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Abstract In this paper, we investigate the application of penalty and relaxation meth-
ods to the problem of optimal placement and operation of control valves in water
supply networks,where theminimization of average zone pressure is the objective. The
optimization framework considers both the location and settings of control valves as
decision variables. Hydraulic conservation laws are enforced as nonlinear constraints
and binary variables are used to model the placement of control valves, resulting in a
mixed-integer nonlinear program. We review and discuss theoretical and algorithmic
properties of two solution approaches. These include penalty and relaxation methods
that solve a sequence of nonlinear programs whose stationary points converge to a sta-
tionary point of the original mixed-integer program. We implement and evaluate the
algorithms using a benchmarking water supply network. In addition, the performance
of different update strategies for the penalty and relaxation parameters are investi-
gated under multiple initial conditions. Practical recommendations on the numerical
implementation are provided.
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1 Introduction

Water utilities are facing unprecedented operational challenges from growing water
demand, ageing water infrastructure and more stringent environmental standards.
Moreover, utilities are required to continuously improve the quality of service and
satisfy customers’ expectations for a cost-efficient operation. Consequently, novel
technologies and operational innovation are urgently needed to achieve adaptive, opti-
mal and intelligent management of water supply networks.

The hydraulic pressure in pipes is a critical control variable for water supply net-
works because high pressure is closely related to leakage losses and burst frequency
[26]. Significant benefits can be realized by continuously controlling the operational
pressure, under stochastic changes in demand, close to a minimum level as defined
by regulations [32]. For over two decades, the subdivision of water distribution net-
works into small sectors, calledDistrictMeteredAreas (DMAs), has been successfully
applied in the pursuit of low-cost leak reduction methods by facilitating simplistic
demand metering and pressure control [23]. The sectorization of water networks is
implemented through the installation of closed boundary valves in order to form small
metered areas (sectors); consequently, the flow into these sectors can be accurately
measured and the pressure can be reduced to continuously maintain the minimum
pressure requirements at a critical point. While this practice has allowed an efficient
leakage management, it has severely reduced the redundancy in network connectiv-
ity thus affecting the system resilience [43] and water quality [3]. Recent work on
water distribution networks with dynamically adaptively network topology [43] pio-
neers a hybrid mode of operation that integrates the benefits of leakage reduction
and management provided by sectorised networks with the extra benefits of improved
network connectivity, redundancy and resilience. Dynamically adaptive networks are
segregated into small sectors during periods of low demand (e.g. at night) in order to
maximize the detection and pre-localisation of leaks. The sectors are then aggregated
in order to achieve an optimal pressure and effective resilience management during
the remaining daily operation. This hybrid mode of operation provides unique control
opportunities to achieve short and long-term operational gains.

To benefit from these emerging and advanced control schemes, the retrofitting of
existing networks with control valves, which provide advanced forms of flow and
pressure modulation [41,43], requires the formulation and solution of both design and
operational optimization problems. In the present work we focus on the mathematical
optimization for network pressure management, minimizing average zone pressure
through the optimal placement and operation of pressure control valves.

The placement of control valves is a challenging design problem, even for a
relatively small and simple network as shown in Fig. 1a. The number of possible
combinations of locations for nv valves in a network with n p pipes is equal to
(n p
nv

) = n p !
nv !(n p−nv)! .

In Fig. 1b, we show an operational network model with over 250 control valves
and about 110,995 links, serving approximately 1,000,000 customers in South West
England. Searching for the optimal combination of control valve locations is combina-
torially infeasible for operational networks. The application of scalable mathematical
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Fig. 1 a Network model from [40] with 22 junctions, 3 reservoirs, 37 links, 7770 possible configurations
for the placement of 3 valves. b Operational network (South West England) investigated by the authors:
106,804 junctions, 32 water sources, 110,995 pipes and ≈250PRVs with the intention to significantly
increase these in the next 5years

programming tools adapted to the special structure of this problem is therefore required
to facilitate the cost–benefit analysis, adoption and implementation of advanced pres-
sure management solutions.

The problem formulation combines binary variables (that denote whether a valve
is placed on a link or not) with continuous variables representing nodal pressures and
pipe flows. Valve control is embedded in the optimal placement problem, since the
operational settings of a valve are defined by the pressure at its outlet. The use of
physically feasible models for operational water distribution networks involves the
formulation of hydraulic equations that lead to nonlinear constraints. Together with
the discrete decision variables, these result in a nonconvex optimization problem with
a large number of integer variables, belonging to the class of mixed integer nonlin-
ear programming (MINLP). These problems are particularly challenging since they
combine the difficulties of handling nonconvex nonlinear constraints with the com-
plication of optimizing within a space of discrete variables. Although mixed integer
nonlinear programs are intractable in most general cases, the growing importance of
large scale mixed integer problems in several engineering applications has motivated
recent research in various solutionmethods. For an extensive survey of these emerging
methods see [5,17].

Optimal valve placement problems have been studied using both mathematical pro-
gramming and heuristic methods. Genetic algorithms and meta-heuristic approaches
have been applied [1,29,30]. Nonetheless, these methods have various limitations.
Firstly, such heuristics do not guarantee convergence to optimal solutions (not even
to local optima). Secondly, they require a large number of function evaluations of
objective and constraints in order to achieve good quality solutions. Therefore, with
applications in advanced dynamic control schemes too, it is important to study reli-
able and effective mathematical methods for optimal valve placement and control. A
mathematical formulation of the problem was first proposed in [20], where a mixed
integer linear programming method was applied to a linear approximation of the orig-
inal MINLP problem. A direct solution for optimal valve placement with the MINLP
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solver BONMIN has been proposed in [15], considering a single steady-state snap-
shot of daily network operation. However, a faithful representation of real world water
distribution systems requires the inclusion of multiple demand scenarios. These were
considered in the recent work in [13], where a direct solution using BONMIN was
compared with a penalty method. Since the mixed integer problem in study involves
only binary variables, it can be equivalently reformulated as a mathematical program
with complementarity constraints (MPCC). In fact, each binary variable can assume
just one of the two complementary values, 0 or 1. The MPCCwas solved in [13] using
a penalty method, coupled with a heuristic rounding scheme.

In this manuscript, we build upon ideas outlined in [13] and present a rigorous anal-
ysis of the penalty method and its theoretical properties together with an evaluation of
alternative practical algorithmic implementations, neither of which were discussed in
[13]. In the penalty method, the optimization is performed in a feasible set obtained by
dropping the complementarity constraints, which are then embedded into the objective
function by penalizing complementarity violations. A sequence of penalty problems
can then be solved using standard NLP solvers and the solutions will converge to a
stationary point of the original MPCC problem. In addition, we propose the applica-
tion of a relaxation method . In this case, we solve a sequence of relaxed problems
with ‘regular’ approximations for the complementarity constraints; these approximate
feasibility sets are described using a relaxation parameter. The relaxed problems can
be solved with standard NLP solvers. The relaxed feasible sets converge to the patho-
logical feasibility set of the MPCC, hence the sequence of solutions will converge to
a stationary solution of the original problem. Convergence properties under suitable
assumptions have been discussed in a more general form for both penalty methods
[21,35] and relaxation methods [34,37]. We survey, evaluate and tailor these results
to the optimal valve placement problem, and show that the convergence to at least
stationary points is guaranteed.

In addition, we propose algorithmic implementations of both methods and apply
them to a case study. Since the optimization problem is nonconvex, likemost nonlinear
programming algorithms, under suitable assumptions all the methods can guarantee
convergence only to local minimum points and the quality of the solutions will depend
on the initial points. We take this into account when comparing different approaches
and therefore we consider a solution qualitatively good if it is obtained with various
random initial guesses and provides an average zone pressure close to the best known
solution.

2 Problem formulation

In the present formulationwemodel awater distribution networkwith n0 water sources
(e.g. reservoirs or tanks), nn nodes and n p pipes, as a directed graph (V, E), with
nn + n0 vertices and 2n p links, since we consider bidirectional positive flows. This
means that link j and link j + n p correspond to the same physical pipe. Moreover,
we include in the formulation nl different demand scenarios.

Let k ∈ {1, . . . , nl} be a time step. We define the vectors of unknown pressure
heads and flows as pk = [pk1, . . . , pknn ]T and qk = [qk1 , . . . , qk2n p

]T , respectively.
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Each node i has known elevation and demand ei and dki . Moreover, hydraulic heads
at the water sources are known and denoted by hk0i for each i = 1, . . . , n0. Let
link j have flow q j going from node i1 to node i2. The friction head loss across
the pipe can be represented by either the Hazen–Williams (HW) or Darcy–Weisbach
(DW) formulae. In DW models the relation between friction head loss and flow is
defined by an implicit semi-empirical equation, which involves non-smooth terms,
and it can be numerically calculated through an iterative process [27, Section2.2.2].
This complicates the use of these models in a smooth mathematical optimization
framework. Similarly, HW formula is semi-empirical and is given by HW f (qkj ) =
r j (qkj )

n , where r j , the resistance coefficient of the pipe, is defined by r j = 10.67L j

Cn
j D

4.871
j

with n = 1.852 and L j ,C j , Dj denote the length, roughness and diameter of the pipe,
respectively. The HW formula involves a non-smooth exponential function since the
corresponding Hessian is unbounded around the origin. Therefore, the HW formula
is difficult to handle as a constraint for most nonlinear programming solvers that rely
on second-order information.

In the framework of mathematical optimization for water distribution networks,
the use of nonlinear programming techniques requires a smooth function that closely
approximates the head loss curve over a range of flows. In particular, an approximation
of theHWhead loss formulawith a piecewise function is proposed in [10], using a quin-
tic polynomial approximation near zero. As noted in [16], such approach introduces
computational complexities due to the high order polynomial function. Moreover, in
the present framework, the use of a piecewise approximation would require the intro-
duction of a large number of binary variables in addition to those needed to model
the placement of valves. On the other hand, various explicit approximations of the
DW head loss formula can be found in literature. In particular, a smooth and asymp-
totically consistent approximation was presented in [11]. A smooth quadratic friction
loss approximation for both HW and DW models, determined by a minimization of
the integral of relative errors, was considered in [15]; the analysis reported in [16]
have showed that, in practice, the use of polynomial quadratic friction loss formulae
does not affect significantly the distribution of network pressures and flows. In the
present manuscript, we consider a quadratic polynomial h f (q) := aq2 + bq where,
in contrast to the cited works, we choose the coefficients of h f so that the integral of
absolute errors is minimized. This is because we are mainly interested in the absolute
violation of optimization constraints.

In the case of a HW model, the quadratic approximation is determined as follows.
Let j ∈ {1, . . . , 2n p} be a link in our water distribution network model and let the
corresponding maximum allowed flow velocity magnitude in the link be Vmax

j > 0.

We set Qmax
j := πD2

j
4 Vmax

j and minimize the integral JQmax
j

(a, b) := ∫ Qmax
j

0 (aq2 +
bq − r jqn)2dq. After few steps of calculations, it is possible to find coefficients a∗
and b∗ that minimize the above integral. Although not discussed here, we can also
find a quadratic fit for DW head loss—see [16]. For both DW and HW models, once
a quadratic approximation for head losses is identified, the optimization problem to
minimize average zone pressure can be formulated as follows [15]:
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min
nl∑

k=1

1

W

nn∑

i=1

wi p
k
i (1a)

subject to: AT
12q

k − dk = 0, ∀k = 1, . . . , nl , (1b)

Q(qk)
(−A12 p

k − A12e − A10h
k
0 − h f (q

k)
) ≥ 0, ∀k = 1, . . . , nl ,

(1c)

− A12 p
k − A12e − A10h

k
0 − h f (q

k) − Mkz ≤ 0, ∀k = 1, . . . , nl ,
(1d)

z j + zn p+ j ≤ 1, ∀ j = 1, . . . , n p, (1e)
2n p∑

j=1

z j = nv, (1f)

pkmin ≤ pk ≤ pkmax , ∀k = 1, . . . , nl , (1g)

0 ≤ qk ≤ Qmax , ∀k = 1, . . . , nl , (1h)

z ∈ {0, 1}2n p , (1i)

where the objective is theminimizationofaverage zonepressure (AZP) at eachdemand
scenario, expressed with the weighted sum of nodal pressures (1a), where weights wi

are defined bywi := ∑
j∈I (i)

L j
2 , with I (i) the set of indices of links that are connected

to node i . Moreover, we set W := ∑nn
i=1 wi .

The optimization problem is primarily subject to hydraulic constraints, in order to
ensure the physical feasibility of the solutions. Therefore, mass and energy conserva-
tion laws have to be satisfied at each demand pattern, these are expressed by (1b) and
the couple (1c), (1d), respectively. While (1b) expresses the conservation of flow at
each junction node, (1c) and (1d) consider the head loss across all links. The matrices
AT
12 ∈ R

nn×2n p and AT
10 ∈ R

n0×2n p are the node-edge incidence matrices for the nn
nodes and the n0 water sources, respectively. Moreover, Q ∈ R

2n p×2n p is the diago-
nal matrix of flows qk , i.e. Q(qk) j, j := qkj , and h f (qk) := [h f (qk1 ) ... h f (qk2n p

)]T .
Finally, Mk ∈ R

2n p×2n p is a diagonal matrix of sufficiently big constants, see below
for a possible choice.

Let i1
j−→ i2, with qkj > 0 and z j = 0. Then the corresponding rows in (1c) and

(1d) are equivalent to the Bernoulli equation: pki1 + ei1 − pki2 − ei2 = h f (qkj ). The

placement of a valve on the pipe j disables (1d) provided Mk
j j is big enough; the

resulting constraint is pki1 + ei1 − pki2 − ei2 − h f (qkj ) ≥ 0. Therefore, the head loss
across the link will be greater than or equal to the friction loss, this means that the
pressure at the downstream node will be further reduced by the action of the valve
compared to just the friction loss. When qkj = 0, both constraints are disabled, since
in this case there is no flow in link j at time k. As shown in [39], a solution where flows
in both directions i1 → i2 and i2 → i1 are strictly positive is infeasible for constraints
(1b)–(1i). Note that constraints (1c) and (1d) are nonconvex, as it is possible to verify
directly from the definition of convex function [9, Definition 3.1.1].
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Finally, the big-M constants Mk
j, j are chosen to be as tight as possible based on

the characteristics of each link. Given i1
j−→ i2, let (hkmax )i1 and (hkmin)i2 be the

maximum and the minimum possible hydraulic heads at node i1 and i2, then we
set Mk

j, j := (hkmax )i1 − (hkmin)i2
.

Additional constraints also arise from explicit physical, performance and economic
constraints of the optimization problem. Inequality (1e) and equality (1f) state that just
1 valve is allowed on each pipe and that the total number of valves in the network is nv ,
respectively. The minimum andmaximum allowed pressures at each junction node are
specified by (1g),with (pkmax )i = maxl∈{1,...,n0}(hk0l)−ei , for each node i and time step
k. Moreover, in (1h) we specify positive flow rates and fix the maximum flow in each
pipe to Qmax

j . Finally, we have the binary constraint (1i). Problem (1) is nonconvex
MINLP with nl(nn +2n p) continuous variables and 2n p binary variables. In addition,
the problem formulation includes 4n pnl nonlinear constraints and nl(3nn + 4n p) +
n p + 1 linear constraints.

3 Reformulation of MINLPs as mathematical programs with
complementarity constraints

Problem (1) is a nonconvex MINLP, with polynomial nonlinear constraints and
N = nl(nn + 2n p) + 2n p variables. The vector of unknowns is given by x =
[pT , qT , zT ]T ∈ R

N . It is difficult to handle this class of optimization problems,which
combine nonconvex nonlinear constraints with discrete decision variables. Moreover,
when considering a real-world operational network model like the one in Fig. 1b,
the dimension of the optimization problem becomes very large (more than 8 mil-
lion variables and 13 million constraints, if nl = 24). This is the main motivation
for the investigation of possible scalable mathematical programming methods for the
solution.

Problem (1) can be written in a more compact form. We define the set of indices
corresponding to the binary variables as B := {

nl(nn +2n p)+1, . . . , nl(nn +2n p)+
2n p

}
. Similarly, let I and E represent the index sets for the rows of inequalities and

equalities in (1), respectively. Then (1) becomes:

min
x∈RN

f (x)

subject to gi (x) ≥ 0, ∀i ∈ I

hi (x) = 0, ∀i ∈ E,

x j ∈ {0, 1}, ∀ j ∈ B,

(2)

where g(x) = (gi (x))i∈I is the vector whose components are the rows of inequalities
(1c), (1d), (1e), (1g) and (1h). Analogously, h(x) = (h(x)i )i∈E is the vectors whose
components are the rows of equalities (1b) and (1f). Since its integer constraints
are binary, Problem (2) can also be reformulated as a mathematical program with
complementarity constraints (MPCC):
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min
x∈RN

f (x)

subject to gi (x) ≥ 0, ∀i ∈ I,

hi (x) = 0, ∀i ∈ E,

0 ≤ x j ⊥ 1 − x j ≥ 0, ∀ j ∈ B.

(3)

We note that the feasible region of Problem (3) is disjoint and in [4] it is recommended
to avoid such pathological case in the formulation of complementarity constraints.
However, various techniques to handle nonconvex, ill-conditioned problems without a
strict relative interior are adopted by advanced nonlinear programming solvers—see as
example [42]. Although these algorithmic modifications are not sufficient to deal with
general badly posedproblems, the analysis reported inSect. 6 shows that, in practice, an
MPCC reformulation represents a valid alternative to standard MINLP techniques for
the solution of optimal valve placement and operation in water distribution networks.

In nonlinear optimization, in order to guarantee the convergence of standard solution
methods to stationary points, usually linear independence constraints qualification
(LICQ) is required. For an exhaustive survey on nonlinear programming see [31]. The
feasible set of a mathematical programwith complementarity constraints has a special
structure which results in the violation of standard constraints qualifications. Various
methods have been proposed in order to deal with this pathological characteristic.
Since we are interested in the class of MPCC problems represented by (3) we review
all the definitions and results in a particular form, using the same notations as Problem
(3). For a more general discussion we refer the reader to [21,35–37] and the references
therein.

It is necessary to introduce a suitable constraints qualification for (3). Although
multiple variants of standard constraints qualifications exist for theMPCC framework,
here it suffices to consider MPCC–LICQ for our purposes.

First of all we define the following set of indices: Ig(x) := {i ∈ I | gi (x) =
0}, I0(x) := { j ∈ B | x j = 0}, I1(x) := { j ∈ B | x j = 1}. In the following, given
j ∈ B, we denote with e j ∈ R

N the j th column of the identity matrix.

Definition 1 [35, Definition 2.3] A feasible point x� for (3) is said to satisfy MPCC–
LICQ if the gradients

{∇gi (x�)
∣
∣ i ∈ Ig(x�)

} ∪ {∇hi (x�)
∣
∣ i ∈ E

} ∪ {
e j

∣
∣ j ∈ B

}

are linearly independent.

As noted in [38], MPCC–LICQ is a generic condition for mathematical programs
with complementarity constraints. In particular, it is possible to prove that Problem
(3) satisfies the above constraint qualification at every feasible point except a set of
measure zero, once a small perturbation is applied to the optimization constraints; for
the sake of brevity we omit the proof which can be found in the Appendix to [33].

For a general MPCC, multiple stationarity conditions can be formulated, the
main ones being C-stationarity, M-stationarity, B-stationarity and strong stationar-
ity [35,37]. Given the definitions presented in [37], we have that C-stationarity,
M-stationarity and strong stationarity differ only on the index set where both comple-
mentary terms are active—in our case we have I0(x) ∩ I1(x) = ∅. Consequently,
for every problem with binary constraints, these three stationarity conditions are
equivalent. Moreover, if MPCC–LICQ holds, B-stationarity and strong stationarity
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are equivalent [35]. Therefore, all stationarity concepts are equivalent to strong sta-
tionarity for Problem (3), once an arbitrarily small perturbation of the constraints is
applied. In what follows we will refer to a strong stationary point simply as stationary.

Definition 2 Let x� be a feasible point for (3). x� is said to be stationary if there exist
multipliers λ� = (λ�

i )i∈I , μ� = (μ�
i )i∈E , γ � = (γ �

j ) j∈B, ν� = (ν�
j ) j∈B such that

∇ f (x�)−
∑

i∈I
λ�
i ∇gi (x

�) −
∑

i∈E
μ�
i ∇hi (x

�) −
∑

j∈B
γ �
j e j +

∑

j∈B
ν�
je j = 0

and λ�
i ≥ 0, ∀i ∈ Ig(x

�), γ �
j = 0, ∀ j ∈ I1(x

�), ν�
j = 0, ∀ j ∈ I0(x

�).

We have the following result on necessary conditions for local optimality, for a proof
see [35] or [36] .

Theorem 1 [35, Theorem 2.4] A local minimizer x� for Problem (3) satisfying
MPCC–LICQ is stationary. Moreover, the multipliers (λ�, μ�, γ �, ν�) are unique.

In the next sections we present a rigorous mathematical framework for penalty and
relaxation methods. Moreover, we propose their algorithmic implementations for the
solution of our optimization problem.

4 Penalty method

Using the same notation of Problem (3) we introduce the following penalty function
�(x) = ∑

j∈B x j (1− x j ). For ρ > 0 fixed, consider the nonlinear program PEN(ρ):

min
x∈RN

f (x) + ρ�(x)

subject to gi (x) ≥ 0, ∀i ∈ I,

hi (x) = 0, ∀i ∈ E,

0 ≤ x j ≤ 1, ∀ j ∈ B.

(4)

Penalty approaches have been studied in [21,35], while in [13] a similar method was
applied to optimal valve placement in water distribution networks, coupled with a
rounding scheme to improve the convergence of their algorithm. The overall strategy
consists in the solution of a sequence of penalty problems, for increasing values of
parameter ρ. The claim is that for ρ sufficiently large this sequence will converge to
a solution of Problem (3).

The following result states necessary conditions for the convergence of the penalty
approach, the proof is a particular case of Theorem 2.1 in [21].

Theorem 2 (Stationarity of the limit point) Suppose that for each k ∈ N, xk is a
stationary point of PEN(ρk), i.e. xk satisfies the KKT conditions for this nonlinear
problem. Moreover, assume that limk→∞ ρk = +∞ and limk→∞ xk = x�, with x�

feasible point for Problem (3) that satisfies the MPCC–LICQ. Then x� is stationary
for Problem (3), in the sense of Definition 2.
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In view of Theorem 2, if a sequence of stationary points for penalized problems
converges to a feasible point of Problem (3) which satisfies MPCC–LICQ, then this
is also a stationary point. However, it is not automatically true that every limit point
is feasible. In the following we focus on this issue.

The next Lemma was proved in [21] in a more general form.

Lemma 1 Let (xk)k∈N be a sequence of stationary points of PEN(ρk )withρk → +∞.
Assume that limk→+∞ xk = x̄ . Let x̂ be a feasible point for Problem (3) that satisfies
MPCC–LICQ. Then there exists ε > 0 such that if x̄ ∈ B(x̂, ε), x̄ is feasible for
Problem (3).

Therefore, if the iterations arrive sufficiently close to a feasible point that satisfies
MPCC–LICQ then the limit point is feasible. We need also the following lemma, for
the sake of brevity we omit the technical proof, which can be found in [21].

Lemma 2 Let x� be a strict local minimum for Problem (3). Let r > 0 be such that x∗
is the only minimum for (3) in B(x∗, r). Then, there exists ρ(r) > 0 such that PEN(ρ)
has a local minimum in B(x∗, r), for all ρ > ρ(r).

Finally, under standard assumptions on the strict local minimum x∗, one can prove
that if the sequence (xk)k of the penalty method is sufficiently close to x∗ then xk →
x∗. Before proceeding to the next Theorem, we include the following definition.

Definition 3 Let x∗ be a stationary point for (3) with associated multipliers
(λ�, μ�, γ �, ν�). We say that the strong second-order sufficient condition (MPCC–
SSOSC) holds at x∗ if

uT
(

∇2 f (x∗) −
∑

i∈I
λ�
i ∇2gi (x

�) −
∑

i∈E
μ�
i ∇2hi (x

�)

)
u > 0

for all vectors u �= 0 such that

∇gi (x
∗)T u = 0, ∀i such that λi > 0

∇hi (x
∗)T u = 0,

u j = 0, ∀ j ∈ I0(x
∗) and γ ∗

j �= 0,

u j = 0, ∀ j ∈ I1(x
∗) and ν∗

j �= 0.

We are now in a position to state the final result of this Section, which is presented
in [21] in a more general form - we review its proof here for the sake of completeness.

Theorem 3 Assume that x� is a stationary point for Problem (3) at which MPCC–
LICQ and MPCC–SSOSC hold. Let S(ρ) be the set of stationary points of PEN(ρ).
Then there exists an r > 0 and ρ(r) such that S(ρ) ∩ B(x�, r) �= ∅, for all ρ > ρ(r).

Moreover, if (xk)k∈N ⊂ B(x�, r) is a sequence of stationary points of PEN(ρk)
with ρk → +∞, then limk xk = x�.
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Proof We observe that x∗ satisfies the upper level strict complementarity condition
(ULSC) given in [36], because I0(x∗)∩ I1(x∗) = ∅. Therefore, under the assumptions
of the Theorem, x∗ is a strict local minimum and a locally unique stationary point of
Problem (3)—see [36, Theorem 11] . As a consequence, there exists δ1 > 0 such that
x∗ is the unique stationary point of (3) in B(x∗, δ1). Furthermore, since MPCC–LICQ
holds at x∗ there exists δ2 > 0 such thatMPCC–LICQholds at any point x ∈ B(x∗, δ2)
feasible for Problem (3). Now let r = min(δ1, δ2). Then by Lemma 2 ∃ρ(r) > 0 such
that S(ρ) ∩ B(x�, r) �= ∅, for all ρ > ρ(r).

Consider a sequence (xk)k∈N ⊂ B(x∗, r) of stationary points of PEN(ρk) with
ρk → +∞. Then (xk) has a limit point x̄ ∈ B(x∗, r) that is feasible for Problem (3)
and satisfies MPCC–LICQ. Hence by Theorem 2 we have that x̄ is stationary for (3).
Since x∗ is the unique stationary point in B(x∗, r) then x̄ = x∗. ��
In view of the above results, we implement a Matlab algorithm for the solution of
Problem 3 with the penalty approach, see Algorithm 1. The initial guess g0 is selected
randomly and the complementarity violation is evaluated as follows:

Vio(x) = max
j∈B

(
min (x j , 1 − x j )

)
(5)

At each step of the algorithm we solve PEN(ρk) using the nonlinear solver for large
scale sparse optimization problems IPOPT [42]. The stopping criteria is motivated by
Lemma 1 and is defined in terms of the complementarity violation, so that the end
point is sufficiently close to a feasible solution of Problem (3).

Algorithm 1 Penalty method
1: Initialization:

Select an initial point x0 and numbers β, α, ε ← 10−6;

2: Solve PEN(0) with initial guess x0 and get the solution x1 and the value of objective function z1;
3: k ← 1; ρ1 ← α · z1;
4: while Vio(xk ) > ε do
5: Solve PEN(ρk ) with initial guess xk and get the solution xk+1;
6: ρk+1 ← β · ρk ;
7: k ← k + 1;
8: end while

5 Relaxation method

Alternative approaches for the solution of Problem (3) include relaxation methods. In
the present work we focus on the technique proposed in [37]—for a general analysis
see [18,34,35]. A theoretical study of the present relaxation approach is included in
[37] as appendix, however for completeness is reviewed here.
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For t > 0, consider the nonlinear program REL(t)

min
x∈RN

f (x)

subject to: gi (x) ≥ 0, ∀i ∈ I,

hi (x) = 0, ∀i ∈ E,

0 ≤ x j ≤ 1, ∀ j ∈ B,
∑

j∈B
x j (1 − x j ) ≤ t.

(6)

Let the feasible set of REL(t) be denoted by F(t), t ≥ 0. It is evident that the feasible
set of Problem (3) coincides with F(0). The following Lemma is proved in [18], in a
slightly more general form. We omit the details for the sake of brevity.

Lemma 3 The following relations hold:

(a)
⋂

t>0 F(t) = F(0) = feasible set of (3)
(b) F(t1) ⊆ F(t2), ∀t1 ≤ t2

In contrast to the penalty method, in view of the above lemma we do not need
additional conditions to guarantee that a limit point of a sequence of solutions of
relaxed problems with t → 0 is feasible for Problem (3). The following result is
proved in [18] and it is a direct consequence of Lemma 3.

Theorem 4 (a) Let t̄ > 0 and assume that x̄ is a feasible point for Problem (3)which
is also a local minimum for REL(t̄). Then x̄ is a local minimum of REL(t), for all
t ∈ [0, t̄].

(b) Let t̄ > 0 and assume that x̄ is feasible point for Problem (3)which is also a global
minimum of REL(t̄). Then x̄ is a global minimum of REL(t), for all t ∈ [0, t̄].

(c) Let (tk)k∈N ⊂ (0,+∞) such that tk
k→+∞−−−−→ 0 and let (xk)k be a sequence of

global minima of the problems REL(tk). Furthermore let x̄ an accumulation point
of (xk)k . Then x̄ is a global minimum of Problem (3).

In view of the above Theorem we can find a global solution for Problem (3) by
generating a sequence of global solutions of relaxed problems. However, most NLP
solvers are designed to find only stationary points. Hence in the following we focus
on the set of stationary points of problems (3) and REL(t). The following results
are proved in [37] in a more general form, for completeness we derive them in our
framework.

Lemma 4 [37, Lemma 8.1] Suppose that MPCC–LICQ holds at a feasible point x̄
for Problem (3). Then there exist a neighbourhood U of x̄ and t̄ > 0 such that for all
t ∈ (0, t̄) the standard LICQ holds at every feasible point x ∈ U for REL(t).

Proof The linear independent family of the active constraint gradients for Problem
(3) is given by
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{∇gi (x̄) | i ∈ Ig(x̄)
} ∪ {∇hi (x̄) | i ∈ E

} ∪ {
e j | j ∈ I0(x̄)

} ∪ {
e j | j ∈ I1(x̄)

}

(7)

We define I++(x) := {
j ∈ B

∣
∣ x j > 0, 1 − x j > 0

}
. Note that by continuity of

g, there exists a neighbourhood U of x̄ and t̄ > 0 such that for all t ∈ (0, t̄) and
x ∈ U ∩ F(t) we have:

Ig(x) ⊆ Ig(x̄), I0(x) ⊆ I0(x̄), I1(x) ⊆ I1(x̄),

I0(x) ∪ (
I++(x) ∩ I0(x̄)

) ⊆ I0(x̄),

I1(x) ∪ (
I++(x) ∩ I1(x̄)

) ⊆ I1(x̄).

(8)

If
∑

j∈B x j (1 − x j ) < t then the family of active constraint gradients is

{∇gi (x) | i ∈ Ig(x)
} ∪ {∇hi (x) | i ∈ E

} ∪ {
e j | j ∈ I0(x)

} ∪ {
e j | j ∈ I1(x)

}
(9)

Therefore the assertion of the Lemma is verified as a direct consequence of the conti-
nuity of the derivatives of g and h.

Now suppose that
∑

j∈B x j (1− x j ) = t . In this case the family of active constraint
gradients for REL(t) is given by

{∇gi (x) | i ∈ Ig(x)
} ∪ {∇hi (x) | i ∈ E

}

∪ {
e j | j ∈ I0(x)

} ∪ {
e j | j ∈ I1(x)

} ∪
{∑

j∈B
(1 − 2x j )e j

}
(10)

We have that

∑

j∈B
(1 − 2x j )e j =

∑

j∈I0(x)
e j −

∑

j∈I1(x)
e j +

∑

j∈I++(x)

(1 − 2x j )e j

=
∑

j∈I0(x)
e j −

∑

j∈I1(x)
e j

+
∑

j∈I++(x)∩I0(x̄)

(1 − 2x j )e j +
∑

j∈I++(x)∩I1(x̄)

(1 − 2x j )e j ,

Then consider the following family:

{∇gi (x) | i ∈ Ig(x)
} ∪ {∇hi (x) | i ∈ E

} ∪ {
e j | j ∈ I0(x)

} ∪ {
e j | j ∈ I1(x)

}

∪ {
e j | j ∈ I++(x) ∩ I0(x̄)

} ∪ {
e j | j ∈ I++ ∩ I1(x̄)

}

(11)

Since (8) holds, then vectors in (11) are linearly independent if x ∈ U ∩ F(t) and
t ∈ (0, t̄), since the gradients of g and h are continuous. This implies that also the
family (10) is linearly independent when x ∈ U ∩ F(t) and t ∈ (0, t̄). ��
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Theorem 5 [37, Theorem 8.4] Let (tk)k∈N be sequence of positive numbers with
tk ↘ 0. Let (xk)k∈N be a sequence such that xk is a stationary point of REL(tk), for
all k ∈ N.

Assume that xk
k→+∞−−−−→ x∗, with x∗ satisfying MPCC–LICQ. Then x∗ is a station-

ary point for REL(0).

Proof First of all, note that from Lemma 3 x̄ is feasible for REL(0). Moreover, in
view of Lemma 4, for k sufficiently large, xk satisfies standard LICQ for REL(tk).
This implies that since (xk) is a sequence of stationary points of REL(tk), there exist
multipliers (λk, μk, ξ k, ηk, δk) such that the following KKT conditions hold:

∇ f (xk) =
∑

i∈I
λki ∇gi (x

k) +
∑

i∈E
μk
i ∇hi (x

k)

+
∑

j∈B

(
ξ kj − δk

(
1 − xkj

))
e j −

∑

j∈B

(
ηkj − δk xkj

)
e j ,

with λki gi (x
k) = 0, ∀i ∈ I, ξ kj x

k
j = 0, ∀ j ∈ B,

ηkj

(
1 − xkj

)
= 0, ∀ j ∈ B,

δk

⎛

⎝
∑

j∈B
xkj

(
1 − xkj

)
− tk

⎞

⎠ = 0,

λk ≥ 0, ξ k ≥ 0, ηk ≥ 0, δk ≥ 0.

(12)

Now consider the sequence of multipliers (λk, μk, γ k, νk) with

γ k := ξ k − δk(1 − xk), νk := ηk − δk xk .

Assume that (λk, μk, γ k, νk) is unbounded. Then βk := ||(λk, μk, γ k, νk)|| → +∞
as k → +∞. Since

∣
∣
∣
∣( λk

βk ,
μk

βk ,
γ k

βk ,
νk

βk

)∣∣
∣
∣ = 1, possibly passing to a subsequence, we

can conclude that (λk, μk, γ k, νk)/βk → (λ̄, μ̄, γ̄ , ν̄) �= 0. In this case, if we divide
the first equation in (12) by βk , then as k → +∞ it converges to

0 =
∑

i∈I
λ̄i∇gi (x

∗) +
∑

i∈E
μ̄i∇hi (x

∗) +
∑

j∈B
γ̄ je j −

∑

j∈B
ν̄ je j ,

with λ̄i gi (x∗) = 0, ∀i ∈ I, γ̄ j x∗
j = 0, ∀ j ∈ B, ν̄ j

(
1 − x∗

j

)
= 0, ∀ j ∈ B.

Therefore

0 =
∑

i∈Ig(x∗)
λ̄i∇gi (x

∗) +
∑

i∈E
μ̄i∇hi (x

∗) +
∑

j∈I0(x∗)
γ̄ je j −

∑

j∈I1(x∗)
ν̄ je j

which contradicts the assumption of MPCC–LICQ at x∗. Hence we can conclude that,
possibly passing to a subsequence, there exist (λ∗, μ∗, γ ∗, ν∗) = limk(λ

k, μk, γ k, νk)

such that
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∇ f (x∗) =
∑

i∈I
λ∗
i ∇gi (x

∗) +
∑

i∈E
μ∗
i ∇hi (x

∗) +
∑

j∈B
γ ∗e j −

∑

j∈B
ν∗e j ,

λ ≥ 0, λ∗
i gi (x

∗) = 0, ∀i ∈ I,

γ ∗
j x

∗
j = 0, ∀ j ∈ B, ν∗

j

(
1 − x∗

j

)
= 0, ∀ j ∈ B,

⇒ (x∗; λ∗, μ∗, γ ∗, ν∗) satisfies the conditions for MPCC to stationarity stated in
Definition 2. ��

Note that, in contrast to the penalty method, we do not need to prove that the limit
point is actually feasible for Problem (3). This is the result of a different approach: the
feasible set is restricted at each iteration, converging to the region of feasibility of the
original problem, while in the penalty approach it remains constant.

We implement Algorithm 2 for the solution of Problem (3) with the relaxation
method outlined above. We use IPOPT [42] for the solution of the relaxed problems
and V io(x) is the same function defined in (5). Since REL(0) fails to satisfy standard
constraint qualifications, REL(t) can be difficult to solve for nonlinear solvers when t
becomesvery small. Therefore, byputting aminimumboundon itwithin the algorithm,
we prevent t from becoming too small in value so that it does not cause pathological
behaviour. Nonetheless, at practical tolerances set for the NLPs, t does not seem to
get too small to negatively impact convergence.

Algorithm 2 Relaxation method
1: Initialization:

Select an initial point x0 and numbers
t0 ← 1, tmin ← 10−15, ε ← 10−6, k ← 0, c < 1;

2: while
(
Vio(xk ) > ε & tk > tmin

)
OR

(
k = 0

)
do

3: Solve REL(tk ) with initial guess xk and get the solution xk+1;
4: tk+1 ← c · tk ;
5: k ← k + 1;
6: end while

In summary, we have presented two different approaches for the solution of Prob-
lem (3). Both approaches employ the iterative solution of smooth nonlinear programs.
Nonetheless, both penalty and relaxation approaches are localmethods and so converge
to stationary points of Problem (3). If the nonlinear constraints are nonconvex, which is
the case in our problem, then the convergence is highly influenced by initial guess and
algorithmic parameters. Finally, we note that water distribution networks have a partic-
ularly sparse structure, which is retained by constraints (1b)–(1d). Consequently, the
nonlinear programs within penalty and relaxation methods can be efficiently solved
using tailored sparse techniques, offering scalable approaches for large scale water
networks.
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6 Case study

The developed mathematical programming approaches for the solution of the opti-
mization problem (1) have been evaluated using a benchmarking network model. All
computations were performedwithinMATLAB 2015a-64 bit forWindows 7, installed
on a 2.50GHz Intel� Xeon(R) CPU E5-2640 0 with 18 Cores. The solver BONMIN
(v1.8.3) [7] with the branch-and-bound algorithm B-BB is used for the direct solu-
tion of the MINLP original problem. The continuous relaxed sub-problems within
the branch-and-bound algorithm are solved using the interior point solver for large
scale nonlinear optimization IPOPT (v3.12.3) [42]. Similarly, all the NLP subprob-
lems considered by penalty and relaxation methods were solved using IPOPT. Both
BONMIN and IPOPT were implemented in Matlab through the interface provided by
OPTI Toolbox [12]. Moreover, in the implementation of IPOPT we directly supply
the solver with sparse gradients and Jacobians, in order to take advantage of the very
sparse structure of our problem. IPOPThas an option to approximate theHessian of the
optimization problem by a limited-memory quasi-Newtonmethod (L-BFGS) [25].We
have tested the behaviour of the solvers with an exact sparse Hessian and an L-BFGS
approximation. It was noted that better performances were obtained using L-BFGS
approximation, both in terms of number of iterations and quality of solutions. In our
opinion, this possibly counter-intuitive behaviour is caused by the nonconvexity and
ill-conditioning of the optimization problem: the regularization actuated by L-BFGS is
more effective than the one directly operated by IPOPT on the exact Hessian matrix.
The linear systems within IPOPT were solved using the linear solver MA57 [14],
which is well suited for sparse linear systems.

The selected benchmarking network model has been studied in [1,13,15,24,29,
30,40], see Fig. 1a. The network has 22 nodes, 37 pipes and 3 reservoirs. Details on
pipes’ characteristics, nodal demands and reservoirs’ levels are presented in [13,24].
We set minimum pressure at each node to 30m and maximum velocity in each pipe to
1m/s. Moreover, in contrast to [15], we include in our formulation dynamic demand
scenarios, one for each hour of the day. The resulting optimization problem has 2304
continuous variables and 74 binary variables, with 529 equality constraints and 3589
inequality constraints. Since, as stated in Sect. 2, some nonlinear constraints in (1)
are nonconvex, gradient-based nonlinear programs solvers will converge only to local
minima. The same holds for BONMIN, whose branch-and-bound algorithm is based
on the solution of continuous relaxations of the original MINLP through the solver
IPOPT. In order to provide global optimality bounds, it is necessary to consider convex
relaxations of the nonlinear constraints in (1). While possible relaxation approaches
have been outlined in [19,22], the study of tailored convex relaxations for the problem
of optimal placement and operation of control valves in water distribution networks
is outside the scope of this manuscript and will be investigated in future work.

We modify few BONMIN options in order to improve the quality of the local solu-
tions in the considered nonconvex case, as suggested in [8, Section5.3]. In particular,
we set the options allowable_gap and allowable_fraction_gap to negative values ,
dynamic_def_cutoff_decr to ’yes’ and num_resolve_at_root to 50. All other BON-
MIN options were set to the default values by the advanced settings interface provided
by OPTI Toolbox.

123



Penalty and relaxation methods for the optimal valve placement…

Table 1 Optimal placement of control valves with BONMIN

No. of
valves

Link AZP/h (m) CPU timea (s) CPU timeb (s)

0 No control 38.75 – –

1 (13, 12) 33.63 430 39

2 (23, 1), (13, 12) 32.67 882 497

3 (23, 1), (12, 15), (13, 12) 32.16 895 519

4 (23, 1), (12, 15), (25, 16),
(13, 12)

31.75 1500 1192

5 (23, 1), (22, 15), (12, 15),
(25, 16), (13, 12)

31.47 3341 3277

a The CPU time required by BONMIN to converge when using tailored options for nonconvex problems,
while
b Corresponds to theCPU time employed byBONMINwhen default optionswere implemented. In addition,
we indicate the simulated AZP for the case study, when no control valve is installed

Moreover, for numerical reasons, we implement the non-normalized version of the
objective function in Problem (1), since it seems to fit better with the scale of the prob-
lem:

∑nl
k=1

∑nn
i=1 wi pki . In the recent work [13], a problem formulation with multiple

demand conditions for the same network was provided, but BONMIN was reported to
fail in the case where 24 demand patterns were considered. Also in our initial imple-
mentation BONMIN failed to converge sometimes or took a long computational time
to converge. We have overcome these numerical issues by substituting (only when

BONMIN was used) the constraint (1f) with the inequality
∑2n p

j=1 v j ≤ nv , which
results in an equivalent optimization problem from the engineering perspective since
having fewer control valves can never improve performance. Moreover, the direct
implementation of sparse gradients and Jacobians has improved the performance of
the solver, allowing convergence to good local optimal solutions for this network.

Table1 summarizes the results. The optimal control valve placements are obtained
starting from random initial guesses.Most of the locations coincidewith those reported
in [2,30], where a control valve placement problem was solved by coupling genetic
algorithms and the hydraulic simulator EPANET with the objective to minimize leak-
age. This observation demonstrates that our framework can be effectively applied to
optimal placement of control valves where the leakage management is explicitly for-
mulated. Furthermore, we tested the application of BONMIN with default options,
using the same random starting points employed for the first set of simulations. The
solver found the same local optima as in Table1, when tailored options for nonconvex
problemswere employed. Concerning computational performance, CPU timewas less
when default BONMIN options were used, for nv = 1, 2, 3. On the other hand, in
the cases of 4 and 5 control valves, convergence times with the two different options’
choices were comparable. These CPU times may appear counterintuitive, since using
BONMIN options for nonconvex problems require the solution of more continuous
relaxations by IPOPT. However, this behaviour can be explained by the specific topo-
logical characteristics for this case study. In fact, as reported in [30], multiple location
combinations with similar performance can be found in the case of nv = 4, 5, while
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this is not observed for nv = 1, 2, 3. This suggests that the nonconvexity of the prob-
lem is enhanced for nv = 4, 5 and the choice of tailored options helps BONMIN to
achieve convergence to the (local) optima. In Table1, we report the computational
time for BONMIN to converge with and without the additional tailored options for
nonconvex problems.

Table1 also shows the minimum AZP achieved when optimally placing a different
number of control valves. When we move from an optimal configuration with nv

control valves to an optimized set of nv +1 control valves, AZP has a slight decrement.
Nonetheless, note that a relatively small decrease in AZP can result in significant
reduction in the amount of leakage [26]. An in depth cost–benefit analysis is a crucial
stage for the evaluation of advanced and optimal control schemes and, as shown in this
benchmarking study, our mathematical optimization framework can provide effective
tools to support the design process for smart water distribution networks.

With reference to the numerical results reported in [13], where BONMIN was
reported to fail when considering the optimal placement of more than 2 control
valves, we demonstrate that the computational performance of our implementation
is reasonable for the presented case study. Nonetheless, more issues can arise when
dealing with large scale networks (i.e. with thousands of nodes and pipes), where the
number of integer variables grows, the algorithmic complexity of branch and bound
becomes impractical [17]. This is the main motivation for the study of possible alter-
native scalable approaches. We apply reformulation methods outlined in Sects. 4 and
5, respectively, to the case study. Average zone pressure is minimized for an extended
period operation with 24 demand scenarios.

With reference to Algorithms 1 and 2, different parameters choices were tested. The
penalty method was implemented with α = 10−2 and β = 1.1 as proposed in [13]; in
what follows, we refer to Algorithm 1 with these settings as PEN1. In a similar fashion
to the approach considered in [28], we also tested the choicesα = 1 andβ = 10,which
we denote as PEN2. The relaxation method was implemented with c = 10−4. In order
to assess the reliability of the proposed algorithms, we used 100 randomly generated
initial guesses for NLPs. The best AZP values were obtained with the solutions pro-
vided by BONMIN; therefore, we compare the solutions of reformulation approaches
with those of BONMIN. For each number of control valves, we define the following.
Let AZPbest be the average zone pressure corresponding to the best solution found by
us and let AZPPEN1(k),AZPPEN2(k),AZPREL(k) correspond to the solutions obtained
with initial point x0(k) using PEN1, PEN2 andREL, respectively. Then let∀δ ∈ [0, 1]:

PPEN1(δ) :=
∣
∣
∣
∣

{
k ∈ {1, . . . , 100} ∣

∣AZPPEN1(k) − AZPbest < δ

}∣
∣
∣
∣,

PPEN2(δ) :=
∣
∣
∣
∣

{
k ∈ {1, . . . , 100} ∣

∣AZPPEN2(k) − AZPbest < δ

}∣
∣
∣
∣,

PREL(δ) :=
∣
∣
∣
∣

{
k ∈ {1, . . . , 100} ∣

∣AZPREL(k) − AZPbest < δ

}∣
∣
∣
∣,

be the percentages of solutionswhoseAZP is less than δ above the best one. In Fig. 2we
report the plots of PPEN1,PPEN2,PREL as functions of δ, for all number of control valves
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Fig. 2 Reliability of the reformulation methods for the placement of different number of control valves,
with multiple starting points. On the vertical axis we indicate the percentage of solutions whose AZP is less
than δ above the best one. a nv = 1, b nv = 2, c nv = 3, d nv = 4, e nv = 5

considered in our experiment. The three reformulation algorithms have consistently
converged to a solution whose AZP is less than 1m above the best solution. Given the
level of uncertainty in themodellingofwater distributionnetworks,we can consider the
application of reformulation methods sufficiently accurate. In particular, the Fig. 2d,
e confirm that for this case study the problem has the properties already observed in
[30]: when nv = 4, 5 there exist multiple stationary points with similar AZP. In these
cases, PEN2 is shown to be the most reliable, since in all instances it has converged
to a solution whose AZP is less than 0.2m above the best solution. On the other hand,
the relaxation method seems to be the more sensitive to the choice of the initial guess.

We also tested the three algorithms starting from a point which satisfies hydraulic
equations for the case study network without control valves. When nv = 1, 2, 3 the
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Table 2 Average computational time required by the three tested algorithms to converge to local optimal
solutions, compared with the application of BONMIN when default options are implemented

No. of valves BONMIN (s) PEN1 (s) PEN2 (s) REL (s)

1 39 63 17 20

2 497 77 18 18

3 519 135 15 17

4 1192 113 13 23

5 3277 67 16 29

three methods converge to the best solution, while for nv = 4, 5 they all converge
to solutions whose AZP values are less than 0.5m above the best solution. Given the
level of uncertainty present in the modelling of water distribution networks, these per-
formances suggest that all three algorithms (PEN1, PEN2 and REL) can be effectively
used in practice. Average computational time required to converge by the reformula-
tion approaches was significantly smaller than that of BONMIN. Moreover, as shown
in Table1, the computational cost of the branch and bound approach grows more than
linearly as the number of control valves is increased. On the other hand, the reformu-
lation methods do not show this behaviour since their complexity does not depend on
the number of control valves but the network model size; the CPU times in Table1
for different number of control valves are comparable. The two penalty approaches
had very similar performances in terms of quality of solutions; however, as shown
in Table2, PEN1 requires more computational time to converge to a local solution.
Therefore, for the present case study, Algorithm 1, with α = 1, β = 10 seems to be the
best choice. The good performance of the penalty approach is in line with the results in
[6], where the coupling of penalty methods and interior point algorithms was shown to
be effective for a library of mathematical programs with complementarity constraints.
Moreover, the penalty method can probably be improved by better update strategies
for the penalty parameter ρ. As shown in [28], in order to improve the robustness of
the algorithm the increment of ρ should be included within the inner iterations of the
interior point method, updating the parameter only if the complementarity violation
of the current IPOPT barrier iterate is larger than a fixed bound.

The study in [28] has proved that, when an interior pointmethod is applied, there is a
one-to-one correspondence between KKT points of PEN(ρ) and REL(t). Nonetheless,
the solution of penalized and relaxed nonlinear programs presents different numerical
and practical challenges. In fact, we observe that the feasible sets of relaxed nonlinear
programs considered in our manuscript are disconnected and their interior is progres-
sively reduced to the empty set as the relaxation parameter goes to zero - see Problem
(6). This affects the reliability and robustness of interior point solvers like IPOPT.
In comparison, the feasible set of penalized problems is not modified whereas their
objective functions are updated as the penalty parameter increases. These characteris-
tics of the feasible sets involved in relaxation and penalty algorithms can explain the
differences in terms of reliability and robustness between relaxation and penalty meth-
ods reported in Fig. 2. The investigation of algorithmic modifications to adapt these
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nonlinear programming methods for design problems in large scale water distribution
networks is the subject of further work.

7 Conclusions

We have presented a rigorous mathematical framework for the optimal placement and
operation of control valves in water distribution networks, addressing the problem
of minimizing average zone pressure. The resulting optimization problem belongs
to the class of mixed integer nonlinear programs. We have implemented and evalu-
ated a direct mixed integer solver, using a benchmarking water network. The solver
has provided good quality solutions but can have infeasibly large computational time
when dealing with large scale networks, where the number of binary variables grows.
Therefore, we have investigated two alternative approaches in order to solve the opti-
mization problem: the penalty and relaxationmethods.We have presented a theoretical
formulation for both methods, with a review of principal convergence results and algo-
rithmic properties We have then applied these to the optimal placement and operation
of control valves in a water network. The methods demonstrated good performance in
terms of quality of the solutions and significant reduction in CPU time compared to
standard branch and bound approaches. We tested different strategies for tuning the
parameters within the penalty approach, improving the performance in comparison to
previous solutions. In addition, we considered the relaxation approach for the solu-
tion of mathematical programs with complementarity constraints in the framework of
optimal control valve placement and operation in water supply systems.

The penalized and relaxed problems we have presented have sparse nonlinear
structures. These problems were efficiently solved using tailored techniques for large
sparse nonlinear programs. The presented work informs the application of penalty and
relaxation approaches to the optimization problem for large-scale operational water
distribution networks.
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