUBM queries over its persisted LUBM A-Box

data, and afterwards recorded the time used for executing each query. The average speed of

answering queries, i.e. how many queries can be processed in a minute by each of the three

systems is shown in Table 7.4.

Table 7.4: Average query processing speed (q/m)

LUBM-25 LUBM-50 LUBM-100 LUBM-200
SQOWL2 1,253 949 519 36
OWLim 446 229 102 42
Stardog 39 17 5 n/a

SQOWL2 or OWLim processed queries much faster than Stardog, since the two materialising-

based systems compute and materialise explicit and implicit data before the stage of query

processing. For example, the average speed of executing LUBM queries over LUBM-100 by

SQOWL2 was approximately 100 times as fast as Stardog. If we only compare the two mate-

rialising systems, the average query answering speed by SQOWL2 was significantly faster than

OWLim for datasets LUBM-25, LUBM-50 and LUBM-100, and was comparable to OWLim

over the data of LUBM-200. SQOWL2 experienced a sharp drop from LUBM-100 to LUBM-
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200 mostly because of Q2 (which required only 481ms over LUBM-100 but needed about 21s

over LUBM-200). We checked the query plans used by the RDBMS for Q2 over LUBM-200

and found that it used the Nested Loops plan for table joins, which is less efficient than the

Hash Match plan used for answering the same query over LUBM-100. Note that results shown

in Table 7.4 is what we recorded without intentional tuning, but it is not abnormal in database

applications that certain queries might need manual tuning by a database administrator, espe-

cially when they are executed over larger datasets.

Table 7.5: Detailed query processing time (ms)

LUBM-n System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
SQOWL2 0.0 248 0.0 2.0 7.2 31 1.0 70 277 0.0 3.4 12 1.0 17
OWLim 168 202 1.2 5.4 7.8 97 2.2 404 922 1.2 1.4 28 2.2 39LUBM-25
Stardog 57 259 52 85 57 19,172 279 681 243 394 56 77 56 53
SQOWL2 0.0 196 0.0 2.2 7.0 25 0.8 116 489 0.0 7.0 4.0 2.0 36
OWLim 278 512 1.6 5.6 7.8 164 2.0 698 1,867 1.0 1.4 43 1.8 80LUBM-50
Stardog 56 492 53 91 59 46,084 506 1,213 445 701 55 85 56 52
SQOWL2 0.0 481 0.0 2.0 7.2 38 1.0 112 931 0.0 14 4.2 5.4 22
OWLim 476 1,969 1.0 5.4 8.0 290 2.6 1,368 3,831 1.2 1.8 86 2.4 155LUBM-100
Stardog 57 830 55 90 58 157,022 879 2,178 831 1,106 57 89 57 52
SQOWL2 0.0 21,040 0.0 2.2 8.0 57 1.2 133 1,855 0.0 2.0 5.2 12 44

LUBM-200
OWLim 900 7,872 1.6 6.2 8.2 472 2.2 2,623 7,639 1.6 1.2 178 4.2 315

We present more detailed results in Table 7.53, which lists the average execution time for every

query by each of the three systems benchmarked. As can be seen, SQOWL2 was faster than

OWLim in most cases over every LUBM dataset. Q11 is the only query which SQOWL2 always

executed more slowly than OWLim, and its processing time by SQOWL2 increased from 56ms

over LUBM-25 to 57ms over LUBM-100, but was suddenly decreased to just 2ms over LUBM-

200 (which is nearly as fast as 1.2ms required by OWLim). The reason for this is that, the

RDBMS used by SQOWL2 chose a more efficient Nested Loops plan for joining tables when

processing Q11 over LUBM-200 rather than the less efficient Merge Join plan used over LUBM-

25 to LUBM-100. Q2 is another interesting query we want to address. Apart from the significant

drop from LUBM-100 to LUBM-200, the reason for which we have already explained in the last

paragraph, SQOWL2 processed it faster than OWLim over both LUBM-50 and LUBM-100,

3In Table 7.5 and Table 7.6, SQOWL2’s results are reported from Microsoft SQL Server. We round the
average query processing times which are less than 10ms to one decimal place, and round the results which are
greater than 10m to whole numbers.
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but slightly slower over LUBM-25 and even significantly slower over LUBM-200. SQOWL2

processed this query over LUBM-50 even faster than over the smaller LUBM-25, because the

RDBMS switched to a more efficient Parallelism plan for LUBM-50 (also for LUBM-100 and

LUBM-200), but not over LUBM-25. Finally, Q13 is the last query which SQOWL2 did not

dominate the performance over OWLim; indeed, SQOWL2 outperformed OWLim only over

LUBM-25, but was sightly slower than OWLim over other datasets. The query plans used by

the RDBMS for Q13 as we investigated did not change when the size of datasets grew; however,

the processing time of this query by SQOWL2 did increase linearly.

When comparing SQOWL2 to Stardog, the former was much faster for all LUBM queries

over LUBM-25, LUBM-50 and LUBM-100 except Q9, for which SQOWL2 processed slightly

slower than Stardog. The reason for this is that the test suite generated by SyGENiA for Q9

only contains one inference case requiring joining just three tables; however, the original Q9

processed by SQOWL2 requires five joins among six tables. Stardog was significantly slower

when answering Q6 and Q10 than both SQOWL2 and OWLim, because the two queries are

rewritten to many sub-queries (the test suites for Q6 and Q10 have 169 and 168 inference cases,

respectively), which are very complex to compute the answers.

Tuning SQOWL2 for Faster Query Processing

As we have mentioned in Section 7.2.3, we create for each class and property table indexes, which

reduce the time used by the RDBMS to fetch required data in the table, and consequently the

performance of query processing and incremental type inference can be accelerated. Although

in our current implementation, we did not provide a systematic way of tuning the RDBMS

which materialises the inference closure, we might manually apply certain optimisations; for

example, the query processing performance can be significantly improved by adding SQL FKs

or by forcing the RDBMS to choose a more efficient query plan.

Table 7.6 provides the improved query processing performance by SQOWL2 after we manually

tuned the RDBMS (where ‘-’ denotes that there was not a significant improvement). We may

start from Q9 to demonstrate our tuning strategies. Q9 is the only query which SQOWL2
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Table 7.6: Query improvements (ms) by SQOWL2 after database tuning (results in Table 7.5
→ improved performance)

SQOWL2 Q2 Q5 Q7 Q9 Q13
LUBM-25 248 → 123 7.2 → 0.0 1.0 → 0.0 277 → 241 1.0 → 0.0
LUBM-50 - 7.0 → 0.0 0.8 → 0.4 489 → 431 2.0 → 0.0
LUBM-100 - 7.2 → 0.0 1.0 → 0.8 931 → 811 5.4 → 0.0
LUBM-200 21,040 → 1,723 8.0 → 0.0 1.2 → 1.0 1,855 → 1,640 12 → 0.0

processed slower than Stardog. We added SQL FKs (described below) which represent the

semantics of PropertyDomain and PropertyRange of the property teacherOf.

SB.teacherOf(domain)
fk⇒SB.Faculty(id)

SB.teacherOf(range)
fk⇒SB.Course(id)

The two FKs optimised the query plan, especially for joining tables Faculty, Course and teacherOf

used by the RDBMS. After adding the above two FKs, we then averaged the query processing

time for Q2, which became 241ms over LUBM-25, 431ms over LUBM-50 and 811ms over LUBM-

100. Comparing the new timings with Stardog illustrates that our system was now slightly faster

than Stardog over all of the four LUBM datasets. Moreover, since the PropertyDomain of the

property memberOf and the PropertyRange of the property hasAlumnus are both set as the class

Person, we created two extra FKs shown as follows:

SB.memberOf(domain)
fk⇒SB.Person(id)

SB.hasAlumnus(range)
fk⇒SB.Person(id)

Adding these new FKs benefits Q5, Q7 and Q13 and as we tested processing them required

much less time than without these FKs. As shown in Table 7.6, most of their processing times

were reduced to less than 0.05ms, such as Q13 over LUBM-200, in which case SQOWL2 became

faster than OWLim.

With regard to Q2, one FK displayed below capturing the semantics of the PropertyRange of

undergraduateDegreeFrom can be added:

SB.undergraduateDegreeFrom(range)
fk⇒SB.University(id)

This added FK caused the RDBMS to choose the more efficient Hash Match plan when executing

Q2 over LUBM-25. However, for processing Q2 over LUBM-50 and LUBM-100, adding this
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FK surprisingly decreased the processing time, as the RDBMS adapted itself ‘wrongly’ to use a

less efficient plan, which is Nested Loops. It is not uncommon to witness ‘wrong’ self-education

in an RDBMS, and after forcing the query to be executed by using instead the Hash Match

plan, the quicker performance was re-obtained.

Moreover, we recorded the time required for processing this query over LUBM-200, when forcing

the RDBMS to use the Hash Match plan, and the processing time was improved to approxi-

mately 1.7s. The new timing was much faster than the 21s used before, and became even much

faster than 7.871s required by OWLim.

Besides PropertyDomain and PropertyRange axioms, other axioms constructed by using con-

structors SubClassOf and SubPropertyOf also result in new FKs. Note that these FKs are

unnecessary otherwise, since our triggers for these axioms enforce the constraint implied from

the FKs to be always satisfied. Therefore, at the stage of data uploading and deleting, we can

temporarily disable the FK checks (or make them deferrable in Postgres), as constraint checks

because of FKs usually slow down data loading and deleting.

7.4 Implementation of SPOWL

In Chapter 6, we have described how Spark programmes are individually compiled from each

OWL 2 RL axiom by some transformation rules. These Spark programmes are executed as a

Spark application on a cluster of machines. The Spark application computes and materialises

the inference closure for a given ontology by executing its Spark programmes in an optimised

order presented in Section 6.4.3, and should terminate if there is no new derivation.

Figure 7.13 outlines the components of a Spark application, which consists of a driver running

on the master node of the cluster, and several executors running on worker nodes of the

cluster. When a Spark application is executed, the driver first initialises a SparkContext,

which defines RDDs and computation jobs (i.e. transformations and actions) specified on these

RDDs by the Spark programmes. The SparkContext then distributes the computation jobs to

executors, which process individual tasks that make up these jobs and return results back to
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Figure 7.13: The Components of a Spark application

the SparkContext.

7.4.1 Spark Application Initialisation

In order to launch a Spark application, we first need a SparkConf to set up some configurations,

such as the address of the master node where the driver will be running, and the application

name. Then a SparkContext can be instantiated based on this SparkConf. A sample Spark

code for initialising a Spark application is:

conf=SparkConf().setMaster($master).setAppName($appName)

sc=SparkContext(conf=conf)

Besides setting the $master and $appName, Spark also allows the specifications of other config-

urations, such as the amount of memory allocated to the driver and executors, and the amount

of parallelism for executing this application.

7.4.2 Initial Data Loading

With the SparkContext, we are now ready to load the explicit A-Box of facts into a distributed

file system, which is an HDFS in SPOWL. Assume $localABox denotes the path where the

original A-Box files are stored in a local file system, we can use the textFile function in Spark

to load them as an ABox RDD:

ABox_RDD = sc.textFile("file://$localABox")
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Next, we may call another Spark function saveAsTextFile to simply store ABox RDD in the

HDFS (assume $hdfsABox is the HDFS path where we expect to store):

ABox_RDD.saveAsTextFile("hdfs://$hdfsABox")

such that A-Box facts are loaded from the local file system to the HDFS. However, saving

ABox RDD, which contains all class and property facts, as a union in the HDFS leads to an

inefficient data access, because each time we access instances of a particular class or property,

we need to filter out a fragment from the ABox RDD. Therefore, we instead perform the filtering

process only once, and store instances of different classes and properties separately in the HDFS,

so that no further filter process of class and property instances is required. This benefits not

only computing the type inference closure, but also computing answers to queries over the

ontological data.

To specify the filter function, it is worth mentioning that ontologies often present their A-Box

facts as Resource Description Framework (RDF) triples [CWL14] of the format (s, p, o).

Triples which express class facts (called class triples) are in the format of 〈a rdf:type C〉,

where rdf:type is a keyword for specifying that an individual a is a member of a class C, while

property facts are specified by property triples as 〈a P b〉, which denotes a is related to b by

a property P . Thus 〈a rdf:type C〉 and 〈a P b〉 are the RDF way of asserting A-Box facts C(a)

and P (a, b) in DL, respectively.

Thus to filter out instances of a class C as $C RDD, we select from $ABox RDD the triples (s, p, o)

where o is equal to C and p is equal to rdf:type, and for filtering out instances of a property P

as $P RDD, we select the triples (s, p, o) where p is equal to P :

$C_RDD = ABox_RDD.filter(lambda (s,p,o):o == $C).map(lambda (s,p,o):s)

$P_RDD = ABox_RDD.filter(lambda (s,p,o):p == $P).map(lambda (s,p,o):(s,o))

Note that, since we are only interested in s (i.e. the individuals) from class triples, and (s, o) (i.e.

the pairs of property subject and object) from the property triples, two map transformations

for selecting these fields are performed in the above code.

Afterwards, $C RDD and $P RDD can be stored in the HDFS by:
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$C_RDD.saveAsTextFile("hdfs://$hdfsABox/$C/EXP")

$P_RDD.saveAsTextFile("hdfs://$hdfsABox/$P/EXP")

Note that, as $C RDD or $P RDD now only contain the explicit facts, we store them in paths with

suffix “EXP” to differentiate the paths suffixed with “IMP” used for storing implicit inference.

7.4.3 Physical Spark Programmes Generation

Spark programmes have already been described in a logical manner in Chapter 6, and we now

show how they are implemented into real code. Because we have already used the Python

syntax for specifying logical Spark programmes, the implementation of them to physical code

is trivial. Take the transformation rule for a SubClassOf axiom C v D as an example, the logical

Spark programmes Drdd = Drdd.union(Crdd) is implemented into the physical programmes as:

$C_RDD = sc.textFile("hdfs://$hdfsABox/$C")

$D_RDD = sc.textFile("hdfs://$hdfsABox/$D")

$D_IMP = $C_RDD.subtract($D_RDD)

$D_RDD = $D_RDD.union($D_IMP)

where the first two lines respectively read instances of C and D as $C RDD and $D RDD (no

filtering process is required here). As paths are not suffixed with the “EXP” or “IMP”, $C RDD

and $D RDD will include both explicit and implicit items of data. The third line computes

inference, which should be added to $D RDD (i.e. $C RDD.subtract($D RDD) which includes

data in $C RDD but not in $D RDD). The final line then merges $D RDD with $D IMP.

In essence, we respectively create $C IMP and $P IMP for each class C and property P . They

can be used for checking whether new inference is derived for every C or P (by checking

whether $C IMP or $P IMP is empty or not), which is essential for SPOWL to decide when to

terminate the whole Spark application. The Spark application should stop if for all classes C

and properties P , their $C IMP and $P IMP are empty. For a non-empty $C IMP or $P IMP,

we store them containing inference results in the path suffixed with “IMP” by (i.e. inference is

materialised):

$C_IMP.saveAsTextFile("hdfs://$hdfsABox/$C/IMP")

$P_IMP.saveAsTextFile("hdfs://$hdfsABox/$P/IMP")
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In addition to showing the physical Spark programmes for C v D, we further list the code for

an AllValuesFrom axiom C v ∀P .D:

$P_RDD = sc.textFile("hdfs://$hdfsABox/$P")

$C_RDD = sc.textFile("hdfs://$hdfsABox/$C")

$D_RDD = sc.textFile("hdfs://$hdfsABox/$D")

$D_IMP = $C_RDD.map(lambda xc: (xc,xc)).join($P_RDD).map(lambda (xk,(xc,yp)):yp)

$D_IMP = $D_IMP.subtract($D_RDD)

$D_RDD = $D_RDD.union($D_IMP)

which performs a join between $C RDD with $P RDD, in order to compute data items that should

be added to $D RDD. Finally, we list the code which implements the logical Spark programmes

for a TransitiveProperty P (i.e. P ◦ P v P ):

$P_RDD = sc.textFile("hdfs://$hdfsABox/$P/")

TC = $P_RDD

# start the loop for computing transitive closure

while True:

$P_TMP = TC.map(lambda (xp,yp):(yp,xp)).join(TC).map(lambda (yk,(xp,zp)):(xp,zp))

if $P_TMP.isEmpty():

break

TC = TC.union($P_TMP)

#loop finished

$P_IMP = TC.subtract($P_RDD)

$P_RDD = TC

The above physical Spark programmes initialise an RDD TC as equal to $P RDD, and after each

iteration of computing new transitive pairs, TC is merged with the new computed pairs. Thus

when the loop of transitive closure computation is finished, TC, which contains the transitive

closure of P , is assigned to $P RDD.

7.4.4 Optimisation in SPOWL

• Caching Data in Memory

In the physical Spark programmes, we cache an RDD which is repeatedly used to avoid

re-computation of this RDD. For instance, for an IntersectionOf axiom C v C1 u . . . u

Cn, because a tableaux-based reasoner classifies it to n SubClassOf axioms (i.e. C v

C1, . . . , C v Cn), the data of $C RDD (representing C) will be used n times; therefore,
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caching $C RDD by a Spark function called cache or persist in memory will improve the

performance of reasoning this axiom.

• Partitioning before Join

In Spark, a normal join between two sets of key-value pairs will shuffle the pairs whose

keys are the same to the same executor, so that joint pairs can be computed. However,

in the case of one set of key-value pairs is very large while the other set is quite small,

this normal join might result in a slow shuffle process because of shuffling the large set.

Instead, we partition the large set of key-value pairs by their keys, and only copy the

small set to the node where each partition of the large set is stored. Since this reduces

the amount of data transferred through the network of a cluster, the join can be performed

much faster. Partitioning an RDD can be achieved by a Spark function partitionBy.

• Using Hadoop Sequence Files

As we use an HDFS for a distributed data storage, we can store the inference materiali-

sation as Hadoop sequence files rather than text files. Thus the inference materialisation

can be compressed and be approached as binary files, which results in more efficient stor-

age and computation. Spark provides a function called saveAsSequenceFile for storing

an RDD as Hadoop sequence files, which can be read by a SparkContext through another

function named sequenceFile.

7.5 Evaluation of SPOWL

In this section, we evaluate the scalability of SPOWL for inference materialisation and query

processing. All experiments were performed on a cluster of 9 machines running on a private

cloud environment4 containing a master node (with CPU @ 2.5GHz, 4 Cores, and 16GB of

Memory), and 8 slave nodes (each with CPU @ 2.5GHz, 4 Cores, and 16 GB of Memory).

The cluster ran Hadoop version 2.6.0-cdh5.5.0 (with 2.08 TB configured capacity), and Apache

Spark 1.6.0. SPOWL used OWL API v3.4.3 for T-Box loading, and supports the use of Pellet

4https://www.doc.ic.ac.uk/csg/services/cloud

https://www.doc.ic.ac.uk/csg/services/cloud
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v2.3.1 or Hermit v1.3.8 for T-Box classification. We do not provide a comparison between

SPOWL and other large reasoning systems, due to difficulty of configuring and running them

on the private cloud.

As for the evaluation of SQOWL2, we use the LUBM data generator, but now to create much

larger datasets. Specifically, we produced five new datasets, which are LUBM-400, LUBM-800,

LUBM-1200, LUBM-1600 and LUBM-2000, where the largest one (i.e. LUBM-2000) contains

approximately 270 million A-Box facts and is about 44GB in size. Similarly to the evaluation

of SQOWL2, each experiment was repeated 10 times, of which the average value is reported.

7.5.1 Performance of Inference Materialisation

• Initial Load: We used SPOWL to first load the original A-Boxes for each LUBM dataset,

during which stage instances of every class or property were filtered out and materialised

in separate folders in the HDFS. We recorded the time which SPOWL used for loading

each dataset in Table 7.7.

Table 7.7: Performance of Inference Materialisation by SPOWL

SPOWL LUBM-400 LUBM-800 LUBM-1200 LUBM-1600 LUBM-2000
Initial Load 9m08s 20m30s 27m50s 41m20s 54m10s
Type Inference 10m19s 16m28s 33m20s 38m58s 58m08s
Total Time 19m27s 36m58s 1h01m10s 1h20m18s 1h52m18s

As can be seen, the time used by SPOWL increased almost linearly when loading datasets

from LUBM-400 to LUBM-2000. In particular, SPOWL was able to initially load LUBM-

2000 (having about 270 million facts of 44GB) in 55 minutes (i.e. the loading speed was

at about 81,818 facts/s). We may highlight this linear increase by translating the results

in Table 7.7 into a line chart in Figure 7.14.

• Type Inference: After the step of initial loading, we used SPOWL to perform type

inference by launching a Spark application which executed Spark programmes generated

from T-Box axioms over the loaded data. The results of type inference were computed

and materialised in the HDFS. The time used by SPOWL for the five datasets is shown in
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Figure 7.14: Inference Materialisation by SPOWL

Table 7.7, and is also available in the line chart shown in Figure 7.14. Again, the time used

for type inference grew almost linearly from LUBM-400 to LUBM-2000. Furthermore, for

the largest dataset LUBM-2000, SPOWL materialised about 246 million implicit facts in

59 minutes (i.e. at the speed of 70,690 facts/s).

7.5.2 Performance of Query Processing

In order to process the 14 LUBM queries by SPOWL, we translated the SPARQL LUBM query

into a Spark query programme. We take Q1 as an example, and the Spark query programme

for this query is shown in Figure 7.15.

# read data from the two csv files

GraduateStudent = sc.textFile("hdfs://$hdfsABox/GraduateStudent")

takesCourse = sc.textFile("hdfs://$hdfsABox/takesCourse")

ran = "<http://www.Department0.University0.edu/GraduateCourse0>"

# select pairs (s,o) from takesCourse where o is equal to ran

domTakesCourse = takesCourse.filter(lambda (s,o) : o == ran).map(lambda (s,o) : s)

# compute the final answer to this query

ans = domTakesCourse.intersection(GraduateStudent)

Figure 7.15: LUBM Query 1 in Spark

As can be seen, in the Spark programme implementing LUBM Q1, both explicit and implicit in-

stances of GraduateStudent and takesCourse are read from the HDFS as RDDs GraduateStudent
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and takesCourse. Remember that because we store inference results separately for each class

and property, no filtering process of each class or property from the whole inference is re-

quired. Then, we need to first select from takesCourse the pairs whose objects are equal to

<http://www.Department0.University0.edu/GraduateCourse0>. Finally, the intersection

of GraduateStudent and the subjects from the selected pairs are computed as the answers.

Table 7.8: Performance of Query Processing by SPOWL

LUBM Avg. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
400 23s 47s 1m07s 1m05s 12s 16s 13s 10s 5s 12s 2s 3s 27s 10s 32s
800 40s 1m12s 2m14s 1m56s 20s 34s 21s 21s 5s 18s 3s 5s 47s 10s 1m01s
1200 1m12s 1m45s 4m36s 4m12s 42s 58s 32s 35s 5s 28s 4s 7s 1m12s 10s 1m20s
1600 2m07s 2m25s 7m12s 5m56s 2m21s 1m34s 1m20s 1m52s 5s 40s 9s 21s 2m44s 13s 2m50s
2000 3m30s 4m26s 10m46s 8m53s 3m38s 2m52s 2m32s 3m34s 6s 1m18s 26s 28s 4m44s 12s 5m12s

In order to test the performance of query processing, we cycled through the 14 queries (in

Spark) over the inference materialisations of LUBM-400 – LUBM-2000 by using SPOWL, and

the performance results are provided in Table 7.8. As can be seen, besides detailed processing

time for each query over each dataset, the average query processing time (i.e. how much time

on average SPOWL required to process each query) are shown in the column Avg., which is

translated to a line chart in Figure 7.16.
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Figure 7.16: Average Query Processing by SPOWL

Obviously the average query processing time was increased beyond linearly. However, to further

determine which type of growth the average performance follows, we respectively calculated the
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n log n and n2 values w.r.t. the size of LUBM datasets, and then divided each set of the n log n

and n2 values by the average query processing time. We then analysed which ratio computed is

more constant, and found the average query processing follows a quadratic growth (i.e. O(n2));

in other words, the performance of average query processing is proportional to the square of

the size of the input LUBM dataset.

Although this is not a linear increase, the average query performance by SPOWL does not

violate the PTIME-complete complexity stated by OWL 2 standard for conjunctive query

processing in OWL 2 RL. The average performance is better than PTIME-complete due to the

fact that the LUBM T-Box is relatively simple although it contains some additional axioms

that surpass the OWL 2 RL profile. Moreover, some of the 14 LUBM queries are quite trivial

to process, such as Q8 and Q13. This also averages the overall query performance of SPOWL.

Indeed, by further applying this analysis method to the time used for processing each query,

we found for most of the queries, their processing time follows a quadratic growth, except Q8

and Q13 which follow a logarithmic growth (i.e. O(log n)).

7.6 Summary

In this chapter, we have described the implementation of SQOWL2 which performs type infer-

ence in an RDBMS by using triggers, and SPOWL, which conducts type inference in a Big Data

system by Spark programmes. In particular, we have shown how logical triggers and logical

Spark programmes can be implemented into real code, alongside some optimisations which can

further improve the performance of the two implementations.

Furthermore, we have presented the evaluation of the two implementations. For SQOWL2, we

used it to process LUBM datasets that are small enough to store in an RDBMS, and evaluated

the performance of handling data inserts and deletes, and the completeness and efficiency of

query processing. We have verified that SQOWL2 was able to provide a faster query processing

and a more complete inference completeness than the two comparison systems, Stardog and

OWLim, at the expense of slower data updates mostly because of providing transactional
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reasoning. For SPOWL, we mainly focus on its scalability of materialising type inference

results for large ontologies. In our evaluation, for initial data loading and type inference,

SPOWL scaled linearly to process LUBM-2000 which contains 270 million explicit A-Box facts;

and for query processing, the average performance by SPOWL followed a quadratic growth. It

should be noted that the cluster used for evaluating SPOWL contains only 9 nodes, and we

believe SPOWL can handle even larger ontologies if more nodes are added.

Some limitations of the evaluation should be addressed. Firstly, the soundness and completeness

of SQOWL2 was only experimentally tested for the T-Box and A-Boxes provided by LUBM.

Indeed, other benchmarks, such as University Ontology Benchmark (UOBM) [MYQ+06]

and Berlin SPARQL Benchmark (BSBM) [BS09], can be used for further evaluation.

Secondly, when comparing SQOWL2 to Stardog and OWLim, the performance differences

might result from the data access and data storage mechanisms used by them. For data access,

SQOWL2 uses an RDBMS, which normally performs certain optimisations for query processing,

as compared to a file system used by Stardog and OWLim. However, an RDBMS also conducts

constraint checking, which consequently slows the data updating of SQOWL2.
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Conclusion

In this thesis, we have presented our approach to managing inference over large OWL ontolog-

ical data in mainstream databases. This approach is feasible to be used in existing database

applications to enhance them with inference capabilities. We particulally focus on applications

which use a small schema to represent their large scale data, and are more query-intensive than

update-intensive. By materialising the inference results, our approach provides faster query pro-

cessing than non-materialising approaches, at the expense of slower data updating. Depending

on the size of inference materialisation, our work materialises the result of inference for OWL

2 ontologies with a simple T-Box but large A-Boxes in an RDBMS or in a Big Data system.

By separating the T-Box and A-Box, our work is able to apply a tableaux-based reasoner for a

complete T-Box classification w.r.t. the T-Box. Axioms in the classified T-Box are transformed

into an inference framework containing active and non-active rules for type inference over large

A-Boxes. This combination of tableaux-based and rule-based inference computes and stores for

each instance its membership of classes and properties before any query is executed, so that

querying the ontological data requires no real-time inference. This work is conjectured to be

a sound and complete implementation of the OWL 2 RL/RDF rules for type inference over

OWL 2 RL ontologies, as rules in the inference framework cover not only all OWL 2 RL/RDF

rules (except rules which conflict the UNA followed by our work), but also some extra OWL 2

axioms.

Our work can be viewed as a compiler which implements the inference framework in different

199
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programming languages. When the ontology is small enough to be processed in an RDBMS,

our work compiles the active ECA rules into triggers, and we term this part of work SQOWL2.

In SQOWL2, triggers invoked by updates to the database will analyse how the previous type

inference results should be updated accordingly. This process is also known as transactional

reasoning, which preserves the important ACID properties of database transactions. SQOWL2

performs type inference from both data inserts and deletes in an incremental manner without

needing to re-compute the type inference results. Especially for handling deletes, triggers

invoked by them automatically conduct a label & check process, which first labels all items of

data affected by the deletes, and then checks as to whether the labelled data can be re-inferred

from non-labelled data or not. Among state-of-the-art reasoners (e.g. Stardog, DLDB, Ontop,

OWLim, RDFox, WebPIE, Oracle’s RDF Store and Minerva), we believe SQOWL2 is unique in

providing transactional reasoning combined with incrementally maintaining the materialisation

of the inferred data from both data inserts and deletes.

From the implementation viewpoint, SQOWL2 gathers together all logical trigger fragments

associated with each table and implements them as a single physical trigger, to improve the

performance. Moreover, SQOWL2 adopts some optimisations, such as adding indexes and FKs.

It is also possible for an RDBMS administrator to perform standard tuning of the RDBMS to

use a more efficient execution plan, which accelerates not only inference computation but also

query processing.

In the case of ontologies that are too large to be processed in an RDBMS, our work compiles

the if-then part of the trigger rules into Spark programmes in a Big Data system, and we name

it SPOWL. It executes Spark programmes which are directly translated from a classified T-

Box. This avoids unnecessary and inefficient rule-matching, often witnessed by most large-scale

reasoners (e.g. WebPIE and Cichlid), which simply evaluate a fixed set of entailment rules for

computing inference. Spark programmes are non-active, and should be executed iteratively by

a Spark application, in order to compute and materialise the type inference results until no

implicit data can be inferred. To minimise the number of executing iterations, an optimised

order based the bottom-up hierarchy of the ontology T-Box is followed.
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In the implementation of SPOWL, since it adopts Spark as the computation framework, it

caches datasets which are frequently used in memory as much as possible, in order to avoid the

needing to recompute these datasets. Moreover, when performing a join between a large dataset

and a small one, we partition the large set and shuffle only the small set to each partition (i.e.

shuffling the large set is avoided), in order to obtain a more efficient performance.

We have also evaluated SQOWL2 and SPOWL over the well-known benchmark LUBM. For

evaluating SQOWL2, we have empirically tested its soundness and completeness of query pro-

cessing, results of which show it was complete for answering all LUBM queries w.r.t. LUBM T-

Box and any arbitrary LUBM A-Boxes, which outperformed most rule-based reasoners [SGH10].

We have further compared the performance of processing data inserts, data deletes and queries

by SQOWL2 to two comparison reasoners, Stardog (a query-rewriting approach) and OWLim (a

materialised approach). Results show SQOWL2 was faster at query answering, at the expense

of slower data updating speed mostly because of providing transactional reasoning.

In the evaluation of SPOWL, we have used it to materialise the inference closure for much

larger LUBM datasets, and to process LUBM queries over the materialisation. Materialising

type inference and processing queries were both scaled up to run over LUBM-2000, which has

about 270 million A-Box facts. Since the cluster used in the evaluation only contains 9 nodes,

we believe SPOWL can scale up to reasoning over even larger ontologies by adding more nodes

to the cluster.

8.1 Summary of Thesis Achievements

Our work extends the previous work SQOWL, and the extensions provide the following genernal

contributions to knowledge about inference:

1. SQOWL2 improves SQOWL, which only performs type inference from data inserts in

an RDBMS, to now support type inference from also data deletes. In SQOWL2, we

improve the existing DRed algorithm to assign for each item of ontological data a state,

which represents its semantics for being persisted in the RDBMS. When handling inserts,
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SQOWL2, when compared to DRed, not only computes type inference but also properly

updates the data state, which is essential for our new label & check process to handle

deletes. Updates are captured by triggers, which perform type inference in a transactional

and incremental manner. We have published this part of work in [LM15, LM16].

2. SQOWL2 further extends SQOWL to support type inference for OWL 2 ontologies as

compared to the previous support of OWL 1. This thesis thus contributes additional

triggers to cover constructs in OWL 2 not found in SQOWL’s triggers for OWL 1. It

should be noted that our work not only covers the OWL 2 RL/RDF rules (except those

rules that disobey the UNA) but also some extra OWL 2 semantics. We conjecture

SQOWL2 is a sound and complete implementation of the OWL 2 RL/RDF rules for

type inference over OWL 2 RL ontologies. This part of work has been published in

[LM13, LM14].

3. SPOWL further extends SQOWL2 to support type inference over ontologies with A-

Boxes that are too large to be processed by an RDBMS. In SPOWL we contribute a new

technique, where each OWL 2 axiom in an ontology is compiled into a corresponding

Spark programme. These Spark programmes are executed iteratively in a bottom-up

order following the T-Box hierarchy. Compared to existing approaches, this has the

advantage that the order of execution is optimised for each ontology, instead of following

a fixed execution order. SPOWL addresses scalable type inference over large OWL 2 RL

ontologies, and so it adopts a Big Data system rather than an RDBMS. A consequence of

this is that SPOWL does not provide the transactional reasoning supported by SQOWL2.

8.2 Future Work

Of course, there are some areas in which our work can be improved in future efforts, especially

with respect to the limitations which have been discussed though the thesis.

First, our work takes the assumption that the ontology T-Box is small enough for a tableaux-

based reasoner to classify, and thus benefit from their complete T-Box inference. However,
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with respect to large T-Boxes (e.g. Gene ontology and SNOMED-CT), our approach should be

extended to use a non-tableaux reasoner that aims for large T-Box inference.

Second, our work stores a total materialisation of the type inference results, in order to provide

faster query-processing than non-materialising approaches. However, the total materialisation

can sometimes take too much space for data storage. From this viewpoint, our work can be

extended to only materialise the inference results that are frequently queried, by combining

query-rewriting to process queries over less frequently accessed facts.

Third, our work of SQOWL2 only supports updates to A-Boxes, but not to the T-Box, by

assuming the T-Box is static. Thus, we can extend our work to support updates to the whole

ontology. This could be achieved by applying a similar label & check process which we have

used for data updates to incrementally handle T-Box updates.
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[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-

niak, and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In The

semantic web, pages 722–735. Springer-Verlag, Berlin Heidelberg, 2007.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.

[Bar77] Jon Barwise. An Introduction to First-Order Logic. Studies in Logic and the

Foundations of Mathematics, 90:5–46, 1977.

[Bat89] Carlo Batini. Entity-Relationship Approach: A bridge to the User. In 7th

International Conference on on Enity-Relationship Approach, 1989.

[BB93] Alex Borgida and Ronald J Brachman. Loading Data into Description Reasoners.

In ACM SIGMOD Record, volume 22, pages 217–226. ACM, 1993.

[BCH+14] Timea Bagosi, Diego Calvanese, Josef Hardi, Sarah Komla-Ebri, Davide Lanti,
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[Krö12b] Markus Krötzsch. The Not-So-Easy Task of Computing Class Subsumptions

in OWL RL. In Proceedings of ISWC 2012, pages 279–294, Boston, MA, 11–

15 November 2012. Springer-Verlag, Berlin Heidelberg.

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/


210 REFERENCES
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Appendix A

List of Abbreviations

A-Box

ACID

ATIDB

BSBM

DAG

DL

DLP

DRed

ECA

ER

FK

FOL

HDFS

KR

LUBM

NNF

OBDA

Assertional Box

Atomicity, Consistency, Isolation, Durability

Auto Type Inference Database

Berlin SPARQL Benchmark

Directed Acyclic Graph

Description Logic

Description Logic Program

Delete & Rederive

Event Condition Action

Entity-Relationship

Foreign Key

First-Order Logic

Hadoop Distributed File System

Knowledge Representation

Lehigh University Benchmark

Negation Normal Form

Ontology-based Data Access
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218 Appendix A. List of Abbreviations

OWL

PK

RDBMS

RDD

RDF

T-Box

UML

UNA

UOBM

W3C

3NF

Web Ontology Language

Primary Key

Relational Database Management System

Resilient Distributed Dataset

Resource Description Framework

Terminological Box

Unified Modelling Language

Unique Name Assumption

University Ontology Benchmark

World Wide Web Consortium

Third Normal Form



Appendix B

Theorem PR1

Let R be the OWL 2 RL/RDF rules, and let O1 and O2 be OWL 2 RL ontologies satisfying

the following properties:

• no IRI in O1 or O2 is used both as a class and an individual;

• O1 does not contain axioms of SubAnnotationPropertyOf, AnnotationPropertyDomain and

AnnotationPropertyRange;

• each axiom in O2 is an assertion of the form C(a), P (a, b) or = (a1, . . . , an).

Furthermore, let RDF(O1) and RDF(O2) be translations of O1 and O2, respectively, into RDF

graphs as specified in [GHP+12]; and let FO(RDF(O1)) and FO(RDF(O2)) be the translation of

these graphs into first-order theories. Then, O1 entails O2 under the Direct Semantics if and

only if FO(RDF(O1)) ∪ R entails FO(RDF(O2)) under the standard first-order semantics.
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