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Abstract

In large-scale distributed systems, each application is realised through interactions

among distributed components. To guarantee safe communication (no deadlocks

and communication mismatches) we need programming languages and tools that

structure, manage, and policy-check these interactions. Multiparty session types

(MPST), a typing discipline for structured interactions between communicating

processes, offers a promising approach. To date, however, session types applica-

tions have been limited to static verification, which is not always feasible and is

often restrictive in terms of programming API and specifying policies.

This thesis investigates the design and implementation of a runtime verification

framework, ensuring conformance between programs and specifications. Specifi-

cations are written in Scribble, a protocol description language formally founded

on MPST. The central idea of the approach is a dynamic monitor, which takes a

form of a communicating finite state machine, automatically generated from Scrib-

ble specifications, and a communication runtime stipulating a message format.

We extend and apply Scribble-based runtime verification in manifold ways.

First, we implement a Python library, facilitated with session primitives and ver-

ification runtime. We integrate the library in a large cyber-infrastructure project

for oceanography. Second, we examine multiple communication patterns, which

reveal and motivate two novel extensions, asynchronous interrupts for verification

of exception handling behaviours, and time constraints for enforcement of real-

time protocols. Third, we apply the verification framework to actor programming

by augmenting an actor library in Python with protocol annotations. For both

implementations, measurements show Scribble-based dynamic checking delivers

minimal overhead and allows expressive specifications.

Finally, we explore a static analysis of Scribble specifications as to efficiently

compute a safe global state from which a monitored system of interacting pro-

cesses can be recovered after a failure. We provide an implementation of a verifi-

cation framework for recovery in Erlang. Benchmarks show our recovery strategy

outperforms a built-in static recovery strategy, in Erlang, on a number of use cases.
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1. Introduction

1.1. Motivation and Objectives

1.1.1. Distributed Programming

One of the main engineering challenges in distributed systems is ensuring that a

composition of independently implementable components will form a correct sys-

tem as a whole. To tackle this challenge we need a sound verification model, which

prevents communication errors and ambiguous specifications. We demonstrate the

importance of addressing these objectives below.

Communication errors. Coordination errors such as communication mismatches

are hard to debug. Undetected errors in one process may affect the correctness of

other processes, or even deadlock the whole system. In addition, components are

often developed in isolation using programming languages and tools that do not

validate compositionality of processes. For example, sockets and remote proce-

dure calls (RPC) are two popular paradigms for programming distributed systems.

The former approach is untyped, while the latter cannot guarantee a specific or-

der when sequences of interactions are executed. The actor programming model,

which (re)gains attention in the research community and in the industry, addresses

the problem of untyped interactions [TDJ13]. Most actor implementations provide

static typing within a single actor (as surveyed in Section 6.6). However, com-

munications between actors – the complex communication patterns that are most

likely to deadlock – are not checked.

Ambiguous specifications. Although there is a widespread recognition of the

need for programming languages and tools that structure, manage, and policy-

check interactions between distributed components, there is no widespread spec-

ification language for writing communication protocols. Internet protocols (such

as SMTP and HTTP) are specified as text descriptions in the request for comments
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(RFC) documents. Such documents not only contain ambiguities, but are cumber-

some to implement and verify. For application protocols, sequence diagrams are

used as a descriptive tool. Sequence diagrams depict a communication flow as an

ordered sequence of message passing among communicating participants that rep-

resent particular roles in a communication protocol. Although intuitive, they lack

a formal basis and allow protocols with ambiguous behaviour.

1.1.2. Session Types

Multiparty Session Types (MPST) [HYC08], one of the formalisms that have been

proposed to structure interactions and to reason over communicating processes and

their behaviour, offer a promising approach towards a rigorous specification and

verification model for distributed systems. The core idea of MPST is that the struc-

ture of a conversation (sequence of interactions) is abstracted as a type through an

intuitive syntax, which is then used as a basis for validating programs through an

associated type discipline. A description of a multiparty protocol from a global

view-point is provided using a global type, and then the global type is projected

to end-point types against which processes can be efficiently type-checked. Using

static type checking, multiparty session types ensure non-trivial communication

properties such as communication safety (there is no communication mismatch),

protocol fidelity (communications proceed as expected), and progress among the

communicating components.

The application of the theoretical MPST techniques to current practice, however,

faces a few obstacles.

• Session type checking is typically designed for languages with first-class

communication and concurrency primitives, whereas our collaborations use

mainstream engineering languages such as Python and Java. These lan-

guages either lack the features required to make static session typing tractable,

or, in the case of dynamically typed languages like Python, may simply

be unsuited to this approach. Certain programming techniques can further

complicate static analysis; for example, the obfuscation of control flow in

event-driven programming, a common paradigm in distributed systems.

• Distributed systems are often heterogeneous in nature, meaning that a range

of languages and platforms may be involved in the implementation of a given

system, as well as third-party components or services for which the source

code is unavailable for a static type checking. Dynamic verification by com-
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munication monitoring allows us to verify MPST safety properties directly

for mainstream languages in a more scalable way.

• Certain protocol specification features, such as assertions on specific mes-

sage values, can be evaluated precisely at runtime, whereas static treatments

are often more conservative.

1.2. Challenges of the Approach

This thesis tackles the challenges that are mentioned above. More precisely, the

aim of the thesis is to design, implement and investigate the applicability of a run-

time verification framework, ensuring compliance between programs and MPST

specifications. In this endeavour we explore several research themes, each of

which induces a set of research questions.

The first question concerns finding a suitable specification language, facilitated

with a user-friendly syntax, appealing to software architects and developers, and

having a runtime representation, permitting for an efficient trace checking. The

Scribble protocol description language [scrb], which is based on MPST, is a promis-

ing choice. However, despite Scribble being described as the practical incarnation

of MPST [scrb], a formal correspondence between the two has not been proven in

the literature.

The second question concerns the expressiveness of MPST. For example, some

application-level protocols contain real-time constraints (such as timeouts), and

exception handling, which are not supported by the current theory. How can the

session type theory and the accompanying tools be extended to account for popular

communication patterns?

The third question concerns the usability of the framework. Most mainstream

programming languages do not support message-style concurrency. Applying ses-

sion types to mainstream languages and also to other concurrency paradigms must

be done in a uniform and non-disruptive way. How can we provide communication

libraries that are expressive and yet non-disruptive?

The final question concerns extending the application domain of MPST. Ses-

sion types theory is primarily studied and applied as a verification approach. In

contrast, data types are not only useful as a way to structure, describe and verify

data properties, but they are also applied for optimising the memory layout of a

program. Similarly, session types may be amenable for optimisations of failures.

In the case of a failure, can we, by exploiting the structure of the interaction, guide
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and minimise the propagated information and the required communication?

1.3. Contributions

The main contributions of this thesis are the design, implementation, and eval-

uation of a session type-based runtime verification framework. First, using this

framework, developers write protocols using the specification language Scribble,

which is formally founded on MPST. Then programs are implemented using an

API for session programming. A monitor, attached to each distributed program,

translates Scribble specifications to Communicating Finite State Machines (CF-

SMs) to check that program traces comply with protocol specifications. The ap-

proach of this thesis addresses the challenges discussed above as follows.

Formalising Scribble. We give a background overview of the protocol descrip-

tion language Scribble [scrb]. Then we present a core syntax of Scribble protocols

and define operational semantics. We prove a correspondence between Scribble

and MPST. The correspondence allows us to examine and prove the soundness

of our runtime framework. More precisely, we give a translation between local

Scribble protocols and CFSMs using the correspondence between local types and

CFSM, given in [DY12], and prove that a global protocol is equivalent to a config-

uration of CFSMs.

A runtime monitor tool for dynamic verification of distributed systems. We

present the first design and implementation of session types for dynamic veri-

fication. The library, developed in Python, exposes an API of core primitives

for session programming. Benchmarks show the feasibility of the approach and

reasonable performance overhead for protocol checking. In addition to micro-

benchmarks, we have also integrated the library in a large cyber-infrastructure

project for oceanography.

Session types extensions. We extend the framework with exception handling

capabilities and time constraints. The former allow us to reason about fault-tolerant

systems, while the latter enlarge the domain of the protocols that can be expressed.

More concretely, we present the implementation and formalisation of a new

construct for verifying asynchronous multiparty session interrupts. Asynchronous

session interrupts express communication patterns in which the behaviour of the
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roles following the default flow through a protocol segment may be overruled by

one or more other roles concurrently raising asynchronous interrupt messages.

We also embed primitives for timed protocol specifications into the Scribble

toolchain, and give an implementation in the Scribble toolchain of an algorithms

for consistency checking of real-time properties. In addition, we exploit the encod-

ing from timed-MPST into Communicating Timed Automata, given in [BYY14a],

to produce run-time monitors for programs implemented using the Python API.

We implement several monitoring modes, with different degrees of intervention

of the monitor in the ongoing interactions, from just observing interactions to at-

tempts to fix time mismatches. To assess the usability of timed Scribble we have

gathered a wider (albeit not exhaustive) portfolio of properties of timed distributed

protocols from the literature, and we have provided a number of timed patterns

which demonstrate how these properties can be expressed in Scribble.

Session types for actor programming. We prove the generality of our MPST

framework by showing that Scribble protocols offer wider usage, in particular for

actor programming. This is the first design and implementation of session types

and their dynamic verification toolchain in an actor library. Our programming

model is grounded in three new design ideas: (1) use Scribble protocols and their

relation to finite state machines for specification and runtime verification of actor

interactions; (2) augment actor messages and their mailboxes dynamically with

protocol (role) information; and (3) propose an algorithm based on virtual routers

(protocol mailboxes) for the dynamic discovery of actor mailboxes within a proto-

col. We implement a session actor library in Python as to demonstrate the applica-

bility of the approach through examples.

Recoverable session types. We propose a recovery framework based on MPSTs

and show how session type-based analysis is used to provide correct fault-tolerant

recovery. Specifically, we statically analyse the communication flow of a pro-

gram, given as a multiparty protocol, to extract the causal dependencies between

processes and to localise failures. We formalise a recovery strategy, using commu-

nicating automata, and implement several use cases as to show that the proposed

strategy is more efficient for common message-passing protocols than the Erlang

all-for-one supervision.
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1.3.1. Publications and Detailed Contributions of the Author

The following papers were published as a result of the research done for the re-

quirements of this thesis and are its primary contributing sources. The papers are

presented in chronological order. For each paper my contribution is given. The

relevance of each work to this thesis is given through the thesis chapter correspon-

dence.

[Ney13] Rumyana Neykova. Session Types Go Dynamic or How to Verify Your

Python Conversations. In PLACES, 2013

Author’s Contribution The paper introduces an early design and imple-

mentation of a runtime verification framework based on session types that is

the basis of this thesis. All of the presented material is my own work with

the supervision and advice of my supervisor.

Corresponding part This preliminary work comprises a significant part of

Chapter 3 and has evolved into the material presented in the following paper.

[HNYD13] Raymond Hu, Rumyana Neykova, Nobuko Yoshida, Romain Demangeon

and Kohei Honda: Practical Interruptible Conversations - Distributed Dy-

namic Verification with Session Types and Python. In Runtime Verification,

2013.

Author’s Contribution The paper presents a Scribble-based runtime veri-

fication framework with support for exception handling behaviour. I con-

tributed writing, implementation and benchmarking material to the working

draft of this paper, as well as proof reading of other sections.

Corresponding part The design of interruptible extensions of this work

forms the basis of Chapter 4.

[NYH13] Rumyana Neykova, Nobuko Yoshida and Raymond Hu: SPY: Local Verifi-

cation of Global Protocols. In Runtime Verification, 2013

Author’s Contribution The paper introduces a Scribble tool with facilities

for projection. The tool presented is a shared work by me and Raymond Hu.

The writing is done by me.

Corresponding part The example and the tool are discussed in Chapter 3.

[YHNN13] Nobuko Yoshida, Raymond Hu, Rumyana Neykova and Nicholas Ng: The

Scribble Protocol Language. In TGC, 2013

Author’s Contribution The paper presents an overview of the protocol de-

scription language Scribble, which is the specification language used by the

framework presented in this thesis. I contributed writing Section 3.5, which
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explains the Python API for session programming.

Corresponding part Although the work undertaken towards this paper has

influenced parts of the thesis, the material is not included here directly.

[NY14a] Rumyana Neykova and Nobuko Yoshida: Multiparty Session Actors. In

PLACES, 2014

Author’s Contribution The work presents the design and implementation

of an API for actor programming. All of the presented material is my own

work with the supervision and advice of my coauthor.

Corresponding part This preliminary work comprises a significant part of

Chapter 6 and has evolved into the material presented in the following paper.

[NY14b] Rumyana Neykova and Nobuko Yoshida: Multiparty Session Actors. In

COORDINATION, 2014

Author’s Contribution The work presents the design and implementation

of a programming API with support of runtime verification of actor pro-

grams. All of the presented material is my own work with the supervision

and advice of my coauthor.

Corresponding part This paper forms the basis of Chapter 6.

[NBY14] Rumyana Neykova, Laura Bocchi and Nobuko Yoshida: Timed Runtime

Monitoring for Multiparty Conversations. In BEAT, 2014

Author’s Contribution This work presents Scribble-based runtime verifi-

cation with support for time constraints. The design, implementation and

examples is done entirely by me. Writing is shared between the authors of

the paper.

Corresponding part This paper forms the basis of Chapter 5.

[HHN+14a] Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen, Romain

Demangeon, Pierre-Malo Denilou and Nobuko Yoshida: Structuring Com-

munication with Session Types. In Concurrent Objects and Beyond, 2014

Author’s Contribution I have contributed writing the paper. In particular, I

contributed writing Section 3.5 on how to write programs with session types.

I also implemented the example presented in this section.

Corresponding part Although the work undertaken towards this paper has

influenced parts of the thesis, the material is not included here directly.

[DHH+15] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova and

Nobuko Yoshida: Practical interruptible conversations: distributed dynamic

verification with multiparty session types and Python. Formal Methods in

System Design 46(3), (2015)
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Author’s Contribution This is a journal version of [HNYD13] and it ex-

tends the initial submition with additional explanations, event-driven imple-

mentation and theory for interrupts in session types. The additional imple-

mentation and writing are done by me. I have been involved in the deign of

formalising the implemented extension along with Romain Demangeon.

Corresponding part The event-driven example from the paper is included

in Chapter 4 and the theoretical part forms the basis of Section 4.3.3.

[NY17a] Rumyana Neykova, Nobuko Yoshda Let it Recover: Multiparty-protocol

induced recovery. In Compiler Construction, 2017

Author’s Contribution The work presents a static analysis based on mul-

tiparty session types that can efficiently compute a safe global state from

which a system of interacting processes should be recovered after a failure.

All of the presented material is my own work with the supervision and ad-

vice of my coauthor.

Corresponding part This paper forms the basis of Chapter 7.

[NY17b] Rumyana Neykova, Nobuko Yoshida: Multiparty Session Actors. In Logi-

cal Methods in Computer Science, 2017

Author’s Contribution This is a journal version of [NY14b] and it ex-

tends the initial submition with additional explanations, and evaluation of

the framework. The work is entirely done by me with with the supervision

and advice of my coauthor.

Corresponding part Examples from the article are included in Chapter 6.5.

[NY17c] Rumyana Neykova, Nobuko Yoshida: Timed Runtime Monitoring for Mul-

tiparty Conversations. Formal Aspects of Computing, 2017

Author’s Contribution This is a journal version of [NBY14] and it extends

the initial submission with the design and implementation of an algorithm

for checking consistency of timed global protocols and evaluation on the

usability of our specification language to express commonly occurring tem-

poral patterns in distributed protocols. We also present the formal syntax for

timed global protocols along with an explanation of the constructs and the

projection mechanism, that were omitted from [NBY14]

Corresponding part This work forms the basis of Section 5.

1.3.2. Thesis Outline

Chapter 2. Scribbling Multiparty Session Types In this chapter we present the
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formal semantics of the Scribble language. We then show that the encoding

of Scribble local and global protocols to global and local session types is

behaviour-preserving, and gives the translation between local Scribble pro-

tocols and Communicating Finite State Machines (CFSMs).

Chapter 3. From Scribble Specifications to Runtime Monitors In this chapter

we present an Scribble-based runtime verification and embed session types

in a dynamically-typed language Python. The advantages, expressiveness,

and performance of dynamic protocol checking are demonstrated through

use cases and benchmarks. We also present the integration of our framework

in a large cyberinfrastructure project for oceanography.

Chapter 4. Monitoring Interruptible Systems In this chapter we present an

extension of Scribble to support the specification of asynchronously inter-

ruptible conversations. We then implement a concise API for conversation

programming with interrupts in Python that enables dynamic verification

of safety properties. Then we prove that our framework ensures the global

safety of a system in the presence of asynchronous interrupts.

Chapter 5. Monitoring Real-Time Systems In this chapter we extend the ver-

ification framework presented in the previous chapters to support verifica-

tion and enforcement of real-time constraints. We extend (1) Scribble with

clocks, resets, and clock predicates in order to constrain the times at which

interactions occur; (2) the Python API with time primitives; (3) the runtime

monitors with checks for time constraints. To evaluate the practicality of the

real-time extension, we express and verify four categories of widely used

temporal patterns from use cases in the literature.

Chapter 6. Monitoring Actor Programs In this chapter we study the applica-

bility of MPST protocols to verification of actor programs. We associate

sessions to actors by introducing minimum additions to the model such as

the notion of actor roles and protocol mailboxes. We demonstrate our frame-

work by designing and implementing a session actor library in Python and its

runtime verification mechanism. The presented benchmark results demon-

strate that the runtime checks induce negligible overhead. We evaluate the

applicability of our verification framework to actor interaction specification

by implementing twelve examples from an actor benchmark suit.

Chapter 7. Recoverability for Monitored MPST Processes In this chapter we

propose a static analysis based on multiparty session types that can effi-

ciently compute a safe global state from which a system of interacting pro-
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cesses should be recovered. We formalise our recovery algorithm and show

it provides lower communication cost (only affected processes are notified)

and overall execution time (only required states are repeated). On top of our

analysis, we design and implement a runtime framework in Erlang where

failed processes and their dependencies are restarted from a consistent state.

We evaluate our recovery framework on a set of message-passing bench-

marks and use cases.
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2. Scribbling Multiparty Session Types

Scribble [scrb, HMB+11] is a protocol description language, formally based on

the multiparty session type theory [HYC08, BCD+08]. A protocol in Scribble

represents an agreement on how participating systems interact with each other.

More precisely, it specifies a format and a predefined order for messages to be

exchanged.

The name of the language embodies the motivation for its creation, as explained

by the following quote from the inventor of the Scribble language Kohei Honda:

The name (Scribble) comes from our desire to create an effective tool

for architects, designers and developers alike to quickly and accu-

rately write down protocols.

The development of Scribble is a result of a persistent dialogue between re-

searchers and industry partners. Currently Scribble tools are applied to verification

of multiple languages (Java [HY16], Python [HNYD13], MPI [NCY15]). How-

ever, it all started from a simple idea, from a ”hello world” in a verbose language,

from the desire to structure a chaos, from a whisper in Kohei Honda’s mind, as

best described in the following fragment from a speech of his in 2007:

All great ideas of architectural construction come from that uncon-

scious moment, when you do not realise what it is, when there is no

concrete shape, only a whisper which is not a whisper, an image which

is not an image, somehow it starts to urge you in your mind, in so small

a voice but how persistent it is, at that point you start scribbling.

Although Scribble is often refereed as “the practical incarnation of multiparty

session types (MPST)“ [scrb, HMB+11], a formal correspondence between the

two is not proven in the literature. The language semantics are not formalised

either.
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Figure 2.1.: Scribble development methodology

Contributions and outline In this chapter we give a brief overview of Scribble.

Then we present the semantics of Scribble protocols and prove a correspondence

between Scribble and MPST. The outline of this chapter is given below:

Section 2.1 gives an overview of Scribble and explains the Scribble framework.

Section 2.2 presents the formal semantics of the Scribble language.

Section 2.3 proves the encoding of Scribble local and global protocols to global

and local session types to be behaviour-preserving.

Section 2.4 discusses results on MPST applied to Scribble and gives the transla-

tion between local Scribble protocols and Communicating Finite State ma-

chines (CFSMs) [DY12].

2.1. Scribble Overview

2.1.1. Example: Online Wallet

Scribble protocols describe an abstract structure of message exchanges between

roles: roles abstract from the actual identity of the endpoints that may participate in

a run-time conversation instantiating the protocol. Scribble enables the description

of abstract interaction structures including asynchronous message passing, choice,

and recursion.

Here we demonstrate the basic Scribble constructs via an example. The example

is a simple version of an online payment service. Fig. 2.2 lists the global type

as a Scribble protocol, OnlineWallet. The first line declares, under the name

OnlineWallet, the Scribble global protocol and the two participating roles. The

protocol has a recursion at the top-level. In each iteration, the Server (S) sends

the Client (C) the current balance and the overdraft limit for Client’s account.

The Balance message has an int payload; similarly for the OverdraftLimit. C
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global protocol OnlineWallet(role Server ,role Client ){
rec LOOP {

Balance(int) from Server to Client;

OverdraftLimit(int) from Server to Client;

choice at Client {
MakePayment(string , int) from Client to Server;

continue LOOP;

} or {
CloseAccount from Client to Server;

} or {
Quit from Client to Server;

} } }

Figure 2.2.: A protocol specification in Scribble

then has the choice to make a payment, close the account or quit this session. The

MakePayment payload contains a string and an int for the payee identity and

the amount to pay.

2.1.2. Scribble Toolchain

Fig. 2.1 gives an abstract overview of the Scribble verification process. From a

global Scribble protocol, the toolchain produces (1) a set of local protocols or (2)

a set of finite state machines (FSMs). The main actions performed by the Scribble

toolchain are specified below:

1. (well-formedness check) A global Scribble protocol is verified for correct-

ness to ensure that the protocol is well-formed, which intuitively means that a

protocol describes a meaningful interaction, beyond the basic syntax defined

by the language grammar. This is necessary because some of the protocols

are unsafe or inconsistent even if they follow the grammar. For example,

two choice branches from the same sender to the same receiver with the

same message signature lead to ambiguity at the receiver side. More pre-

cisely, a protocol is well-formed if local protocols can be generated for all

of its roles, i.e the projection function is defined for all roles. The formal

definition of projection is given in Definition 2.3.12. Here we give intuition

as to what the main syntactic restrictions are:

• in each branch of a choice the first interaction (possibly after a number

of unfoldings) is from the same sender (e.g., A) and to the same set of

receivers.

• in each branch of a choice the labels are pair-wise distinguished (i.e.,
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local protocol OnlineWallet at Server(

self Server , role Client) {
rec LOOP {

Account(int , int) to Client;

choice {
MakePayment(string , int) from Client;

continue LOOP;

} or {
CloseAccount () from Client;

} or {
Quit() from Client;

} } }

Figure 2.3.: OnlineWallet local protocol for Server

protocols are deterministic).

2. (projection) A global Scribble protocol is projected to a set of local pro-

tocols. More precisely, a local Scribble protocol is generated per each role

declared in the definition of the global protocol. Local protocols correspond

to local (MPST) types, they describe interactions from the viewpoint of a

single entity. They can be used directly by a type checker to verify that an

endpoint code implementation complies to the interactions prescribed by a

specification. Fig. 2.3 lists the Scribble local protocol OnlineWallet pro-

jected for role Server.

3. (FSM generation) An alternative representation of a local protocol can be

given in the form a communicating finite state machine (FSM). This rep-

resentation is useful for runtime verification. Specifically, at runtime the

traces emitted by a program are checked against the language accepted by

the FSM.

An implementation of Java-based and Python-base Scribble tools for projection

and validation [scrb], as well as static verification for various languages can be

found in [ses, NYH12, SS, NYH13].

2.2. Syntax and Semantics of Scribble

2.2.1. Scribble Global Protocols

The syntax of Scribble global protocols is given by the grammar below.
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Definition 2.2.1 (Scribble Global Protocols)

P ::= global protocol pro (role A1, ...,role An){G} specification

G ::= a(S) from A to B;G interaction

| choice at p {G} or . . . or {G} choice

| rec t {G} recursion

| continue t call

Protocol names are ranged over by pro. A (global) specification P declares a

protocol with name pro, involving a list (A1, ..An) of roles, and prescribing the

behaviour in G. The other constructs are explained below:

• An interaction a(S) from p to q;G specifies that a message a(S) should

be sent from role A to role B and that the protocol should then continue as

prescribed by the continuation G. Messages are of the form a(S) with a

being a label and S being the constant type of exchanged messages (such as

real, bool and int).

• A choice choice at A {G} or . . . or {G} specifies a branching where role

A chooses to engage in the interactions prescribed by one of the options G.

The decision itself is an internal process to role A, i.e. how A decides which

scenario to follow is not specified by the protocol.

• A recursion rec t {G} defines a scope with a name t and a body G. Any

call continue t occurring inside G executes another recursion instance (if

continue t is not in an appropriate scope than it remains idle).

Formal semantics of global protocols The formal semantics of global proto-

cols characterises the desired/correct behaviour of the roles in a multiparty proto-

col. We give the semantics for Scribble protocols as a Labelled Transition System

(LTS). The LTS is defined over the following set of transition labels:

` ::= AB!a(S) | AB?a(S)

Label AB!a(S) is for a send action where role A sends to role B a message a(S).

Label AB?a(S) is for a receive action where B receives (i.e., collects from the queue

associated to the appropriate channel) message a(S) that was previously sent by A.

We define the subject of an action, modelling the role that has the responsibility of

performing that action, as follows:

sub j(AB!a(S)) = A sub j(AB?a(S)) = B

32



As, due to asynchrony, send and receive are two distinct actions, the LTS shall

also model the intermediate state where a message has been sent but it has not

been yet received. To model these intermediate states we introduce the following

additional global Scribble interaction:

transit : a(S) from A to B;G

to describe the state in which a message a(S) has been sent by A but not yet received

by B. We call runtime global protocol a protocol obtained by extending the syntax

of Scribble with these intermediate states.

The transition rules are given in Fig. 2.4. Rule bSENDc models a sending action;

it produces a label AB!a(S). The sending action yields a state in which the global

protocol is in an intermediate state.

Rule bRECVc models the dual receive action, from an intermediate state to a con-

tinuation G. Rule bCHOICEc continues the execution of the protocol as a continuation

of one of the branches. Rule bRECc is standard and unfolds recursive protocols.

The remaining rules deserve a detailed explanation.

Due to asynchrony and distribution, in a particular state of a Scribble global

protocol it may be possible to trigger more than one action. For instance, the

protocol in (2.1) allows two possible actions: AB!a(S) or CD!a(S).

a(S) from A to B;

a(S) from C to D;
(2.1)

This is due to the fact that the two send actions are not causally related as they

have different subjects (which are independent roles). We want the semantics of

Scribble to allow, in the state with protocol (2.1), not only the first action that oc-

curs syntactically (e.g., AB!a(S)) but also any action that occurs later, syntactically,

but it is not causally related with previous actions in the protocol (e.g., CD!a(S)).

Rule bASYNC1c allows exactly this. CD!a(S), which occurs syntactically later than

AB!a(S) to possibly occur before. In fact, the LTS allows (2.1) to take one of these

two actions: either AB!a(S) by rule bSENDc or CD!a(S) is allowed by bASYNC1c. Rule

bASYNC2c is similar to bASYNC1c but caters for intermediate states, and is illustrated

by the protocol in (2.2), obtained from (2.1) via transition AB!a(S) by rule bSENDc.

transit :a(S) from A to B;

a(S) from C to D;
(2.2)
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a(S) from A to B;G
AB!a(S)−−−−→ transit : a(S) from A to B;G bSENDc

transit : a(S) from A to B;G
AB?a(S)−−−−→ G bRECVc

i ∈ {1, ..,n} Gi
`−→ G′i

choice at A {G1} or . . . or {Gn}
`−→ G′i

bCHOICEc

G
`−→ G′ A,B 6∈ sub j(`)

a(S) from A to B;G `−→ a(S) from A to B;G′
bASYNC1c

G
`−→ G′ B 6∈ sub j(`)

transit : a(S) from A to B;G `−→ transit : a(S) from A to B;G′
bASYNC2c

G[rec t {G}/continuet] `−→ G′

rec t {G} `−→ G′
bRECc

Figure 2.4.: Labelled transitions for global protocols.

The protocol in (2.2) can execute either AB?a(S) by rule bRECVc, or CD!a(S) by rule

bASYNC2c.

2.2.2. Scribble Local Protocols

Scribble local protocols describe a session from the perspective of a single partic-

ipant. The syntax of Scribble local protocols is given below.

Definition 2.2.2 (Scribble Local Protocols)

L ::= local protocol pro at Ai(role A1, ...,role){T}
T ::= a(S) to B;T

| a(S) from B;T

| choice at A {T1} or . . .or {Tn}
| rec pro {T}
| continue pro

| end

The construct a(S) to B;T models a send action from A to B; the dual local

protocol is a(S) from B;T that models a receive action of A from B. The other
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a(S) to B;T
AB!a(S)−−−−→ T bSENDc

a(S) from B;T
BA?a(S)−−−−→ T bRECVc

i ∈ {1, ..,n} Ti
`−→ T′i

choice at A {T1} or . . .{Tn}
`−→ T′i

bCHOICEc

T[rect {T}/continuet] l−→ T′

rect {T} l−→ T′
bRECc

Figure 2.5.: Labelled transitions for local protocols (from A’s point of view).

protocol constructs are similar to the corresponding global protocol constructs.

Recursive variables are guarded in the standard way, i.e. they only occur under a

prefix. For convenience we will, sometimes, use the notation

choice at {ai(Si) from A;Ti}i∈{1,..,n}

to denote Scribble local protocols of the form

choice at {a1(S1) from A;T1} or . . .or {an(Sn) from A;Tn}

with n > 1. or of the form (i.e., n = 1)

a(S) from A;T

Decomposing global protocols into a set of local protocols is called projection.

Projection is a key mechanism to enable distributed enforcement of global prop-

erties. Projection preserves the interaction structures and message exchanges re-

quired for the target role to fulfil his/her part in the conversation. We give the

formal definition on projection later in this chapter (Definition 2.3.12) when we

introduce a normal (canonical) form for global protocols.

Formal semantics of local protocols The LTS for local protocols is defined

by the rules in Fig. 2.5, which use the same labels as the global semantics in

Fig. 2.4. The rules bSENDc,bRECVc,bCHOICEc,bRECc are similar to the respective rules

for global protocols. We do not need rules for modelling asynchrony as each par-

ticipant is assumed to be single threaded.
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Formal semantics of configurations The LTS in Fig. 2.5 describes the behaviour

of each single role in isolation. In the rest of this section we give the semantics

of systems resulting from the composition of Scribble local protocols and com-

munication channels. Given a set of roles {1, . . . ,n} we define configurations

(T1, . . . ,Tn,
#»w) where #»w ::= {wi j}i 6= j∈{1,...,n} are unidirectional, possibly empty

(denoted by ε), unbounded FIFO queues with elements of the form a(S).

Definition 2.2.3 (Semantics of configurations) The LTS of (T1, . . . ,Tn, #»w) is de-

fined as follows:

(T1, . . . ,Tn,
#»w)

`−→ (T′1, . . . ,T
′
n,

#»w ′) iff: :

(1) TB
AB!a(S)−−−−→ T′B∧w′AB = wAB ·a(S)∧ (i j 6= AB⇒ wi j = w′i j ∧Ti = T′i)

(2) TB
AB?la(S)−−−−−→ T′B∧a(S) ·w′AB = wAB∧ (i j 6= AB⇒ wi j = w′i j ∧Tj = T′j)

with A,B, i, j ∈ {1, . . . ,n}.

In (1) the configuration makes a send action given that one of the participants can

perform that send action. Case (1) has the effect of adding a message, that is sent,

to the corresponding queue. In (2) the configuration makes a receive action given

that one of its participant can perform such an action and that the message being

received is currently stored in the corresponding queue. Thus, (2) has the effect of

removing the message received from the queue.

2.3. Correspondence between Scribble and MPST

In this section we show that a trace of a global protocol corresponds exactly to a

trace of its projected local protocols. Correspondence is important as it ensures

that the composition of processes, each implementing some local protocol, will

behave as prescribed by the original global specification. In the context of MPST,

this property is known as soundness of the projection (Theorem 3.1, [DY13]) and

has already been proven for global types as defined in [DY13]. As explained in

Section 2.3.1 a translation of this result to Scribble, however, is not obvious.

Fig. 2.6 gives a high level overview of the results presented in this section. First,

we discuss the (syntactic) differences between global types and global protocols.

We present a normal form for global protocols such that a Scribble global proto-

col in a normal form can be encoded into (MPST) global types and the translation

is semantic preserving. We then prove a similar correspondence between Scrib-

ble local protocols and (MPST) local types. The soundness of the projection of
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Glocal
protocols

≈ Normal Form

Prop. 2.3.7

≈ Global Types

Prop. 2.3.9

≈ Configuration
of Local Types
From [DY13]

≈ Configuration of
Local Protocols

Prop. 2.3.14

Figure 2.6.: Workflow of proving soundness of the projection

global protocol then follows from soundness of the projection of MPST global

types (Theorem 3.1 from [DY13]).

2.3.1. Scribble Normal Form

The syntax of global session types (thereafter global types), in the framework of

MPSTs given in [DY13], is presented below:

Definition 2.3.1 (Global Types)

G ::= A→ B : {ai〈Si〉.Gi}i∈I | µt.G | t | end

The syntax of global types is very similar to the syntax of Scribble global protocols

in Section 2.2 except: (1) Scribble does not cater for delegation and higher order

protocols whereas global types do; and (2) the choice and interaction protocols are

two separated constructs in Scribble while they are modelled as a unique construct

in global types and (3) opposed to MPST, Scribble allows unguarded choice. The

case of (2) is a consequence of the specific focus of Scribble as a protocol design

language directed at practitioners that are familiar with e.g., Java notation, who

proved to find this notation friendlier [scrb, HMB+11, YHNN13, HHN+14b]. Re-

garding (3) the choice construct in Scribble directly supports recursion and choice

while in MPST the choice is always directly followed by an interaction. In the

following section we explain that these differences are indeed syntactic and do not

affect the soundness of the language.

First, we observe that a Scribble syntax with a guarded and a singleton choice

directly corresponds to MPST. We refer to a Scribble protocol, where all choices

are guarded, as a Scribble Normal Form (SNF). Later we show that there is a

behaviour preserving translation between a well-formed Scribble protocol and its

normal form.

The Scribble Normal Form (SNF) for global protocols is given below:
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Definition 2.3.2 (Scribble Normal Form (SNF))

G ::= choice at A {Ni}i∈{1,..,n} | N | rec t {N}
N ::= a(S) from A to B;G | continue t | end

The SNF does not contain nested choice and does not allow recursion after the

choice.

The encoding of Scribble global protocols to SNF requires two auxiliary func-

tions: flatten(G) and unfold(G). The latter transforms nested choice into one

choice, while the former performs one unfolding of a recursion. First, we focus on

flatten(G), given below.

Definition 2.3.3 (Flatten) For all local Scribble protocols G, we define flatten(G)

in the following way:

flatten(G)=

{
flatten(G0)∪ . . .∪flatten(Gn) if G= choice at A {Gi}i∈{1,..,n}

G otherwise

We demonstrate flatten(G) in the example in Fig. 2.7. The example on the

right shows a Scribble protocol with nested choice, while its flatten form is

shown on the right.

choice at A {
choice at A

{msg1 from A to B;}
or

{msg2 from A to B;}}
or

{msg3 from A to B; }

choice at A

{msg1 from A to B;}
or

{msg2 from A to B;}
or

{msg3 from A to B;}

Figure 2.7.: Scribble protocol (left), and its flatten form (right).

Next we give the definition of unfold(G)

Definition 2.3.4 (Unfold) For all global Scribble protocols G, we define unfold(G)

by recursion on the structure of G in the following way:

unfold(G)

unfold(G′[rec t {G′}/continue t])) if G= rec t {G′}

G otherwise

Thus for any recursive type, unfold is the result of repeatedly unfolding the

top level recursion until a non-recursive type constructor is reached. Because we

assume that recursive types are contractive, unfold terminates.
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Finally, we give the encoding below:

Definition 2.3.5 (Encoding of Global Protocols to SNF) The encoding 〈〉 from (Scrib-

ble) global protocols to SNF types is given below:

〈end〉 = end

〈rec t {G}〉 = unfold(rec t {〈G〉})
〈a(S) from A to B;G〉 = a(S) from A to B;〈G〉
〈continue t〉 = continue t

〈choice at A {Gi}i∈{1,..,n}〉 = choice at A {flatten(〈Gi〉)}i∈{1,..,n}

Intuitively, a protocol is translated to a normal form after first unfolding all

recursions once and then flattening nested choice. For example, Fig. 2.8 shows a

Scribble protocol and its translation to its normal form.

choice at A {
rec Loop{
choice at A

{msg1 from A to B;

continue Loop;}
or {msg2 from A to B;}}

or {msg3 from A to B; }

choice at A {
msg1 from A to B;

rec Loop{
choice at A

{msg1 from A to B;

continue Loop;}
or {msg2 from A to B;}}

or {msg2 from A to B;}
or {msg3 from A to B; }

Figure 2.8.: A Scribble global protocol (left) and its corresponding normal form
translation (left)

Traces We write TR(G) for the set of traces obtained by reducing G. We assume G

is closed, i.e without free type variables. More precisely, TR(G)= {~̀ | ∃G′,G
~̀
−→ G′}.

Similarly for local protocols, global and local types.

We denote trace equivalence by ≈. We write G≈ G′ if TR(G) = TR(G′). We also

write G. G′ if TR(G)⊆ TR(G′). We extend ≈ and . to local protocols, as well as

global and local types, and configuration of local protocols.

We use the following lemmas to prove that the translation of global protocols to

SNF is semantics preserving:

Lemma 2.3.6 Let G be a Scribble local protocol, then:

• G≈ flatten(G)
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• G≈ unfold(G)

• 〈G′〉[rec t {〈G′〉}/continue t]≈ 〈G′[rec t {G′}/continue t]〉

Proposition 2.3.7 (SNF Translation) Let G be a Scribble local protocol, then G≈
〈G〉

Proof. First we consider G. 〈G〉. The proof is mechanical and is done by induc-

tion on the transition rules applied for closed terms of G.

1. (base case) If G = end then both G and 〈G〉 produce an empty set of traces

and no rules can be applied.

2. (inductive case) if G `−→ G′ then 〈G〉 `−→ G′′ such that G′ ≈ G′′.

a) if G= a(S) from A to B;G′

G can do AB!msg or ` by bSENDc or bASYNC1c respectively.

Then G. 〈G〉 follows by the induction hypothesis (IH) and by the def-

inition of encoding

b) G= rec t {G′}
G

`−→ G′′

By bRECc G′[rec t {G′}/continue t] `−→ G′′

By IH 〈G′[rec t {G′}/continue t]〉 `−→ G′′′ s.t G′′ ≈ G′′′

By Lemma 2.3.6

〈G′〉[rec t {〈G′〉}/continue t]≈ 〈G′[rec t {G′}/continue t]〉
Thus, 〈G′〉[rec t {〈G′〉}/continue t] `−→ G′′′′ s.t G′′′ ≈ G′′′′

By bRECc rec t {〈G′〉} `−→ G′′′′

By Lemma 2.3.6 rec t {〈G′〉} ≈ unfold(rec t {〈G′〉}) = 〈G〉
c) G= choice at A {Gi}i∈{1,..,n}

From bCHOICEcG `−→ G′ with Gi
`−→ G′

From IH 〈Gi〉
`−→ G′′ s.t G′′ ≈ G′ From flatten(G) ≈ G it follows that

flatten(Gi)
`−→ G′′′ s.t G′′′ ≈ G′′

From bCHOICEc it follows 〈G〉 `−→ G′′′

Now we consider 〈G〉. G. The proof is by induction on the definition of encod-

ing of closed terms of G.

1. (base case) If 〈G〉= end then both G and 〈G〉 produce an empty set of traces

and no rules can be applied.

2. (inductive case) if 〈G〉 `−→ G′ then G
`−→ G′′ such that G′ ≈ G′′.

a) 〈a(S) from A to B;G〉= a(S) from A to B;〈G〉
〈G〉 can do AB!msg or ` by bSENDc or bASYNC1c respectively.
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Then G. 〈G〉 follows by the IH and by the definition of encoding

b) 〈rec t {G}〉= unfold(rec t {〈G〉}) = 〈G〉[rec t {〈G〉}/continue t]
From IH: G[rec t {G}/continue t]≈ 〈G〉[rec t {〈G〉}/continue t]
Thus, if 〈G〉[rec t {〈G〉}/continue t] `−→ G′

then G[rec t {G}/continue t] `−→ G′′ s.t G′ ≈ G′′

From bRECc rule: rec t {G} `−→ G′′

c) 〈G〉 = 〈choice at A {Gi}i∈{1,..,n}〉= choice at A {flatten(〈Gi〉)}i∈{1,..,n}

From bCHOICEc 〈G〉 `−→ G′ with flatten(〈Gi〉)
`−→ G′

By Lemma 2.3.6 flatten(〈G〉)≈ 〈G〉 it follows that

〈Gi〉
`−→ G′′ s.t G′′ ≈ G′

From IH it follows that G `−→ G′′′ s.t G′′′ ≈ G′′ ≈ G′.

2.3.2. From Global Protocols to Global Types

Next we give the encoding from a Scribble Normal Form to MPST, which is

straightforward.

Definition 2.3.8 (Encoding of Global Protocols to Global Types) The encoding

JK from SNF to global types is given below:

J a(S) from A to B;GK = A→ B : {a〈S〉.JGK}
Jchoice at A {Gbj} j∈{1,..,n}K = A→ B : {a j〈S j〉.JGjK} j∈{1,..,n}

where Gbj = a j(S j) from A to B;Gj
Jrec t {G}K = µt.JGK
Jcontinue tK = t

JendK = end

For convenience, we recall the semantics of global types in Fig. 2.9. The seman-

tics of global protocols and global types are similar except that the one for MPSTs

from [DY13] have no rule bCHOICEc as choice is handled directly in the rule for

send/selection and branch/receive.

To match Scribble global protocols and MPST step by step we extend the defi-

nition of encoding to account for intermediate steps:

Jtransit :a(S) from A to B;G′′K = A B : a〈S〉.JG′′K

Proposition 2.3.9 (Correspondence of Global Protocols and Global Types) Let

G be a Scribble global protocol, then G≈ JGK.
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j ∈ I

(A→ B : {ai〈Si〉.Gi}i∈I)
AB!a j〈S j〉−−−−−→ (A B : a j〈S j〉.G j)

bSELECTc

(A B : a〈S〉.G)
AB?a〈S〉−−−−→ (G)

(G[µt.G/t])
`−→ (G′)

(µt.G)
`−→ (G′)

bBRANCHc/bRECc

∀k ∈ I Gk
`−→ G′k A,B 6∈ sub j(`) ` 6= t

(A→ B : {ai〈Si〉.Gi}i∈I)
`−→ (A→ B : {ai〈Si〉.G′i}i∈I)

bASYNC1c

G `−→ G′ B 6∈ sub j(`)

(A B : a〈S〉.G)
`−→ (A B : a〈S〉.G′)

bASYNC2c

Figure 2.9.: Labelled transitions for global types in the framework of MPSTs
(adapted from [DY13]).

Proof. First, we consider G. JGK. The proof is done by induction (on the depth

of the tree) on the transition rule applied.

1. (Base case) If G= end then both G and JGK produce an empty set of traces.

2. (Inductive case) if G `−→ G′ and we have to prove that JGK `−→ JG′K.

• if G= a(S) from A to B;G′′ then we either have a send action by bSENDc or `

transition by bASYNC1c
– bSENDc G AB!a〈S〉−−−−→ transit :a(S) from A to B;G′′

By (1) JGK = A→ B : {a〈S〉.JG′′K} and

(2) Jtransit :a(S) from A to B;G′′K = A B : a〈S〉.JG′′K and

(3) bSELECTcMPST : A→ B : {a〈S〉.JG′′K} AB!a〈S〉−−−−→ A B : a〈S〉.JG′′K
we have JGK

AB!a〈S〉−−−−→ JG′K
– bASYNC1c a(S) from A to B;G′′ `−→ a(S) from A to B;G′′

By (1) JGK= A→ B : {a〈S〉.JG′′K} and JG′K= A→ B : a〈S〉.JG′′′K By (2)

JG′′K `−→ JG′′′K, which follows from the premise G′′ `−→ G′′′ of the bASYNC1c
and by IH and

(3) B 6∈ sub j(`), which follows from the premise of bASYNC1c:
we can apply the bASYNC1cMPST rule: JGK `−→ JG′K

• if G= transit :a(S) from A to B;G′′

We proceed as in the above case. We either have a receive action by the rule

bRECVc or ` transition by the rule bASYNC2c.
– bRECVc G AB?a〈S〉−−−−→ G′ where G′ = G′′
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By (1) JGK = A B : a〈S〉.JG′′K and JG′K = JG′′K and

(3) bBRANCHcMPST : A B : a〈S〉.JG′′K AB?a〈S〉−−−−→ JG′′K

therefore JGK
AB?a〈S〉−−−−→ JG′K

– bASYNC2c G `−→ G′ where G′ = transit :a(S) from A to B;G′′

By (1) JGK = A B : a〈S〉.JG′′K and JG′K = A→ B : {a〈S〉.JG′′′K} By

(2) JG′′K `−→ JG′′′K, which follows from the premises G′′
`−→ G′′′ of the

bASYNC1c and by the induction hypothesis and

(3) A,B 6∈ sub j(`), which follows from the premise of bASYNC2c:
we can apply the bASYNC2cMPST rule: JGK `−→ JG′K

• if G= choice at A {Gbj} j∈{1,..,n})

By bCHOICEc we have G
`−→ G′ where by the rule premise we have for G′:

ai(Si) from A to B;G′′ `−→ G′ for (i ∈ I) which brings us back to the first

case.

• if G= rec t {G′′} the thesis directly follows by induction since

(1) by bRECcG `−→ G′ where G[rec t {G}/continue t] `−→ G′

(2) JGK = µtJG′′K
By bRECc JG′′K[µt.JG′′K/t]) `−→ JG′K
(3) From IH, G′ . JG′K and therefore G. JGK

Now we consider JGK. G.

The proof is done by induction on transition rules applied to the encoding of G.

1. JGK = end then both JGK and G then no rules can be applied.

2. if JGK= A→ B : {a〈S〉.JGK}, then we either have a send action by bSELECTcMPST

or ` transition by bASYNC1c.
• bSELECTcMPST JGK

AB!a〈S〉−−−−→ JG′K
By G= a(S) from A to B;G′′ and G′ = transit :a(S) from A to B;G′′

and bSENDc it follows that G
AB!a〈S〉−−−−→ G′

• bASYNC1cMPST JGK `−→ JG′K where

JGK = A→ B : {a〈S〉.JG′′K} and JG′K = A B : a〈S〉.JG′′K
By (1) the rule premise JG′′K `−→ JG′′′K and by (2) IH it follows that

G′′
`−→ G′′′. Given also that A,B 6∈ sub j(`), we can apply bASYNC1c. Thus,

G
`−→ G′

3. if JGK= Jchoice at A a j(S j) from A to B;GjK= A→ B : {a j〈S j〉.JGjK} j∈{1,..,n}

Then by bCHOICEc we have that JGK `−→ JG′K when Jai(Si) from A to B;GiK
`−→

JG′K for i ∈ I.

Thus, we have to prove that
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if Jai(Si) from A to B;GiK
`−→ JG′K then ai(Si) from A to B;Gi

`−→ JG′K, which

follows from a).

4. if JGK = A B : a〈S〉.JG′′K JGK can do a receive action by bBRANCHcMPST or `

transition by bASYNC2c.
• bBRANCHcMPST JGK

AB!a〈S〉−−−−→ JG′K
By G= transit :a(S) from A to B;G′′ and G′= transit :a(S) from A to B;G′′

and bRECVc it follows that G
AB?a〈S〉−−−−→ G′

• bASYNC2cMPST JGK `−→ JG′K where

JGK = A B : a〈S〉.JG′′K and JG′K = A→ B : a〈S〉.JG′′K
By (1) the rule premise JG′′K `−→ JG′′′K and by (2) IH it follows that

G′′
`−→ G′′′. Given also that A,B 6∈ sub j(`), we can apply bASYNC2c. Thus,

G
`−→ G′

5. if JGK = µt.JG′′K the thesis directly follows by induction.

2.3.3. From Local Protocols to Local Types

The syntactic differences between Scribble local protocols and (MPST) local type

reflect the difference between Scribble global protocols and MPST global types.

The syntax of (MPST) local types from [DY13] is given below:

Definition 2.3.10 (Local Types)

T ::= B!{ai : 〈Si〉.T ′i}i∈I | B?{ai : 〈Si〉.T ′i}i∈I | µt.T | t | end

Similarly to the encoding of global protocol to global types, we define the en-

coding of local protocol to local types on the normal form of a Scribble local

protocol. The grammar for normal form for local protocols is given below:

Definition 2.3.11 (Local Scribble Normal Form (LSNF))

T ::= choice at A{Ni}i∈I | N | rec t {N}
N ::= a(S) from B;T | a(S) to B;T | continue t | end

Next we give the definition of projection. The definition is adapted from the

definition of projection of global types to local types, given in [DY13]. We denote

by P(G) the set of roles in a protocol G.
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Definition 2.3.12 (Projection) The projection of G onto A ∈P(G), written G ↓A,

is defined by induction on G as follows:

(a(S) from B to C;G′) ↓A=


a(S) from B;(G′ ↓A) if A= C

a(S) to C;(G′ ↓A) if A= B

G′ ↓A if A 6= B,C

(choice at B {ai(Si) from B to C;Gi}i∈I) ↓A=
choice at B {ai(Si) from B;(Gi ↓A)}i∈I if A= C

choice at B {ai(Si) to C;(Gi ↓A)}i∈I if A= B

choice at D (t{(Gi ↓A)}i∈I) if A 6= B,C; Gi ↓A= ai(Si) from D;G′i ↓A,∀i ∈ I

(rec t {G′}) ↓A=

rec t {(G′ ↓A)} G′ 6= continue t

end otherwise

(continue t) ↓A= continue t

(end) ↓A= end

If no side condition applies then G is not projectable on A and the global protocol

G is not well-formed. The case for choice uses the merge operator t to ensure

that (1) the locally projected behaviour is independent of the chosen branch (i.e

Gi = Gj, for all i, j ∈ I), or (2) the chosen branch is identifiable by A via a unique

label. The merge operator t [DY13] is defined as a partial commutative operator

over two types such that TtT= T for all types and that:

{ai(Si) from B;Ti}i∈I t{a′j(S′j) from B;T′j} j∈J =

{ak(Sk) from B;Tk}k∈I\J ∪{a′j(S′j) from B;T′j} j∈J\I

∪{ak(Sk) from B;TktT′k}k∈I∩J where for each k ∈ I∩ J,ak = a′k,Sk = S′k

and homomorphic for other types (i.e E [Tk]tE [T′k] = E [TktT′k], where E is a

context for local protocols.). We say that G is well-formed if for all A ∈P(G), G ↓A
is defined.

Note that a normal form is preserved during projection. More precisely, a Srib-

ble global protocol in a normal form is projected to a Scribble local protocol in a

normal form.
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Next we give the encoding between Scribble local protocols and MPST local

types. Hereafter we write Scribble local protocol when referring to LSNF proto-

cols.

Definition 2.3.13 (Encoding of Local Protocols to Local Types) The encoding LM
from (Scribble) local protocols to MPST local types is given below:

La(S) to B;TM = B!{a : 〈S〉.LTM}
La(S) from B;TM = B?{a : 〈S〉.LTM}

Lchoice at A {T′i}i∈IM =

B!{ai : 〈Si〉.LT′iM}i∈I if T′i = ai(Si) to B;Ti

A?{ai : 〈Si〉.LT′iM}i∈I if T′i = ai(Si) from A;Ti
Lrec t {T}M = µt.LTM
Lcontinue tM = t

LendM = end

Proposition 2.3.14 (Correspondence of Local Protocols and Local Types) Let T

be a Scribble local protocol, then T≈ LTM.

Proof. Below, for convenience, we recall the LTS for local session types (adapted

from [DY13]):

B!{ai : 〈Si〉.Ti}i∈I)
AB!a〈S〉−−−−→ T j ( j ∈ I) bLSELc

B?{ai : 〈Si〉.Ti}i∈I)
AB?a〈S〉−−−−→ T j ( j ∈ I) bLBRAc

T[µt.T/t] `−→ T ′ imply µt.T `−→ T ′ bLRECc

First, we consider T. JTK.

The proof is done by induction (on the depth of the tree) on the transition rule

applied.

1. (Base case) If T= end then both T and LTM produce an empty set of traces.

2. (Inductive case) T `−→ T′ and we have to prove that LTM `−→ LT′M. We proceed

by case analysis on the structure of T

a) if T= a(S) to B;T′′
AB!a〈S〉−−−−→ T′′ by bSENDc

LTM = B!{a : 〈S〉.LT′′M} AB!a〈S〉−−−−→ LT′′M by bLSELc
b) if T= a(S) from B;T′′

AB?a〈S〉−−−−→ T′′ by bRECVc
LTM = B?{a : 〈S〉.LT′′M} AB?a〈S〉−−−−→ LT′′M by bLBRAc

c) if T= choice at A {Ti}i∈I)
`−→ T′
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Depending on the structure of Ti, this case folds back to previous cases

a) and b).

if Ti = ai(Si) from B;T′′
AB!a〈S〉−−−−→ T′′ = T′ then LTiM

AB!a〈S〉−−−−→ LT′M by

bLSELc
if Ti = B?{ai : 〈Si〉.LT′′M}

AB?a〈S〉−−−−→= T′′ = T′ then LTiM
AB?a〈S〉−−−−→ LT′M by

bLBRAc
d) if T= µt.T′′ the thesis directly follows by induction.

Now we consider LTM. T.

The proof is done by induction on transition rules applied to the encoding.

1. (Base case) If LTM= end then both LTM and T produce an empty set of traces.

2. (Inductive case) LTM `−→ LT′M and we have to prove that T `−→ T′. We proceed

by case analysis on the structure of LTM
• if LTM = B!{a : 〈S〉.LT′′M}
B!{a : 〈S〉.LT′′M} AB!a〈S〉−−−−→ LT′′M by bLSELc
T= a(S) to B;T′′

AB!a〈S〉−−−−→ LT′′M by bSENDc
• if LTM = B?{a : 〈S〉.LT′′M}
B?{a : 〈S〉.LT′′M} AB?a〈S〉−−−−→ LT′′M by bLBRAc
T= a(S) from B;T′′

AB?a〈S〉−−−−→ T′′ by bRECVc
• if LTM = B?{ai : 〈Si〉.LTiM}i∈I

B?{ai : 〈Si〉.LTiM}i∈I
AB?a〈S〉−−−−→ LTjM( j ∈ I)

By bRECVc and the structure of Ti we have that ai(Ti) to B;Ti
AB!a〈S〉−−−−→ Ti

and therefore we can apply bCHOICEc
Thus, T

AB!a〈S〉−−−−→ Tj

• if LTM = A!{ai : 〈Si〉.LTM}i∈I the case is analogical to the previous one.

• if LTM = µt.T′′ the thesis directly follows by induction.

Proposition 2.3.15 (Correspondence of Configurations) Let (T1, . . . ,Tn,w) be a

configuration of Scribble local protocols, then (T′1, . . . ,T
′
n,w)≈ (LT1′M, . . . ,LT′nM,w′).

Proof. The proof is by induction on the number of transition steps.

Inductive hypothesis: (T1, . . . ,Tn,w)≈ (LT1M, . . . ,LTnM,w)
Now we want to prove that if (T1, . . . ,Tn,w)

`−→ (T′1, . . . ,T
′
n,w

′) then

(LT1M, . . . ,LTnM,w)
`−→ (LT′1M, . . . ,LT′nM,w′)

We do a case analysis on the transition label `:

(1) if `= AB!a〈S〉
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By TB
AB!a〈S〉−−−−→ TB and Lemma 3.3.5 it follows: LTBM

AB!a〈S〉−−−−→ LTBM
By definition of configuration of local protocols:

w′AB = wAB ·a(T)∧ (wi j = w′i j)for i j 6=AB.

(2) if `= AB?a〈S〉
By TB

AB?a〈S〉−−−−→ T′B and Lemma 3.3.5 it follows: LTBM
AB?a〈S〉−−−−→ LT′BM

By definition of configuration of local protocols:

w′AB = wAB ·a(S)∧ (⇒ wi j = w′i j)i j 6=AB

In (1) and (2) we have by definition that Ti = T′i( for 6= AB), which by the

inductive hypothesis implies that LTiM = LT′iM
Then by the definition of configuration of local protocols (from (1) and (2)) it

follows that (LT1M, . . . , , . . . ,LTnM,w)
`−→ (LT′1M, . . . ,LT′nM,w′)

2.3.4. Correspondence of Global and Local Protocols

Theorem 2.3.16 gives the correspondence between the traces produced by a global

protocol G and those produced by the configuration that consists of the composition

of the projections of G onto P(G).

Theorem 2.3.16 (Soundness of projection) Let G be a Scribble global protocol

and {T1, . . . ,Tn}= {G ↓A}A∈P(G) be the set of its projections, then

G≈ (T1, . . . ,Tn,
#»
ε )

Theorem 2.3.16 directly follows by: (i) the correspondence between (Scribble)

global protocols and MPSTs global types given in Section 2.3; (ii) trace equiva-

lence between global types and configuration of projected global types (Theorem

3.1 in [DY13]); (iii) the correspondence between configurations of MPSTs local

types and configurations of Scribble local protocols given in 2.3.

2.4. From Scribble to CFSMs

This section gives the translation of local protocols to CFSMs [BZ83]. First, we

start from some preliminary notations. ε is the empty word. A is a finite alphabet

and A∗ is the set of all finite words over A. |x| is the length of a word x and x.y or

xy the concatenation of two words x and y. Let P be a set of participants fixed

throughout the section: P = {A,B,C, . . .p,q, . . .}.
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Definition 2.4.1 (CFSM) A communicating finite state machine is a finite tran-

sition system given by a 5-tuple M = (Q,C,q0,A,δ ) where (1) Q is a finite set of

states; (2) C = {AB∈P2|A 6= B} is a set of channels; (3) q0 ∈Q is an initial state;

(4) A is a finite alphabet of message labels, and (5) δ = Q× (C×{!,?}×A)×Q

is a finite set of transitions.

A state q ∈ Q, which does not have any outgoing transitions, is called a final

state. Note that in the above definition δ can be the empty relation when all states

in Q are final states.

Definition 2.4.2 (CS) A (communicating) system S is a tuple S = (Mp)p∈P of CF-

SMs such that Mp = (Qp,C,q0p ,A,δp)

For Mp =(Qp,C,q0p ,A,δp) we define a configuration S=(Mp)p∈P to be a tuple

s = (~q,~w) where~q = (qp)p∈P and where w = (wpq)p6=q∈P with wpq ∈ A∗.

A path in M is a finite sequence of q0, . . . ,qn(n ≥ 0) such that (qi, `,qi+1) ∈
δ (0≤ i≤ n−1) and we write q `−→ q′ if (q, `,q′) ∈ δ .

To define the translation we introduce

rec~t {T}=

T if |~t|= 0

rec t0{. . .rec tn {T′} . . .} if~t= (t0, . . . ,tn),T
′ 6= rec t {T′′}

body(T) =

T′ if T= rec~t {T′}

T otherwise

We remind that recursive variables are guarded in the standard way, i.e. they

only occur under a prefix and therefore body(T) cannot be continue t.

Next we show how to algorithmically go from local Scribble protocols in a nor-

mal form to CFSMs. Note that, for convenience, we do not separate a label from a

payload and we write msg instead of a(S). Without loss of generality we assume

all nested recursive types are written in the form rec~t {T}.

Definition 2.4.3 (translation from local types to CFSMs.) We write T′ ∈ T if T′

occurs in T. Let T be the normal form of the local type of participant A projected

from G. The automaton corresponding to T is A (T) = (Q,C,q0,A,δ ) where: (1)

Q= {T′|T′ ∈ T,T′ 6= continue t}\({T′|rec~t {T′}∈ T}∪{Ti|choice at A {Ti}i∈I ∈
T}); (2) q0 = T (3) C = {AB | A,B ∈ G}; (4) A = {msg ∈ G} is the set of labels msg

in G; and (5) δ is defined below:
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1. if body(T) = msg to B;T′ ∈ Q, then1)(T,(AB!msg),rec~t
t∈~t

{T′′}) ∈ δ if T′ = continue t,rec~t
t∈~t

{T′′} ∈ T0

2)(T,(AB!msg),T′) ∈ δ otherwise

2. if body(T) = msg from B;T′ ∈ Q, then1)(T,(BA?msg),rec~t
t∈~t

{T′′}) ∈ δ if T′ = continue t,rec~t
t∈~t

{T′′} ∈ T0

2)(T,(BA?msg),T′) ∈ δ otherwise

3. if T= choice at A {Ti}i∈I , then:

a) if Ti = msgi to B;T′1)T,(AB!msgi),rec~t
t∈~t

{T′′}) ∈ δ if T′ = continue t,rec~t
t∈~t

{T′′} ∈ Q,

2)T,(AB!msgi),T
′) ∈ δ otherwise

b) if Ti = msgi from A;T′1)(T,(BA?msgi),rec~t
t∈~t

{T′′}) ∈ δ if T′ = continue t,rec~t
t∈~t

{T′′} ∈ Q

2)(T,(BA?msgi),T
′) ∈ δ otherwise

We give two examples, Fig. 2.10 and Fig. 2.11, as to illustrate the translation.

rec t1 {
m1 to B;

m2 to B;

continue t1}

s1 s2

m2!AB

s1

m1!AB

Figure 2.10.: Example of a local protocol T (left) and its CFSM translation (right).

The CFSM A (T) for the local protocol T from Fig. 2.10 is A (T)= (Q,C,q0,A,δ ).

We first generate the states Q of A (T) from the suboccurrences of the initial local

protocol T. We name the sates s1 and s2 where

s1 = T

s2 = (m2 to B; continue t1;).

Then A (T) is defined as follows: 1) Q = {s1,s2}; 2) C = {AB,BA} 3) q0 = s1; 4) A

= {m1, m2}; 5) δ = {(s1, m1!AB, s2), (s2, m2!AB, s1)}
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rec t1 {
m1 to B; rec t2 { m2 to B;

choice at A {m3 to B;

continue t2}
or {m4 to B; continue t1 }}}

s1 s2s1

m1AB

s3

m4!AB

m3!AB

s2

m2!AB

Figure 2.11.: Example of Local protocol T (left) and its CFSM translation (right).

Next we consider the local type T, given on Fig. 2.11.

From the suboccurrences of the local protocol T we generate three states:

s1 = T

s2 = rec t2 { m2 to B; choice at A {m3 to B; continue t2} or {m4 to B; continue t1}

s3 = choice at A {m3 to B; continue t2} or {m4 to B; continue t1}

Then the A (T) = (Q,C,A,q0,δ ) is defined as follows 1) Q = {s1,s2,s3}; 2) C =

{AB,BA}; 3) q0 = s1 4) A = {m1, m2, m3, m4}; 5) δ = {(s1, m1!AB, s2), (s2, m2!AB, s3),

(s3, m3!AB, s2), (s3, m4!AB, s1)}.
Before proving operational correspondence between a local type T and its cor-

responding A (T), we give a few auxiliary definitions.

Definition 2.4.4 (Sigma-unfold) We define a function sigmaUnf : T× σ → σ ,

where T is a type and σ is a mapping from recursive variables to types.

sigmaUnf(T,σ) =

⋃
i∈I

sigmaUnf(Ti,σ) if T= choice at A {Ti}i∈I

sigmaUnf(T′,σ) if T= msg to B;T′

sigmaUnf(T′,σ) if T= msg from B;T′

sigmaUnf(T′[rec~t {T′}/continue t]∀t∈~t,σ
⋃
ti∈~t
{ti 7→ T})

if T= rec~t {T′} and ∀ti ∈~t,ti /∈ σ

σ if T= rec~t {T′} and ∃t′ ∈~t : t′ ∈ σ

σ if T= end

We assume all recursive variables are distinct and also rec ~t {T′}σ = T′σ .

Hence, σ can contain t ∈~t and we apply the substitution σ without α-renaming.

Lemma 2.4.5 (Suboccurrences) Given a local type T, a suboccurrence rec~t {T′}(t∈~t) ∈
T and a substitution σ s.t σ = sigmaUnf((T,∅)),then

rec~t {T′}(t∈~t)σ = T′′ with {t 7→ T′′} ∈ σ
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Lemma 2.4.6 (Soundness of the translation) If T is a local Scribble protocol,

then T≈A (T).

Proof. In the proof we assume σ = sigmaUnf(T,∅). Also we assume T 6= end.

When T= end the lemma is trivially true since T produces an empty set of traces,

δ is an empty relation and q0, the initial state, is also a final state.

First, we consider T.A (T). Next we prove that if T `−→ T′ then ∃TA,T′A ∈ Q such

that TAσ = T and T′Aσ = T′, and (TA, `,T
′
A) ∈ δ .

The proof is by induction on the transition relation for local types. In all cases

we assume that T= TAσ .

- bSENDc if the reduction is by bSENDc we have

TAσ = (msg to B;T′A)σ = msg to B;(T′Aσ).

Thus, TAσ
`−→ T′Aσ where `= msg!AB.

Since body(TA) = msg to B;T′A we proceed by case analysis on T′A.

Case 1: T′A 6= continue t;

By Def. 2.4.3(1-2) and body(TA) = msg to B;T′A⇒ (TA, `,T
′
A) ∈ δ .

Case 2: T′A = continue t;

We have that T′Aσ = continue t σ = T′′, where {t 7→ T′′} ∈ σ .

By bSENDc we have TAσ
`−→ T′′.

By Def. 2.4.3(1-1) and body(TA) = msg to B;T′A it follows that

(TA, `,rec~t {T′′A}) ∈ δ with rec~t {T′′A} ∈ T0.

By Lemma 2.4.5 we have rec~t {T′′A}σ = T′′ and we conclude the case.

- bRECVc is similar to Case bSENDc and thus we omit.

- bCHOICEc if the reduction is by bCHOICEc we have

TAσ = (choice at A{TAi}i∈I)σ = choice at A{(TAiσ)}i∈I .

Case 1 if TAiσ has the shape (msgi to B;T′Ai)σ = msgi to B;(T′Aiσ),∀i ∈ I

then we have TAσ
`−→ T′Ajσ for some j ∈ I with `= msg j!AB.

Since body(TA) = TA, we proceed by case analysis on T′Aj.

Case 1.1: T′Aj 6= continue t;

By Def. 2.4.3(3-a-2) and body(TA) = TA we have (TA, `,T
′
Aj) ∈ δ .

Case 1.2: TAj′ = continue t;

(1*) We have that T′Ajσ = continue t σ = T′′, where {t 7→ T′′} ∈ σ .

(2*) By bCHOICEc we have TAσ
`−→ T′′.

By Def. 2.4.3(3-a-2) and body(TA) = TA ⇒ (TA, `,rec ~t {T′′A}) ∈ δ

with rec~t {T′′A} ∈ T0.

By Lemma 2.4.5 we have rec~t {T′′A}σ = T′′.
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Applying the IH to (1*) and (2*) we conclude the case.

Case 2 if TAiσ has the shape (msgi to B;T′Ai)σ = msgi to B;(T′Aiσ)

this case is similar to Case 1 and thus we omit.

Note that since the normal form of local types does not allow for unguarded

choice, hence, all possible transitions of TAσ are the transitions from Case 1

and Case 2.

- bRECc if the reduction is by bRECcwe have then TAσ = (rec~t {T′A})σ = T′Aσ .

We note that T′Aσ cannot be continue t since unguarded recursive variables

are not allowed. Hence, T′Aσ is either send, receive or choice and by IH and

bSENDc, bRECVc, bCHOICEc we conclude this case.

We next consider A (T). T. We prove that given a local protocol T0 if (TA, `,T′A)∈
δ then ∃T s.t. T= TAσ and T

`−→ T′ and T′ = T′Aσ with σ = sigmaUnf(T0,∅). We

proceed by case analysis on the transitions in δ .

Case 1 TA = msg to B;T′′A and `= msg?AB.

Then T′ = TAσ and we have by bSENDc TAσ
`−→ T′′Aσ .

Case 1.1 if T′′A = T′A 6= continue t

The hypothesis follows from TAσ
`−→ T′Aσ .

Case 1.2 if T′′A = continue t

By Def. 2.4.3 T′A = rec~t {T′′′A } ∈ T0,t ∈~t.

By Def. 2.4.4 and Lemma 2.4.5 we have t 7→ T′′ s.t. rec~t {T′′′A }σ = T′′.

From IH and TAσ
`−→ T′′Aσ = T′′ = rec~t {T′′′A }σ = T′Aσ we conclude the case.

Case 2 TA = msg from B;T′′A and `= msg!AB.

Proceeds in a similar way as Case 2 and thus we omit.

Case 3 TA = choice at{msgi to B;TAi}i∈I

Then we have by bCHOICEc
TAσ = choice at{msgi to B;TAiσ}i∈I

msg!AB−−−−→ TAjσ for some j ∈ I.

Case 3.1 if TAj = T′A 6= continue t

From IH and TAσ
`−→ T′Aσ we conclude the case.

Case 3.2 if TAj = continue t

By Def. 2.4.3 TAj = rec~t {T′′′A } ∈ T0,t ∈~t
By Def. 2.4.4 and Lemma 2.4.5 we have t 7→ T′′ s.t. rec~t {T′′′A }σ = T′′.

We have that TAσ
`−→ TAjσ = T′′ = rec~t {T′′′A }σ = T′Aσ , hence we conclude the

case.

Case 4 TA = choice at{msgi from B;TAi}i∈I

Proceeds in a similar way as Case 3 and thus we omit.

Case 5 TA = rec~t {T′′A}
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Note that the T′′A is either message send or message receive. Hence, By applying

the IH and Case 1, 2 we conclude the case.

2.5. Concluding Remarks

In this chapter, we gave an overview of the protocol description language Scribble.

We explained its formal foundations by proving correspondence between Scribble

and MPST. Most importantly, we show that a global protocol corresponds to a

system of CFSMs. This result has an important implication when building and

verifying distributed systems. Mainly, it guarantees that global safety properties

can be ensured through local, e.g, decentralised, verification. Such a setting thus

not require synchronisation at runtime and therefore is more efficient to implement

than a centralised approach. In the next chapter we build on this result to design

and build a sound Scribble-based framework for runtime verification.
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3. From Scribble Specifications to
Runtime Monitors

This chapter presents a toolchain for session-based programming (hereafter con-

versation programming) in Python. Communication safety of a system of Python

programs is guaranteed at runtime by monitors that check the execution traces

comply with an associated protocol. Protocols are written in the protocol descrip-

tion language Scribble, presented in Chapter 2, with addition of logic formulas

for more precise behaviour properties. We demonstrate the advantages, expres-

siveness and performance of dynamic protocol checking through use cases and

benchmarks.

Framework overview. Fig. 3.1 illustrates the methodology of our framework.

The development of a communication-oriented application starts with the specifi-

cation of the intended interactions (the choreography) as a global protocol using

the Scribble protocol description language, presented in Chapter 2.

Our toolchain validates that the global protocol satisfies MPST well-formedness

properties, such as coherent branches (no ambiguity between participants about

which branch to follow) and deadlock-freedom (between parallel flows). From

a well-formed global protocol, the toolchain mechanically generates a Scribble

local protocol (called a projection) for each participant (abstracted as a role) that

is involved.

As a session is conducted at run-time, the monitor at each endpoint uses a finite

state machine (FSM) representation of the local communication behaviour, gener-

ated from the local protocol for its role, to track its progress in the session. In our

implementation, the FSM generation follows the correspondence between Scribble

local protocols and communication automata, given in Section 2.4, and extended

for handling parallel branches, as presented in [DY12]. In [DY12] the treatment of

parallel branches in a protocol results in a state explosion. In our work, we avoid

this problem, treating parallel branches by generating nested FSM structures. The
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Figure 3.1.: Scribble methodology from global specification to local runtime veri-
fication

monitor validates the communication actions performed by the local endpoint, and

the messages that arrive from the other endpoints, against the transitions permit-

ted by the monitor’s FSM. Each monitor thus works to protect both the endpoint

from invalid actions by the network environment, and the network from incorrectly

implemented endpoints.

Our dynamic MPST framework is designed in this way to ensure, via the de-

centralised monitoring of each local endpoint, that the progress of the session as a

whole conforms to the original global protocol [BCD+13], and that unsafe actions

by a bad endpoint cannot corrupt the protocol state of other compliant endpoints.

We have integrated our framework into the Python-based runtime platform de-

veloped by Ocean Observatories Initiative (OOI) [OOIa]. The OOI is a project

to establish a cyberinfrastructure for the delivery, management and analysis of

scientific data from a large network of ocean sensor systems. Its architecture re-

lies on the combination of high-level protocol specifications of network services

(expressed as Scribble protocols [OOIb]) and distributed runtime monitoring to

regulate the behaviour of third-party applications within the system [OOId]. Note

that although this work is in collaboration with OOI, our implementation can be

used orthogonally as a standalone monitoring framework for distributed Python

applications.
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Contributions and outline. We outline the structure of this chapter, summaris-

ing the contributions of each part:

Section 3.1 demonstrates our dynamic MPST framework through an example.

We present a global-to-local projection of Scribble protocols, endpoint im-

plementations, and local FSM generation.

Section 3.2 demonstrates an API for conversation programming in Python that

supports standard socket-like operations, as well as event-driven interface.

The API decorates conversation messages with meta information required

by the monitors to perform dynamic verification.

Section 3.3 discusses the monitor implementation, focusing on key architectural

requirements of our framework.

Section 3.4 evaluates the performance of the monitor implementation through a

collection of benchmarks. The results show that conversation programming

and run-time monitoring can be realised with low overhead.

Section 3.5 surveys theoretical works for MPST verification and explains the cor-

respondence between a theoretical model and our implementation. We also

discuss related and future works.

3.1. Scribble-based Dynamic Verification

This section illustrates the stages of our framework and its implementation through

an use case, emphasising the properties verified at each verification stage. The pre-

sented use case is obtained from our industrial partners Ocean Observatory Insti-

tute (OOI) [OOIa] (use case UC.R2.13 ”Acquire Data From Instrument”). Fig. 3.3

shows a summary of the verification methodology, applied to this particular exam-

ple.

3.1.1. Verification Steps

Global Protocol Correctness. The first level of verification is when designing

a global protocol. A Scribble global protocol for the use case is listed in Fig. 3.2.

Scribble describes interactions between session participants through message pass-

ing sequences, branches and recursion (as explained in Chapter 2). Each mes-

sage has a label (an operator) and a payload. The Scribble protocol in Fig. 3.2
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1 global protocol DataAcquisition(

2 role U, role A, role I) {
3 Request(string:info) from U to A;

4 Request(string:info) from A to I;

5 choice at I {
6 Support () from I to A;

7 rec Poll {
8 Poll() from A to I;

9 choice at I {
10 Raw(data) from I to A

11 @{size(data) <= 512};
12 Formatted(data) from A to U;

13 continue Poll;

14 } or {
15 Stop() from I to A;

16 Stop() from A to U;}}
17 } or {
18 NotSupported from I to A;

19 Stop() from A to I;

20 Stop from A to U;}}

local protocol DataAcquisition

at U

(role U, role A, role I)}
Request(string:info) to A;

choice at I {

rec Poll{

choice at I {

@{size(data) <= 512};
Formatted(data) from A;

continue Poll;

} or {

Stop() from A;}}
} or {

Stop() from A;}}

Figure 3.2.: Global Protocol (left) and Local Protocol (right)

starts by protocol declaration, which specifies the name of the protocol, Data

Acquisition, and its participating roles - a User (U), an Agent service (A) and

an Instrument (I). The overall scenario is as follows: U requests via A to start

streaming a list of resources from I (line 2–3). At line 4 I makes a choice whether

to continue the interaction or not. If I supports the requested resource, I sends a

message Support and the communication continues by A sending a Poll request

to I. The raw resource data is sent from I to A, at A the data is formatted and for-

warded to U (line 6–15). Line 10 demonstrates an assertion construct specifying

that I is allowed to send data packages that are less than 512MB.

The Scribble toolchain validates that a protocol is well-formed and thus pro-

jectable for each role. For example, in each case of a choice construct, the deciding

party (e.g. at I) must correctly communicate the decision outcome unambiguously

to all other roles involved; a choice is badly-formed if the actions of the deciding

party would cause a race condition on the selected case between the other roles,

or if it is ambiguous to another role whether the decision has already been made

or is still pending. A comprehensive overview of the Scribble syntax, and fur-

ther references to the formal conditions for protocol correctness are described in

Chapter 2.
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local protocol DataAquisition at I(role U, role A, role I) 
{    Request(info:string) from A; 
     choice at I {
         Support() to A;
         rec Poll {
             Poll() from A;

       choice at I {
        Raw(data) to A @{size(data) <= 512};

             continue Poll;
         } or {

        Stop() to A;}}
     } or {
          NoSupport() to A; }}

Request
Support

NotSupport

Raw

Stop

Poll

Global Protocol PROJECTION
(At design time)

FSM GENERATION
(At runtime)

PROGRAM FOR U

Verification

FSM FOR U

LOCAL PROTOCOL FOR U LOCAL PROTOCOL FOR I LOCAL PROTOCOL FOR A

FSM FOR A

PROGRAM FOR APROGRAM FOR I

Figure 3.3.: Verification Methodology for DataAcquisition protocol

Local protocol conformance. The second level of verification is performed at

runtime and ensures that each endpoint program conforms to the local protocol

structure. Local protocols specify the communication behaviour for each con-

versation participant. Local protocols are mechanically projected from a global

protocol. A local protocol is essentially a view of the global protocol from the

perspective of one participant role. Projection basically works by identifying the

message exchanges where the participant is involved, and disregarding the rest,

while preserving the overall interaction structure of the global protocol. Fig. 3.3

presents the local protocol for role I.

From the local protocols, an FSM is generated. The FSM, generated from the

local protocol for I is shown in Fig. 3.3. At runtime, the endpoint program is

validated against the FSM states. There are two main checks that are performed.

First, we verify that the type (a label and payloads) of each message matches its

specification (labels can be mapped directly to message headers, or to method calls,

class names or other relevant artefacts in the program). Second, we verify that the

flow of interactions is correct, i.e. interaction sequences, branches and recursions

proceed as expected, respecting the explicit dependencies (e.g. m1() from A to

B; m2() from B to C; imposes a causality at B, which is obliged to receive the

messages from A before sending a message to C).
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Policy validation. The final level of verification enables the elaboration of Scrib-

ble protocols using annotations (@{} in Fig. 3.2). The annotations function as API

hooks to the verification framework: they are not verified by the MPST monitor

itself, but are, instead, delegated to a third-party engine. Various policy domains

(e.g. security policies) can be enforced by integrating engines for predicates on

endpoint state, automata-based properties, etc., as extensions to the core protocol

monitor. Our current implementation uses a Python library for evaluating basic

predicates (e.g. the size check in Fig. 3.2), which is sufficient for the applica-

tion protocols we have developed with [OOIa]. At runtime, the monitor passes

the annotated information, along with the FSM state information, to the appro-

priate policy engine to perform the additional checks or calculations. To plug in

an external validation engine, our toolchain API requires modules for parsing and

evaluating the annotation expressions specified in the protocol.

3.1.2. Monitoring Requirements

Positioning. In order to guarantee global safety, our monitoring framework im-

poses complete mediation of communications: communication actions should not

have an effect unless the message is mediated by the monitor. The tool imple-

ments this principal for both inline and outline monitor configurations. Inline

monitoring relies on internal message interception: the local conversation run-

time, in place at each endpoint, synchronously passes every message (on arrival

or prior to dispatch) through a monitor component. Outline monitoring is realised

by dynamically modifying the application-level network configuration to (asyn-

chronously) route every message through a monitor. Our prototype is built over

an Advance Messaging Queue Protocol (AMQP) [1] transport, where we use the

AMQP exchange-to-exchange binding functionality to perform message rerouting.

A monitor dispatcher is assigned to each network endpoint as a conversation gate-

way. The dispatcher can create new routes and spawn new monitor processes if

needed, to ensure the scalability of this approach.

Message format. To monitor Scribble conversations, our toolchain relies on a

small amount of message meta data, refered to as Scribble header, and embed-

ded into the message payload. Messages are processed depending on their kind,

as recorded in the first field of the Scribble header. There are two kinds of con-

versation messages: initialisation (exchanged when a session is started, carrying
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Conversation API operation Purpose
create(protocol_name, config.yml) Initiate conversation, send invitations
join(self, role, principal_name) Accept invitation
send(role, op, payload) Send a message
recv(role) Receive message from role
recv_async(self, role, callback) Asynchronous receive

Figure 3.4.: The core Python Conversation API operations

information such as the protocol name and the role of the monitored process) and

in-session (carrying the message operation and the sender/receiver roles). Initial-

isation messages are used for routing reconfiguration, while in-session messages

are the ones checked for protocol conformance.

Principals and Conversation runtime. A principal (an application) implements

a protocol behaviour using the Conversation API. The API is built on top of a Con-

versation Runtime. The runtime provides a library for instantiating, managing and

programming Scribble protocols and serialising and (de)serializing conversation

messages. The library is implemented as a thin wrapper over an existing transport

library. The API provides primitives for creating and joining a conversation, as

well as primitives for sending and receiving messages.

3.2. Conversation Programming in Python

The Python Conversation API, a new message passing API, offers a high-level in-

terface for safe conversation programming, mapping the interaction primitives of

session types to lower-level communication actions on concrete transports. The

API primitives are displayed in Fig. 3.4. In summary, the API provides function-

ality for (1) session initiation and joining, (2) basic send/receive.

3.2.1. Conversation Initiation

The Conversation.create method initiates a new conversation. It creates a

fresh conversation id and the required AMQP objects (principal exchange and

queue), and sends an invitation for each role specified in the protocol. Invitations

are sent to principals. Principal names direct the routing of invitation message to

the right endpoint. Each invitation carries a role, a principal name and a name

for a Scribble local specification file. For simplicity, we use a configuration file
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to provide the mapping between roles and principals; another option would be a

naming registry. An example of the configuration file (invitation section) for the

DataAcquisition example is:

...
invitations:
-role: U
principal name: alice
local capability: DataAcquisition.spr

-role: A
principal name: bob
local capability: DataAcquisition.spr

-role: I
principal name: carol
local capability: DataAcquisition.spr

An invitation is accepted using the Conversation.join method. It establishes

an AMQP connection and, if one does not exist, creates an invitation queue for

receiving invitations.

We demonstrate the usage of the API in a Python implementation of the local

protocol projected for the User role. Listing 3.1 gives the User Role implemen-

tation. First, the create method of the Conversation API initiates a new conver-

sation instance of the DataAcquisition protocol (Fig. 3.2), and returns a token

that is used to join the conversation locally. The config.yml file specifies which

network principals will play which roles in this session and the runtime sends in-

vitation messages to each principal. The join method confirms that the endpoint

is joining the conversation as the principal alice playing the role User. Once the

invitations are sent and accepted (via Conversation.join), the conversation is

established and the intended message exchange can proceed. As a result of the

initiation procedure, the runtime at every participant has a mapping (conversation

table) between each role and their AMQP addresses.

3.2.2. Conversation Message Passing

The API provides standard send/receive primitives. Send is asynchronous, mean-

ing that a basic send does not block on the corresponding receive; however, the

basic receive does block until the complete message has been received. An asyn-

chronous receive (recv_async) is also provided to support event-driven usage of

the conversation API. These asynchronous features map closely to those supported
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Listing 3.1: Python program for A: single threaded
class ClientApp(BaseApp):
def start(self):
c = Conversation.create(’DataAcquisition’,

’config.yml’)
c.join(’A’, ’alice’)

resource_request = c.recv(’U’)
c.send(’I’, resource_request)
req_result = c.recv(’I’)

if (req_result == SUPPORTED):
c.send(’I’, ’Poll’)
op, data = c.recv(’I’)

while (op != ’Stop’):
formatted_data = format(data)
c.send(’U’, formatted_data)

c.send(’U’, stop)
else:

c.send([’U’, ’I’], stop) #broadcast
c.stop()

by Pika 1, a Python transport library that adopts continuation-passing style even for

synchronous (blocking) calls. Pika is used as the underlying transport library in

our implementations.

Each message signature in a Scribble specification contains an operation and

payload (message arguments). The API does not mandate how the operation field

should be treated, allowing the freedom to interpret the operation name in vari-

ous ways, e.g. as a plain message label, an RMI method name, etc. We treat the

operation name as a plain label.

Following its local protocol, the program for A receives a request from U and

forwards the message to I. The recv returns a pair, (label, payload) of the mes-

sage. When the message does not have a payload, only the label is returned

(req_result = c.recv(’I’)). The recv method can also take the source

role as a single argument (c.recv(’I’)), or additionally the label of the de-

sired message (c.recv(’I’, ’Request’)). The send method called on the

conversation channel c takes, in this order, the destination role, message oper-

ator and payload values as arguments. In our example, the received payload

resource_request is forwarded without modifications to I. Send is asyn-

1http://pika.readthedocs.org/
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Listing 3.2: Python program for A: event-driven
class ClientApp(BaseApp):
def start(self):
c = Conversation.create(’DataAcquisition’,

’config.yml’)
c.join(’A’, ’alice’)
c.recv_async(’U’, on_request_received)

def on_request_received(self, conv, op, msg):
if (op == SUPPORTED):
conv.send(’I’, ’Poll’)
conv.recv_async(’I’, ’on_data_received’)

else: conv.send([’I’, ’U’], ’Stop’)# broadcast

def on_data_receive(self, conv, op, payload):
if (op != ’Stop’):
formatted_data = format(payload)
c.send(’U’, formatted_data)

else:
conv.send(’U’, ’Stop’)
conv.stop()

chronous, meaning that the operation does not block on the corresponding receive;

however, the basic receive does block until the complete message has been re-

ceived. After A receives the reply from I, the program checks the label value

req_result using conditional statements, if (req_result==’Supported’

). If I replies with ’Supported’, A enters a loop, where it continuously sends

a ’Poll’ requests to I and after receiving the result from I, formats the received

data (format(data)) and resends the formatted result to U.

Event-driven conversations. For asynchronous, non-blocking receives, the Con-

versation API provides recv_async to be used in an event-driven style. List-

ing 3.2 shows an alternative implementation of the user role using callbacks. The

method accepts as arguments a callback to be invoked when a message is received.

We first create a conversation variable similar to the single threaded implemen-

tation. After joining the conversation, A registers a callback to be invoked when a

message from U is received (on_request_received). The callback executions

are linked to the flow of the protocol by taking the conversation id as an argument

(e.g. conv). It also accepts as arguments the label for the message (op) and the

payload (msg). In the message handler for Request, A forwards the received pay-

load to I and registers a new message handler for the next message. Although the
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Figure 3.5.: AMQP networks

event-driven API promotes a notably different programming style, our framework

monitors both this implementation and that in Listing 4.4 transparently without

any modifications.

3.3. Runtime Monitors

3.3.1. Monitoring AMQP Networks

First, we explain the basic model of AMQP middlewares. An AMQP network con-

sists of a federation of distributed message brokers (we use RabbitMQ) supporting

transparent store-and-forward unicast and multicast messaging. AMQP brokers

host two basic messaging abstractions, exchanges and queues. Fig. 3.5 illustrates a

workflow for sending a message from a producer to a consumer. A producer sends

messages to an exchange at its broker, from the exchange messages are routed to

a queue, which is linked to a message consumer. Every message has an associated

routing key, which is specified in the AMQP header of the message. When a queue

is created, it is bound to an exchange via a binding key. An exchange delivers a

message to a queue if the routing key in the message header corresponds to the

binding key between the queue and the exchange.

Next we explain how we use AMQP abstractions to route messages. As ex-

plained in Section 3.1.2, there are two kinds of messages in our system: invitation

messages (and corresponding acknowledgements) and in-session (conversation)

messages. The former are used to establish new sessions between endpoints, while

the latter belong to specific sessions. Depending on the message type either shared

channels or session channels are used to route the messages. Channels are imple-

mented in AMQP as a tuple of an exchange and a routing key. Session channels

have an exchange and a routing key that depend on the conversation id, sender

and receiver roles. Shared channels use the default or a well-known exchange
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with routing keys depending on principal names (see Fig. 3.6 for an illustration of

channel implementations).

Figure 3.6.: Configuration of distributed session monitors for an AMQP-based net-
work

Fig. 3.6 depicts our outline monitor configuration. The interception mechanism

is based on message forwarding. A principal has at least one queue for consuming

messages, although the number of queues can be tuned to use separate queues for

invitations and roles.

We outline a concrete scenario. Principal Alice is authenticated and connected

to her local broker.

1. Authentication creates a network access point for Alice (the Monitor circle

in Fig. 3.6). The access point consists of a new conversation monitor in-

stance, monitor queues (monitor as a consumer), and an exchange. Alice is

only permitted to send messages to this exchange.

2. Alice initiates a new session (creates an exchange with id 1234 in Fig. 3.6)

and dispatches an invitation to principal Bob. The invitation is received and

checked by Alice’s monitor and then dispatched on the shared channel, from

where it is rerouted to Bob’s Monitor.

3. Bob’s monitor checks the invitation, generates the local FSM and session

context for Bob and Bob role (for example client), and allocates a ses-

sion channel (with exchange: 1234 and routing keys matching Bob’s role

(1234.client.∗ and 1234. ∗ .client). The invitation is delivered to Bob’s

queue.
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Figure 3.7.: Monitor workflow for (1) invitation and (2) in-conversation messages

4. Any message sent by Alice (e.g. to Bob) in this session is similarly passed by

the monitor and validated. If valid, the message is forwarded to the session

channel to be routed. The receiver’s monitor will similarly but indepen-

dently validate the message.

The monitor implementation is compatible with a range of monitor configura-

tions. At one end of the spectrum is inline monitoring, where the monitor is em-

bedded into the endpoint code. Then there are various configurations for outline

monitoring, where the monitor is positioned externally to its component. In the

OOI project, our focus has been to integrate our framework for inline monitoring

due to the architecture of the OOI message interceptor stack [OOId].

3.3.2. Monitor Implementation

Fig. 3.7 depicts the main components and internal workflow of our prototype mon-

itor. The lower part relates to conversation initiation. The invitation message car-

ries (a reference to) the local protocol for the invitee and the conversation id (global

protocols can also be exchanged if the monitor has the facility for projection.)

We use a parser generator (ANTLR) to produce, from a Scribble local protocol,

an abstract syntax tree with MPST constructs as nodes. The tree is traversed to

generate a finite state machine, represented in Python as a hash table, where each

entry has the shape:

(current state, transition) 7→ (next state, assertion, var)
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where transition is a quadruple (interaction type, label,sender,receiver), interac-

tion type is either send or receive and var is a variable binder for a message pay-

load. We number the states using a generator of natural numbers. Note that the

FSM generation is based on the translation of local Scribble protocols to FSMs,

presented in Chapter 2.

When a send/receive node is visited, two states are generated, and a linking

transition of type send or receive is added to the transition table. Dummy states

are created on entering a choice subtree and then again for each of the choice

branches. An empty transition connects a dummy initial choice state and branch

states. A recursion is handled by keeping a mapping between a recursion label and

its recursion start state. Processing a node continue results in an empty transition

between a current state and a corresponding recursion start state.

The algorithm for generating FSM from a MPST protocol is presented formally

in Chapter 2. The implementation differs in the treatment of parallel sub-protocols

(i.e. unordered message sequences). For efficiency, we implement the translation

to generate a nested FSM for each conversation thread, avoiding the potential state

explosion that comes from constructing their product. This allows FSM generation

in polynomial time and space in the length of the local protocol. The (nested)

FSMs are stored in a hash table with conversation id as the key. Due to standard

MPST well-formedness (message label distinction), any nested FSM is uniquely

identifiable from any unordered message, i.e. message-to-transition matching in a

conversation FSM is deterministic.

The upper part of Fig. 3.7 relates to in-conversation messages, which carry the

conversation id (matching an entry in the FSM hash table), sender and receiver

fields, and the message label and payload. This information allows the monitor to

retrieve the corresponding FSM (by matching the message signature to the FSM’s

transition function). Assertions associated to communication actions are evaluated

by invoking a library for Python predicate evaluation.

3.4. Evaluation

Our dynamic MPST verification framework has been implemented and integrated

into the current release of the Ocean Observatories platform [OOIc]. This section

reports on our integration efforts and the performance of our framework.
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x = Registry.save("some data")

def save(data):

return RPCClient.request("Registry",

"save", data)

#follows generic Scribble protocol
def request(svc addr, op, args*):

c = create and join("RPCProtocol")
invite and send(svc addr, c, op, args*)
return c.receive()

core conversation primitives:
? create, join, create and join: creation
? invite, invite and send: initial request
? send, receive: in-conversation messages

Application Code

Local Proxy

RPC Library

Conversation

Layer

event-based scheduling ION channels

Figure 3.8.: Translation of an RPC command into lower-level conversation calls

3.4.1. Experience: OOI Integration

The current release of OOI is based on a Service-Oriented Architecture, with all of

the distributed system services accessible by RPC. As part of their efforts to move

to agent-based systems in the next release, and to support distributed governance

for more than just individual RPC calls, we engineered the following step-by-step

transition. The first step was to add our Scribble monitor to the message interceptor

stack of their middleware [OOId]. The second was to propose our conversation

programming interface to the OOI developers. To facilitate the use of session types

without obstructing the existing application code, we preserved the interface of the

RPC libraries but replaced the underlying machinery with the distributed runtime

for session types (as shown in Fig. 3.8, the RPC library is now realised on top

of the Conversation Layer). As wrappers to the conversation primitives, all RPC

calls are now automatically verified by the inline MPST monitors. This approach

was feasible because no changes were required to existing application code, but

at the same time, developers now have the option to use the Conversation API

directly for conversations more complex than RPC. The next step in this ongoing

integration work involves porting higher-level and more complex OOI application

protocols, such as distributed agent negotiation [OOIb], to Scribble specifications

and Conversation API implementations.
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10 RPCs (s)
RPC Lib 0.103
No Monitor 0.108 +4%
Monitor 0.122 +13%

Table 3.1.: Original OOI RPC vs. conversation-based RPC with monitoring dis-
abled/enabled

Seq No-Mon Mon (s)
States (s) (s)
10 0.92 0.95 +3.2%
100 8.13 8.22 +1.1%
1000 80.31 80.53 +0.8%

Par No-Mon Mon
States (s) (s)
10 0.45 0.49 +8%
100 4.05 4.22 +4.1%
1000 40.16 41.24 +2.7%

Table 3.2.: Conversation execution time for an increasing number of sequential and
parallel states

3.4.2. Monitor Performance

The potential performance overhead that the Conversation Layer and monitoring

could introduce to the system is an important consideration. The following per-

formance measurements for the current prototype show that our framework can be

realised at a reasonable cost. Table 3.1 presents the execution time comparing RPC

calls using the original OOI RPC library implementation and the conversation-

based RPC with and without monitor verification. The RPC protocol is shown

below.

global protocol RPC (role R, role P){
request(string) from R to P;

reply(string) from P to R;

}

The protocol represents a request message and a subsequent reply message,

the string payload is the string representation of the labels, and hence is negligible.

On average, 13% overhead is recorded for conversations of 10 consecutive RPCs,

mostly due to the FSM generation from the textual local Scribble protocol (our

implementation currently uses Python ANTLR); the cost of message validation

itself is negligible in comparison.

The second benchmark gives an idea of how well our framework scales beyond

basic RPC patterns. The complexity of the internal monitor overhead is bound by

the number of FSM states, because the most computation intensive operation of

the monitor checking process is a search in the hashtable of all protocol states as to
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find the next state. We measure two scenarios, which we believe, are representative

to demonstrate the overhead incurred by checking.

• Increasing session length (number of messages), for protocols. This case is

marked as “Seq States” in Table 3.2. This is a best-case scenario. The FSM

table for each role contains only two states, hence searching for the next

FSM state is negligible. We use the protocol pattern, given below, and the

results in the table represent the protocol execution time when repeating the

recursive body 10, 100 or 1000 times respectively.

rec Loop {
choice at R {

request(string) from R to P;

reply(string) from P to R;

continue Loop;

} or {
stop(string) from R to P;

ok(string) from P to R;

}

• Increasing protocol size (increasing number of states in the protocol). The

protocol is parameterised on an integer number n, which determines the

number of protocol states. This case is marked as “Par States” in Table 3.2.

We measure the protocol execution time for the pattern, given below, and

show the results for n being 10, 100 and 1000.

par {
request 1 (string) from R to P;

reply 1 (string) from P to R; }
and {

request 2 (string) from R to P;

reply 2 (string) from P to R; }
}

. . .

and {
request n (string) from R to P;

reply n (string) from P to R; }

Par blocks in Scribble represent unordered message exchange. Hence, or-

dering of messages is preserved only inside a parallel branch, and not be-

tween the branches. For example, in the above protocol R can send mes-

sages request 1, . . ., request n in any order and similarly P is allowed to

receive them in any order. Therefore, for the monitor to verify that a given

message is correct (in the worst case) it should traverse all protocol states.
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Hence, this pattern demonstrates a worst case scenario, where the complex-

ity of monitor checking is O(n).

The results, displayed in Table 3.2, show that the overall verification architecture

(Conversation Layer and inline monitor) scales reasonably with increasing session

length (number of message exchanges) and increasing protocol states. Two bench-

mark cases are compared. The main case “Monitor” (Mon) is fully monitored,

i.e. FSM generation and message validation are enabled for both the client and

server. The base case for comparison “No Monitor” (No-Mon) has the client and

server in the same configuration, but monitors are disabled (messages do not go

through the interceptor stack). As above, we found that the overhead introduced

by the monitor when executing conversations of increasing number of recursive

and parallel states is again mostly due to the cost of the initial FSM generation.

We also note that the relative overhead decreases as the session length increases,

because the one-time FSM generation cost becomes less prominent. For dense

FSMs, the worse case scenario results in linear overhead growth w.r.t. the number

of parallel branches, i.e the number of states that can be executed in any order.

In both of the above tables, the presented figures are the mean time for the client

and server, connected by a single-broker AMQP network, to complete one conver-

sation after repeating the benchmark 100 times for each parameter configuration.

The client and server Python processes (including the conversation runtime and

monitor) and the AMQP broker were each run on separate machines (Intel Core2

Duo 2.80 GHz, 4 GB memory, 64-bit Ubuntu 11.04, kernel 2.6.38). Latency be-

tween each node was measured to be 0.24 ms on average (ping 64 bytes). The

full source code of the benchmark protocols and applications and the raw data are

available from the project page [seta].

3.4.3. Use Cases

We conclude our evaluation with some remarks on use cases we have examined.

Table 3.3 features a list of protocols, sourced from both the research community

and our industry partner [OOIa]. We have written protocols in Scribble and have

tested our monitor implementation on more realistic protocol specifications. A

natural question for our methodology, being based on explicit specification of pro-

tocols, is the overhead imposed on developers w.r.t. writing protocols, given that

a primary motivation for the development of Scribble is to reduce the design and

testing effort for distributed systems. Among these use cases, we found the aver-
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Global FSM Generation
Scribble Memory Time

Use Cases from research papers (LOC) (B) (s)
A vehicle subsystem protocol [KMM07] 8 840 0.006
Map web-service protocol [GG07] 10 1040 0.010
A bidding protocol [LHJ05] 26 1544 0.020
Amazon search service [HBH+10] 12 1088 0.010
SQL service [Sal10] 8 1936 0.009
Online shopping system [GCN+07] 10 1024 0.008
Travel booking system [GCN+07] 16 1440 0.013

Use Cases from OOI and Savara
A purchasing protocol [Se] 11 1088 0.010
A banking example [OOIb] 16 1564 0.013
Negotiation protocol [OOIb] 20 1320 0.014
RPC with timeout [OOIb] 11 1016 0.013
Resource Access Control [OOIb] 21 1854 0.018

Table 3.3.: Use case protocols implemented in Scribble

age Scribble global protocol is roughly 10 LOC, with the longest one at 26 LOC,

suggesting that Scribble is reasonably concise.

The main factors that may affect the performance and scalability of our monitor

implementation, and which depend on the shape of a protocol, are (i) the time

required for the generation of FSMs and (ii) the memory overhead that may be

induced by the generation of nested FSMs in case of parallel blocks and interrupts.

Table 3.3 measures these factors for each of the listed protocols. The time required

for FSM generation remains under 20 ms, measuring on average to be around

10 ms. The memory overhead also remains within reasonable boundaries (under

2.0 KB), indicating that FSM caching is a feasible optimisation approach. The full

Scribble protocols can be found at [seta].

From our experience of running our conversation monitoring framework within

the OOI system, we expect that, in many large distributed systems, the cost of a

decentralised monitoring infrastructure would be largely overshadowed by the raw

cost of communication (latency, routing) and other services running at the same

time. Considering the presented results, we thus believe the important benefits in

terms of safety and management of high-level applications come at a reasonable

cost and would be a realistic mechanism in many distributed systems.
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3.5. Related work

In this section, we first explain the correspondence between a theoretical model

for MPST-based monitoring and the implementation, presented in this chapter.

Then we discuss two alternative approaches for MPST verification of dynamic

languages. Then we give an overview of tools and frameworks for runtime verifi-

cation, targeted at checking behavioural constraints.

3.5.1. Formal Foundations of MPST-based Runtime Verification

Our implementation is formalised in a theory for MPST-based verification of net-

works, first proposed in [CBD+12], and later extended in [BCD+13], and pre-

sented in detail in [Che13]. [CBD+12] only gives an overview of the desired prop-

erties, and requires all local processes to be dynamically verified through the pro-

tections of system monitors, while [BCD+13] presents a framework for semanti-

cally precise decentralised run-time verification, allowing mixing of statically and

dynamically components. In addition, the routing mechanism of AMPQ networks

is explicitly presented in [BCD+13], while in [CBD+12] it is implicit.

In summary, [BCD+13] formalises specifications (based on local types) used

to guard the runtime behaviour of processes in a network. Processes are given as

asynchronous π-calculus with fine grained primitives for session initiation. Speci-

fications are embedded into system monitors, each wrapping a principal to ensure

that the ongoing communication conforms to the given specification. Reduction

semantics consist of reduction rules for monitors, processes, and transport. Moni-

tors communicate through the use of global queues; if the message is correct it is

handled by the process, otherwise the process is unaffected.

Next we explain the correspondence between the asynchronous π-calculus with

fine-grained primitives for session initiation and our Python API, and how the

routing mechanism of AMQP brokers and queues is formalised in the theory as

a network transport of routers and a global queue. Regarding the specification

language, in [BCD+13] specifications are given as local types. Instead, for efficient

checking, we use the generation of communicating finite state machines (CFSMs)

from local Scribble protocols, which are equivalent to local types, as has been

shown in Chapter 2.

Networks. AMQP networks with Python monitors are formalised, in [BCD+13],

as a collection of principals [P]α , representing Python processes, a monitor, which
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is augmented with a session environment for specification checking and corre-

sponds to the FSM checking in the implementation, and with a global transport

〈r;h〉, which is a pair a routing table r and a queue h, and abstracts the usage of

AMQP middleware.

More precisely, the AMQP brokers is abstracted in the theory as a routing table.

Messages are delivered to monitors based on mappings in the routing table as to

reflect the forwarding of messages to principal queues by the AMQP broker. The

routing table is a finite map from roles to principals. The global queue used as part

of the transport is indexed on a session name, a message sender and a receiver and

reflects the binding keys, in the implementation, which link AMQP exchanges and

queues (see Fig. 3.6).

A delicate technical difference between the theory and the implementation lies

in handling of out-of-order delivery of messages when messages are sent from

different senders to the same receiver. Asynchrony poses a challenge in the treat-

ment of out-of-order asynchronous message monitoring, and thus, to prevent false

positive results, in the theoretical model, a type-level permutations of actions is

required, e.g a monitor checks messages up to permutations. The use of global

queues and local permutations is inefficient in practice, and thus we have im-

plemented the theoretical model of a global queue as different physical queues.

Specifically, we introduce a queue per a pair of roles, which ensures messages

from the same receivers are delivered in order and are not mixed with messages

from other roles. This model is semantically equivalent to a model of a global

indexed queue, permitting permutation of messages.

Processes. Our Python API embodies the primitives of the asynchronous π-

calculus with fine grained primitives for session initiation, presented in [BCD+13].

The correspondence is given in Fig. 3.9. Note that the API does not stipulate

the use of a recursion and a conditional, which appear in the syntax of session

π-calculus, since these constructs are handled by native Python constructs. The

create method, which, we remind, creates a fresh conversation id and the re-

quired AMQP objects (principal exchange and queue), and sends an invitation for

each role specified in the protocol, corresponds to the action a〈s[r] : T 〉, which

sends on the shared channel a, an invitation to join the fresh conversation s as the

role of r with a specification T . In the implementation, this information is codified

in the message header, which as we have explained contains the new session id

(abstracted as s), the name of the local Scribble protocol (e.g T ) and the role (e.g
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Conversation API operation Purpose
create(protocol_name, config.yml) a〈s[r] : T 〉
join(self, role, principal_name) a(y[r] : T ).P
send(role, op, payload) k[r1,r2]!l〈e〉
recv(role) k[r1,r2]?{li(xi).Pi}i∈I

recv_async(self, role, callback) –

Figure 3.9.: The core Python Conversation API operations and their session pi-
calulus counterparts

r). The invitation action a(y[r] : T ).P models session join. As a result of join

new queues and a routing bindings are created. For example, when Bob joins a

conversation with id of 1234 as the role of client, as shown in Fig. 3.6, an AMQP

binding 1234.client.∗ is created , which ensures all messages to the role of a

client are delivered to Bob. The reduction rule for a(y[r] : T ).P, in the semantics

in [BCD+13], reflects this behaviour by adding a record in the routing table. The

primitive for sending a message k[r1,r2]!l〈e〉 corresponds to the API call send,

and results in sending a message of type s[r1, t2]!l〈e〉, which in the implementation

is codified in the message header, consisting of session id k, sender r1, receiver r2.

label l and a payload e.

Properties of monitored networks. Finally, we give an overview of the funda-

mental properties of monitored networks as presented in [BCD+13]. Due to the

correspondence explained above, these properties are preserved in the context of

the monitor implementation, presented in this chapter.

Local safety states that a monitored process respects its local protocol, i.e. that

dynamic verification by monitoring is sound.

Local transparency states that a monitored process has equivalent behaviour to

an unmonitored but well-behaved process, e.g. statically verified against the

same local protocol.

Global safety states that a system satisfies the global protocol, provided that each

participant behaves as if monitored

Global transparency states that a fully monitored network has equivalent be-

haviour to an unmonitored but well-behaved network, i.e. in which all local

processes are well-behaved against the same local protocols.

Session fidelity states that, as all message flows of a network satisfy global spec-

ifications, whenever the network changes because some local processes take
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actions, all message flows continue to satisfy global specifications.

3.5.2. Alternative Approaches

In this subsection, we survey two recent works which offer alternative approaches

and verification of session types systems with dynamically typed participants and

give valuable insights for future directions of our work.

A recent work [JGP16] investigates dynamically monitoring communication to

enforce adherence to session types in a higher-order setting. In addition, a more

advanced treatment of errors is presented, through a system of blame assignment.

The architecture and the message passing model assumed in the paper are simi-

lar to ours. Specifically, monitors are assigned for each end of a communication

channel similarly to our assignment of monitors and roles, and monitors enforce

the order of which messages are sent and received according to their session type.

They present a system of polarized channels, insisting message queues to have a

definite direction, which reflects the queue creation in our system. The monitor

only checks outgoing messages since the incoming messages are already verified

by a monitor. 2 After surveying different monitoring approaches, authors justify

the placement of a monitor at the end of the queue as the more convenient one

to provide relatively precise blame assignment. To assign blame, in [JGP16], the

monitor maintains a graph data structure that records process spawns through the

execution of the entire system. When an alarm is raised a monitor assigns blame

jointly to all direct ancestor of the failed participant in the graph. The work is the-

oretical and thus is not strictly related to our implementation. However, extending

our implementation with blame assignment capabilities is an interesting topic for

future investigation. Without delegation, blame assignment is trivial since the pro-

cess to blame is the one producing the wrong type. We have already planned to add

delegation to the monitor and this feature has already been implemented in Scrib-

ble. Unfortunately, the addition of delegation complicates significantly the blame

assignment process. The results in [JGP16] are a promising first step towards this

extension.

Another work that explores the safe interplay of statically and dynamically typed

program fragments in the context of session types is [Thi14]. It presents a session

typed functional calculus with synchronous communication and augments it with

a dynamic type. It integrates gradual typing and binary session types. The proxy

2This is also a viable option in our system if we assume trusted monitors at all endpoints.

77



process introduced in their system to mediate the communication between dynami-

cally forked processes can be seen as a monitor. The proxy forwards the operations

between the channels prescribed by the session types. It applies the cast operations

from the session coercion before writing to the other end of the channel. Although

the work presents a theoretical fragment, the recent proposal for Python 3.5 for ad-

dition of typing hints through gradual typing suggests a promising future direction

for the integration of their calculus in Python. However, there are numerous chal-

lenges left, most importantly in their system the communication is synchronous

and the session types used are binary. It also permits more advanced treatment of

choice, which allows a receiver to accept fewer alternatives than the ones provided

by the sender.

3.5.3. Runtime Verification

Distributed runtime verification. The work in [ADM12] explores runtime mon-

itoring based on session types as a test framework for multi-agent systems (MAS).

Global session types are specified as cyclic Prolog terms in Jason (a MAS devel-

opment platform). Their monitor is centralised (thus no projection facilities are

discussed), and neither formalisation, global safety property nor proof of correct-

ness is given in [ADM12]. The approach is later extended in [BMA15], where

no changes are required to the monitored agents and hence existing MASs can be

monitored without accessing to their code, but the monitor detects a violation only

after it took place and even in case of a protocol violation the MAS execution goes

on.

Other works, notably from the multi-agent community, have studied distributed

enforcement of global properties through monitoring. A distributed architecture

for local enforcement of global laws is presented by Zhang et al. [ZSM07], where

monitors enforce laws expressed as event-condition-action. In [MU00], monitors

may trigger sanctions if agents do not fulfil their obligations within given dead-

lines. Unlike such frameworks, where all agents belonging to a group obey the

same set of laws, our approach asks agents to follow personalised laws based on

the role they play in each session.

In runtime verification for Web services, the works [LHJ05, LJH06] propose

FSM-based monitoring using a rule-based declarative language for specifications.

These systems typically position monitors to protect the safety of service inter-

faces, but do not aim to enforce global network properties. The work of Cam-
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bronero et al. [CDVM11] transforms a subset of Web Services Choreography

Description Language into timed-automata and prove their transformation is cor-

rect with respect to timed traces. Their approach is model-based, static and cen-

tralised, and does not treat either the runtime verification or interrupts. Baresi et

al. [BGG04] develop a runtime monitoring tool for BPEL with assertions. A ma-

jor difference is that BPEL approaches do not treat or prove global safety. BPEL

is expressive, but does not support distribution and is designed to work in a cen-

tralised manner. Kruger et al. [KMM10] propose a runtime monitoring framework,

projecting MSCs to FSM-based distributed monitors. They use aspect-oriented

programming techniques to inject monitors into the implementation of the com-

ponents. Our outline monitoring verifies conversation protocols. Gan [GCN+07]

follows a similar but centralised approach of [KMM10]. As a language for pro-

tocol specification, a main advantage of Scribble (i.e. MPST) over alternatives,

such as message sequence charts (MSC), CDL and BPML, is that MPST has both

a formal basis and an in-built mechanism (projection) for decentralisation, and is

easily integrated with the language framework, as demonstrated for Python in this

chapter.

Language-based monitoring tools. A survey on monitoring tools can be found

in [FHR13]. Here we list only a few tools, that we consider, are most related. Jass

[Jas] is a precompiler tool for monitoring the dynamic behaviour of sequential ob-

jects and the ordering of method invocations by annotating Java programs with

specifications that can be checked at runtime. Other approaches to runtime verifi-

cation of program execution by monitors generated from language-based specifi-

cations include: aspect-oriented programming [Lar]; other works that use process

calculi formalisms, such as CSP [Jas]; monitors based on FSM skeletons associ-

ated to various forms of underlying patterns [AAC+05, ATdM07]; and the analysis

of dynamic parametric traces [ATdM07]. Our monitor framework has been influ-

enced by these works and shares similarities with some of the presented runtime

verification techniques. However, the target program domain and focus of our

work are different. Our framework is specifically designed for decentralised mon-

itoring of distributed programs with diverse participants and interleaving sessions,

as opposed to monitoring the execution of a single program and verifying its local

properties. The basis of our design and implementation is the theory of multiparty

session types, over which we have developed practically motivated extensions to

the type language and the methodology for runtime verification.
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3.6. Concluding Remarks

We have implemented a dynamic verification framework for Python programs

based on Scribble protocols. Our implementation automates distributed monitor-

ing by generating FSMs from local protocols. We have integrated our framework

in a large cyberinfrastructure project [OOIa] and we have demonstrated monitor-

ing overhead induces a reasonable overhead. This work is the first step towards

methodologies for better specification and more rigorous governance of network

conversations in distributed systems. In the next two chapters we extend and im-

prove the framework, adding features for exception handling and time constraints.
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4. Monitoring Interruptible Systems

This chapter presents the implementation and formalisation of a new construct

for verifying asynchronous multiparty session interrupts. Asynchronous session

interrupts express communication patterns in which the behaviour of the roles fol-

lowing the default flow through a protocol segment may be overruled by one or

more other roles concurrently raising asynchronous interrupt messages. Previous

attempts at incorporating exception-like constructs into session type theory have

been limited in their practical application and cannot express our use case patterns:

[CHY08] is restricted to binary session types, [CHY08, Car09] do not support

nested interrupts or continuations, and [CGY10, CVB+16], although multiparty,

relies on synchronous exception flags which are not feasible in general distributed

systems.

Extending MPST with asynchronous interrupts is challenging because the in-

herent “communication race conditions“ that may arise conflict with the MPST

safety properties. Taking a continuous stream of messages from a producer to a

consumer as a simple example: if the consumer sends an interrupt message to the

producer to pause or end the stream, stream messages (those already in transit or

subsequently dispatched before the interrupt arrives at the producer) may well con-

tinue arriving at the consumer for some time after the interrupt is dispatched. This

scenario is in contrast to the patterns permitted by standard session types, where

the safety properties guarantee that no message is ever lost or redundant by virtue

of disallowing all protocols with potential races.

This chapter introduces a novel approach based on reifying the concept of scopes

within a protocol at the runtime level when an instance of the protocol is executed.

A scope designates a sub-region of the protocol, derived from its syntactic struc-

ture, on which certain communication actions, such as interrupts, may act on the

region as a whole. At run-time, every message identifies the scope to which it

belongs as part of its meta data. From this information and by tracking the local

progress in the protocol, the runtime at each endpoint in the session is able to re-

solve discrepancies in protocol state by discarding incoming messages that have
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become irrelevant due to an asynchronous interrupt. This mechanism is transpar-

ent to the user process, and although performed independently by each distributed

endpoint, preserves global safety for the session.

We integrate the new interrupt construct in our framework for runtime monitor-

ing presented in Chapter 3. Here we recall the monitoring process. As a session

is conducted at run-time, the monitor at each endpoint uses a finite state machine

(FSM) representation of the local communication behaviour, generated from the

local protocol for its role, to track interactions in a session.

The FSM generation, presented in Chapter 3, is extended to support interruptible

protocol scopes. We treat interruptible scopes by generating nested FSM struc-

tures. In the case of scopes that may be entered multiple times by recursive proto-

cols, we use dynamic FSM nesting (conceptually, a new sub-FSM is created each

time the scope is entered) corresponding to the generation of fresh scope names in

the syntactic model.

Our dynamic MPST framework with interrupts ensures, from the decentralised

monitoring of each local endpoint, that the progress of the session as a whole con-

forms to the original global protocol, and that unsafe actions by an incorrectly

implemented endpoint cannot corrupt the protocol state of other compliant end-

points.

The OOI use cases motivating the work presented in this chapter include a vari-

ety of RPC-based service calls (request-reply) with timeout interrupts, and publish-

subscribe applications where the consumer or other parties can interrupt to pause,

resume and stop remotely driven sensor feeds; we use the latter for the main run-

ning example in this chapter. Although the existing features of Scribble (i.e. those

previously established in MPST theory) are sufficiently expressive for many prac-

tical protocols, we observed that these important patterns could not be directly or

naturally represented without interrupts.

Contributions and outline. We outline the structure of this chapter, summaris-

ing the contributions of each part:

Section 4.1 explains an OOI use case for the extension of Scribble with asyn-

chronous session interrupts. This is a new feature for MPST, giving the first

general mechanism for nested, multiparty interrupts. We discuss why adding

this feature is a challenge in session types.

Section 4.2 discusses the extension of the Python implementation with a new

construct of scopes, and demonstrates the global-to-local projection of in-
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terruptible Scribble protocols, endpoint implementations, and local FSM

generation for monitoring. Section 4.2.1 demonstrates the Python API for

conversation programming in Python, including event-driven conversations.

Section 4.2.2 discusses the treatment of asynchronous interrupts in the mon-

itor implementation.

Section 4.3 presents the supporting theory for asynchronous session interrupts.

We show the soundness of our framework by proving session fidelity, as-

serting that the decentralised verification of a system always conforms to its

global specification.

4.1. Communication Protocols with Asynchronous
Interrupts

This section expands on why and how we extend Scribble to support the specifica-

tion and verification of asynchronous session interrupts, henceforth referred to as

just interrupts. Our running example is based on an OOI project use case, which

we have distilled to focus on session interrupts. Using this example, we outline the

technical challenges of extending Scribble with interrupts.

4.1.1. Use Case: Resource Access Control (RAC)

As is common practice in industry, the cyberinfrastructure team of the OOI project

[OOIa] manages communication protocol specifications through a combination

of informal sequence diagrams and prose descriptions. Fig. 4.1 (left) gives an

abridged version of a sequence diagram given in the OOI documentation for the

Resource Access Control (RAC) use case [OOIb], regarding access control of users

to sensor devices in the ION cyberinfrastucture for data acquisition. In the ION

setting, a User interacts with a sensor device via its Agent proxy (which interacts

with the device via a separate protocol outside of this example). ION Controller

agents manage concerns such as authentication of users and metering of service

usage.

For brevity, we omit from the diagram some of the data types to be carried in

the messages and focus on the structure of the protocol. The depicted interaction

can be summarised as follows. The protocol starts at the top of the left-hand dia-

gram. User sends Controller a request message to use a sensor for a certain

amount of time (the int in parentheses), and Controller sends a start to Agent.
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stop
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1 global protocol ResourceAccessControl(

2 role User as U,

3 role Controller as C, role Agent as A){
4 // U requests the device for some duration

5 req(duration:int) from U to C;

6 start() from C to A;

7 interruptible {// U, C and A in scope

8 rec X {
9 interruptible {// U and A in scope

10 rec Y {
11 data() from A to U;

12 continue Y;}
13 } with {// Interrupts A in Y

14 pause () by U;}
15 resume () from U to A;

16 continue X;

17 }
18 } with {// Interrupts A and C/U in X

19 stop() by U;// Before duration expired

20
21 timeout () by C;// Duration is up

22 }
23 }

Figure 4.1.: Sequence diagram (left) and Scribble protocol (right) for the RAC use
case

The protocol then enters a phase (denoted by the horizontal line) that we label (1),

in which Agent streams data messages (acquired from the sensor) to User. The

vertical dots signify that Agent produces the stream of data freely under its own

control, i.e. without application-level control from User. User and Controller, how-

ever, have the option at any point in phase (1) to move the protocol to the phase

labelled (2), below.

Phase (2) comprises three alternatives, separated by dashed lines. In the up-

per case, User interrupts the stream from Agent by sending Agent a pause mes-

sage. At some subsequent point, User sends a resume and the protocol returns to

phase (1). In the middle case, User interrupts the stream, sending both Agent and

Controller a stop message. This is the case where User does not want any more

sensor data, and ends the protocol for all three participants. Finally, in the lower

case, Controller interrupts the stream by sending a timeout message to User and

Agent. This is the case where, from Controller’s view, the session has exceeded

the requested duration, so Controller interrupts the other two participants to end

the protocol. Note this diagram actually intends that stop (and timeout) can
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arise anytime after (1), e.g. between pause and resume (a notational ambiguity

that is compensated by additional prose comments in the specification).

4.1.2. Interruptible Multiparty Session Types

Fig. 4.1 (right) shows a Scribble protocol that formally captures the structure of

interaction in the Resource Access Control use case and demonstrates the uses of

our new extension for asynchronous interrupts. Besides the formal foundations, we

find the Scribble specification is more explicit and precise, particularly regarding

the combination of compound constructs such as choice and recursion, than the

sequence diagram format, and provides firmer implementation guidelines for the

programmer (demonstrated in Section 4.2.1).

A Scribble protocol starts with a header declaring the protocol name (given as

ResourceAccessControl in Fig. 4.1) and role names for the participants (three

roles, aliased in the scope of this protocol definition as U, C and A). Lines 5 and

6 straightforwardly correspond to the first two communications in the sequence

diagram. The Scribble syntax for message signatures, e.g. req(duration:int),

means a message with operator (i.e. header, or label) req, carrying a payload int

annotated as duration. The start() message signature means operator start

with an empty payload.

We now come to “phase” (1) of the sequence diagram. The new interruptible

construct captures the informal usage of protocol phases in disciplined manner,

making explicit the interrupt messages and the scope in which they apply. Al-

though the syntax has been designed to be readable and familiar to programmers,

interruptible is an advanced construct that encapsulates several aspects of

asynchronous interaction, which we discuss at the end of this section.

The intended communication protocol in our example is clarified in Scribble

as two nested interruptible statements. The outer statement, on lines 7–22,

corresponds to the options for User and Controller to end the protocol via the stop

and timeout interrupts. An interruptible consists of a main body of protocol

actions, here lines 8–17, and a set of interrupt message signatures, lines 18–22.

The statement stipulates that each participant behaves by either (a) following the

protocol specified in the body until finished for their role, or (b) raising or detecting

a specified interrupt at any point during (a) and exiting the statement. Thus, the

outer interruptible states that U can interrupt the body (and end the protocol)

by a stop() message, and C by a timeout().
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// Well−formed ,
// but incorrect semantics:

par {
rec Y {

data() from A to U;

continue Y; }
} and {

// Does not stop the recursion

pause() from U to A;

}
resume () from U to A;

// Naive mixed−choice
// is not well−formed
choice at A {
// A should make the choice

rec Y {
data() from A to U;

continue Y; }
} or {

// ..not U

pause() from U to A;

}
resume () from U to A;

Figure 4.2.: Naive, incorrect interruptible encoding attempts using parallel (left)
and choice (right)

The body of the outer interruptible is a labelled recursion statement with

label X. The continue X; inside the recursion (line 16) causes the flow of the

protocol to return to the top of the recursion (line 8). This recursion corresponds

to the loop implied by the sequence diagram that allows User to pause and resume

repeatedly. Since the recursion body always leads to the continue, Scribble pro-

tocols of this form state that the loop should be driven indefinitely by one role,

until one of the interrupts is raised by another role. This communication pattern

cannot be expressed in multiparty session types without interruptible.

The body of the X-recursion is the inner interruptible, which corresponds

to the option for User to pause the stream. The stream itself is specified by the

Y-recursion, in which A continuously sends data() messages to U. The inner

interruptible specifies that U may interrupt the Y-recursion by a pause() mes-

sage, which is followed by the resume() message from U before the protocol

returns to the top of the X-recursion.

4.1.3. Challenges of Asynchronous Interrupts in MPST

The following summarises our observations from the extension and usage of MPST

with asynchronous interrupts. We find the operational meaning of interruptible

as illustrated in the above example, is readily understood by architects and devel-

opers, which is a primary consideration in the design of Scribble. However, the

question is how to preserve the desired safety properties for session based sys-

tems in the presence of interruptible. The challenges stem from the fact that

interruptible combines several tricky, from a session typing view, aspects of
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communication behaviours that session type systems traditionally aim to prohibit,

in order to prevent communication races and thereby ensure the desired safety

properties.

A key aspect, due to asynchrony, is that an interrupt may occur in parallel to the

actions of the roles being interrupted (e.g. pause by U to A while A is streaming

data to U). Although standard MPST (and Scribble) support parallel sub-protocols

(unordered message delivery), the interesting point here is that the nature of an in-

terrupt is to preclude further actions in another parallel flow under the control of a

different role, whereas the basic MPST parallel does not permit such interference.

Fig. 4.2 (left) is a naively incorrect attempt to express this aspect without interrupt-

ible: the second parallel path is never able to intefere with the first to actually stop

the recursion.

Another aspect is that of mixed choice in the protocol, in terms of both com-

munication direction (e.g. U may choose to either receive the next data or send

a stop), and between different roles (e.g. U and C independently, and possibly

concurrently, interrupt the protocol) due to multiparty. Moreover, the implicit in-

terrupt choice is truly optional in the sense that it may never be selected at runtime.

The basic choice in standard MPST (e.g. as defined in [HYC08, DY12]) is inade-

quate because it is designed to safely identify a single role as the decision maker,

who communicates exactly one of a set of message choices unambiguously to all

relevant roles.Fig. 4.2 (right) demonstrates a naive mixed choice that is not well-

formed (it breaks the unique sender condition, presented in Section 2.1.2).

Due to the asynchronous setting, it is also important that interruptible does

not require implicit synchronisations to preserve communication safety.

4.2. Programming and Verification of Interruptible
Systems

This section discusses implementation details of our monitoring framework and

the accompanying Python API (Conversation API) for writing monitorable, dis-

tributed interruptible MPST programs. The design and implementation of a gen-

eral, asynchronous MPST interrupt mechanism in the protocol language and API

for endpoint implementation is a contribution of this thesis.

We first recall the verification methodology of our framework from Chapter 3.

Developers write endpoint programs in native Python using the Conversation API
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Conversation API operation Purpose
create(protocol_name, config.yml) Initiate conversation, send invitations
join(self, role, principal_name) Accept an invitation
send(role, op, payload) Send a message
recv(role) Receive a message from a role
recv_async(self, role, callback) Asynchronous receive
scope(msg) Create a conversation scope
close() Close the connection (implicit)

Figure 4.3.: The core Python Conversation API operations

extended with a new construct for handling scopes. The execution of these op-

erations at each endpoint is performed by the local conversation library runtime.

The API enables MPST verification of message exchanges by the monitor by em-

bedding a small amount of MPST meta data (e.g. conversation identifier, message

kind and operator, source and destination roles), based on the actions and current

state of the endpoint, into the message payload. For each conversation initiated

or joined by an endpoint, the monitor generates an FSM from the local protocol

for the role of the endpoint. The monitor uses the FSM to track the progress of

this conversation according to the protocol, validating each message (via the meta

data) as it is sent or received.

4.2.1. Interrupt Handling via Conversation Scopes

Fig. 4.3 recalls the core API operations. The basic API operations are (1) ses-

sion initiation and joining, (2) basic send/receive. We extend the API to provide

functionality for conversation scope management for handling interrupt messages.

We demonstrate the usage of the API in a Python implementation of the lo-

cal protocol projected for the User role. Fig. 4.4 gives the local protocol and its

implementation.

First, the create method of the Conversation API (line 6, right) initiates a new

conversation instance of the ResourceAccessControl protocol (Fig. 4.1), and

returns a token that can be used to join the conversation locally. The config.

yml file specifies which network principals will play which roles in this session

and the runtime sends invitation messages to each. The join method confirms

that the endpoint is joining the conversation as the principal alice playing the

role User, and returns a conversation channel object for performing the subse-

quent communication operations. Once the invitations are sent and accepted (via
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1 class UserApp(BaseApp):
2 user, controller, agent =
3 [’User’, ’Controller’, ’Agent’]
4 def start(self):
5 self.buffer = buffer(MAX_SIZE)
6 conv = Conversation.create(
7 ’RACProtocol’, ’config.yml’)
8 c = conv.join(user, ’alice’)
9 c.send(controller, ’req’, 3600)

10 with c.scope(’timeout’, ’stop’) as c_x:
11 while not self.should_stop():
12 with c_x.scope(’pause’) as c_y:
13 while not self.buffer.is_full():
14 data = c_y.recv(agent)
15 self.buffer.append(data)
16 c_y.send_interrupt(’pause’)
17 use_data(self.buffer)
18 self.buffer.clear()
19 c_x.send(agent, ’resume’)
20 c_x.send_interrupt(’stop’)
21 c.close()

local protocol RACProtocol

at U (role C, role A){
req(duration:int) to C;

interruptible {
rec X {

interruptible {
rec Y {

data() from A;

continue Y;

}
} with {

pause () by U;

}
resume () to A;

continue X;

}
} with {

stop() by U;

timeout () by C;

}
}

Figure 4.4.: Python implementation (left) for the User role and Scribble local pro-
tocol (right)

Conversation.join), the conversation is established and the intended message

exchanges can proceed.

Following its local protocol, the User program sends a request to the controller

, stating the duration for which it requires access to agent. The send method

called on the conversation channel c takes, in this order, the destination role, mes-

sage operator and payload values as arguments. The recv method can take the

source role as a single argument, or additionally the operator of the desired mes-

sage.

Interrupt handling. The implementation of the User program demonstrates a

way of handling conversation interrupts by combining conversation scopes with

the Python with statement (an enhanced try-finally construct). We use with to

conveniently capture interruptible conversation flows and the nesting of interrupt-

ible scopes, as well as automatic close of interrupted channels in the standard

manner, as follows. The API provides the c.scope() method, as in line 10, to

create and enter the scope of an interruptible Scribble block (here, the outer

interruptible of the RAC protocol). The timeout and stop arguments associate

these message signatures as interrupts to this scope. The conversation channel
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c_x returned by scope is a wrapper of the parent channel c that (1) records the

current scope of every message sent in its meta data , (2) ensures every send and

receive operation is guarded by a check on the local interrupt queue, and (3) tracks

the nesting of scope contexts through nested with statements. The interruptible

scope of c x is given by the enclosing with (lines 10–20); if, e.g., a timeout is

received within this scope, the control flow will exit the with to line 21. The inner

with (lines 12–16), corresponding to the inner interruptible block, is associated

with the pause interrupt. When an interrupt, e.g. pause in line 16, is thrown

(send_interrupt) to the other conversation participants, the local and receiver

runtimes each raise an internal exception that is either handled or propagated up,

depending on the interrupts declared at the current scope level, to direct the in-

terrupted control flow accordingly. The delineation of interruptible scopes by the

global protocol, and its projection to each local protocol, thus allows interrupted

control flows to be coordinated between distributed participants in a structured

manner.

The scope wrapper channels are closed (via the with) after throwing or handling

an interrupt message. For example, using c_x after a timeout is received (i.e.

outside its parent scope) will be flagged as an error. By identifying the scope of

every message from its meta data, the conversation runtime (and monitor) is able

to compensate for the inherent discrepancies in protocol synchronisation, due to

asynchronous interrupts between distributed endpoints, by safely discarding out-

of-scope messages. In our example, the User runtime discards data messages

that arrive after pause is thrown. To prevent the loss of such messages in the

application logic when the stream is resumed, we could extend the protocol to

simply carry the id of the last received data element in the payload of the resume

(in line 19). The API can also make the discarded data available to the programmer

through secondary (non-monitored) operations.

Message handlers with scopes. As demonstrated in Chapter 3, our Python API

supports asynchronous message receive through the primitive recv_async. The

construct is used to register a method that should be invoked on message receive.

To support event-driven programming with interrupts, we extend the implemen-

tation presented in Chapter 3. The difference is in the signature and semantics

of event handlers. More precisely, each event handler is associated not only to

the conversation channel (as in Chapter 3), but is registered for a particular scope.

Therefore, if an interrupt is received, but the protocol state is not in the same scope
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1 class UserApp(BaseApp):
2 def start(self):
3 self.buffer = buffer(MAX_SIZE)
4 conv = Conversation.create(
5 ’RACProtocol’, config.yml)
6 c = conv.join(user, ’alice’)
7 # request 1 hour access
8 c.send(controller, ’req’, 3600)
9 c_x = c.scope(’timeout’, ’stop’)

10 c_y = c_x.scope(’pause’)
11 c_y.recv_async(agent, recv_handler)
12
13 def recv_handler(self, c, op, payload):
14 with c:
15 if self.should_stop():
16 c.send_interrupt(’stop’)
17 elif self.buffer.is_full():
18 self.process_buffer(c, payload)
19 else:
20 self.buffer.append(payload)
21 c.recv_async(agent, recv_handler)
22
23 def process_buffer(self, c, payload):
24 with c:
25 c_x = c.send_interrupt(’pause’)
26 use_data(self.buffer, payload)
27 self.buffer.clear()
28 c_x.send(agent, ’resume’)
29 c_y = c_x.scope(’pause’)
30 c_y.recv_async(agent, recv_handler)

Figure 4.5.: Event-driven conversation implementation for the User role

as the scope written in the conversation header of the interrupt message, the inter-

rupt will be discarded.

Fig. 4.5 shows an alternative implementation of the user role using callbacks.

We first enter the nested conversation scopes according to the potential interrupt

messages (lines 9 and 10). The callback method (recv_handler) is then reg-

istered using the recv_async operation (line 11). The callback executions are

linked to the flow of the protocol by taking the scoped channel as an argument

(e.g. c on line 13). Note that if the stop and pause interrupts were not declared

for these scopes, line 16 and line 25 would be considered invalid by the monitor.

When the buffer is full (line 17), the user sends the pause interrupt. After rais-

ing an interrupt, the current scope becomes obsolete and the channel object for

the parent scope is returned. After the data is processed and the buffer is cleared,
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C!req(int)
new scope

A?data

A!pauseA!resume

{C, A}!stopC?timeout

Figure 4.6.: Nested FSM generated from the User local protocol

the resume message is sent (line 28) and a fresh scope is created and again regis-

tered for receiving data events (line 29). Although the event-driven API promotes

a notably different programming style, our framework monitors both this imple-

mentation and that in Fig. 4.4 transparently without any modifications.

4.2.2. Monitoring Interrupts

The algorithm for generating a FSM from a MPST protocol is presented in Chap-

ter 2 and its implementation is given in Chapter 3. Here we outline only the

changes needed to support interrupts.

FSM generation for interruptible local protocols makes use of nested FSMs.

Each interruptible induces a nested FSM given by the main interruptible block,

as illustrated in Fig. 4.6 for the User local protocol. The monitor internally aug-

ments the nested FSM with a scope id, derived from the signature of the interrupt-

ible block, and an interrupt table, which records the interrupt message signatures

that may be thrown or received in this scope. Interrupt messages are marked via

the same meta data field used to designate invitation and in-conversation messages,

and are validated in a similar way except that they are checked against the interrupt

table. However, if an interrupt arrives that does not have a match in the interrupt

table of the immediate FSM(s), the check searches upwards through the parent

FSMs; the interrupt is invalid if it cannot be matched after reaching the outermost

FSM.
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GResCont = U→C : req;C→A : start
{|µX .
{|µY.A→U :data;Y |}c2〈pause by U〉;
U→A : resume;X
|}c1〈stop by U, timeout by C〉;end

Figure 4.7.: Global type for the Resource Access Control protocol Fig. 4.1

4.3. Multiparty Session Types with Asynchronous
Interrupts

This section presents the underlying session type theory with interrupts and its

correctness result, session fidelity, justifying our choice for the implementation

of interrupt messages. We show that interruptible blocks can be treated through

the use of scopes, a new formal construct that makes explicit, through an explicit

identifier, the domain of interrupts.

In our theory, we manipulate global types, which correspond to global protocols,

as presented in Chapter 2, and local types, which are used to express monitored

behaviours of processes [BCD+13].

Global session type for RAC use case. In Fig. 4.7, to introduce the syntax of

global types informally, we first show a global type which corresponds to the Scrib-

ble protocol Fig. 4.1. The formal syntax for the new constructs for handling scopes

will be given in the next subsection. The first line denotes the two interactions at

the start between the three participants. The outer loop is embedded inside a scope

construct, explicitly by c1. The inner loop is embedded inside another scope c2.

The information directly after the scope describes how it can be interrupted.

We insist on the fact that the formal global type GResCont is very close to its

Scribble counterpart in Fig. 4.1. The main difference comes from the explicit

naming of the scopes (here, c1 and c2). Note that:

• Our types are equi-recursive and every scope annotation has to be differ-

ent, so in this representation c2 actually stands for an infinite set of scopes

(ci
2)i≥0, one for every unfolding of the recursion of X .

• This example requires to enrich the syntax presented below with interrupt-

ible constructs accepting two interrupt messages, which can be performed

either by slightly updating the semantics or by encoding the example into
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two nested interruptible constructs.

4.3.1. Global and Local Types

We extend the definition of global and local types, presented in Chapter 2, Defini-

tion 2.2.1 and 2.3.10 respectively, with constructs for handling interrupts.

The inductive definition of G in the upper half of Fig. 4.8 recalls the syntax of

global types and highlights the new constructs. Notice that, for readability, in this

theory section, we simplify the basic interaction structure A→B :{li.Gi}i∈I . More

precisely, we do not specify the content of messages (or their type), as it is irrele-

vant in the presented semantics. Therefore, the interaction A→B :{li.Gi}i∈I stands

for a message from A to B containing a label chosen by A between the li, where

each label li corresponds to a specific continuation Gi We remind that G1 | G2

denotes the parallel composition of two protocols; µt.G and t are, respectively,

the recursion construct and the recursion variable, and end is the end of a protocol.

Scopes. We use scopes to delimit interruptible blocks inside protocols. In types,

scopes are made explicit by the use of scope variables c. We assume there is an

infinite set of such variables and that no two variables are the same inside global

types. This is crucial as our syntax contains recursion: recursive types are treated

as equi-recursive terms, meaning that the lazy unfolding of the types is implicit;

thus, when a scope variable appears inside of a recursion loop, it actually stands

for an infinite number of fresh variables. We consider that this is an appropri-

ate abstraction of the dynamic scope generation present in the implementation in

Section 4.2.2.

Interrupts. Our types feature a new interrupt mechanism by explicit interrupt-

ible scopes: we write {|G|}c〈l by A〉;G′ to denote a creation of an interruptible

block identified by scope c, containing protocol G (called inner protocol), that can

be interrupt by a message l from A and continued after completion (either normal

or exceptional) with protocol G′ (called continuation protocol). This construct

corresponds to the interruptible of Scribble, presented in Section 4.1. For the

sake of clarity, we suppose there is only one possible interrupt message (from one

particular role) for each scope, but extending it to multiple interrupt messages (pos-

sibly from different roles) is not difficult. Note that we allow interruptible scopes

to be nested.
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G ::= A→B :{li.Gi}i∈I | G|G | | µt.G | t | end

| {|G|}c〈l by A〉;G′ | Eend

T ::= B!{li.Ti}i∈I | B?{li.Ti}i∈I | T |T | µt.T | t | end |

| {|T |}c / 〈B!l〉;T ′ | {|T |}c . 〈B?l〉;T ′ | Eend

Figure 4.8.: Global and local types

We use Eend to denote the exceptional termination of a scope. As a result, Eend

is not present in a specification and will appear at runtime, to denote that a block

has been interrupted.

Local types. The syntax is presented in the lower half of Fig. 4.8 and the new

constructs for handling interrupt are highlighted . We remind that A!{li.Ti}i∈I de-

notes emitting a message, A?{li.Ti}i∈I stands for receiving a message, and parallel

composition T | T , recursion and ending constructs serve the same purpose as their

global type counterparts.

For scopes, the main difference is that the interruptible operation is divided into

two sides, one / side for the role which can send an interrupt {|T |}c / 〈B!l〉;T ′,

and the . side for the roles which should expect to receive an interrupt message

{|T |}c . 〈B?l〉;T ′.

Well-formedness. As explained in Chapter 2 global types are subject to some

well-formedness conditions [HYC08], which constrain the type syntax. We as-

sume every global type G is well-formed according to the conditions from Sec-

tion 2.1.2, and handling interruptible blocks introduces a unique condition: unique-

ness of scope names, meaning that in a (equi-recursive) well-formed type, a scope

name appears only once in an interruptible construct (note that, as explained above,

scope names inside recursions are considered as name generators).

Projection. Fig. 4.9 defines the projection operation ↑ A, which, for any partici-

pant playing a role A in a session G, specifies its local type. We write A ∈ G when

role A appears in global type G either as an endpoint in an interaction (sender or

receiver) or as role allowed to send an interrupt message in a scope construct.

The projection rules themselves are identical to the ones in [HYC08] except

the interrupts: an interaction is projected as a send action B! of the sender side, a
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We assume A, B and A0 are pairwise distinct.
(A→B :{li.Gi}i∈I) ↑ A = B!{li.(Gi ↑ A)}i∈I

(A→B :{li.Gi}i∈I) ↑ B = A?{li.(Gi ↑ B)}i∈I

(A→B :{li.Gi}i∈I) ↑ A0 = t(G1 ↑ A0)
(µt.G) ↑ A0 = µt.(G ↑ A0) when A0 ∈ G
(µt.G) ↑ A0 = end otherwise

t ↑ A0 = t

end ↑ A0 = end

{|G|}c〈l by B〉;G′ ↑ A = {|G ↑ A|}c . 〈A?l〉;G′ ↑ A
{|G|}c〈l by A〉;G′ ↑ A = {|G ↑ A|}c / 〈A!l〉;G′ ↑ A

when A ∈ G
{|G|}c〈l by B〉;G′ ↑ A = G′ ↑ A

otherwise

Figure 4.9.: Projection algorithm

receive B? action on the receiver side and is transparent to other roles (the well-

formedness conditions from [HYC08] allows us to do as such by ensuring that

every branch is the same to these roles). When projecting types embedded inside a

recursion on a role that does not appear inside the body of the recursion, we project

on the end type end.

When it comes to interruptible constructs, the projection on role A works as

follows: if role A is the role responsible for the interrupt, the projection is a . local

type; and if the role A is not responsible for the interrupt, but appears inside the

inner scope, the projection is a / local type. If A does not appear in the inside

protocol, the projection ignores the construct and amounts to the projection on the

continuation.

As an example, we give projections of our global type. As stated above, we

restrict ourselves in the formal section to interruptible scopes accepting only one

interrupt message (this can be encoded by two nested scopes), so we omit the

timeout interruption. On role U, projection GResCont ↑ U gives:

C!req;{|µX .{|µY.A?data.Y |}c2 . 〈U?pause〉;A!resume.X |}c1 . 〈U?stop〉;

The two nested scopes can be interrupted by U (hence the . symbol). Projection

GResCont ↑ A of the same global type on A would yield:
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C?start;{|µX .{|µY.U!data.Y |}c2 . 〈U?pause〉;U?resume.X |}c1 / 〈U!stop〉;

As C does not appear inside the loops (and we omit the timeout interrupt), the

projection GResCont ↑ C is:

U?req;A!start;end

4.3.2. Configurations and Semantics

In order to justify our framework, we introduce a semantics for local types through

the use of configurations, which are meant to represent the situation of an on-going

network of monitored principals.

Environments. We identify multiple sessions – possibly instances of the same

global type – taking place simultaneously by a unique session channel (s,k, . . . ),

mimicking the conversation id in our implementation.

Definition 4.3.1 (Session Environments) Session Environments are mappings from

session channels to local types, i.e.

s1[A1] : T1, . . . ,sn[An] : Tn.

The session environments abstract monitored principals. More precisely s1[A1] : T1

is the status of participant A1 in session s1 which is expected to behave as T1. We

use ∆ to denote session environments.

Messages and queues. Standard messages are explained as follows: c[A,B]〈l〉
meaning it appears inside scope c, is sent from A to B and contains label l. We also

annotate messages for interrupts as in cI[A,B]〈l〉. A queue s[A] : h is a sequence

of messages waiting to be consumed by a particular role A in session s. Queues

are ordered, but we allow permutations of two messages in the same queue if they

have different receivers (as in [HYC08, Che13]). For the sake of clarity, we do

not describe here the relaxing of conditions on permutability induced by the use of

scope (we could allow two messages to the same receiver to be permuted if they

are not tagged with the same scope).
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Eε = [] | (Eε |T ) | (T |Eε)

Ec = {|Ec|}c′ 6=c . 〈A?l〉;T ′ | {|Ec|}c′ 6=c / 〈A!l〉;T ′ | {|Eε |}c . 〈A?l〉;T ′

| {|Eε |}c / 〈A!l〉;T ′ | {|Eend|}c′ 6=c . 〈A?l〉;Ec | {|Eend|}c′ 6=c / 〈A!l〉;Ec

| {|end|}c′ 6=c . 〈A?l〉;Ec | {|end|}c′ 6=c / 〈A!l〉;Ec | Ec|T | T |Ec

Figure 4.10.: Evaluation contexts

Configurations. ∆;Σ are pairs composed of a session environment and a trans-

port Σ which is a collection of queues. Configurations model the behaviour of a

network of monitored agents.

We define a reduction semantics for configurations in Fig. 4.11. In order to treat

a message with its corresponding scope, we need to remember from which scope

the message was sent. To this purpose, we enrich the definition of scopes with ε

the empty scope and add a scope annotation on contexts. Evaluation contexts are

defined in Fig. 4.10.

Evaluation contexts. The contexts are indexed by scope c; our definition en-

sures that the evaluation actually happens inside c (i.e. c is the innermost scope in

which the hole appears). Evaluation can proceed from inside the inner scope of an

interruptible (either . or /) construct, or from inside the continuation scope of a

interruptible, but only when the inner scope has ended (normally or exceptionally).

Semantics. The reduction semantics is defined w.r.t. a scope environment.

Definition 4.3.2 (Scope Environment) Scope environment Γ=T ,< is composed

of a scope table

T ::= ε | c : {A1, . . . ,An},T

and a scope order which is the reflexive and transitive closure of the relation given

by: c1 < c2 whenever a global type contains Ec1 [{|G|}c2〈l by A〉;G′]. The scope

table keeps track of every participant in a scope and the scope order keeps track

of scope nesting (when c1 < c2 it means that scope c2 is inside scope c1). We

note Γ(c) = {A1, . . . ,An} whenever Γ=T ,< and T contains c : {A1, . . . ,An}. The

environment is omitted when not necessary.

Semantics rules in Fig. 4.11 are as follows: in bOUTc, an output from A to B

appearing inside the scope c of the type of role A in session s is played and a mes-

sage is placed in the queue s[B], tagged with c. Conversely in bINc, a message
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bOUTc s[A] : Ec[B!{li.Ti}];s[B] : h→
s[A] : Ec[Ti];s[B] : h.c[A,B]〈li〉

bINc s[A] : Ec[B?{li.Ti}];s[A] : c[B,A]〈li〉.h→
s[A] : Ec[Ti];s[A] : h

bEOUTc s[A] : Ec0 [{|T |}c . 〈A?l〉;T ′];s[A1] : h, . . . ,s[An] : h→
s[A] : Ec0 [{|Eend|}c . 〈A?l〉;T ′];
s[A1] : cI[A,A1]〈l〉.h, . . . ,s[An] : cI[A,An]〈l〉.h

bEINc s[A] : Ec0 [{|T |}c . 〈B?l〉;T ′];s[A] : cI[B,A]〈l〉.h→
s[A] : Ec0 [{|Eend|}c . 〈B?l〉;T ′];s[A] : h

bDISCc s[A] : Ec0 [{|Eend|}c . 〈B?l〉;T ′];s[A] : c1[B,A]〈l〉.h→
s[A] : Ec0 [{|Eend|}c . 〈B?l〉;T ′];s[A] : h

bEDISCc s[A] : Ec0 [{|Eend|}c . 〈B?l〉;T ′];s[A] : cI1[B,A]〈l〉.h→
s[A] : Ec0 [{|Eend|}c . 〈B?l〉;T ′];s[A] : h

bPARc ∆,∆0;Σ,Σ0→ ∆′,∆0;Σ′,Σ0 if ∆;Σ→ ∆′;Σ′

In bEOUTc, we assume Γ(c) = {A,A1, . . . ,An}; and in bDISC,EDISCc, we assume Γ `
c < c1.

Figure 4.11.: Reduction semantics for a specification

in queue s[B] can be consumed by B inside a matching scope. In rule bEOUTc, a

type T inside scope c is interrupted by A, which replaces T by Eend and places an

interrupt message in the queues of each participant of scope c (we need the table

from Γ). Conversely in rule bEINc, an interrupt message for scope c is consumed

to exceptionally terminate the type T inside scope c. Rule bDISCc discards an in-

coming message to scope c1 nested inside scope c if the latter has already been

exceptionally terminated (we need the scope order from Γ). Rule bEDISCc performs

the same thing for exceptional messages. The three points highlighted in the im-

plementation 4.2.1 are treated in the theory as follows: (1) scopes are explicitly

present in messages (2) interrupt messages can be fired at any time from the global

queue (see rule bEINc); however, using a single-queue system prevents us from giv-

ing them priority and (3) scope nesting is handled by the definition of evaluation

contexts (which depends on scopes and includes scope nesting in their structures).

Remarks on semantics. Regarding the semantics, we have two remarks. Most

of existing theoretical works such as [HYC08] consider session creations, through
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the use of auxiliary actions. Also the garbage collection can be handled by adding

completion annotation to types and additional rules to control broadcasts of special

messages: when a participant receives a completion message it can assume its

sender is finished, and when every other participants of a scope are finished the

whole interrupt construct can be garbage collected. Both these facilities can be

integrated into the current semantics.

Next we define configuration correspondence.

Definition 4.3.3 (Configuration Correspondence) Configuration ∆,Σ corresponds

to a collection of global types G1, . . . ,Gl whenever Σ is empty and ∆= {Gi ↑ A | A∈
Gl, 1 ≤ i ≤ l}. That is, the environment is a projection of existing well-formed

global types.

We use→∗ to denote the reflexive-transitive closure of→.

Definition 4.3.4 (Derivative) We say that a global type G′ is a derivative of G

whenever G′ can be obtained from G by progressing in the types. The formal

definition is given by taking the reflexive and transitive closure of the ;-relation:

A→B :{li.Gi}i∈I ; Gi {|G|}c〈l by A〉;G0 ; {|Eend|}c〈l by A〉;G0

{|G|}c〈l by A〉;G0 ; {|G′|}c〈l by A〉;G0 if G ; G′ G | G0 ; G′ | G0 if G ; G′

The correctness of our theory is ensured by Theorem 4.3.3. This theorem states

the following property:

Definition 4.3.5 (Session Fidelity) A local enforcement implies global correct-

ness: if a network of monitored agents (modelled as a configuration) corresponds

to a collection of well-formed specifications and makes some steps by firing mes-

sages, then the network can perform reductions (consuming these messages) and

reaches a state that corresponds to a collection of well-formed specifications, ob-

tained from the previous one.

This property guarantees that the network is always linked to the specification, and

proves, that the introduction of interruptible blocks to the syntax and semantics

yields a sound theory.

4.3.3. Type Memory

In order to reconstruct a global type from a configuration, we need to remember

what was the type inside a scope at the moment it was interrupted; this is done by
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using type memories. Type memories are a syntactical construct which works as a

simple way to remember interrupted types. It is needed because we want, in order

to prove session fidelity, to build a well-formed global type from a configuration.

If we use the syntax proposed above, some problems would arise: consider a type

whose scope c contains a sequence interaction between A and B, and suppose the

scope is interrupted by B, but the interrupt message is not yet received by A: we

cannot obtain a session fidelity result, i.e. we cannot build a well-formed session

types from the configuration, the reason being there is no counterpart to the type

currently included in scope c in A, as it as been discarded when B exceptionally

terminated. As a way to remember what B was supposed to do before the interrup-

tion, we use a type memory, that is, a syntactic annotation that remembers the type

in c in B when the interrupt was raised.

Memories. We use a special annotation, called memory to remember what has

been discarded by exceptions. The syntax of memory types is the same as the

one for standard local types except we add Ec[‖T‖]. We define the erase operator

Erase(·) which removes memory annotations from types:

Erase(s[A] : Ec[‖T‖]) = s[A] : Ec[Eend].

We say that a queue has an ongoing exception on c, written ϕ(Σ,c) whenever Σ

contains at least one message cI1[B,A]〈l〉 and c< c1.

Intermediate correspondence. From the definition of the correspondence re-

lation between global types and ∆ we build the intermediate correspondence be-

tween global types and configurations ∆,Σ containing types with memories using

the following updates:

• For normal (not interruptible) messages in the queue, then

∆,s[A] : Ec[T ];Σ,s[B] : h.c[A,B]〈l j〉

becomes

∆,s[A] : Ec[A!{li.Ti}];Σ

for some (Ti)i 6= j
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• For interruptible messages, given participants of c are A,A1, . . . ,An, then

∆, s[A] : Ec[‖T‖]∏1≤i≤k s[Ai] : Ei
c[‖Ti‖],

∏k+1≤ j≤n s[A j] : Ei
c[Tj];Σ,

∏k+1≤ j≤n s[A j] : cI[A,A j]〈l〉.h j

is treated as

∆,s[A] : Ec[T ], ∏
1≤i≤n

s[Ai] : Ei
c[Ti];Σ.

This definition ensures first that ongoing outputs are treated as if they were not

yet emitted, and that ongoing exceptions are treated as if the exceptions were not

yet triggered.

Special semantics for types with memory annotations is obtained by giving

memories the same semantics as Eend w.r.t. contexts and using the following rules

for annotated types (replacing bDISCc, bEDISCc and bEINc) and presented in Fig. 4.12.

For the rule corresponding to bDISCc, we reduce the memory instead of discard-

ing the message. For rules corresponding to bEINc and bEDISCc, in both cases, the

semantics distinguish whether the exception corresponding to the message is “on-

going” or not. If it is the case, it means other exception messages for the same

scope still exist in queue, thus we annotate the type in the scope (which would

have been discarded) as a memory type, in order to remember it. If the excep-

tion message was the last one from its scope, then we remove the whole memory

for this exception by replacing every corresponding memory (in every type) with

Eend.

It is easy to see that ∆,Σ simulates Erase(∆),Σ and that Erase() preserves the

intermediate correspondence w.r.t. G1, . . . ,Gn. Thus in the following we will work

with memory annotated configurations, which are useful because they remember

what local type has been discarded by an exception as long as the type has not been

yet discarded for every participant of the scope.

Results. Theorem 4.3.3 states that if a configuration corresponds to G1, . . . ,Gn

and makes some reduction steps, we can let it make other steps to reach a con-

figuration that corresponds to some derivatives of G1, . . . ,Gn. The intermediate

configurations correspond to the situation where messages are exchanged through

queues.
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bDISC’c assuming s[A] : Ec0 [T ];s[A] : c1[B,A]〈l〉.h→ s[A] : Ec0 [T ′];s[A] : h

s[A] : Ec0 [{|‖T‖|}c . 〈B?l〉; ];s[A] : c1[B,A]〈l〉.h→
Ec0 [{|‖T ′‖|}c . 〈B?l〉; ];s[A] : h

bEIN 1c assuming ϕ(Σ,c)

s[A] : Ec0 [{|T |}c . 〈B?l〉;T ′];s[A] : cI[B,A]〈l〉.h→
Ec0 [{|‖T‖|}c . 〈B?l〉;T ′];s[A] : h

bEIN 2c assuming ¬ϕ(Σ,c)

∏1≤i≤n s[Ai] : Ei
ci [{|‖Ti‖|} . 〈B?l〉; ],

s[A] : Ec0 [{|T |}c . 〈B?l〉;T ′];Σ,s[A] : cI[B,A]〈l〉.h→
∏1≤i≤n s[Ai] : Ei

ci [{|Eend|} . 〈B?l〉; ],

s[A] : Ec0 [{|Eend|}c . 〈B?l〉;T ′];Σ,s[A] : h

bEDISC 1c assuming ϕ(Σ,k1)

s[A] : Ec0 [{|‖E [{|T |}k1 . 〈B?l〉;T ′]‖|}c . 〈B′?l′′〉; ];
Σ,s[A] : kI1 [B,A]〈l〉.h→
s[A] : Ec0 [{|‖E [{|‖T‖|}k1 . 〈B?l〉;T ′]‖|}c . 〈B′?l′′〉; ];Σ,s[A] : h

bEDISC 2c assuming ¬ϕ(Σ,k1)

s[A] : Ec0 [{|‖Ec[{|T |}k1 . 〈B?l〉;T ′]‖|}c . 〈B′?l′′〉; ],

∏1≤i≤n s[Ai] : E1
c[{|‖Ti‖|}k1 . 〈B?l〉;T ′i ];Σ,s[A] : cIi [B,A]〈l〉.h→

∏1≤i≤n s[Ai] : Ei [{|Eend|}ci . 〈B?l〉;Ti],

s[A] : Ec0 [{|‖Ec[{|Eend|}k1 . 〈B?l〉;T ′]‖|}c . 〈B′?l′′〉; ];Σ,s[A] : h

where ϕ(Σ,c) denotes that there is an ongoing exception on c1(c < c1) in one of
the queues in Σ.

Figure 4.12.: Semantics for types with memories
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Theorem 4.3.3 (Session fidelity) If ∆ corresponds to G1, . . . ,Gn and ∆,ε →∗

∆′,Σ′, there exists ∆′,Σ′→∗ ∆′′,ε such that ∆′′ corresponds to G′′1, . . . ,G
′′
n which is

a derivative of G1, . . . ,Gn.

Proof. We prove that if there is an intermediate correspondence between ∆,Σ

and G1, . . . ,Gn and if ∆,ε → ∆′,Σ′, then there is an intermediate correspondence

∆′′ and G′′1, . . . ,G
′′
n which is a derivative of G1, . . . ,Gn by induction on→. A full

proof can be found in Appendix A.

4.4. Related Work

Session Types with Exception Handling Our theoretical work is new, as exist-

ing works for distributed system do not support at the same time nested interrupt,

multiparty protocols and continuations to interruptible blocks. [CHY08, Car09]

contained interactional exceptions for binary only sessions and for web service

choreographies. This approach is different as try-catch blocks are built upon

session-connections—for a single session, exactly two different behaviours are

described—which constrains the shape of the protocols. [CGY10] implements

nested exceptions with queues and a central synchronisation through the use lev-

els. Yet, the interruptible construct is blocking w.r.t. continuations and thus not

truly asynchronous. [CVB+16] proposes exception blocks with handlers for every

message interaction. The set of participants that have to be informed on failure is

generated automatically. This leads to the introduction of synchronisation points

for every exception block and independently of whether an error has been raised

or not. Most importantly, synchronisation is required at every unfolding of a re-

cursion, and thus their model cannot efficiently realise our running example.

Exception handling is common in distributed object-oriented programming [RW95,

XRR98]. Composition Actions have been adapted in [TIRL03] to model fault

tolerant Web services but these works do not address the same models of pro-

tocols. [JP14] presents a copyless message passing model with exceptions and

delegation with a common heap. They do not address distributed systems and

use transaction to restored to a consistent configuration. Service-oriented cal-

culi (e.g. [BLZ03, LPT07b, VCS08]) include compensation or termination han-

dling, but do not coordinate participant behaviour after an exception is raised.

CaSPiS [BBNL08] models binary sessions (and handle nesting with pipes); a ses-

sion can be explicitly terminated by one participant and a termination handler is

104



subsequently activated at the other endpoint.

4.5. Concluding Remarks

We have augmented the dynamic verification framework, presented in Chapter 3

with a new feature for interruptible conversations. In contrast to other exception

handling approaches, our design has the advantage of allowing decentralised mon-

itoring infrastructure, which does not require any synchronisation at runtime. We

have formalised asynchronous interruptions with conversation scopes, and proved

the correctness of our design through the session fidelity theorem. Future work

includes the incorporation of more elaborate handling of error cases, allowing in-

sertions of recovery actions.
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5. Monitoring Real-time Systems

5.1. Timed Monitored Framework

5.1.1. Background

Recent work [BYY14a] extends Multiparty Session Types (MPSTs) with time, to

enable the verification of real-time distributed systems. This extension with time

allows specifications (i.e., timed-MPSTs) to express properties on the causalities

of interactions, on the carried data types, and on the times in which interactions

occur. The work in [BYY14a] enables modular static type checking of distributed

implementations (i.e., processes in a session π-calculus) against timed-MPSTs.

In this chapter, we apply the theories in [BYY14a] to implement a toolchain for

the design of timed specification and dynamic enforcement of real-time distributed

applications. Enforcement capabilities allow time violations to be verified and

corrected at runtime.

We build upon the runtime verification framework, presented in Chapter 3 and

Chapter 4, by extending it with support for time constraints. There is a substantial

difference between the timed and the untimed monitoring framework. We show

that ensuring time-consistency over timed global protocols is non trivial. It re-

quires additional verification checks to be performed to ensure the satisfiability

of time constraints. To enable the verification of real-time distributed systems we

have designed a timed API for Python and enriched the monitor capabilities, pro-

viding recovery mechanism for violated time constraints, which were not explored

in previous works.

Preserving time-transparency for monitored systems is a new challenge with

time. We demonstrate preliminary results on the implications of the dynamic ver-

ification overhead over program correctness.

This work is also partially motivated by our collaboration with the Ocean Ob-

servatories Initiative (OOI) [OOIa], directed at developing a large-scale cyber-

infrastructure for ocean observation. As we have demonstrated in previous chap-

ters (Chapter 3 and Chapter 4), several types of protocols used in the governance
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of the OOI infrastructure (e.g., users remotely accessing instruments via service

agents) can be suitably expressed using Scribble. OOI protocols can be naturally

represented as global protocols as they are distributed, typically multiparty, and

centered on asynchronous communications via FIFO channels. Time constraints

are specified in many OOI use cases, for instance to associate timeouts to requests

when resources can be used for fixed amounts of time, or to schedule the execution

of services at certain time intervals to reduce the busy wait and minimise energy

consumption.

5.1.2. Use Case: Time-bound Log Crawling

To illustrate timed-protocols used in the OOI infrastructure, we present a simple

distributed computation of a word count over a set of logs. The timed global

protocol, depicted Fig. 5.1 using a message sequence chart (MSC)-like notation,

involves three roles: a master M, a worker W and an aggregator A. Each participant

has a clock, xM, xW, and xA, respectively, initially set to 0.1

1. At the beginning of the session M sends W a message of type task together

with a variable of type log (i.e., the list of log names to crawl) and a variable

of type string (i.e., the word to search). The message must be sent by M

within one second (xM < 1) and received by W at time xW = 1. Both M and W

reset their clocks upon sending/receiving the message.

2. The protocol then enters a loop. At each iteration, W replies to M in exactly

20 seconds with a message of type result along with a variable of type

log (i.e., the logs that have been crawled in the given amount of time) and

a variable of type data (i.e., the result of the word search). This message is

received by M at any time satisfying 21.5 < xM < 22.

3. A choice is then made locally to M at time 22: depending on whether the

results are satisfactory or not, the worker chooses to either terminate the

session (message of type end), or to continue the crawling (messages of

type more). If W chooses more all clocks are reset. In both cases the results

of the last iteration are forwarded to A.

4. This timed protocol allows M to wake up at regular intervals (e.g., every 20

seconds) to evaluate the results and decide when to continue or terminate the

loop. Otherwise M can remain idle (e.g., sleep).

1As customary in MPSTs, protocols start synchronously for all roles, hence all clocks start counting
at the same time.
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Figure 5.1.: Global protocol for log crawling in Scribble

5.1.3. A Timed Monitor Framework

Building on the theory in [BYY14a] we have extended the toolchain and frame-

work for verification of choreographic sessions in Python, presented in Chapter 3

with time. As it will be illustrated in Section 5.2, our timed extension of the speci-

fication language Scribble allows a natural representation of global protocols as the

one in Fig. 5.1. Our toolchain supports the top-down development methodology

illustrated in Fig. 5.2 and explained below.

• In step 1, a global communication is specified as a Scribble timed global

protocol. A timed global protocol defines: (a) the causality among interac-

tions in a session involving two or more roles, (b) the datatypes carried by

the messages, and (c) the timing constraints of each interaction. We extend

Scribble with the notion of time from [KY06, BYY14a]: each participant

owns a clock on which timing constraints can be defined. The clock can be

reset many times in a session, and we assume that time flows at the same

pace for all clocks and parts of the system.

• In step 2, the Scribble toolchain performs a sanity, or consistency check

on the timed global protocol produced in step 1. In addition to the well-

formedness checks, explained in Section 2.1.2, a timed global protocol is

also checked against two consistency conditions called feasibility and wait-

freedom. These conditions rule out protocols with unsatisfiable constraints

which would intrinsically force well-intentioned principals to either stop

108



performing actions or continue by violating the protocol’s constraints for

the role they implement.

• In step 3, the Scribble toolchain is used to algorithmically project the timed

global protocol to timed local protocols. Each timed local protocol specifies

the actions in a session (and their timing) from the perspective of a single

role.

• In step 4, principals over a network implement one or more, possibly in-

terleaved, timed local protocols. We will call these implementations timed

endpoint programs. In our prototype implementation, timed local protocols

are written in native Python using our in-house developed conversation API,

presented in Chapter 3. The API is extended with primitives for handling

timeouts and program delays.

• Finally, in step 5, the timed endpoint programs are executed. Each endpoint

is associated to a dedicated and trusted monitor. A monitor checks that the

interactions of the monitored timed endpoint program conform to the imple-

mented timed local protocols. In case of violation, the monitor either throws

a time error (error detection mode), or triggers recovery actions to amend

the conversation (error prevention/recovery mode).

Note that there is a substantial difference between step 2 and step 5: step 2 checks

that the protocol is satisfiable, step 5 checks that the protocol is actually satisfied

by a specific implementation.

Contributions and outline In this chapter we present a toolchain for timed in-

teractions, allowing to

• define timed protocols with Scribble – step 1 Fig. 5.2;

• automatically verify the consistency of these timed protocols (w.r.t. the con-

sistency principle envisaged in [BYY14a]) – step 2 Fig. 5.2;

• automatically project timed protocols onto local timed protocols – step 3

Fig. 5.2; and

• automatically derive runtime monitors from each local timed protocol to

check the incoming/outgoing interactions of the corresponding timed end-

point program – step 4 Fig. 5.2.

The implementation presented in this chapter is based on the theory that is given

in [BYY14a, BYY14b]. Our contribution with respect to [BYY14a, BYY14b]

consists of embedding algorithms and theoretical results into the Scribble toolchain,

applying them to run-time monitoring and assessing the practicality of the overall
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Figure 5.2.: Scribble toolchain framework

approach for timed protocol design and verification.

Concretely, our contributions are: (i) embedding the primitives for timed pro-

tocol specifications from [BYY14a] into the Scribble toolchain, and giving a con-

crete implementation into the Scribble toolchain of the algorithms from [BYY14a]

for consistency checking and projection; (ii) embedding the calculus for timed pro-

tocol implementations into a Python API; (iii) exploiting the encoding from timed-

MPST into Communicating Timed Automata given in [BYY14a] (and detailed in

the corresponding technical report [BYY14b]) to produce run-time monitors for

programs implemented using the API from (ii). In (iii), several monitoring modes

have been provided, with different degrees of ‘intervention’ of the monitor on the

ongoing interactions: from just observing interactions to attempts to fix time mis-

matches. Moreover, we have assessed the practicality of our implementation in

two ways. First, to assess the usability of timed Scribble in more general scenarios

than those we developed in OOI, we have gathered a wider (albeit not exhaustive)

portfolio of properties of timed distributed protocols from literature, and provided

a number of timed patterns which demonstrate how these properties can be ex-

pressed in Scribble. The implementability of the time-properties expressed by

timed Scribble in Python is then demonstrated via examples.
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Second, we investigate the concrete effect of time in our monitoring framework

via benchmarking. We focus on a property, transparency, which is customary in

untimed monitoring frameworks. Transparency (roughly, ‘monitors should not

affect interactions that are correct’) is particularly delicate in timed monitoring

frameworks because monitors may introduce time overhead, hence violations, in

otherwise correct implementations. We introduce a weaker property called timed

transparency (roughly, ‘monitors should have negligible effect on interactions that

are correct’) and provide some experimental observation, which interestingly in-

volve the form of the specific protocols being monitored, to estimate whether the

monitor overhead will be negligible or not.

In the following sections we will discuss in detail each of the steps of the

methodology illustrated in Fig. 5.2.

Section 5.2 (steps 1 and 2) presents Scribble timed global and local protocols,

which are extensions of Scribble global and local protocols, presented in

Chapter 2, and which correspond to timed global and local types in [BYY14a].

Section 5.3 gives a walk-through of the implementation of an algorithm (from

[BYY14b]) for checking consistency over timed Scribble protocols, namely

the feasibility and wait-freedom properties.

Section 5.4 presents our timed API (step 3) in Python based on the calculus with

delays in [BYY14a] (a simple timed extension of the π-calculus used to im-

plement timed local types). More precisely, we add two primitives, timeout

and delay. The former interrupts an ongoing computation to meet an ap-

proaching deadine, while the latter suspends the execution of a program for

a given amount of time.

Section 5.5 discusses runtime enforcement of timed properties (step 4). Timed

local protocols are automatically encoded into timed automata (using the en-

coding from timed local types to timed automata from [BYY14a, BYY14b]),

which are in turn used by our runtime monitors for error detection. Addi-

tional mechanisms for error prevention and recovery are implemented and

explained.

Section 5.6 shows benchmark results.

Section 5.7 evaluates the practicality of our approach, and in particular of our

timed extension of Scribble. We present a number of temporal patterns

drawn from literature together with their Scribble representation.

Section 5.8 discusses related work.

Our prototype implementation is available from [pyt].
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5.2. Specifying Timed Protocols with Scribble

5.2.1. Timed Global Protocols

This subsection introduces some preliminary notations needed for timed Scribble

protocols. First, we recall from Chapter 2 that in Scribble the interactions between

pairs of roles are asynchronous, and can be thought of as being broken down into

two actions: the sending action, which adds a message to an unbounded FIFO

queue, and the receiving action, which collects a message from the queue. We

fix a finite set R ⊂ N of roles ranged over by A,B, . . . which exchange messages

in a protocol. Each interaction in a protocol transmits a label (we assume the set

of labels is finite and is ranged over by a,b,c) and a payload of some sort (e.g.,

int, bool, etc.). We assume that each pair of roles, say A and B, can communicate

along two dedicated channel: one for messages from A to B and one for messages

from B and A.

To model time constraints we fix a set X of real valued clocks (ranged over

by x,x′, . . .) and let each role in a protocol own a finite number of clocks in X ,

assuming that the sets of clocks owned by each role in R is a partition of X . We

let each sending (resp. receiving) action to be annotated with a time-constraint δ

(or simply constraint) and a reset λ ⊆ X . An action can be executed only if the

associated constraint is satisfied, and the clocks in λ must be reset upon execution

of that action. Each role can only reset clocks he/she owns. Note that clocks may

have different values at some point in time, since the roles can reset their clocks

at different times. However, we assume that time flows at the same pace for all of

them (this is a standard assumption e.g. [KY06]). If the time does not flow at the

same pace, no global guarantees can be given.

We extend the syntax of Scribble global protocols, given in Definition 2.2.1 in

Chapter 2, by adding time constraints on message interactions. The grammar for

time constraints and the extended syntax of message interactions is given below.

δ ::= true | x < c | x = c | ¬δ | δ1∧δ2 constraint

[@A : δ ,reset(λ )][@B : δ ′,reset(λ ′)] a(T) from A to B;G interaction

In the above definition of δ , c denotes a constant value in Q≥0. We remind that

messages are of the form a(T) with a being a label and T being the constant type

of the message exchanged (such as real, bool and int).

112



global protocol WordCount(

role M, role A, role W){
[@M: xm<1,reset(xm)]

[@W: xw=1,reset(xw)]

task(log ,string) from M to W;

rec Loop{
[@W: xw=20]

[@M: 21.5<xm<22]

result(data) from W to M;

choice at M{
[@M: xm=22]

[@A: 23<=xa ,reset(xa)]

more(data) from M to A;

[@M: xm=22, reset(xm)]

[@W: xw=23, reset(xw)]

more(string) from M to W;

continue Loop;}
or {

[@M: xm=22][@A: 23<=xa]

end(data) from M to A;

[@M: xm=22][@W: xw=23]

end() from M to W; } }

local protocol WordCount at M(

role A, role W){

[@M: xm<1,reset(xm)]

task(log ,string) to W;

rec Loop{

[@M: 21.5<xm<22]

result(data) from W;

choice at M{

[@M: xm=22]

more(data) to A;

[@M: xm=22, reset(xm)]

more(log ,string) to W;

continue Loop;}
or {

[@M: xm=22]

end(data) to A;

[@M: xm=22, reset(xm)]

end() to W; } }

Figure 5.3.: Scribble timed global protocol for ‘WordCount’ (left) and Projection
onto M (right)

Interactions are annotated with constraints and resets, enclosed by square brack-

ets, and explicitly bound to a role. More precisely, the interaction above has two

time annotations, [@A : δ ,reset(λ )] and [@B : δ ′,reset(λ ′)], one for the sender

A and one for the receiver B. By [@A : δ ,reset(λ )] the message must be sent

at a time satisfying the constraint δ . Furthermore, all clocks in λ are reset upon

sending the message. We assume that only clocks owned by A occur in δ and λ ,

and omit reset(λ ) when λ = /0. Similarly, [@B : δ ′,reset(λ ′)] requires that role

B retrieves the message from the queue at any time satisfying δ ′, and that resets all

clocks in λ ′. We assume that δ ′ and λ ′ are defined only on the clocks owned by B.

Fig. 5.3 (left) shows the global protocol of the example ‘WordCount’ illustrated

in Fig. 5.1 where M is the master, A is the aggregator and W is the worker. For read-

ability, the actual code uses different tabs and newlines (e.g., the interactions are

shown in two lines, with the annotations above), and constraints may use formulae

(e.g, 21.5 < xm < 22, and 23 <= xa) which can be easily derived from the ones

given in the grammar for δ .
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5.2.2. Formal Semantics of Scribble Timed Global Protocols

The formal semantics of global protocols characterises the desired/correct be-

haviour of the roles in a multiparty protocol. Semantics is based on the Labelled

Transition System (LTS) given in Section 2.2 and adapted from [BYY14a] to sup-

port time. The transition labels over which the LTS is defined are extended with a

label for time actions, as highlighted below:

` ::= AB!a(T) | AB?a(T) | t

We remind that label AB!a(T) is for a send action where role A sends to role B

a message a(T), and label AB?a(T) is for a receive action where B receives (i.e.,

collects from the queue associated to the appropriate channel) message a(T) that

was previously sent by A. Action t ∈ R≥0 is a time action modelling the elapsing

of t time units. We allow t = 0 as to account for clock resets. The definition of a

subject of an action, modelling the role that has the responsibility of performing

that action, is also modified to account for time :

sub j(AB!a(T)) = A sub j(AB?a(T)) = B sub j(t) = /0

The LTS is defined over states of the form (ν ,G) where ν : X 7→ R≥0 is a clock

assignment mapping clocks to values in R≥0. We write:

• ν + t for the assignment obtained replacing ν(x) with ν(x)+ t in ν for all

x ∈ X , namely shifting the time forward of t time units.

• [λ 7→ 0]ν for the clock assignment obtained by setting the value of all x ∈ λ

to 0, namely resetting all clocks in λ .

• ν |=t δ if the constraint obtained by substituting each clock x occurring in δ

with ν(x) is satisfied.

We also extend the syntax for intermediary states, which model a message that

has been sent but has not been yet received. The syntax for intermediate states

keeps only the time constraints associated with the receiver. For example,

[@B : δ
′,reset(λ ′)] a(T) from A to B;G

describes the state in which message a(T) has been sent by A but not yet received

by B. The state describes only the time constraints for B. We call runtime global

protocol a protocol obtained by extending the syntax of timed Scribble with these
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ν |=t δ ν
′ = [λ 7→ 0]ν

(ν , [@A : δ ,λ ][@B : δ ′,λ ′] a(T) from A to B;G)
AB!a(T)−−−−→ (ν ′, [@B : δ ′,λ ′] a(T) from A to B;G)

bSENDc

ν |=t δ
′

ν
′ = [λ ′ 7→ 0]ν

(ν , [@B : δ ′,λ ′] a(T) from A to B;G)
AB?a(T)−−−−→ (ν ′,G)

bRECVc

i ∈ {1, ..,n} (ν ,Gi)
`−→ (ν ′,G′i) ` 6= t

(ν ,choice at A {G1} or . . . or {Gn})
`−→ (ν ′,G′i)

bCHOICEc

(ν ,G)
`−→ (ν ′,G′) A,B 6∈ sub j(`) ` 6= t

(ν , [@A : δ ,λ ][@B : δ ′,λ ′] a(T) from A to B;G) `−→ (ν ′, [@A : δ ,λ ][@B : δ ′,λ ′] a(T) from A to B;G′)
bASYNC1c

(ν ,G)
`−→ (ν ′,G′) B 6∈ sub j(`) ` 6= t

(ν , [@B : δ ′,λ ′] a(T) from A to B;G) `−→ (ν ′, [@B : δ ′,λ ′] a(T) from A to B;G′)
bASYNC2c

(ν ,G[rec L G/continue L])
`−→ (ν ′,G′)

(ν ,rec L G)
`−→ (ν ′,G′)

bRECc

ν ′ = ν + t ν ′ |=∗ rdy(G)
(ν ,G)

t−→ (ν ′,G)
bTIMEc

Figure 5.4.: Labelled transitions for timed global protocols.

intermediary states.

The transition rules are given in Fig. 5.4. We have highlighted the major dif-

ferences w.r.t. the transition rules for global protocols (without time), presented

in Fig. 2.4 in Chapter 2. Rule bSENDc models a sending action: given that the

constraint δ associated with the send action of A is satisfied by the current clock

assignment ν (i.e., ν |=t δ ), bSENDc produces a label AB!a(T). The sending action

yields a state in which: the clock assignment ν ′ is obtained from ν by resetting all

the clocks in λ , and the global protocol is in an intermediate state where a(T) has

been sent but not received by B.

Rule bRECEIVEc models the dual receive action, from the intermediate state to

its continuation G. Rule bCHOICEc continues the execution of the protocol as the

continuation of one of the branches, given that the action is not a time action (all
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time actions are all handled by one rule, bTIMEc, which will be discussed later).

Rules bASYNC1c and bASYNC2c caters for asynchrony and distribution, as explained in

the Scribble semantics in Chapter 2. Rule bASYNC1c allows any order of execution

for two send actions that are not causally related (e.g have different subjects),

Rule bASYNC2c is similar but caters for intermediate states, Rule bRECc is standard

and unfolds recursive protocols.

Before explaining the semantics of time passing, modelled by bTIMEc, it is nec-

essary to recall a few notions from [BYY14a]: the ready actions of a protocol and

the satisfiability of ready actions. The ready actions of a runtime Scribble global

protocol G are the actions that have no causal relationship with other actions that

occur earlier, syntactically, in G hence could be immediately executed. For exam-

ple, consider the partial protocols given below:

[@A : δA,reset(λA)][@B : δB,reset(λB)] a(T) from A to B;

[@C : δC,reset(λC)][@D : δD,reset(λD)] a(T) from C to D
(5.1)

[@B : δB,reset(λB)] a(T) from A to B;

[@C : δC,reset(λC)][@D : δD,reset(λD)] a(T) from C to D
(5.2)

The ready actions of (5.1) are AB!a(T) and CD!a(T) and the ready interactions

of (5.2) are AB?a(T) and CD!a(T). We write rdy(G) for the ready constraints of

G, namely the set of constraints associated to the ready actions of G. For example,

if G is the protocol in (5.1) then rdy(G) = {{δA},{δC}}, and if G is the protocol

in (5.2) then rdy(G) = {{δB},{δC}}. The ready constraint set is a set of sets of

constraints, to cater for the choice construct. For example, in the protocol in (5.3),

rdy(G) = {{δ},{δC1,δC2}}, meaning that there are two ready actions: one (i.e.,

the receive action of B) that can be executed given that δ is satisfied, and one (i.e.,

one of the two possible send action from C) that can be executed given that either

δC1 or δC2 is satisfied.

G= [@B : δ ,reset(λ )] a(T) from A to B;

choice at C

{[@C : δC1,reset(λC1)][@D : δD1,reset(λD1)] a1(T) from C to D} or
{[@C : δC2,reset(λC2)][@D : δD2,reset(λD2)] a2(T) from C to D};

(5.3)
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The aim of the semantics of global protocols is to determine the desirable execu-

tions allowed by a protocol. To this aim, we want its semantics of time passing to

allow each participant to be able to execute one of the possible next ready action

of which this participant is subject/responsible. In other words, we want to pre-

vent the elapsing of time intervals that would invalidate the constraint of the action

prescribed by a ready interaction. Consider again the protocol in (5.1) and assume

that δA = x ≤ 20, δC = y < 30 with ν(x) = ν(y) = 0: we want to prevent the LTS

to perform time actions that invalidate any of the two ready actions. Therefore, we

will only allow time steps than do not let time elapse of more than min(20,30) time

units as they would ’not give time’ to A and B to perform their ready action. In the

case of the protocol in (5.3) we want that: (1) the only possible action of B (i.e., δ ),

and (2) at least one of the choice options of C (i.e., δC1 or δC2) remain satisfiable

at present or some times in the future. In Definition 5.2.1 we recall satisfiability of

ready interactions, written ν |=∗ rdy(G), from [BYY14a].

Definition 5.2.1 (Satisfiability of ready interactions) We write ν |=∗ rdy(G) when

the constraints of all ready actions of G are satisfiable under ν or sometimes in the

future. Formally, ν |=∗ rdy(G) iff ∀{δi}i∈I ∈ rdy(G)∃ t ≥ 0, j ∈ I. ν + t |=t δ j.

Finally, we explain rule bTIMEc. The rule allows time to elapse of t time units

yielding a new clock assignment ν ′ = ν + t (recall that ν + t shifts all clocks in

ν of t) as long as this does not invalidate any of the ready actions of G (i.e.,

ν ′ |=∗ rdy(G)). Note that the idle process always allows time to elapse, namely

(ν ,end)
t−→ (ν + t,end) for any t by rule bTIMEc, as end has no ready actions.

5.2.3. Time Properties of Global Protocols

The theoretical framework in [BYY14a] sets two consistency conditions on timed

global types: feasibility and wait-freedom. Feasibility (first introduced in [AFK87])

requires that for each partial execution allowed by a specification there is a correct

complete one, namely that the protocol will not get stuck due to some unsatisfiable

constraint. Wait-freedom requires that if senders respect their time constraints then

receivers never have to wait for their messages. These conditions rule out protocols

which may intrinsically lead to undesirable scenarios, as shown by the examples

in Fig. 5.5.

The protocol pro1 in Fig. 5.5 (left) violates feasibility since it allows A to send

msg at any time satisfying xa < 10, for instance at time 8, for which then B has

no means to satisfy constraint xb < 5 for the corresponding receive action. The
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global protocol pro1(

role A, role B){
[@A: xa<10][@B: xb<5]
M1(string) from A to B;

...}

global protocol pro2(

role A, role B){
[@A: x<10][@B: x<20]

M1(string) from A to B;

[@B: x<20][@A: true]

M2(string) from B to A;

...}

Figure 5.5.: Protocol which violates feasibility (left) and wait-freedom (right)

protocol pro2 in Fig. 5.5 (right) violates wait-freedom as it allows A to send a

message when B is already waiting for it. Assume B to be implemented by a timed

endpoint program that receives M1 at time 5, and then engages in a time-consuming

activity for 14 seconds before sending M2. The plan of B conforms to the timed

behaviour prescribed by pro2 for B. If, however, we compose the timed endpoint

program described before with an implementation of A that sends M1 at time 8, we

have that B will not find the message in the queue at the expected time 5, will ‘be

delayed’ with respect to his planned timing, and may end up violating the contract

at a later action.

In [BYY14a] these conditions (feasibility and wait-freedom) yield progress for

statically validated timed programs, which ensures that the next available action

will be executed in the specified time-range. In the case of dynamically verified

programs against Scribble specifications (as in our timed framework) progress is

difficult to attain. In fact, monitors cannot force timed endpoint programs to send

the remaining messages in a protocol when these programs are deliberately re-

fusing or are not able to do so (e.g., their machine is down). Ensuring that con-

versations are established on feasible and wait-free protocols is, however, a good

practice as it prevents violations of time-progress that are induced by the protocol

itself.

We implemented a syntactic checker for global protocols of feasibility and wait-

freedom, which we will explain in detail in Section 5.3.

5.2.4. Timed Local Protocols

The syntax for Scribble timed local protocols extends the syntax of Scribble local

protocols by time constraints on the message send and receive actions. The new
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constructs are given below:

[@A : δ ,reset(λ )] a(T) to B;T send

[@A : δ ,reset(λ )] a(T) from B;T receive

Local protocol [@A : δ ,reset(λ )] a(T) to B;T models a send action from A

to B; the dual local protocol is [@A : δ ,reset(λ )] a(T) from B;T that models a

receive action of A from B.

The definition of projection of timed global protocols to timed local protocols

differs from the definition 2.3.12 from Chapter 2 in the following way. Each

[@A : δ ,reset(λ )][@B : δ ′,reset(λ ′)] in a global protocol interaction is pro-

jected onto the sender (resp. receiver) by keeping only the time annotations (con-

traints and resets) associated to the send action [@A : δ ,reset(λ )] (resp. the

receive action [@A : δ ′,reset(λ ′)]). More precisely, the projection of G onto

A ∈P(G), written G ↓A, is defined as:

[@A : δ ,reset(λ )] a(T) to B;(G′ ↓A) if G= [@A : δ ,reset(λ )][@B : δ ′,reset(λ ′)]

a(T) from A to B;G′

[@A : δ ′,reset(λ ′)] a(T) from B;(G′ ↓A) if G= [@B : δ ,reset(λ )][@A : δ ′,reset(λ ′)]

a(T) from B to A;G′

The projection for the rest of the Scribble constructs stays unchanged.

For example, the projection onto M of interaction

[@M : xm< 1,reset(xm)][@W : xw= 1,reset(xw)]

task(log,string) from M to W;G

yields

[@M : xm< 1,reset(xm)] task(log,string) to W;(G ↓M)

Fig. 5.3 (right) presents the local protocol resulting from projecting on M the global

protocol ‘WordCount’ Fig. 5.3 (left).

Formal semantics of local protocols. The LTS for local protocols is defined by

the rules in Fig. 5.6, which use the same labels of the global semantics in Fig. 5.4.

We highlight the main differences w.r.t the local semantic for Scribble proto-

cols (without time). given in Fig. 2.5 in Chapter 2. Note that, for readability,

in Fig. 5.6 we omit the explicit reset in the syntax of time constraints and we

write only the clock variable (e.g we write λ instead of reset(λ )). The rules
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ν |=t δ ν
′ = [λ 7→ 0]ν

(ν , [@A : δ ,reset(λ )] a(T) to B;T)
AB!a(T)−−−−→ (ν ′,T)

bSENDc

ν |=t δ ν
′ = [λ 7→ 0]ν

(ν , [@A : δ ,reset(λ )] a(T) from B;T)
AB?a(T)−−−−→ (ν ′,T)

bRECVc

i ∈ {1, ..,n} (ν ,Ti)
`−→ (ν ′,T′i) l 6= t

(ν ,choice at A {T1} or . . .{Tn})
`−→ (ν ′,T′i)

bCHOICEc

(ν ,T[rec L T/continue L])
l−→ (ν ′,T′)

(ν ,rec L T)
l−→ (ν ′,T)

bRECc

ν ′ = ν + t ν ′ |=∗ rdy(T)
(ν ,T)

t−→ (ν ′,T)
bTIMEc

Figure 5.6.: Labelled transitions for local protocols.

bSENDc,bRECVc,bCHOICEc,bRECc are similar to the respective rules for global proto-

cols. We do not need rules for modelling asynchrony as each participant is as-

sumed to be single threaded. For the time passing rule bTIMEc the constraints of the

ready action of T must be still satisfiable after t in ν except T has only one ready

action.

Formal semantics of configurations. The LTS in Fig. 5.6 describes the be-

haviour of each single role in isolation. In the rest of this section we give the

semantics of systems resulting from the composition of Scribble local protocols

and the communication channels. Given a set of roles {1, . . . ,n} we define config-

urations (T1, . . . ,Tn, #»w) where #»w ::= {wi j}i 6= j∈{1,...,n} are unidirectional, possibly

empty (denoted by ε), unbounded FIFO queues with elements of the form a(T).

Definition 5.2.2 (Semantics of configurations) The LTS of (T1, . . . ,Tn, #»w) is de-

fined as follows, with ν being the overriding union (i.e., ⊕i∈{1,...,n}νi) of the clock

assignments νi of the roles:

(ν ,(T1, . . . ,Tn,
#»w))

`−→ (ν ′,(T′1, . . . ,T
′
n,

#»w ′)) iff:
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(1) (νA,TB)
AB!a(T)−−−−→ (ν ′A,T

′
B)∧w′AB = wAB ·a(T)∧ (i j 6= AB⇒ wi j = w′i j ∧Ti = T′i)

(2) (νB,TB)
AB?la(T)−−−−−→ (ν ′B,T

′
B)∧a(T) ·w′AB = wAB∧ (i j 6= AB⇒ wi j = w′i j ∧Tj = T′j)

(3) ∀A 6= B. (νA,TA)
t−→ (νA+ t,TA) ∧ wAB = w′AB ∧

( TA = choice at A {[@B : δi,reset(λi)] ai(Ti) from A;Ti}i∈{1,..,m}

∧ wAB = w′′AB ·as(Ts) for some w′′AB and s ∈ {1, ..,m} ⇒ ν + t |=∗ δs

with A,B, i, j ∈ {1, . . . ,n}.

We explain only (3) since (1) and (2) are the same as the definition of configu-

rations of local protocols (without time), given in Definition 2.2.3 from Chapter 2,

except the addition of clock updates. In (3) the configuration can make a time

action t given that all participants can let time elapse for t time units (i.e., accord-

ing to their ready actions). The additional condition in (3) is needed to cater for

scenarios where the protocol being executed is a choice and the message has been

sent but not yet received i.e., it is stored in a queue. In this case, the sender has

already decided the choice to be taken and it is necessary that time actions preserve

the receiver’s ability of receiving that specific message (i.e., the constraints of the

choice selected by the sender must not to be made unsatisfiable by time actions).

The condition in (3) is needed to guarantee this, as the receiver (and the defini-

tion of receiver’s ready actions) do not take into account the state of the queues.

Consider for example the protocol below:

choice at B {
[@A : x< 10][@B : x< 10] a1(T1) from B to A

[@A : x< 20][@B : x< 20] a2(T2) from B to A}

If the message a1(T1) from B is already in the queue, namely the first branch

has already been chosen. By default, the bTIMEc rule dictates that the time can

elapse as far as there are satisfiable ready actions (e.g., either receiving a1(T1) or

a2(T2)). However, if we allow time to elapse of t = 19 even when the sender has

already chosen the first branch, the receiver will not be able to act as prescribed by

the protocol (i.e., will not be able to receive the sent message a1(T1) at the time

prescribed by the corresponding constraint). In fact, we must not allow bTIMEc to

let elapse for more than 10 unit, otherwise the constraint of the first branch will

become unsatisfiable. The constraints in (3) ensure that if there is a message in

the queue, the time constraints associated with this messages should be satisfiable

after ν + t.
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5.2.5. Correspondence of Global and Local Protocols

First, we recall some preliminary notations from Chapter 2. We write TR(G) for

the set of visible traces obtained by reducing G under the initial assignment ν0.

Similarly for TR(T1, . . . ,Tn,
#»
ε ) where #»

ε is the vector of empty queues. We denote

trace equivalence by ≈. Theorem 5.2.3 gives the correspondence between the

traces produced by a global protocol G and those produced by the configuration

that consists of the composition of the projections of G onto P(G).

Theorem 5.2.3 (Soundness of projection) Let G be a Scribble timed global pro-

tocol and {T1, . . . ,Tn}= {G ↓A}A∈P(G) be the set of its projections, then

G≈ (T1, . . . ,Tn,
#»
ε ).

Theorem 5.2.3 directly follows by: (i) the correspondence between timed Scrib-

ble global protocols and timed-MPSTs global types, the correspondence is trivial

given the correspondence between Scribble global protocols and MPSTs global

types, proven in Chapter 2, since the rules for handling time in the semantics of

timed global protocols are precisely adapted from the rules for handling time in

the semantics of timed-MPSTs, given in [BYY14a]; (ii) trace equivalence between

global types and configuration of projected global types (Theorem 3.3 in [BYY14a]);

(iii) the correspondence between configurations of timed-MPSTs local types and

configurations of timed Scribble local protocols, which similarly follows by the

proven correspondence in Chapter 2 and the precise translation of semantic rules,

w.r.t time, from [BYY14a]. Correspondence is important as it ensures that the

composition of processes, each implementing some timed local protocol, will be-

have as prescribed by the original timed global specification.

5.3. Checking Feasibility and Wait-Freedom

In this section we present a syntactic checker for two time properties on Scribble

global protocols: feasibility and wait-freedom. These properties have been first

introduced in [BYY14a] to guarantee time-progress for statically validated pro-

grams. Time-progress ensures that a validated program is guaranteed to proceed

until the completion of all activities of the protocols it implements. A protocol is

feasible if every partial execution can be extended to a terminated session (i.e., the

execution never gets stuck because of an unsatisfiable clock constraint). A proto-
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Algorithm 1 Algorithm for checking feasibility and wait-freedom in global proto-
cols
Require: G = build time dependency graph(AST) . Step 1

1: for node in G do
2: for (constraints, resets) in dfs(root, node) do . Step 2
3: constraints, resets = convert absolute(constraints, resets) . Step 3
4: formula = build z3 formula(constraints, resets) . Step 4
5: result = formula.is satisfiable()
6: if not result then
7: return False
8: return True

col is wait-free when, in all its distributed implementations, a receiver checking the

queue never has to wait for the message. We have discussed in § 5.2.3 that in our

framework, which differently from [BYY14a] is based on dynamic verification,

these properties do not guarantee time-progress. Feasibility and wait-freedom are

nevertheless important to rule out protocols that may intrinsically lead to viola-

tions. Feasibility provides a sanity check on whether the constraints specified by

a protocol are satisfiable by some implementation. Wait-freedom rules out timed

global protocols whose distributed implementation, built modularly and in con-

formance with each projected timed local protocol, may actually ‘get late’ with

respect to the timing prescribed by the original timed global protocol. In addition,

wait-freedom rules out busy waiting, which is critical in areas such as sensor net-

works, where one of the main sources of energy inefficiency is listening on idle

channels [YHE02].

Algorithm 1 presents the high level steps for checking the above mentioned

properties on global Scribble protocols. In short, the algorithm is based on the

following steps:

• Step 1: Building a time dependency graph, a directed acyclic graph that

models the actual causal dependencies between the actions in a protocol.

The time dependency graph is built by traversing the Abstract Syntax Tree

(AST) of a global Scribble protocol. The nodes of the graph model the

actions of the timed protocol, annotated with constraints and resets, and the

edges model the causal dependencies between actions.

• Step 2: For each node n, do a depth-first-search traversal (dfs) of the graph

and find the set of paths from the initial node to n .

• Step 3: To model the range of ‘absolute’ times (i.e., virtual time) in which
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the state represented by n can be reached, we convert (shift) each time con-

straint with respect to the clock resets of the preceding nodes, yielding a

virtual time constraint δ n for each node n. Then the constraint for each

node n is modified to account for the restrictions imposed by the virtual

time constraints of all preceding nodes (constructed in Step 2) of n.

• Step 4: To check the feasibility property we build a logic formula to check

that the modified constraint of a node n is satisfiable given the restrictions

from previous nodes. For wait-freedom, we check that all solutions for a

receiving node occur at the same or at a later time with respect to any solu-

tions allowed by constraints of preceding nodes. We feed these formulas to

an SMT solver to check if the formulas are satisfiable.

The algorithm terminates either when the maximum number of states are reached,

that is all nodes are checked (Line 8 of Algorithm 1), or when a node is found for

which the feasibility/wait-freedom formulae is unsatisfiable (Line 6-7 of Algo-

rithm 1). The logic used for evaluating node satisfiability (Step 4) forms a subset

of Presburger arithmetic, which is decidable (see e.g., [BYY14b]) therefore the

termination of the algorithm depends on the termination of traversing all nodes.

To ensure the graph traversing always terminates we impose a condition on time

constraints used in recursion bodies (see [BYY14b]). More precisely, we consider

only protocols that are infinitely satisfiable:

Definition 5.3.1 (Infinitely satisfiable) A global protocol is infinitely satisfiable

if: (1) constraints in recursion bodies have no resets, no equalities, no upper

bounds or (2) all participants reset at each iteration.

The above condition ensures that checking the one-time unfolding of each re-

cursion is sufficient to ensure satisfiability of all successive unfoldings. This is the

reason the graph traversing in Step 2 is done on acyclic graph, that is built from a

global protocol after one-time unfolding of all recursions and subsequently replac-

ing continue t with end in the body of the protocol. Therefore, the algorithm

always terminates as it considers finite paths for a finite number of nodes.

The complexity of the algorithm 1 is mostly affected by creating the dependency

graph (linear on the size of the protocol), on enumerating all paths from the root(s)

to a node in the graph (polynomial on the size of the graph) and on the satisfiabil-

ity of Presburger formulae. In general, the asymptotic running-time complexity of

satisfiability of Presburger formulae is doubly exponential. SMT solvers use vari-

ous techniques to reduce the running time and space, thus the precise complexity
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rec Loop {
n1: msg1(string) from A to B;
n2: msg2(string) from A to C;

continue Loop;
}

n1: msg1(string) from A to B;
n2: msg2(string) from A to C;
n3: msg1(string) from A to B;
n4: msg2(string) from A to C;

Figure 5.7.: An example of a recursion protocol (left) and its one-time unfolding
(right).

is solver specific.

In the rest of this section we explain each step of Algorithm 1 in detail.

5.3.1. Step 1: Build the time dependency graph.

As shown in Algorithm 1 to make dependencies between constraints explicit when

checking feasibility and wait-freedom, we create a representation of global timed

protocols as time dependency graphs (hereafter dependency graphs). A depen-

dency graph of a global protocol G is a pair (N,E) where N denotes the set of

nodes and E denotes the set of edges.

To construct the time dependency graph we annotate in G each syntactic occur-

rence of subterms of the form

[@A : δ ,reset(λ )][@B : δ ′,reset(λ ′)]a(T) from A to B;G′

with a node name (denoted by n1,n2,...).

The nodes of the time graph have the form of (n, !,A,δ ,λ ) which represents a

sending action from participant A and (n,?,B,δ ′,λ ′) which represents a receiving

action at participant B.

The time dependency graph represents all causal dependencies in a protocol.

These dependencies are not explicitly captured as the syntactic order of interac-

tions in a Scribble protocol does not necessarily imply a causal dependency be-

tween actions. We illustrate message causalities on an example. Consider the

protocol in Figure 5.7 (left), where we have annotated the interaction nodes (for

simplicity, we have omitted time constraints):

As customary in multiparty session types, the receive action of msg1 by B and

of msg2 by C could happen in any order due to asynchrony of communications,

despite appearing in a specific syntactic order in pro. However, some causal de-

pendencies are indeed enforced by the syntax of protocol pro above:
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n1!

!msg1(a,b)

n1?

?msg1(a,b)

n2!

!msg2(a,c)

n2?

?msg2(a,c)

n3!

!msg1(a,b)

n3?

?msg1(a,b)

n4!

!msg2(a,c)

n4?

?msg2(a,c)

Figure 5.8.: Dependency graph for the protocol in Figure 5.7

1. (I/O dependencies) The receive action of msg1 by B causally depends from

the send action of msg1 by A. Thus, two nodes that are generated from

the same interaction type should be connected by an edge, e.g ((n1, !,A),

(n1,?,B)) ∈ E and ((n2, !,A), (n2,?,C)) ∈ E;

2. (Single participant dependencies) The initial sending of msg1 must occur

before the sending of msg2, by A (namely the syntactic order of actions

in a protocol corresponds to an actual causal dependency when actions are

performed by the same role). Thus, two consecutive interactions for the

same participant should be connected by an edge, e.g. ((n1, !,A), (n2, !,A))∈
E;

3. (Recursion dependencies) Sending of msg2 by A happens both before and af-

ter sending of msg1 by A due to recursion. Following [BYY14a, BYY14b],

we consider the class of global protocol that are infinitely satisfiable (Def-

inition 5.3.1). Infinite satisfiability allows us to check for feasibility and

wait-freedom by checking the one-time unfolding (unfolding all recursions

in the protocol only once), as it guarantees that the same properties will then

hold also in successive unfoldings. Figure 5.7 (right) shows the one-time un-

folding for the protocol in Figure 5.7 (left). Recursion dependencies, as the

ones between msg1 and msg2, are captured in the dependency graph right

away, by considering the one-time unfolding of the global protocol.

All the above dependencies are represented in the dependency graph. The de-

pendency graph for the protocol in Figure 5.7 is shown in Figure 5.8 and the de-

pendency graph for our running example is shown in Figure 5.9. The causal depen-

dencies between sending and their corresponding receive actions are represented

by dotted edges, the ones reflecting the syntactic order of actions performed by

the same role by solid edges, and recursion dependencies are directly captured (as

single participant dependencies) by considering the one-time unfolding. As can

be seen in the figures, an interaction in Scribble is represented as two nodes in
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the time dependency graph: a sending node (!(sender, receiver)) and a receiving

node (?(sender, receiver)) connected by a directed edge from the sending to the

receiving node. For readability, we keep both sender and receiver roles in the node

representation but we bold the role that corresponds to subject(n), we also omit

time constraints.

Formally, dependency graphs are defined inductively (Definition 5.3.2) using

two functions, nodes(G) and edges(G), which given G return the set of nodes and

edges, respectively, of its dependency graph by checking all the sub terms of G. The

function edges(G) uses an auxiliary mappings D, initially empty. The mapping

D : P(G)→ nodes(G) from participants to nodes is for constructing edges of type

(2). We use the information in D to return the node for the last action of each

participant in P(G).

Definition 5.3.2 (Dependency graph) Let G0 be a global protocol and G be its

one-time unfolding. The dependency graph of G0 is a pair (N,E) where N =

nodes(G) and E = edges(G). The functions nodes(G) and edges(G) are defined

as follows:

1. if G′ is n : [@A : δ ,reset(λ )][@B : δ ′,reset(λ ′)] a(T) from A to B;G′′

then:

• nodes(G′) = (n1)∪ (n2)∪nodes(G′′) where n1 = (n, !,A,B,δ ,λ ) and

n2 = (n,?,A,B,δ ′,λ ′)

• edges(G′,D) = (n1,n2)∪ (D(A),n1)∪ (D(B),n2)∪
edges(G′′,D[A 7→ n1,B 7→ n2])

2. if G′ is choice at A G1 or . . .or Gn then

• nodes(G′) =
⋃

i∈[1...n]nodes(Gi)

• edges(G′,D) =
⋃

i∈[1...n]edges(Gi,D)

Every time a node n is added to N, the mapping is updated D[A 7→ n1,B 7→ n2]

and an edge between n and the D(subject(n)) is created, where subject(n) is

the role element (the third or the forth element respectively) in n. Note that the

choice itself does not introduce any new edges or nodes. The causality between

the actions is preserved in the mapping D. All choice branches are traversed with

the same mapping D.

5.3.2. Step 2: Collecting all paths to a node

After the time dependency graph is built, for each node n we collect all paths from

the initial node to n. Each path to n represents a possible execution to the protocol
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1!

!task(m,w)

1?

?task(m,w)

2!

!result(w,m)

2?

?result(w,m)

3!

!more(m,a)

3?

?more(m,a)

4!

!more(m,w)

4?

?more(m,w)

5!

!end(m,a)

5?

?end(m,a)

6!

!end(m,w)

6?

?end(m,w)

7?

?result(w,m)

7!

!result(w,m)

8!

!more(m,a)

8?

?more(m,a)

9!

!more(m,w)

9?

?more(m,w)

10!

!end(m,a)

10?

?end(m,a)

11!

!end(m,w)

11?

?end(m,w)

Figure 5.9.: Time dependency graph for the WordCount protocol

leading to state n, and captures time constraints and resets that should be taken into

account when building the formula to check if the constraint annotating n satisfies

feasibility and wait-freedom. Noticeably, the number of paths to n is finite since

the dependency graph is acyclic. For collecting all paths, we traverse the graph

using a standard modification of depth-first-search with backtracking.

5.3.3. Step 3: Virtual time constraints

The value of a clock variable in a Scribble constraint represents the time elapsed

since the previous resets of that clock variable. To reason on properties of a con-

straint, such as its satisfiability, we need to consider all possible time scenarios

(e.g., all possible ‘pasts’) that lead to the execution point in which that constraint

must be evaluated. We will do this relying on the notion of virtual time (that is the

time elapsed since the beginning of the session) as opposed to relative time (time

elapses since the previous clock reset) and, more precisely, of virtual time con-

straint of a node. The virtual time constraint δ n of a node n of a time dependency

graph models the possible virtual times in which the execution flow may reach a

node n. The virtual time constraint is calculated by taking into account constraints
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of past actions and by ‘shifting’ time to account for previous resets for the clock.

We illustrate Step 3 under the simplifying assumption that each role owns ex-

actly one clock, hence each constrain in a Scribble global protocol has exactly one

free clock variable. As remarked in [BYY14b], the extension to multiple clocks is

considerably more verbose but does not pose qualitative challenges.

We denote by f c(δ ) the free clock variable of δ , and by #»x a finite vector of

clock variables. Assume p owns a clock, we denote with xn the state of the clock

owned by p in node n, where subject(n) = p. We call xn a clock state. A clock

state uniquely identifies (e.g., in a virtual time constraint) the value of the clock of

p in a node n. Below we give the extended definition of δ , which we will use to

reason on clock states.

Definition 5.3.3 (Extended clock constraints (adapted from [BYY14b])) The set

of extended clock constraints δ is:

δ ::= true | x > e | x = e | ¬δ | δ1∧δ2

e ::= x | c | e+ e

To calculate the virtual time in a node, we need to know how many times the

clock variable, say x, of that node, say n, has been reset since the beginning of

the session; to this aim, we define a function R (Definition 5.3.4) that takes n and

returns the sum of clock states in which x has been reset since the beginning of the

session. On the basis of Definition 5.3.4, we obtain time constraints as to represent

constraints on virtual (absolute) time as opposed to constraints on relative time.

More precisely, we shift a time constraint for a node n with a clock xn by adding

all previous states of the clock x where x has been reset. The definition of a sum

of a time constraint and a clock variable is given in Definition 5.3.5. For example,

consider the partial protocol given below.

[@A: xa>2; reset(xa)]

n1: msg1() from A to B;

[@A: xa<1]

n2: msg2() from A to C;

Assume n1! and n2! are the sending nodes for the first and the second interaction

in the dependency graph for the protocol. Then R(n2!) = {xa1} and the clock xa2,

in constraint xa2 < 1, represents a relative time for the clock at A, e.g xa2 measures

the elapsed time between the previous reset of clock xa, which happens at time xa1

and the current time. If we modify the constraint xa2 < 1 to xa2 < 1+R(n2!) (e.g
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xa2 < 1+ xa1) then xa2 represents a value on the absolute timeline of xa.

Next we give the definitions of a reset function R and of δ + x, adapted from

[BYY14b].

Definition 5.3.4 (Reset function (adapted from [BYY14b])) Let n be a node in

the time dependency graph N of G. We denote by ≺G the transitive closure of <G.

The reset set R for a node n contains all clock states where the clock has been

reset.

R(n) = {xn′ | n′ ∈ N∧n′ ≺G n ∧ subject(n) = subject(n′) ∧ resInfo(n′)}

where x′n is the state of the clock at node n′ and resInfo(n′) is true if the clock

has been reset at node n′.

The reset function of n is defined as a sum of all clock states in R.

R(n) = ∑n′∈R(n) xn′

Definition 5.3.5 (Sum of a constraint with a clock (adapted from [BYY14b]))
The sum of δ with a clock x, written δ + x is defined as follows:

true+ x = true

(x′ rop e)+ x =

x′ rop (e+ x) ( f (x,x′) = true)

x′ rop e ( f (x,x′) = false)
with (rop ∈ {>,=})

(¬δ )+ x = ¬(δ + x)

(δ ∧δ ′)+ x = (δ + x)∧ (δ ′+ x)

with f (xn,xn′) =

true (subject(n) = subject(n′))

false (otherwise)

The sum of δ with a vector of clocks is δ + #»x = (δ + x0)+
#»x ′ with #»x = x0 +

#»x ′.

Next we give the formal definition of a virtual time constraint of a node. We

calculate the time scenario of a node recursively as to account for all previously

occurred constraints.

Definition 5.3.6 (Virtual time constraint (adapted from [BYY14b])) Let n be a

node in the time dependency graph N of G with const(n) = δ , and M = {n′ | n′ ∈
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[@A: xa>5 and xa<10;

reset(xa)]

msg1() from A to B;

[@A: xa>5 and xa<10]

[@C: xc<10]

msg2() from A to C;

1

!msg1(A,B)

R(1) = /0
δ 1 =

xa1 > 5 and

xa1 < 10

2

!msg2(A,C)

R(2) = xa1
δ 2 = δ (1)∧

xa2 > 5+ xa1 ∧
xa2 < 10+ xa1∧
xa1 < xa2

3

?msg2(A,C)

R(3) = /0
δ 3 = δ 2∧

xc3 < 10∧
xa2 < xc3

Figure 5.10.: An example of clock resets. A Scribble protocol with resets (a) and
its dependency time graph with dependency resets (b)

N and n′ <G n} be the set of all nodes directly preceding n, The virtual time con-

straint δ n for a node n is

δ n =


(δ [xn/x]+R(n))

∧
n′∈M

(δ n′ ∧ xn′ ≤ xn) if f c(δ ) = x∧
n′∈M

δ n′ if f c(δ ) = /0

Note that if a node does not have incoming edges
∧

n′∈M
δ n′ and

∧
n′∈M

(δ n′ ∧xn′ ≤ xn)

are trivially true.

In the above definition we assume that a node has an unique name n. We first

rename the clock in the constraint of n (e.g., δ [xn/x]) by using this unique node

name, e.g. xn. In this way, xn uniquely identifies the state of the clock in that

node. We shift the constraint to represent a constraint on the virtual timeline, e.g

δ [xn/x]+R(n). Then we take into account all past constraints δ n′ . We model the

linear flow of time in causally related actions by requiring that the virtual time in

node n is after the virtual time in preceding nodes, e.g xn′ ≤ xn.

We illustrate Step 3 by using the example in Figure 5.10 (a). Figure 5.10 (b)

illustrates both the reset function and the virtual time constraints for nodes 1, 2

and 3. In the fragment of the time dependency graph for this example, shown in

Figure 5.10 (b), the receive action of C causally depends from the send action of

msg2 by A (node 2) which, in turn, depends from the send action of msg1 from

A (node 1). The constraints of node 1 and node 2 alone do not give sufficient

information about the virtual time in node 3. For instance, due to the reset of xa

in the first action, the action in node 3 will be ready to be executed at an absolute

time which is shifted by 5-to-10 time units. Namely, the virtual time for 3 is greater

than 10 (i.e., the sum of the lower bounds of the constraints in node 1 and 2, that
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is 5+ 5) and smaller than 20 (i.e., the sum of the upper bounds of the constraints

in node 1 and 2, that is 10+ 10). Since xc is never reset it will have, in node

3, some value greater than 10 and smaller than 20. This means that node 3 will

be reached when the constraint xc < 10 cannot be satisfied. This example shows

that it is necessary to take resets into account when evaluating the satisfiability of

a constraint in a node. In this specific example, xa1 ≤ xa2 is redundant as it is

implicitly expressed by the ‘shift’ in δ 2. In general, however, as no resets may

have occurred, this inequality is needed.

5.3.4. Step 4: Construct and check feasibility and wait-freedom
formula

Up to this step, wait-freedom and feasibility share the same approach for (a) col-

lecting all nodes occurring before a given node n (i.e., the nodes that are occurring

before n in some one-unfolding path), and (b) modifying the constraints with re-

naming and, and (c) calculating the virtual time constraint δ n, a constraint giving

a range of possible absolute times in which the execution of the protocol could

reach the state modelled by n. The difference in checking the two properties lies

in the formulas for the satisfiability property for that node. These formulas are

then solved by using an off-the-shelf SMT solver, Z3 [Z3C], which is a tool for

checking satisfiability of logical formulas over one or more theories.

In this subsection we first remind the two properties, feasibility and wait-freedom,

and give their representation as logical formulas, as shown in [BYY14b]. Then we

present the formulas in a Z3 input format.

Feasibility of a global protocol requires the satisfiability of each constraint in

the protocol, in every possible scenario that satisfies the previously occurred con-

straints. We define protocol feasibility in terms of node satisfiability. i.e a protocol

is feasible if all nodes in its time dependency graph are satisfiable. For a node

to be satisfiable its constraint must be satisfiable given all restrictions posed by

constraints of preceding nodes. Next we give the formal definition of a satisfiable

node, adapted from [BYY14b]. 2

Definition 5.3.7 (Satisfiable node (adapted from [BYY14b])) Let n be a node

of the (unfolding) time graph of a global protocol G, const(n) = δ , fn(δ ) = x,

2In [BYY14b] the definition is given in the general case for multiple clocks per role, in this article
we assume one clock per role.
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and M = {n′ | n′ ∈ N and n′ <G n}. Node n is satisfiable if

∧
n′∈M

δ n′ ⊃ ∃xn.((δ [xn/x]+R(n))
∧
n′∈M

xn′ ≤ xn)

The formulae expresses that given all previously occurred virtual time con-

straints
∧

n′∈M
δ n′ there is a solution xn of the shifted time constraint for the given

node (δ [xn/x] +R(n)) and this solution is not in the past (i.e., before the current

virtual time), thus it is strictly bigger than any solutions xn′ of previously occurred

constraints.

The translation of the logical formulae to a format, accepted by the Z3 checker is

straightforward. The formulae is given below, where
⋃
n′∈M fn(δ n′)= {x1, . . . ,xm},

δn =
∧

n′∈M
δ n′ and δxn = δ [xn/x]

ForAll(x1, . . . ,xm, Implies(δn, Exists(xn, (δxn +R(n))and x1 ≤ xn and . . . and xm ≤ xn)))

Wait-freedom requires that all solutions of time constraints of receivers in a

global protocol do not precede solutions posed by previously occurred constraints.

Next we give the formal definition of a wait-free node.

Definition 5.3.8 (Wait-free node (adapted from [BYY14b])) Let n? be a receiv-

ing node of the (unfolding) time graph of G with const(n?) = δ , and fn(δ ) = x,

and M = {n′ | n′ ∈ N and n′ <G n}. We say that n? is wait-free if

(
∧

n′∈M
δ n′)∧ (δ [xn/x]+R(n)⊃

∧
n′∈M

xn′ ≤ xn

The formula states that all solutions xn′ of virtual time constraints of nodes pre-

ceding node n?, e.g solutions of
∧

n′∈M
δ n′ , and all solutions xn of the time constraint

of n?, e.g solutions of δ [xn/x]+R(n), are such that the virtual time at node n? is

after the time posed by the previously occurred constraints, e.g
∧

n′∈M
xn′ ≤ xn.

The formula, as accepted in Z3, is given below.

ForAll(x1, . . . ,xm,xn, Implies(δn? and δxn , x1 ≤ xn and . . . and xm ≤ xn))

where x1, . . . ,xm are the free variables of δn? , and xn is the (renamed) clock of n?.

A node n such that subject(n) = /0 or fn(const(n)) = /0 is always satisfiable

and wait-free.
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We feed the constructed formulas to the Z3 SMT solver and check if they are

satisfiable. When these formulas are satisfiable for each node of a time depen-

dency graph, then the original Scribble global protocol is feasible and wait-free.

This follows from the fact that the checking method presented and implemented in

this section closely follows the theoretical constructions used to prove decidabil-

ity of feasibility and wait-freedom for infinitely satisfiable timed global protocol

in [BYY14a, BYY14b] (Proposition 5.1).

5.4. Implementing Timed Protocols with Python

To implement and verify timed local protocols we extend the monitoring frame-

work, previously presented in Chapter 3.

More precisely, we extend the Python conversation API with two standard time

primitives, sleep and timeout, and the monitor tool with capabilities for checking

time violations.

Specifically, the API is extended with:

• a delay primitive which suspends the execution of a Python program for a

prescribed time. The primitive is implemented using a lower level function

provided by the ‘gevent’ library: gevent.sleep which lets time elapse for

a specified amount of time.

• a timeout primitive which interrupts an ongoing computation to meet an

approaching deadline. Timeouts are useful for computation-intensive func-

tions, operations that take an amount of time which is not negligible such as,

for instance, the log crawling performed by the worker in Section 5.1. It may

be difficult to foresee the exact duration of a computation-intensive function;

in order to ensure that its execution does not exceed the time prescribed by

the local protocol, we associate each computation-intensive function to a

parameter timeout that is an upper bound to the duration of its execution;

an exception is raised if the function is not completed in the given time

frame. In the implementation of the worker, the function which interrupts

the crawling after 20 seconds is self.crawl(log, word, timeout=20);

the resulting exception can be handled by simply proceeding with the com-

putation.

In [BYY14a] processes are modelled using a simple extension of the π-calculus

with a delay operator delay(t).P that executes as process P after waiting exactly
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t units of time. All of the other actions are assumed to take no time. In practice,

however, operations do take time and the delay primitive models standard opera-

tions happening between communication actions, as well as time primitives such

as delays and timeouts.

The monitor tool is augmented with a local clock and performs several checks

summarised below:

• when an action (send or receive) is performed on a conversation channel,

the monitor checks if the action is performed within the time constraints

specified in a protocol;

• when a delay is issued, the monitor checks that the specified delay time does

not exceed time constrains specified in the protocol; and

• when a timeout is issued, the monitor checks that the timeout does not ex-

ceed the prescribed time constraints.

We illustrate more concretely the primitives introduced earlier in this section

through a Python implementation of the running example. Listing 5.1 shows the

Python program for all roles of our running example.

Listing 5.1: Participants implementation in Python

#==Master Program=======#

def master_proc():

c = Conversation.create(...)

c.send(’W’, ’task’,

’log’, ’string’)

c.delay(22)

c.receive(’W’)

while more_tasks():

c.send(’A’,’more’,

’data’)

c.send(’W’, ’more’,

’log’, ’string’)

c.delay(22)

c.receive(’W’)

c.send(’A’, ’end’,’data’)

c.send(’W’, ’end’)

#==Worker Program=======

def worker_proc():

c = Conversation.join(...)

c.delay(1)

log = c.receive(’M’)

while conv_msg.label != ’end’:

data = self.crawl(log,

timeout=20)

c.send(’M’,’result’, data)

c.delay(23)

conv_msg = c.receive(’M’)

#==Aggregator Program=======#

def aggregator_proc()

c = Conversation.join(...)

op = None

while op !=’end’:

c.delay(23)

conv_msg = c.receive(’M’)

op = conv_msg.label

We explain the implementation for the master process (master proc), given in
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Glocal Scribble Local Scribble

Theorem 2.3

Local Type

Appendix A

CTA
Theorem 5.6 in

[BYY14a]

Python Monitor

by construction

Figure 5.11.: The work-flow for deriving monitors from Global Scribble protocols.

Listing 5.1. The programs starts by creating a conversation channel c. Then, fol-

lowing the local protocol, the master sends a request to the worker passing the log

name and the word to be counted. The send method, called on conversation chan-

nel c, takes as arguments a destination role, a message operator and payload values.

This information is encapsulated in the message payload as part of a conversation

header and is later used for checking by the runtime verification module. The re-

ceive method can take the sender as a single argument, or additionally the operator

of the desired message. The code continues with the delay operator. Meanwhile,

other green threads run, preventing the worker from busy waiting. After the delay

expires, the master wakes up and continues.

5.5. Runtime Verification and Enforcement of Time
Properties

In this section we recall our monitoring framework, introduced in Chapter 3 and

discuss the challenges of verifying and enforcing time constraints. A monitor acts

as a membrane between one endpoint and the rest of the network, checking that the

send and receive actions performed by timed endpoint programs conform to timed

Scribble local protocols. The main property enforced by our framework is that in

a network where all endpoints are monitored then either all actions will occur at

the prescribed timing, or an error will be detected.

Fig. 5.11 summarises the work-flow of constructing a configuration of local

monitors from a global Scribble protocol and justifies the correctness of a mon-

itor implementation: (1) a global Scribble protocol is projected into a set of local

Scribble protocols; (2) each local Scribble protocol corresponds to a local type in

[BYY14a]; (3) each local type corresponds to a CTA (Communicating Timed Au-

tomaton); and (4) a CTA is used to monitor an application. Thus, the monitor is

correct by construction.

The monitor has two purposes (or modes) with respect to time: error detection

and error prevention/recovery.
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5.5.1. Error Detection

The monitor verifies communication actions of monitored endpoint against Scrib-

ble timed local protocols, expressed as timed automata. First, the monitor verifies

that the type (operation and payload) of each message matches its specification

and that a message occurs in the right causal order w.r.t. a Scribble protocol (as in

the untimed Scribble toolchain). Second, the monitor checks the correct timing of

actions. For each ongoing protocol, its respected monitor is augmented with a lo-

cal clock. A synchronisation has been introduced in the prototype to ensure that all

processes and monitors will start a protocol at the same time, with clocks set to 0.

When a timed endpoint program executes an action the monitor checks the clock

constraint of that action (in the timed automaton) against the value of the local

clock. The value of the local clock is determined simply as a difference between

two timestamps (the initial and the current time). The time is measured using the

built-in python function timeit.3 If an action complies with the prescribed timing

it is made visible (i.e., forwarded) into the network, otherwise the monitor raises a

TimeException.

For example, if we change the delay for master proc program in Listing 5.1 to

delay(30) (instead of delay(22)) this will result in a TimeException. Thus the

monitor stops the time error from propagating into the other endpoints.

5.5.2. Error Prevention and Recovery

This mode relies on the error detection mechanism: when a violation occurs the

monitor enforces the clock constraints by generating recoverable actions. We have

two types of scenarios: an action is launched by the local endpoint too early or too

late (or not at all) w.r.t. the prescribed timing. In the first case, the monitor gener-

ates a delay equal to the time that is left until an appropriate time is reached, and

then it forwards the action to the rest of the network. For example, if we delete any

of the delay constructs in Listing 5.1 or modify them with a smaller value then

the monitor will introduce the missing delay so that the monitored application will

appear correct to the network. When a deadline is reached but its associated ac-

tion is still not executed, the monitor raises a TimeoutException. The application

can try and recover itself using exception handler, e.g., by interrupting an ongo-

3The function timeit returns the time in seconds since the epoch, i.e., the point
where the time starts. As recommended in http://pythoncentral.io/
measure-time-in-python-time-time-vs-time-clock/, this is the prefer-
able method for measuring time in Python.
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prescribed action clock constraint pre-action post-action
s.send x≥ c s.sleep(c− xcur)
s.send x≤ c s.timeout(c− xcur)

s.recv x≥ c s.sleep(c− xcur)

s.recv x≤ c s.timeout(c− xcur)

Table 5.1.: Recovery actions generated by the monitor

ing computation and continuing the conversation, or restarting the protocol with

different settings.

The monitor looks at the next action prescribed by the timed automaton (or

prescribed action) and acts according to the pre- and post-actions in the table.

Pre-actions (resp. post-actions) denote actions performed by the monitor before

(resp. after) that the timed endpoint program executes the action that corresponds

to the prescribed action. Table 5.1 summarises the actions generated by the mon-

itor in error prevention/recovery mode. In the table xcur is the local clock of the

monitor. If the clock constraint of the prescribed action specifies a lower bound

x ≥ c then the monitor introduces a delay of exactly c (mapped to the low level

Python gevent.sleep primitive). In case of send we have a post-action: the monitor

sleeps after observing the action of the endpoint and forwards it to the network at

the right time. In case of receive we have a pre-action: the monitor sleeps before

observing the receive action so that the incoming message will be read at the ap-

propriate time. Similarly, when the clock constraint specifies an upper bound x≤ c

the monitor inserts a timeout (a timer triggering a TimeoutException).

5.6. Benchmarks on Transparency of Timed Monitors

Listing 5.2: A recursive protocol with resets

global protocol WordCount2(

role M, role R, role W){
[@M: xm<0.01,reset(xm)]

[@W: xw=0.01 , reset(xw)]

task(log ,tring) from M to W;

rec Loop{
[@W: xw =0.20]

[@M: 0.21<xm<0.22]

result(data) from W to M;

choice at M{
[@M: xm =0.22]

[@A: 0.23<=xa ,reset(xa)]

more(data) from M to A;

[@M: xm=0.22 , reset(xm)]

[@W: xw=0.23 , reset(xw)]

more(log ,string) from M to W;
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Figure 5.12.: The execution time per number of recursions for the protocol in List-
ing 5.3

continue Loop;

} or {
[@M: xm=0.22][@A: 0.23<=xa]

end(data) from M to A;

[@M: xm =0.22][@W: xw =0.23]

end() from M to W; } }

Listing 5.3: Protocol with accumulating delays

global protocol ClientServer(

role C, role S){
[@C: xc<c][@S: xs=c]

ping(data) from C to S;

[@C: xc<2∗c][@S: xs=2∗c]
ping(data) from C to S;

[@C: xc<3∗c][@S: xs=3∗c]
ping(data) from C to S;

...

[@C: xc<200∗c][@S: xs =200∗c]
ping(data) from C to S;}

Listing 5.4: Python implementation for Client and Server role from Listing 5.3

def client_proc(t):

c = Conversation.

create(...)

c.receive(’S’)

while true:

c.delay(t)

c.receive(’W’)

def server_proc(t, n):

c = Conversation.

create(...)

c.send(’C’)

for i in range(0, n)

c.delay(t)

c.send(’C’)

The practicality of our timed monitoring framework depends on the transparency
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Figure 5.13.: The maximum number of correct interactions for the protocol in List-
ing 5.4

of the execution in a monitored environment. By transparency we mean: a pro-

gram that executes all actions at the right times when running unmonitored will do

so when running monitored. Transparency and overhead are closely related in the

timed scenario, since the overhead introduced by the monitor may interfere with

the time in which the interactions are executed. We have tested the transparency

by providing two different protocols - a protocol with resets and a protocol without

resets. The former proves the usability of the monitor in a typical scenario, while

the latter demonstrates its limitations.

To set up the benchmark, we have fixed a Scribble timed protocol and manually

created a correct implementation of the participants for that protocol using our

timed Python API. We run the implementation in two scenarios using our moni-

toring framework, and with the monitors ‘turned off’. The graphs in Fig. 5.12 and

5.13 present the average execution time with a confidence interval of 95 %. The

result is obtained by repeating each example 30 times. This experimental design

is influences by [GBE07], where a typical large repetition size is n≥ 30.

Participants were run as separate Python applications on the same machine (In-

tel(R) Core(TM) i7-2600 CPU @ 3.40GHz, Ubuntu 14.04.3 LTS), to minimise the

latency between the endpoints. If latency is bigger, the protocol might become

unsatisfiable and therefore an error will be triggered by the monitor before the

completion of the protocol. For example, in a scenario where a sender’s constraint

is x≤ 1, a receiver’s constraint is x≤ 1, and a latency is 1.5s (such latency is bigger
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than the monitor error margin), even if the sender sends the message on time, the

monitor at the receiver endpoint cannot receive it on time due to network delay.

We are not interested in testing such scenarios, because the errors are not due to

monitor overhead. In cases of big latency the monitor correctly detects constraint

violations. We want to test the impact that the monitor overhead has on the cor-

rectness of the protocol execution in an environment where correctly implemented

unmonitored programs would be executed without time violations, such behaviour

can be easily exhibited when the latency is negligible w.r.t the granularity of the

time units used in time constraints. In the presented results, on average the latency

between two endpoints is 0.04. The full benchmark protocols, the applications and

the raw data are available from the project page [pyt]. To measure the execution

time we use the built-in Python function timeit 4.

Scenario 1. We have initially considered a protocol with the same structure as

the protocol Fig. 5.3. Running the example with the initial time constraints, how-

ever, requires significantly long time runs where most of the execution time is spent

performing time.sleep at each endpoint (see the Python implementations). Since

we are interested in measuring the monitor overhead, which is not affected by how

big the actual value constraints are, we decrease the constants in clock constraints

and in time.sleep by a scale of 100. We use the implementation in Listing 5.1 with

delays updated to match the protocol, as shown in Listing 5.2. The outcome is

presented in Fig. 5.12. The graph illustrates the time for completing a protocol for

increasing number of recursive executions.

This experiment shows that for the given protocol and implementation all ex-

ecutions are without constraint violations. Transparency is guaranteed (i.e., the

overhead induced by the monitor does not affect the correctness of the program).

Since resets prevent the monitor overhead to accumulate up to a non negligible

overall delay, delays are bigger than the error margin. The monitor clock is reset

at each iteration and therefore the monitor overhead does not accumulate.

Scenario 2. Our second experiment was specifically targeted at checking how

many interactions can generate a non-negligible accumulation of delays. We do

this by removing resets. In case of no resets both the unmonitored and monitored

4The function timeit returns the time in seconds since the epoch, i.e., the point where the time
starts. As recommended in http://pythoncentral.io/measure-time-in-python-time-time-vs-time-
clock/, this is the preferable method for measuring time in Python.
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programs are expected to start violating the constraints after certain number of

executions. In Scenario 1 recursion allowed us to express repeated interactions by

using resets. In order to observe a large number of repeated interactions without

resets we have created the sequential protocol in Listing 5.3 and implementation

in Listing 5.4. We have generated a protocol with 200 consecutive point to point

interactions happening at increasing times (at each interaction the time is increased

by c). We run the experiment for different values of c (horizontal axis on the figure)

and measure the maximum number of interactions (vertical axis on the figure) that

can be executed before the program violates the time constraint.

Results, given on the graph in Fig. 5.13, demonstrate that a monitored applica-

tion performs 90% of the maximum number of possible interactions. This example

comes to show the limitations of the timed monitoring framework. The practical

scenarios we have encountered so far did not include long sequences of interac-

tions, and repetitive operations are handled via recursions with resets at each cycle.

Further discussion on benchmarks. Overall, the time transparency of the mon-

itoring framework depends on the following:

• Monitor overhead. The complexity of monitor checking is linear on the

number of protocol states and therefore the upper bound of the overhead can

be approximated. Note that errors can be caused by accumulated monitor

overhead. If clocks are not reset, the overhead of the monitor is propagated

at each run. The accumulated delay can be calculated as a sum of the delays

in the longest path between two actions without resets and executed on the

same participant in the dependency graph.

• Error margin. The monitor accepts an application as correct if its timing t

conforms to the time constraints δ in the specification within a certain mar-

gin of error ε . Thus, the monitor checks if t ∈ [δ − ε,δ + ε]. The error

margin is a parameter set to the monitor system during its initial configura-

tion. The error margin is application and environment specific, but it should

be at least as big as the time accuracy guaranteed by the execution envi-

ronment. For example, in the Python documentation, the preciseness of the

time function is specified as follows: ”It returns the time in seconds since the

epoch as a floating point number. Note that even though the time is always

returned as a floating point number, not all systems provide time with a bet-

ter precision than 1 second.”5. Therefore, for our benchmark experiments

5https://docs.python.org/2/library/time.html
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Pattern Use Case Source
Request-Response Timeout Travel Agency, SMTP [Lar, smt]
Messages in a Time Frame Denial of service attacks, Travel Agency [Lar]
Action Duration Progress properties, User inactivity [UPP]
Repeated Constraint Pull notification services [OOIa]

Table 5.2.: Timed patterns

we have chosen an error margin within a second of the specified constraints

(ε = 0.5s).

Time errors can also be caused by the execution environment when the machine

(or the network) is overloaded. Other system activities can make the kernel unable

to schedule the endpoint process as soon as needed. The purpose of the monitor

is to detect time errors at their first occurrence and to stop time drifts propagating

to other endpoints. Therefore, although in the above case time violations are not a

result of a programming error, the executed program should be flagged as wrong,

because the time constraints in the protocol are not satisfied.

Note that when the system is under load the time requirements will be violated

due to the high load of the system, not because of the overhead induced by the

monitor. However, the system load have an impact on the protocol execution, be-

cause in a system with inconsistent time drifts the protocol constraints can become

unsatisfiable. In an operating system without real-time guarantees, our framework

reasons only about soft time deadlines, such as the deadline patterns expressed in

Section 5.7.

5.7. Temporal Patterns in Global Protocols

In this section we present a number of timed patterns that we have collected from

literature, and which include industrial cases studies [BFM98, KCD+09], verifica-

tion tools [UPP, Lar] and web service specifications such as the Twitter API and

Simple Mail Transfer Protocol (SMTP). Each pattern will be first introduced with

a motivation and reference to literature, then modelled using Scribble and applied

to a real-case scenario. The given set of patterns does not aim to be exhaustive, but

to allow us to assess the usability of Scribble in known timed scenarios. Table 5.2

summarises the timed patterns, with reference to the corresponding use cases and

references to literature.
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Figure 5.14.: An illustrated summary of the timed patterns

Request-Response Timeout Pattern. This pattern allows to enforce quality of

service requirements on the timing of a response. The requirement can be set

either at the server side or at the client side, as we have identified in the two use

cases that follow. In the first use case, drawn from [Lar], a service is requested

to reply in a timely manner: “An acknowledgement message ACK should be sent

(by the server) no later than one second after receiving the request message REQ”.

Namely, the sending of a reply message should be executed within a fixed time

after the corresponding request message has been received. In the second use case,

the Travel Agency web service specification, also drawn from [Lar], the timeout

is specified at the client side : “A user should be given a response RES within one

minute of a given request REQ”. In this case, it is the receiving of the response from

the server that must be possible after the request, within the specified timeout.

The above requirements can be generalised by the following pattern, which is

also illustrated in Fig. 5.14:

(a) After receiving a message REQ from role A, role B must send the acknowl-

edgment ACK to A within c time units.

(b) After sending a message REQ to role B, role A must be able to receive the

acknowledgment ACK from B within c time units.

The corresponding skeletal Scribble specification is given in Fig. 5.15, where in

Fig. 5.15 (left) the sending of a reply message should be executed within a fixed
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[@A:. . .][@B: reset(xb)]

REQ from A to B;

. . .;
[@B: xb<=c][@A:. . .]
ACK from B to A;

[@A: reset(xa)][@B:. . .]
REQ from A to B;

. . .
[@B:. . .][@A: xa<=c]
ACK from B to A;

Figure 5.15.: Request-Response Timeout Pattern in Scribble: server side (left) and
client side (right)

[@U: reset(xu1)][. . .] MAIL from U to S;

[@U: reset(xu2)][. . .] DATABLOCK from U to S;

[. . .][@U: xu2<=180000] DATABLOCK REPLY from S to U;

[. . .][@U: xu1<=300000] MAIL REPLY from S to U;

Figure 5.16.: SMTP timeouts in Scribble (Request-Response Timeout Pattern)

time after the corresponding request message has been received, and in Fig. 5.15

(right) the receiving of a message after sending a request should be possible within

a timeout. A concrete specification can be obtained by instantiating REQ, ACK, A,

and B with actual messages, roles, and c with a value in Q≥0. In Fig. 5.15 (left), xb

is a clock of B and “. . .” stands for any clock constraints, clock resets, or for any

interaction that does not include resets to xb or ACK. First, the time of receiving

the request REQ is recorded by resetting the clock xb, and then the clock constraint

xb ≤ c at the reply interaction ACK sets the maximum delay to be of c time units.

The specification in Fig. 5.15 (right) is similar, but with a reset and a constraint for

the user clock xa.

In Fig. 5.16 we present an example from the SMTP protocol, featuring a compo-

sition of instances of the Request-Response Timeout Pattern (b). The specification

prescribes that “A user should have a 5 minutes timeout for the MAIL command

and 3 minutes timeout for the DATABLOCK command”. The combination of two in-

stances of the pattern, at the client side, requires the use of two clocks, one for the

MAIL command (clock xu1), and one for the DATABLOCK command (clock xu2). In

the constraints, note that 3 (reps. 5) minutes correspond to 180000 (resp. 300000)

milliseconds.

Messages in a Time Frame Pattern. This pattern allows to set a limit to the

number of messages that can be sent in a given time frame. Examples of this re-

quirement can be found in specifications for denial of service attacks [Lar]:“A user

is allowed to send only three redirect messages to a server with interval between
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the messages no less than two time units”, or in other scenarios such as the Travel

Agency Service in [Lar]: “A customer can change the date of his travel only two

times and this must happen between one and five days of the initial reservation”.

These specifications express the repetition of a specified number of messages, oc-

curring either (a) at a specified pace or (b) within an overall specified time-frame.

The above requirements can be generalised by the following pattern, which is

also illustrated in Fig. 5.14:

(a) Role A is allowed to send role B at most k messages, and at time intervals of

at least c and at most d time units.

(b) Role A is allowed to send role B at most k messages in the overall time frame

of at least c and at most d time units.

Fig. 5.17 shows the abstract Scribble protocol for this pattern, where Ga accounts

for case (a) and Gb for case (b). The difference is that in (a) the clock xa is reset at

each interaction. Note that in this pattern we have a-priori knowledge of k, hence

any instantiation of the pattern can be resolved as an enumeration of interactions

(i.e., without using loops). The definition uses a parametric notation Ga(k) for the

Scribble ‘body’ defined in terms of Ga(k−1) for the sake of a general and simpler

definition of the abstract Scribble protocol. Concrete specification can be obtained

by instantiating A, and B with actual roles, c and d with values in Q≥0, and k with

non-negative integer values. Note that scenarios in which A is supposed to send

exactly (and not at most) k messages can be modelled by omitting the ‘choice’

construct and only keeping the first branch (i.e., removing the branch that jumps

straight to Ga(0) or Gb(0)).

Fig. 5.18 shows the protocols for the denial of service attack and the Travel

Agency Service in [Lar]. Here we comment on the latter. First, we specify the

resetting of the user clock xu on the interaction reservePack. Then the clock

constraint xu > 1 and xu < 5 are set on messages of type changePack which are

set to be at most two. In this case, we did not convert days into milliseconds for

readability.

Action Duration Pattern. This pattern sets a constraint on the delay which is

allowed for a participant before executing an action. For example, a common

requirement in web services is that: “A user should not be inactive more than

30 minutes”. This pattern can also express progress properties verified by the

UPPAAL model checker [UPP] such as: “A user is allowed to stay in the state for

no more than three time units”.
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Ga = [@A:reset(xa)][@B:. . .]
MSG from A to B; Ga(k−1)

Ga(k) = choice at A {
[@A:xa>=c and xa<=d, reset(xa)][@B:. . .]
MSG from A to B; Ga(k−1)

} or { Ga(0) }
Ga(0) = [@A:xa>=c and xa<=d][@B:. . .]

END from A to B;

Gb = [@A:reset(xa)][@B:. . .]
MSG from A to B; Gb(k−1)

Gb(k) = choice at A {
[@A:xa>=c and xa<=d][@B:. . .]
MSG from A to B; Gb(k−1)

} or { Gb(0) }
Gb(0) = [@A:xa>=c and xa<=d][@B:. . .] END from A to B;

Figure 5.17.: Messages in a Time Frame Pattern in Scribble: single message time
frames (Ga) and overall timeframe (Gb).

Ga = [@U:reset(xu)][. . .] REDIRECT from U to S; Ga(2)

Ga(k) = choice at U {
[@U:xu>=2, reset(xu)][. . .] REDIRECT from U to S;

Ga(k−1)
} or {

[@U:xu>=2, reset(xu)][. . .] END from U to S;}

Gb = [@U:reset(xu)][. . .] reservePack from U to S; Gb(2)

Gb(k) = choice at U {
[@U:1<=xu<=5][. . .] changePack from U to S; Gb(k−1)

} or {
[@U: true][. . .] END from U to S;

}

Figure 5.18.: Denial of service attack (Ga) and Travel Agency Service (Gb) use
cases in Scribble

[. . .][@B: reset(xb)]

MSG1 from A to B;

[. . .][@B: xb<=30, reset(xb)]

MSG2 from A to B;

[@A: reset(xa)][. . .]
MSG1 from A to C;

[@A: xa<=3][. . .]
MSG2 from A to B;

Figure 5.19.: Protocols for web service user inactivity (left) and for the UPPAAL
progress property (right).
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rec Pull{
[. . .][@A: xa==c; reset(xa)] REQ from A to B;

continue Pull;}

Figure 5.20.: Repeated Constraints Pattern in Scribble

The constraints above can be generalised as follows: the time elapsed between

two actions performed by the same role A, where each of these two actions can be

either a send or a receive action, must not exceed c time units. Notice that, unlike

in the Request-Response Timeout Pattern, the constraint is specified only in terms

of A and not on the type of the previous actions performed by A or the other roles

interacting with A.

Fig. 5.19 (left) and Fig. 5.19 (right) present two instances of the Action Duration

Pattern in Scribble: the protocols for web service user inactivity and the one for the

UPPAAL progress property, respectively. In Fig. 5.19 (left) the clock xa is reset

on the first message MSG1 from A to B. Then the clock check xa ≤ 30 guarantees

that the user cannot send another message MSG2 if the time constraint is violated.

The verification of the progress property in Fig. 5.19 (right) is similar, but more

roles are involved (A, B, C). The clock is reset during the interaction between A and

C, while the clock constraint is checked on the interaction between A and B.

Repeated Constraints Pattern. The pattern captures requirements occurring in

pull notification services, where the intervals at which a certain interaction should

be repeated is fixed. For example: “The email client should request the emails

from the service every 5 seconds”.

In general: role A must send messages to B every c time units. The main differ-

ences with the Messages in a Time Frame Pattern is that the number of messages

is not bounded, and the time is required to elapse between messages of exactly

c time units. For readability (i.e., to avoid nested ‘choice’ constructs) we will

show the abstract Scribble specification in the case of non-terminating interaction

(Fig. 5.20).

The repetition of the pull interactions is expressed via recursion (recPull). At

every recursive iteration, the clock xa for A is checked against the constraint and

then reset.
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5.8. Related Work

Specification languages. The need for specifying and verifying the temporal

requirements in a distributed systems is recognised. To this aim, different spec-

ification methods and verification tools have been developed, especially in the

area of business process modelling (see [CKGJ13] for a survey on verification of

temporal properties). The work in [WIH11] describes a framework for analysing

choreographies between BPEL processes with time annotations. [GDZ12] extends

BPML with time constraints. Via a mapping from BPML to timed automata, it

allows verification with the UPPAAL model checker. As a language for timed

protocol specifications, the main advantage of Scribble over alternatives such as

BPEL, BPML and timed automata, is that it enables enforcement of global proper-

ties, e.g., conformance of the interactions to global protocols, providing an in-built

mechanism (projection) for decentralisation of the verification. Another expressive

formal language for specifying time-properties is XTUS-Automata, introduced in

[KCD+09]. Specifications written in XTUS-Automata are automatically translated

into BPEL aspects, which ensure temporal constraints at runtime. Both absolute

and relative time can be specified. Their approach detects contradictions between

the temporal constraints implemented in the composition, but does not verify in-

consistency at the specification level, as the Scribble checker can offer. As a future

work we plan to identify formal transparency requirements to calculate time drifts

that make a protocol unsafisfiable. We also plan to test the preciseness of time

violations on real-time kernels, such as the Ubuntu RT PREEMPT patch set. This

will allow us to specify and enforce hard time deadlines.

Verification tools and frameworks. Among the state-of-the-art runtime veri-

fication tools, a few support specification of time properties [dBdGJ+14, CR07,

Lar]. The work in [CR07] presents a generic monitor that can be parameterised

on the logic. [dBdGJ+14] combines temporal properties and control flow spec-

ifications in a single formalism specified per object class. Our recovery mech-

anism resembles the aspect-oriented approaches used in those verifiers, but the

combination of control flow checking and temporal properties in the same global

specification is an unique characteristic of our work. Our tool statically checks

the correctness of the specification itself in addition to the runtime checks for the

program. Furthermore, via its formal basis, our framework allows to combine

static verification [BYY14a] and dynamic enforcement. Other works from the
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multi-agent community have studied distributed enforcement of temporal prop-

erties through monitoring. [MU00] presents a distributed architecture for local

enforcements, where monitors detect if agents fulfill their specification within a

given deadline. The specifications are expressed in the form of event-condition-

action and all agents belonging to a group obey the same roles. Our work presents

a different perspective where agents follow personalised laws based on the role

they play in each protocol. In runtime verification for Web Services, the work

[CDVM11] transforms a subset of Web Services Choreography Description Lan-

guage into timed-automata and proves their transformation is correct with respect

to timed traces. Their approach is model-based, static and centralised, and does not

treat either dynamic checking, or the properties of feasibility and wait-freedom.

Time properties. Several works study properties of timed formalisms, espe-

cially in the contexts of automata [KY06] and Message Sequence Charts (MSCs)

[GMNK09, AGMK10]. In the timed scenario, problems such as reachability are

known to be undecidable in the general case. This has been shown, for exam-

ple, for timed extensions of Message Sequence Charts (e.g., Time-Constrained

MSC [GMNK09]) and CTA [KY06]. Timed MPSTs [BYY14a] tackle tractability

issues by relying on the syntactic constraints also inherited by Scribble and men-

tioned in Section 5.2.1, and a few extra constraints on time annotations of global

protocols. In particular:

• The correspondence between timed MPSTs and CTA [BYY14a], ensuring

the progress and liveness properties studied in [DY13], requires an addi-

tional constraint on the shape of global protocols, that is feasibility (recall

that it ensures that at any point of the protocol the current time constraint

should be satisfiable for any possible past).

• Progress of a well-typed program requires two additional properties: feasi-

bility (as above) and wait-freedom.

The work in [BYY14a, BYY14b] proposes a decidable method to check if a global

type is feasible and wait-free. This method, however, relies on a further restriction

on global types, called infinite satisfiability and explained in Section 5.2. Infinite

satisfiability has recently been relaxed [BLY15] to allow some clocks not to be

reset, as long as there is a viable ’escape’ from the loop, but has not yet been

integrated in the Scribble toolchain. As the focus of the work presented in this

chapter is to illustrate the implementation, practicality and usability aspects of the

timed Scribble toolchain, we will not recall the technical details of the theory here,
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they are available from [BYY14a, BYY14b, BLY15].

Other approaches focus on the reachability problem, and are related to our al-

gorithms for checking feasibility and wait-freedom of timed global specifications.

[Tri99] gives an algorithm to check deadlock freedom for timed automata. The

algorithm is based on syntactic conditions on the states relying on invariant an-

notations. Their approach is not directly applicable to check feasibility on timed

global specifications. Other methods based on CTA [KY06] or MSC [GMNK09]

address complexity by restricting topology and/or channel size. Remarkably, none

of the conditions required by timed MPSTs (hence Scribble) set limitations on the

network topology nor buffer size. For example the simple Scribble example below

rec pro [@A : x< 10,reset(x)][@B : true] a(T) from A to B; continuepro

allows the channel from A to B to have an arbitrary number of messages (as B can

arbitrarily delay the receive actions). Our restrictions are, rather, induced by the

conversation structure of timed global protocols. Tractability of MPSTs derives

from the way interactions are structured and the way resets are organised.

The work in [AGMK10], focused on an extension of MSCs with timed events, is

particularly related to [BYY14a] (on which theory the work presented in this chap-

ter is based): the former focuses on the problem of language inclusion while the

latter on statically checking conformance of abstract session types with concrete

programs. The work in [AGMK10] gives a verification method that is decidable

when the communication graph describing the behaviour of each loop can be mod-

elled as a single strongly connected component, which implies that channels have

an upper bound. In this chapter we hinge at the theory for static checking from

[BYY14a] but practically apply it to dynamic checking.

Calculi with time. Our timed API is based on the session π-calculus with delays,

introduced in [BYY14a]. The delay primitive from [BYY14a] has been used as a

model for the timeout and sleep extensions of the Python API presented in Sec-

tion 5.4. Other recent works that extend process calculi with time are, for ex-

ample, [BY07, LP12, LZ02] where timeouts are added to the π-calculus syntax.

Time elapses as discrete ticks and delays propagate asynchronously through the

system. Timed COWS [LPT07a] extends COWS with a ‘wait’ primitive similar

to our delays. The work in [GDNP97], which is targeted to testing, introduces

a ‘wait’ construct along with delay annotations for actions. [SG13] extends the
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π-calculus with absolute and continuous times, and includes timed constraints in-

spired by timed automata. Web-π [LZ05] and C3 [LP12] extend the π-calculus

and the Conversation Calculus (CC), respectively, to enable the reasoning on the

interplay between time and exceptions.

The main focus of our work is different from the above works: we use timed

specifications protocols, rather than enriching timed primitives in the π-calculus

(Python) syntax level. However, these works inspire several future directions

for our framework. Extensions allowing dynamic time-passing as in [SG13] and

[LZ02] at the π-calculus level are possible, for instance, by extending with time the

approaches in [BHTY10] and [BDY12], in which the global specifications directly

model properties of the message contents.

5.9. Concluding Remarks

The chapter presents the design and implementation of a real-time verification

framework. At the specification level our time extension controls and checks, via

timed Scribble, the feasibility and wait-freedom of processes at the early design

phase. At the programming level, we have introduced primitives for a fine grained

management of time which enable to schedule interactions at exact timings w.r.t.

a given protocol. At runtime, early error detection is guaranteed by raising time

exceptions when time deadlines are not met. Furthermore, the monitor is aug-

mented with enforcement capabilities for recovering from runtime violations of

the time constraints. Benchmarking has revealed an interesting relationship be-

tween transparency and overhead introduced by time: monitoring overhead may

break transparency by introducing delays, hence violations. The practicality of the

proposed approach for specification and dynamic verification of distributed inter-

actions has been demonstrated via: (1) the representation of a number of scenarios

(i.e., a OOI use case as well as time patterns distilled from literature) with Scrib-

ble, and (2) benchmarking, showing that the overhead introduced by our monitor

is, in the scenarios we encountered, negligible.
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6. Monitoring Actor Programs

The actor model [Agh86, AMST97] is (re)gaining attention in the research com-

munity and in the mainstream programming languages as a promising concurrency

paradigm. Unfortunately, the programming model itself does not ensure correct

sequencing of interactions between different computational processes. A study in

[TDJ13] points out that “the property of no shared space and asynchronous com-

munication can make implementing coordination protocols harder and providing

a language for coordinating protocols is needed”. This reveals that the coordina-

tion of actors is a challenging problem when implementing, and especially when

scaling up an actor system.

To overcome this problem, we need to solve several shortcomings existing in the

actor programming models. First, although actors often have multiple states and

complex policies for changing states, no general-purpose specification language is

currently in use for describing actor protocols. Second, a clear guidance on actor

discovery and coordination of distributed actors is missing. This leads to ad-hoc

implementations and mixing the model with other paradigms which weaken its

benefits [TDJ13]. Third, no verification mechanism (neither static nor dynamic)

is proposed to ensure correct sequencing of interactions in a system of actors.

Most actor implementations provide static typing within a single actor (even with

expressive pattern matching capabilities as surveyed in Section 6.6), but the com-

munication between actors – the complex communication patterns that are most

likely to deadlock – are not checked.

In this chapter we tackle the aforementioned challenges by studying applicabil-

ity of multiparty session types (MPST), and the specification language Scribble in

particular, [HYC08] to actor systems.

In previous chapters (Chapter 3, 4, 5) we prove the suitability of the protocol

description language Scribble and its tools for the dynamic verification of real

world complex protocols [OOIa]. We presented a runtime verification framework

that guarantees safety and session fidelity of the underlying communications. The

MPST dynamic verification framework, studied in the previous chapters, is built
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on a runtime layer for protocol management and developers use MPST primitives

for communication, which limits the verification methodology to a specific infras-

tructure. In this chapter, we adapt the model to present a Scribble-based runtime

verification of actor systems.

Contributions and outline. In this chapter, we prove the generality of Scribble-

based runtime verification by showing Scribble protocols offer a wider usage, in

particular, for actor programming. A main departure from our works, presented

in Chapter 3 and further extended in Chapter 4 and Chapter 5, is that an actor

can implement multiple roles (in the previous chapters a process was bound to a

single role). This extension allows data to be shared between roles (if the roles

reside in the same actor), and hence mitigates the problem that sharing data only

via message-passing introduces undesirable performance implications.

Our programming model is grounded on three new design ideas: (1) use Scrib-

ble protocols and their relation to finite state machines for specification and run-

time verification of actor interactions; (2) augment actor messages and their mail-

boxes dynamically with protocol (role) information; and (3) propose an algorithm

based on virtual routers (protocol mailboxes) for the dynamic discovery of actor

mailboxes within a protocol. We implement a session actor library in Python to

demonstrate the applicability of the approach. To the best of our knowledge, this is

the first design and implementation of session types and their dynamic verification

toolchain in an actor library.

The chapter is organised as follows:

Section 6.1 gives a brief overview of the the key features of our model through

an example.

Section 6.2 describes the constructs of Session Actors and highlights the main

design decisions.

Section 6.3 presents the implementation of the model on concrete middleware.

Section 6.4 evaluates the framework overheads, compares it with a popular Scala

actor library [akk] and shows applications.

Section 6.5 presents and implements representative actor use cases in our frame-

work.

Section 6.6 discusses related work and concludes.
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Figure 6.1.: MPST-development methodology (left) and session actors (right)

6.1. Session Actors Programming Model

This section explains how we incorporate the Scribble-based runtime verification

model with the programming model of actors. The top-down development method-

ology for Scribble-based monitoring, presented in Chapter 3, is shown on the left

part of Fig. 6.1. The figure on the right illustrates the Session Actor programming

model. It consists of annotated Python classes.

6.1.1. Background

Actor model. We assume the following actor features to determine our design

choices. Actors are concurrent autonomous entities that exchange messages asyn-

chronously. An actor is an entity (a class in our framework) that has a mailbox

and a behaviour. Actors communicate between each other only by exchanging

messages. Upon receiving a message, the behaviour of the actor is executed, upon

which the actor can send a number of messages to other actors, create a number

of actors or change its internal state. Each actor is equipped with a mailbox where

messages are buffered. There are only three primitive operations each actor can

perform: (1) create new actors; (2) send messages to other actors whose address

the sender knows; and (3) become an actor with a new state and behaviour. All

these operations are atomic. The only order inherent is a causal order, and the only

guarantee provided is that messages sent by actors will eventually be processed

by their receivers. In addition, in our framework we enforce synchronisation and

coordination constraints (as explained in Section 6.1.2).
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Scribble-based monitoring. In Fig. 6.1 (left) we recall the top-down develop-

ment methodology for MPSTs runtime verification, introduced in Chapter 3 .

A distributed protocol is specified as a global Scribble protocol, which collec-

tively defines the admissible communication behaviours between the participating

entities, called roles, inside the protocol. Then, the Scribble toolchain is used to

algorithmically project the global protocol to local specifications.

For each role a finite state machine (FSM) is generated from the local speci-

fication. The FSM prescribes the allowed behaviour for each role and is used at

runtime to perform validation of the allowed interactions. When a party requests

to start or join a session, the initial message specifies which role it intends to play.

Its monitor retrieves the local specification based on the protocol name and the

role. A runtime monitor ensures that each endpoint program conforms to the core

protocol structure.

6.1.2. Session Actors Framework

We explain how we apply the above methodology. As observed in [STM14] in

many actor systems an actor encapsulates a number of passive objects, accessed

from the other actors through asynchronous method calls. Similarly, we introduce

multiparty roles, which allow multiple local control flows inside an actor. We call

an actor hosting multiparty roles a Session Actor.

Session Actors. The session actor architecture is depicted in Fig. 6.1 (right). To

verify actor interactions, each role inside an actor is associated with a FSM, gener-

ated from a global protocol. Roles are enabled on an actor instance via two anno-

tations, a protocol and a role annotation. The former specifies a role declaration,

while the latter specifies the role behaviour. Without the introduced annotations a

session actor behaves identically to a plain actor.

The figure shows the main actions performed by the framework and explained

below:

1. create denotes the creation of a role inside an actor. The @protocol

annotation creates a role object when the actor class is spawned. The role is

associated to a protocol and contains proxies (remote references) for other

actors (the other roles in the protocol) and a monitor.

2. load denotes loading a local protocol from the protocol storage when the

role is created. The role monitor loads the protocol using the protocol name
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and generates a FSM that is used for checking.

3. check denotes checking of a message. When a message is picked up from

the actor queue, it is checked by the role monitor and, if correct, dispatched

to its handler.

4. dispatch denotes dispatching the message to the message handler. When a

message arrives in the actor queue, it is despatched to the according handler

(method) w.r.t the meta information stored in the message (a target role and

a message label).

Here is an example how the @role annotation is used. We consider the follow-

ing partial protocol:

m2() from buyer to seller;

m1() from seller to buyer;

The message transfer declaration:

m2() from buyer to seller;

corresponds to a method declaration:

@role(seller, buyer)

def m2(self, seller, . . .)

The first parameter of the role decorator is a reference to a role object, named

seller. This reference can be used inside the message body. The second param-

eter is the name of the sending role (buyer) and is used only by the monitor to

check that the message is sent from that particular role. The proxies of the other

actors engaged in the protocol can be easily accessed inside the method body via

the role reference seller. For example, seller.buyer is a proxy for the actor

that implements the buyer role. When the call seller.buyer.send.m2() is

performed, the monitor for the role seller checks the seller is allowed to send

a message m2 to the buyer.

In a nutshell, an actor can be transformed to a session actor by applying the

following design methodology:

1. the global protocol, that the actor is associated with, is written in Scribble

and projected to local specifications using the Scribble toolchain, presented

in Chapter 2 and available from [scrb]. The tool generates one file (local

protocol) per role.

2. the actor class is annotated with a @protocol decorator.
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3. each method is annotated with a @role decorator.

4. interactions with other actors are performed via the role instance, specified

in the @role decorator.

Protocol mailbox. Protocol mailboxes are the post offices of our systems and

they exist for the duration of a protocol execution. Essentially they are virtual

routers, which delegate messages according to their routing table. A protocol mail-

box should be explicitly created by the developer using the Protocol.create

primitive. This primitive generates a fresh protocol id (the name of the virtual

router) and sends the id to the actors implementing the roles for the protocol.

The changes and additions that the MPST annotations bring to the original ac-

tor model are as follows (here we give a high level overview, while the technical

details regarding their implementation are given in subsequent sections):

(a) different passive objects (called roles) that run inside an actor are given a

session type (Section 6.3.2).

(b) an actor engages in structured protocol communications via protocol mail-

boxes (Section 6.3.3).

(c) an actor message execution is bound to a protocol structure (Section 6.3.4).

This structure is checked via the internal FSM-based monitor.

Verification of Session Actors. To guarantee session fidelity (actors follow the

behaviour prescribed by protocols) we perform two main checks. First, we verify

that the type (a label and a payload) of each message matches its specification. In

our implementation we have mapped message transfer labels to method invoca-

tions. For example,

m1(int)from A to B;

specifies that there is a method named m1 with an argument of type int in the actor,

implementing role B. Therefore, if such a method does not exist or its signature

does not match, an error will be detected.

Second, we verify that the overall order of interactions is correct, i.e. interaction

sequences, branches and recursions proceed as expected, respecting the explicit

dependencies. Consider the following protocol:

m1() from A to B;

m2() from B to C;
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The protocol specifies that there is a causality between m1 and m2 at the role B.

More precisely, role B is not allowed to send the message m2() to C before receiv-

ing the message m1() from A. Thus, errors such as communication mismatches

that violate the permitted protocol are ruled out.

If all messages comply to their assigned FSMs, the whole communication is

guaranteed to be safe. If an actor does not comply, violations (such as deadlocks,

communication and type mismatch) are detected dynamically. The monitor can

either block the faulty messages (outgoing faulty messages are not dispatched to

the network, incoming faulty messages are not dispatched to the message handlers)

or issue a warning.

6.1.3. Use Case: Warehouse Management

To illustrate and motivate central design decisions of our model, we present the

buyer-seller protocol from [HYC08] and extend it to a full warehouse manage-

ment scenario. A warehouse consists of multiple customers communicating to a

warehouse provider. It can be involved in a Purchase protocol (with customers),

but can also be involved in a StoreLoad protocol with dealers to update its stor-

age.

Scribble protocol. The interactions between the entities in the system are pre-

sented as two Scribble protocols, shown in Fig. 6.2 (left) and Fig. 6.2 (right). The

protocols are called Purchase and StoreLoad and involve three (a buyer (B), a

seller (S) and an authenticator (A)) and two (a store (S), a dealer (D)) parties, re-

spectively. At the start of a purchase session, B sends login details to S, which

delegates the request to an authentication server. After the authentication is com-

pleted, B sends a request quote req for a product to S and S replies with the product

price. Then B has a choice to ask for another product (req), to proceed with buying

the product (bye), or to quit (quit). By buying a product the warehouse decreases

the product amount it has in the store. Products in stock are increased as prescribed

by the StoreLoad protocol, Fig. 6.2 (right). The protocol starts with a recursion

where a warehouse (in the role of S) has a choice to send a product request, of

the form req(string, int), to a dealer D. The first argument of req specifies

the name of a requested product as a string, the second argument is of type int

and stands for the number of requested products. After receiving the request, D

delivers the product (put in line 8). These interactions are repeated in a loop until
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1 global protocol Purchase(

2 role B, role S, role A)

3 {
4 login(str) from B to S;

5 login(str) from S to A;

6 auth(str) from A to B, S;

7 choice at B

8 {req(str) from B to S;

9 (int) from S to B;

10 }
11 or

12 {buy(str) from B to S

13 deliver(str) from S to B;

14 }
15 or

16 {quit() from B to S;}}

1 global protocol StoreLoad

2 (role D, role S)

3 {
4 rec Rec{
5 choice at S

6 {req(str , int) from S to D;

7 put(str , int) from D to S;

8 continue Rec;}
9 or

10 {quit() from S to D;

11 acc() from D to S;}}}

Figure 6.2.: Global protocols in Scribble for (left) Purchase protocol and (right)
StoreLoad protocol

S decides to quit the protocol (line 11).

Challenges. There are several challenging points implementing the above sce-

nario. First, a warehouse implementation of the Store role should be involved in

both protocols, therefore it can play more than one role. Second, initially the user

does not know the exact warehouse it is buying from, therefore the customer learns

dynamically the address of the warehouse. Third, there can be a specific restric-

tion on the protocol that cannot be expressed as system constants (such as specific

timeout depending on the customer). The next section explains the implementation

of this example in Session Actors.

6.2. Session Actor Language

This section explains the main operations in the session actor language and its use

case implementation in Python.

Session Actor language operations. Fig. 6.3 presents the main session actor

operations and annotations. The central concept of the session actor is the role.

A role can be considered as a passive object inside an actor and it contains meta

information used for MPST-verification. A session actor is registered for a role via

the @protocol annotation. The annotation specifies the name of the protocol and
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Conversation API operation Purpose
@protocol(self_role, protocol_name, Annotating actor class

self_role, other_roles)ActorClass

@role(self_role, sender_role)msg_handler Annotating message handler
Protocol.create(protocol_name, mapping) Initiating a conversation
c.role.send.method(payload) Sending a message to an actor in a role
join(self, role) Actor handler for joining a protocol
actor.send.method(payload) Sending a message to a known actor

Figure 6.3.: Session Actor operations

all the roles that are part of the protocol. The aforementioned meta information

is stored in a role instance created in the actor. To be used for communication, a

method should be annotated with a role using a @role decorator and passing a

role instance name. The instance serves as a container for references to all pro-

tocol roles, which allows sending a message to a role in the session actor without

knowing the actor location. A message is sent via c.role.send.method, where

c is the self role instance and role is the receiver of the message.

Sending to a role without explicitly knowing the actor location is enabled through

a mechanism for actor discovery (explained in Section 6.3). When a session is

started via the create method, actors receive an invitation for joining a protocol.

The operation join is a default handler for invitation messages. If a session actor

changes the join behaviour and applies additional security policies to the joiners,

the method should be overloaded. Introducing actor roles via protocol executions

is a novelty of our work: without roles and the actor discovery mechanism, actors

would need additional configurations to introduce their addresses, and this would

grow the complexity of configurations.

Listing 6.1: Session Actor implementation for the Warehouse role

1 @protocol(c, Purchase, seller, buyer, auth)

2 @protocol(c1, StoreLoad, store, dealer)

3 class Warehouse(SessionActor):

4 @role(c, buyer)

5 def login(self, c, user):

6 c.auth.send.login(user)

7
8 @role(c, buyer)

9 def buy(self, c, product):

10 self.purchaseDB[product]-=1;

11 c.buyer.send.delivery(product.details)

12 self.become(update, product)

13 @role(c, buyer)
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14 def quit(self, c):

15 c.buyer.send.acc()

16
17 @role(c1, self)

18 def update(self, c1, product):

19 c1.dealer.send.req(product, n)

20
21 @role(c1, dealer)

22 def put(self, c1, product):

23 self.purchaseDB[product]+=1:

24
25 def start_protocols():

26 c = Protocol.create(Purchase, {seller:Warehouse,

27 buyer: Customer, auth: Authenticator})

28 c1 = Protocol.create(StoreLoad, {store: c.seller,

29 dealer: Shop})

30 c.buyer.send.start()

Warehouse service implementation. We explain the main constructs by an im-

plementation of a session actor accountable for the Warehouse service. Listing 6.1

presents the implementation of a warehouse service as a single session actor that

keeps the inventory as a state (self.purchaseDB). Lines 1–2 annotate the ses-

sion actor class Warehouse with two protocol decorators – c and c1 (for seller

and store roles respectively). The instances c and c1 are accessible within the

warehouse actor and are holders for mailboxes of the other actors, involved in the

two protocols.

All message handlers are annotated with a role and for convenience are imple-

mented as methods. For example, the login method (line 5) is invoked when a

login message (line 4, Fig. 6.2 (left)) is sent. The role annotation for c (line 4)

specifies the originator of the message to be buyer.

The handler body continues following line 5, Fig. 6.2 (left) – sending a login

message via the send primitive to the session actor, registered as a role auth in the

protocol of c. Value c.auth is initialised with the auth actor mailbox as a result

of the actor discovery mechanism (explained in the next section). The handling of

auth (line 6, Fig. 6.2 (left)) and req (line 6, Fig. 6.2 (right)) messages is similar,

so we omit it and focus on the buy handler (line 9–12), where after sending the

delivery details (line 11), the warehouse actor sends a message to itself (line 12)

using the primitive become with value update. Value update is annotated with

another role c1, but has as a sender self. This is the mechanism used for switch-
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ing between roles within an actor. Update method (line 18–19) implements the

request branch (line 6–9, Fig. 6.2 (right)) of the StoreLoad protocol – sending a

request to the dealer and handling the reply via method put.

The correct order of messages is verified by the FSM, embedded in c and c1. As

a result, errors such as calling put before update or executing two consecutive

updates, will be detected as invalid.

A protocol is started using the Protocol.create function. It takes, as pa-

rameters, (1) the name of a protocol and (2) the mapping between the role names

and the actor classes implementing the roles. Note that for readability we use

more descriptive role names –buyer, seller and auth instead of B, S, A respec-

tively. Creating a protocol involves (1) creating a protocol mailbox with a newly

generated protocol id; (2) spawning all actors (if they still have not been started)

involved in the protocol; and (3) sending the address of the protocol mailbox (the

protocol id) to all actors. Lines 26 starts the purchase protocol and spawns the

Warehouse, Customer and Authenticator actors (Warehouse, Customer and Au-

thenticator are names of actor classes). Lines 28 starts the storeLoad protocol,

but since the Warehouse actor is already spawned, we do not pass the actor class,

but a reference to an existing actor (c.seller). Then, c.buyer.send.start()

sends a message to buyer to start the protocol interactions as the global protocol

prescribes (the protocol prescribes the first interaction is from buyer sending a

login message to the seller).

6.3. Implementation of Session Actors

This section explains our implementation of Session Actors. The key design

choices follow the actor framework explained in Section 6.1.2. We have imple-

mented the multiparty session actors on top of Celery [Cel] (a Python framework

for distributed task processing) with support for distributed actors [Act]. Celery

uses Advanced Message Queue Protocol (AMQP 0-9-1 [AMQ]) as a transport.

The reason for choosing AMQP network as base for our framework is that AMQP

middleware shares a similar abstraction with the actor programming model, which

makes the implementation of distributed actors more natural.
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6.3.1. AMQP Background

Although we have already introduced AMQP in Chapter 3, in this subsection

we recall AMQP notions specifically needed for actor modeling. We first remind

the key features of the AMQP model, also summarised in Chapter 3. In AMQP,

messages are published by producers to entities, called exchanges (or mailboxes).

Exchanges distribute message copies to queues using binding rules. Then AMQP

brokers (virtual routers) deliver messages to consumers subscribed to queues. Ex-

changes can be of different types, depending on the binding rules and the routing

strategies they implement.

We use three exchange types in our implementation: round-robin exchange (de-

liver messages, alternating to all subscribers), direct exchange (subscribers sub-

scribe with a binding key and messages are delivered when a key stored in the

message meta information matches the binding key of the subscription) and broad-

cast exchange (deliver a message to all subscribers).

Distributed actors are naturally represented in this AMQP context using the ab-

stractions of exchanges. Each actor type is represented in the network as an ex-

change and is realised as a consumer subscribed to a queue based on a pattern

matching on the actor id. Message handlers are implemented as methods on the

actor class. Our distributed actor discovery mechanism draws on the AMPQ ab-

stractions of exchanges, queues and binding.

6.3.2. Actor Roles

Our extensions to the actor programming model are built using Python advanced

abstraction capabilities: two main capabilities are greenlets (for realising concur-

rency between roles) and decorators (for annotating actor types and methods).

A greenlet (or micro/green thread) is a light-weight cooperatively-scheduled ex-

ecution unit in Python. A Python decorator is any callable Python object that is

used to modify a function, method or class definition, annotated with @ symbol. A

decorator is passed the original object being defined and returns a modified object,

which is then bound to the name in the definition. The decorators in Python are

partly inspired by Java annotations.

A key idea of actor roles is that each role runs as a micro-thread in an actor

(using Python greenlet library). A role is activated when a message is received and

ready to be processed. Switching between roles is done via the become primitive

(as demonstrated in Listing 6.1), which is realised as sending a message to the
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internal queue of the actor. Roles are scheduled cooperatively. This means that at

most one role can be active in a session actor at a time.

Actors are assigned roles by adding the @protocol decorator to the actor class

declaration. The annotation

@protocol(seller, "Purchase", "seller", ["buyer"])

class Warehouse

creates a private field seller on the class Warehouse. The field has a type

ActorRole. ActorRole is a custom class that encapsulates an actor role be-

haviour. In this case, the behaviour of the seller role. We recall Fig. 6.1, which

illustrates the structure of a session actor. In addition to the protocol name, and

an ActorRole instance (role A in Fig. 6.1) also contains a corresponding FSM

monitor (generated from a Scribble protocol) and the addresses to the other actors

in the protocol. Thus, the other participating actors in the protocol are accessed

using role names (for example, seller.buyer returns the address of the actor

that implements buyer).

All communication interactions on the role instance seller should follow the

interactions prescribed by the protocol Purchase for the role seller. Therefore:

1. all labels sent to the role seller in the protocol specification, are imple-

mented as methods of the class Warehouse and

2. the above methods are annotated with @role decorator.

For example, the specification that a buyer sends a message quit to the seller

requires that there is a method quit annotated with @role(seller, buyer).

The latter can be read as @role(receiver_role=seller, sender_role=

buyer).

Messages received in the actor mailbox are dispatched to the matching handlers

(methods) only if the @role decorator for the method corresponds to the meta in-

formation about the sender and receiver roles in the message header. For example,

the message dispatch as a result of the call buyer.seller.send.quit() will

invoke the body of the method declared as: @role(seller, buyer)def quit.

6.3.3. Actor Discovery

Fig. 6.4 presents the network setting (in terms of AMQP objects) for realising the

actor discovery for buyer and seller of the protocol Purchase. We use three

AMQP exchange types, as explained in Section 6.3.1. For simplicity, we create

some of the objects on starting of the actor system – round-robin exchange per
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Figure 6.4.: Organising Session Actors into protocols

actor type (warehouse and customer in Fig. 6.4) and broadcast exchange per

protocol type (purchase in Fig. 6.4). All spawned actors alternate to receive

messages addressed to their type exchange. When session actors are started their

exchange is bound to the protocol exchange according to their @protocol anno-

tations (line 1 in Listing 6.1 binds warehouse to purchase in Fig. 6.4).

Exchanges are very cheap to create with a throughput of one million messages

per second1. Therefore we do not consider their use as a bottleneck of our im-

plementation. Messages are not stored in the exchange and therefore only the

exchange throughput evaluation is relevant to performance concerns.

The session initiation takes advantage of the available AMQP infrastructure.

The actor discovery wraps the boilerplate code for spawning new actors, creating

new session id and exchanging the actor addresses between the involved partici-

pants. The exact exchange bindings for our running example are explained below.

We now explain the workflow for actor discovery. When a protocol is started,

a fresh protocol id and an exchange with that id are created. An AMQP direct

exchange (see Section 6.3.1) is used so that messages with a routing key are de-

livered to actors linked to the exchange with binding to that key (it corresponds to

protocol id in Fig. 6.4). Then join message is sent to the protocol exchange

and delivered to one actor per registered role (join is a broadcast to warehouse

1http://www.rabbitmq.com/blog/2011/03/28/very-fast-and-scalable-topic-routing-part-2/
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and customer in Fig. 6.4). On join, an actor binds itself to the protocol id

exchange with subscription key equal to its role (bindings seller and buyer in

Fig. 6.4). When an actor sends a message to another actor within the same session

(for example c.buyer.send.ack() in Listing 6.1), the message is sent to the

protocol id exchange (stored in c) and from there delivered to the buyer actor.

6.3.4. Preservation through FSM Checking

Figure 6.5.: Session Actors Monitoring

Before a message is dispatched to its

message handler, the message goes

through a monitor. We use the same

monitor implementation, as the one

presented in Section 3.3.1. We re-

call the monitoring process in Fig. 6.5.

Each message contains meta informa-

tion (also referred as a conversation

header in Chapter 3), containing the

role name the message is intended for

and the id of the protocol the message

is a part of. When an actor joins a

protocol, the FSM, generated from the

Scribble compiler (as shown in Fig. 6.1) is loaded from a distributed storage to the

actor memory.

Then the checking goes through the following steps. First, depending on the

role and the protocol id the matching FSM is retrieved from the actor memory.

Next the FSM checks whether the message labels/operators (already a part of the

actor payload) and sender and receiver roles are valid.

The check assertions step verifies that if any constraints on the size/value of the

payload are specified in Scribble, they are also fulfilled. If a message is detected as

wrong the session actor throws a distributed exception and sends an error message

back to the sending role and does not pass the message to its handler for processing.

This behaviour can be changed by implementing the wrong_message method of

the SessionActor class.
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6.4. Evaluations of Session Actors

This section reports on the performance of our framework. The goal of our eval-

uation is two fold. First, we compare our host distributed actor framework [Cel]

with a mainstream actor library (AKKA [akk]). Second, we show that our main

contribution, runtime verification of Scribble protocols, can be realised with rea-

sonable cost. The full source code of the benchmark protocols and applications

and the raw data are available from the project page [setb].

6.4.1. Session Actors Performance

We test the overhead of message delivery in our implementation using the ping-

pong benchmark [IS12] in which two processes send each other messages back and

forth. The original version of the code was obtained from Scala pingpong.scala2

and adapted to use distributed AKKA actors (instead of local). We distinguish two

protocols. Each pingpong can be a separate session (protocol FlatPingPong) or

the whole iteration can be part of one recursive protocol (RecPingPong). The pro-

tocols are given in Fig. 6.6 (right). This distinction is important only to session

actors, because the protocol shape has implications on checking. For AKKA ac-

tors the notion of session does not exist and therefore the two protocols have the

same implementation.

Set up. We run each scenario 50 times and measured the overall execution time

(the difference between successive runs was found to be negligible). The creation

and population of the network was not measured as part of the execution time.

The client and server actor nodes and the AMQP broker were each run on separate

machines (Intel Core2 Duo 2.80 GHz, 4 GB memory, 64-bit Ubuntu 11.04, kernel

2.6.38). All hosts are interconnected through Gigabit Ethernet and latency between

each node was measured to be 0.24 ms on average (ping 64 bytes). The version of

Python used was 2.7, of Scala – 2.10.2 and of the AKKA-actors – 2.2.1.

Results. Fig. 6.6 (left) compares three separate benchmark measurements for

session actors. The base case for comparison, annotated as ”Celery”, is a pure actor

implementation without the addition of roles. ”With Role” measures the overhead

of roles annotations without having the monitor capabilities enabled (without veri-

fying communication safety). The two main cases, ”Rec Monitor” and ”Monitor”,
2http://scala-lang.org/old/node/54

168

http://scala-lang.org/old/node/54


0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

Monitor RecMonitor With Role

Celery AKKA

Number of pings (in thousands)

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e 
(i

n
se

cs
)

global protocol FlatPingPong(

role C, role S)

{
ping(str) from C to S;

pong(str) from S to C;

}

global protocol RecPingPong(

role C, role S)

{
rec Loop{

ping(str) from C to S;

pong(str) from S to C;

continue Loop; }
}

Figure 6.6.: The PingPong benchmark, showing the overhead of message delivery
(left) and The FlatPingPong and RecPingPong protocol (right)

measure the full overhead of session actors. This separation aims to clearly illus-

trate the overhead introduced by each of the additions, presented in this chapter:

roles annotations, Scribble-based runtime verification and actor discovery. Note

that the FSMs for the recursive and for the flat protocol have the same number of

states. Therefore, the observed difference in the performance is a result of the cost

of actor discovery.

The difference between the performance of AKKA and Celery is not surprising

and can be explained by the distinct nature of the frameworks. AKKA runs on

top of JVM and the remote actors in these benchmarks use direct TCP connec-

tions. On the other hand, Celery is Python-based framework which uses a message

middleware as a transport, which adds additional layer of indirection. Given these

differences, Celery actors have reasonable performance and are a viable alterna-

tive.

Regarding our additions we can draw several positive conclusions from the

benchmarks: (1) the cost of the FSM checking is negligible and largely overshad-

owed by the communication cost (such as latency and routing); and (2) the cost of

the mechanism for actor discovery is reasonable, given the protocol load.
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States 100 1000 10000
Time (ms) 0.0479 0.0501 0.0569

Table 6.1.: Execution Time for checking protocol with increasing length

6.4.2. Monitoring Overhead

In this subsection, we discuss the row overhead of monitor checking, which is

a main factor that can affect the performance and scalability of our implementa-

tion. Knowing the complexity of checking protocols of different length is useful

to reason about the applicability of the model.

We have applied two optimisations to the monitor, presented in Chapter 3, which

significantly reduce the runtime overhead. First, we pre-generate the FSM based

on the global protocol. Second, we cache the FSM protocols the first time when a

role is loaded. Therefore, the slight runtime overhead (up to 10%), observed in the

previous section is a result of the time required to choose the correct FSM among

all in-memory FSMs inside the actor and the time required to check the FSM

transition table that the message is expected. The former has a linear complexity

on the number of roles running inside an actor (the runtime searches through all

in-memory FSMs) and the latter has a linear complexity on the number of states

inside an FSM (the monitor performs a search for a matching transition among all

FSM transitions).

Table 6.1 shows the approximate execution time for checking protocols of in-

creasing length of interactions. The protocol for testing is the request-reply proto-

col, given below:

msg1()from A to B; msg2()from B to A; . . . msg n() from B to A)

We evaluate the above protocol for n ranging over 100, 1000 and 10 000 respec-

tively. Then we report the time taken to complete each of the protocols. We omit

results for n smaller than 100 since the execution time is negligible.

6.4.3. Applications of Session Actors

As a practical evaluation of our framework, we have implemented two popular

actor applications and adapted them to session actors.

The first application is a distributed chat with multiple chat rooms, where a

number of clients connect to a reactive server and execute operations based on their
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privileges. Depending on privileges some clients might have extended number

of allowed messages. We impose this restriction dynamically by annotating the

restricted operations with different roles. An operation is allowed only if its actor

has already joined a session in the annotated role.

The second use case is a general MapReduce for counting words in a document.

It is an adaptation from an example presented in the official website for celery

actors3. The session actor usage removes the requirement for the manual actor

spawning of Reducers actors inside the Mapper actor, which reduces the code

size and the complexity of the implementation.

Listing 6.2: The WordCount protocol and its implementation in Python

1 #=======Code For The Mapper Role=========

2 @protocol(c, WordCount, R, A, M)

3 class Mapper(Actor):

4 @role(c) # invoked on protocol start

5 def join(self, c, file, n):

6 self.count_document(self,file, n)

7
8 @role(c, self)

9 def count_document(self, c, file, n):

10 with open(file) as f:

11 lines = f.readlines(), count = 0

12 for line in lines:

13 reducer = c.R[count%n], count+=1

14 reducer.send.count_lines(line)

15
16 #=======Code For Creating a protocol=======

17 c = Protocol.create(WordCount, {M=Mapper,

18 A=Aggregator}, {R:(Reducer, 10)})

19 c.M.send.join(file="file1.txt", n=10)

20
21 #=======Code For Aggregator role===========

22 @protocol(c, WordCount, A, M, R)

23 class Aggregator(Actor):

24 @role(c, master)

25 def aggregate(self, c, words):

26 for word, n in words.iteritems():

27 self.result.setdefault(word, 0)

28 self.result[word] += n

29 # when a treshhold is reached

3http://cell.readthedocs.org/en/latest/getting-started/index.html
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30 # print the results

31 c.close()

32
33 #=======Code For Reducer role==============

34 @protocol(c, WordCount, R, A, M)

35 class Reducer(Actor):

36 @role(c, M)

37 def count_lines(self, c, line):

38 words = {}

39 for word in line.split(" "):

40 words.setdefault(word, 0)

41 words[word] += 1

42 c.A.send.aggregate(words)

We give in Listing 6.2 the implementation of the latter example. For sake of

space and clarity, the implementation reported here abstracts from technical details

that are not important for the scope of this work. The protocol is started on line 26

specifying the type of the actors for each role and passing the arguments for the

initial execution – n (the number of reducers) and file (the name of the source

file to be counted). The Mapper implements the join method, which is invoked

when the actor joins a protocol. Since the Mapper is the starting role, when it joins,

it sends a message to itself to proceed with the execution of count_document.

Note that spawning and linking of actors are not specified in the code because

the actor discovery mechanism accounts for it. The protocol proceeds by Mapper

sending one message for each line of the document. The receiver of each message

is one of the Reducers. Each Reducer counts the words in its line and sends the

result to the Aggregator (c.A, line 48), which stores all words in a dictionary

and aggregates them. When a threshold for the result is reached, the Aggregator

prints the result and stops the session explicitly.

Our experiences with session actors are promising. Although they introduce

new notions, i.e. a protocol and a role, we found that their addition to a class-

based actor framework is natural to integrate without requiring a radical new way

of thinking. The protocol and role annotations are matched well with typical actor

applications, and they even result in simplifying the code by removing the boiler-

plate for actor discovery and coordination. The protocol-oriented approach to actor

programming accounts for the early error detection in the application design and

the coordination of actors. The runtime verification guarantees and enforces the

correct order of interactions, which is normally ensured only by hours of testing.
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No Use Case Name MPST feature required paper
1 Ping Pong standard [HMB+11]
2 Counting Actor standard [NYH13]
3 Fibonacci recursive subsession with dynamic role creation [DH12]
4 Big parallel; join [HMB+11]
5 Thread Ring Pabble (parameterised MPST) [NY14c]
6 KFork (throughput) subsessions [DH12]
7 Dining Philosophers parameterised parallel; group role new
8 Sleeping Barber parameterised parallel; group role new
9 Logistic Map Series parameterised parallel with join new
10 Bank Transaction parallel composition with join new
11 Cigarette Smoker parameterised parallel; group role new

Table 6.2.: List of implemented Savina benchmarks

6.5. Use Cases

In this section we evaluate the applicability of our framework to verify use cases

which contain common communication patterns found in actor languages. We se-

lect the use cases from an actor benchmark suit, Savina [IS14]. Savina aims to

identify a representative set of actor applications. The use cases range from pop-

ular micro benchmarks to classic concurrency problems. Each benchmark tests

a different aspect of the actor implementation (e.g. actor creation, throughput,

mailbox contention) and presents a different interaction patterns (e.g. master-slave,

round-robin communication, synchronous request-reply).

We express twelve out of the sixteen benchmarks, presented in the micro and

concurrency benchmarks sections of the suit. Standard primitives for multiparty

session types (recursion, choice, point-to-point interaction and parallel compo-

sition) are not sufficient to specify most of the use cases, but more advanced fea-

tures such as assertions [BHTY10], subsessions [DH12] and dynamic role creation

[DY11] leverage the expressive capabilities of Scribble. The required extensions

are already proposed in the theoretical literature of MPSTs, and can be expressed

using combinations of various theoretical formalisms. Here we (1) identify (a

combination of) the MPST extensions needed to express actors patterns; (2) spec-

ify them in Scribble; and (3) implement end-point programs in Python.

First, we explain the advanced Scribble features, pointed in Table 6.2. In the

table, the parameterised parallel composition stands for the use of the construct

par [i:1..N] {body}, which is a shorthand for N parallel body branches, where

i is substituted with values from 1 to N inside the body. When the par is followed

by another block as in Listing 6.5, we call this block a join block (denoted as
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parallel with join in Table 6.2). The sequence par {block 1} and {block
2} block 3 means that for block3 to be executed, block1 and blcok2 should

be completed. For example, in Listing 6.5 the message transfer done()from S

to A; can be completed only after both A and B have sent a message done to

S.

Another Scribble feature exploited in our examples is a subsession. It is used

to create modular Scribble code and is realised as a macro expansion. It is often

combined with a group role (Table 6.2, examples 7, 8, 11). A group role, for

example, role Philosophers[1..N], specifies that there will be N roles with

the same type in the protocol. The roles share the same implementation, but at

runtime there will be N instances of that role and their behaviour might depend on

initially assigned indices.

Next we present the examples. We first describe a global Scribble protocol for

each use case based on specifications in [IS14] and the implementations on github

[Sav], and then provide a couple of implementations in Python in Appendix B. We

also demonstrate faulty executions, that can be detected by our framework, on the

Sleeping barber example in Fig. 6.7. The use cases in Scribble and corresponding

Python code can be found in [setb].

Table 6.2 shows a summary, specifying the communication pattern and the

MPST extension (if needed). For each use case, we give a brief description and the

global Scribble protocol. The previous version of Scribble has to be extended with

(1) parametrised parallel composition and (2) subsession with dynamic spawning

of roles [DH12].

Listing 6.3: the Counting Protocol

global protocol Counter (role P, role C)

{
rec Loop { value(int) from P to C;}
result(int) from C to P;}

}

Counting Actor. This use case expresses an elaborated request-reply pattern,

measuring the time taken to send n consecutive messages from a Producer ac-

tor to a Counter actor. The accumulated value in the Counter is returned to

the Producer. From an actor perspective, the use case tests the mail box imple-

mentation which needs to store the pending messages yet to be processed. Using

session types the communication interaction is succinctly specified with recursion
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and point-to-point communication, expressing the causalities between sending of

a value (val) and the final reply (res).

Listing 6.4: the Fibonacci Protocol

global protocol Fib(role P, role C)

{
request(int) from P to C;

par { Fib(C as P, new C);}
and { Fib(C as P, new C);}
result(int) from C to P; }}

}

Fibonacci. This use case involves the recursive creation of a predefined number

of actors using the naive recursive formula for computing fibonacci numbers. The

idea of the protocol is that an actor receives a request to compute a value, then it

spawns two additional actors and waits for their response. Finally, it returns the

sum of the responses to the requester. The example tests the actor creation/de-

struction in the actor implementation. The global Scribble protocol is given in

Listing 6.4. After receiving a request (req) from a Parent actor, a Child actor

invokes the same protocol type (Fib) with a new Child actor. To express the new

role creation, we use nested protocols (thereafter called subprotocols), formally

presented in [DH12]. A subprotocol definition accepts either roles already active

in the protocol (C as Parent) or new roles of a known type (new Child). To ex-

press the fork-join behaviour required by the example we use parallel composition

with continuation (the actions after a par in a protocol body). Thus the specified

protocol imposes causality between sending the response (res) and the comple-

tion of the proceeding interactions, but no causality between the subprotocols in

the parallel branches.

Listing 6.5: The Big protocol

global protocol Big (role A,

role B,role Sink as S)

{
par { ping() from A to B;

pong() from B to A;

done() from A to S;}

and { ping() from B to A;

pong() from A to B;

done() from B to S;}
done() from S to A;

done() from S to B;

}
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Big. The use case presents a many-to-many message passing scenario. Several

actors are spawned, each of which sends a ping message to another random actor.

Then the recipient actor responds with a pong message. A Sink actor is notified

(via done message) about the completion of these interactions. When the Sink

receives all replies, it terminates the other actors. In an actor implementation,

the benchmark measures the effects on contention on a recipient’s actor mailbox.

In session types the use case requires a join primitive, expressed in Scribble as a

continuation after the parallel branches, similarly to the Fibonacci use case. Note

that the round robin sending cannot be precisely expressed in Scribble. We have

simplified the use case, giving only the type for two ping-pong actors (A and B in

Listing 6.5) and one Sink actor. The protocol can be extended for more ping-pong

actors if the configuration is fixed in advance.

Listing 6.6: The ThreadRing protocol

global protocol Ring(role Worker [1..N])

{
rec Loop {

data(int) from Worker[i:1..N−1] to Worker[i+1];

data(int) from Worker[N] to Worker [1];

continue Loop;}
}

Thread Ring. In the ThreadRing use case an integer token message is passed

around a ring of N connected actors. The token value is decremented each time an

actor receives it. The interactions continue until the token becomes zero. From an

actor perspective, the benchmark tests the raw efficiency of message sending since

it removes all contention of resources except between the sending and receiving

actors. To express the protocol for each N ring configuration we use an extension

of Scribble, called Pabble [NY14c], where multiple participants can be grouped

in the same role and indexed. Indeed, the same use case is already presented in

[NY14c]. In the protocol in Listing 6.6, Worker[i:1..N−1] declares iteration

from 1 to N−1, in this sequence, on the interaction (Data(int) from Worker[i

] to Worker[i+1]) over the bound variable i.

Listing 6.7: The KFork protocol

global protocol KFork(role master as M, role Worker [1..K])

{
par[i:1..K] {
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rec Loop {
choice at M {

data(int) from M to Worker[i];}
or {

end from M to Worker[i];}}
}

KFork. The application first creates K worker actors and then sends each actor

a total of n messages in a round robin manner. Actors terminate after processing

all messages. The benchmark tests the message throughput in the implementation.

The global multiparty protocol is expressed as a parallel composition of K binary

protocols with an identical communication pattern, recursive interaction between a

Master and a Worker. For more concise specification, since all parallel branches

describe an identical communication pattern, we leverage the parallel construct

by introducing indexing on parallel branches. The syntax par[i:1..N] {body}
defines replication of body for each value of i between 1 and K. Listing 6.8 shows

the global protocol for KFork using the new syntax.

Listing 6.8: Refactored KFork Protocol

global protocol KFork(role Master as M, role Worker [1..K])

{
par[i:1..K] { Sub(M, W[i]);}

}
global protocol Sub(role M, role W)

{
rec Loop {

choice at M {
data(int) from M to W;}

or {
end from M to W;}}

}

Session patterns for concurrent group execution (Refactoring KFork). We

refactor the KFork global protocol, extracting the par body into a subprotocol.

The global protocol with a group role is represented as a parallel composition

of subprotocols. Indeed, this is an emerging pattern in all concurrent problems

surveyed in the benchmark suit. The pattern appears in four use cases: Sleeping

Barber, LogisticMap, BankTransaction and DiningPhilosophers.
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Listing 6.9: Dining Philosophers, Bank Transaction, Logistic Map

global protocol DiningPhilosophers(

role arbitrator as A, role Philosopher [1..N])

{
par[i:1..n] { DiningPhilosopher(A, Philosopher[i]); }

}
global protocol BankTransactions(

role Teller as T, role Accounts [1..N])

{
par[i:1..n−1] { BankTransaction(T, A[i], A[i+1]); }

}
global protocol LogisticMap(

role Master as M, role Series [1..N], role Ratio [1..N])

{
request from M to S[1..N];

par[i:1..N] { SeriesMaster(S[i], R[i]);}
response from S [1..N] to M;

stop from M to S[1..N];

}

A global protocol with a group role is split into smaller multiparty protocols -

one for each role in the group role set. In addition, in LogisticMap and Sleep-

ingBarber a join multicast is required to signal the completion of the interaction

and to end the protocol. In Listing 6.9 we give the four global protocols, where

the recurring session pattern can be clearly observed. In the rest of the section

we focus on the interactions between one of the roles from the group role set and

give the protocols (DiningPhilosopher, SleepingBarberOneCustomer, BankTrans-

action, SeriesMaster respectively) which do not require the use of a group role.

Listing 6.10: The DiningPhilosophers protocol

global protocol DiningPhilosopher(

role Arbitrator as A, role Philosopher as Ph)

{
rec L { choice at Ph {

rec M {
req() from Ph to A;

choice at A {
yes() from A to Ph;

continue L;}
or {

no() from A to Ph;

continue M;}}}
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or { done() from Ph to A;}}
}

The Dining Philosophers. In this classic example, N philosophers are compet-

ing to eat while sitting around a round table. There is one fork between each two

philosophers and a philosopher needs two forks to eat. The challenge is to avoid

deadlock, where no one can eat, because everyone is possessing exactly one fork.

In Savina, the problem is implemented using Arbitrator actor that coordinates

the resources (the forks) between Philosopher actors. The Arbitrator either

accepts (yes()) a Philosopher request or rejects (no()) it, depending on the

current resources allocated. If rejected, the Philosopher keeps sending request

(req) until it is accepted. The global protocol in Listing 6.10 specifies the inter-

actions between an Arbitrator and one Philosopher, defining the causalities

using recursion and choice.

Sleeping Barber. The use case presents another classic concurrency problem.

A barber is waiting for customers to cut their hair. When there are no customers

the barber sleeps. When a customer arrives, he wakes the barber or sits in one of

the waiting chairs in the waiting room. If all chairs are occupied, the customer

leaves. Customers repeatedly visit the barber shop until they get a haircut. The

key element of the solution is to make sure that whenever a customer or a barber

checks the state of the waiting room, they always see a valid state. The problem

is implemented using a Selector actor that decides which is the next customer,

Customer actors, a Barber actor and a Room actor. Note that, differently from

the previous use cases, the protocol between the Customers and the other actors

is multiparty (not binary). To guarantee a valid synchronisation, precise message

sequence should be followed. While the use cases so far demonstrated succinct

recursion and request-reply patterns, interleaved together, this one demonstrates a

communication structure with long sequence of interactions, where preserving the

causalities is the key to achieving deadlock free communication.

The implementation is ∼200 LOC in Akka (∼100 LOC in Python), where each

of the four actors sends messages to the other three actors. The implementation is

error-prone, because the type of the actors and whether they can be safely compose

is not obvious. Sending the wrong message type, sending to the wrong actor or

not sending in the correct message sequence may lead to deadlocks, errors which

initial cause is hard to be identified or wrong computation results. Errors can even
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go unnoticed resulting in orphan actors. Here we give examples of several faulty

executions and explain how they are prevented by our framework (for every error

example, we highlight in Fig. 6.7 a wrong implementation of a message transfer

and the corresponding line in the global protocol):

Deadlock (line 10): After receiving message full the Customer C sends a mes-

sage returned to the Room R instead of sending it to the Selector S. Then

the C will wait to be reentered again, while S will wait to receive returned

or done from C (according to Line 17), resulting in a deadlock. Moreover,

the other actors are stuck as well (R is waiting on S; B is waiting on R). Our

framework will detect that the message returned is sent to the wrong actor.

Unexpected termination (line 17): In this scenario, C again sends a wrong

message to R, but contrary to the above example, it sends a message that

R can handle (the message done). If there is no verification at R on the

sender of the messages, R will execute the done handler and as a result

will terminate (done should be sent by S to terminate the actor R when all

customers have been processed). When the Barber B tries to send next

message to R it will get a runtime exception that the actor R does not exist.

Such an exception can be very misleading because it points to a problem

between the Barber and the Room, while the actual error is in the code for

the Customer. Our framework will detect this inconsistency at the right (at

role C) place therefore will not allow the error to be propagated, masking the

real cause.

Orphan actors (line 24): The actor R sends a wrong message (don instead of

done) to B (or doesn’t send a message at all). Therefore, B will not terminate.

However, everybody else will and so will the protocol, leaving an orphan

actor B. Our monitor will detect the wrong message that B is sending.

Listing 6.11: The CigaretteSmoker protocol

global protocol CigaretteSmoker(role Arbiter as A,

role Smoker [1..N] as S)

{
rec Loop {

choice at A {
start smoking () from A to S[i];

started smoking () from S[i] to A;

continue Loop;

} or {
exit() from A to S[i..n]; }}}
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1 global protocol SleepingBarber(role barber as B,

2 role selector as S, role room as R)

3 {rec L {
4 choice at S {
5 par {
6 S introduces C;}
7 enter() from S to R;

8 choice at R {
9 full() from R to C;

10 returned () from C to S;

11 continue L; }
12 } or {
13 wait() from R to C;

14 enter () from R to B;

15 start () from B to C;

16 stop() from B to C;

17 done() from C to S;

18 next() from B to R;

19 }
20 wait() from R to B;

21 continue L;

22 } or {
23 done() from S to R;

24 done() from R to B; }}

# Deadlock
class CustomerActor...
@role(c, S)
def full(self, c):

# c.S.send.returned()
c.R.send.returned()

...
@role(c, B)
def stop(self, c):

# c.S.send.done()
c.R.send.done()

# Orphan Actors
class RoomActor...

@role(c, S)
def done(self, c):

# c.B.send.done()
c.B.send.don()

Figure 6.7.: The Sleeping Barber protocol (left) and corresponding faulty imple-
mentations (right)

Cigarette Smoker. This problem involves N smokers and one arbiter. The ar-

biter puts resources on the table and smokers pick them. A smoker needs to collect

k resources to start smoking. The challenge is to avoid deadlock by disallow-

ing a competition between smokers from picking up resources. This is done by

delegating the control to the arbiter, who decides (in a random manner) which

smoker to send the resource to. The session type for the use case, given in List-

ing 6.11, combines round-robin pattern, sending a random smoker a message to

smoke (StartSmoking), with multicast, iterating through all the smokers notify-

ing them to exit (Exit from A to S[i..n];).

Listing 6.12: The BankTransaction protocol

global protocol BankTransaction(role Teller as T,

role SrcAcc as S, role DestAcc as D)

{
credit from T to S;

debit from S to D;

reply from D to S;
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reply from S to T;

}

Bank Transaction. The communication pattern in this use case is a synchronous

request-reply chain. Three actors (a Teller, a source account SrcAcc and a des-

tination account DestAcc) synchronise to perform a debit from one account to

another. The Teller is not allowed other operations until a confirmation that the

transaction is complete is received from the source account. The two synchronous

request-reply patterns are expressed as a message sequence in the BankTransaction

protocol in Listing 6.12.

Logistic Map Series. This is another example of synchronous request-reply pat-

tern. The goal is to calculate a recurrence relation: xn+1 = rxn(1−xn). The imple-

mentation requires an actor for a manager (Master), a set of term actors (Series)

and a set of ratio actors (Ratio). The Ratio actors encapsulate the ratio r and

compute the next term xn+1 from the current term xn. The Master sends request

to the Series actor to compute a result. Then Series actors delegate the calcu-

lation to a Ratio actor and wait for synchronous reply to update their value of x.

Thus, the MasterSeries subprotocol is an instance of a request-reply pattern (from

Series as a requester to Ratio role as a replier), which we have already shows

and thus we omit.

Listing 6.13: The ProducerConsumer protocol

global protocol PCBounded(

role Buffer as B,

role Producer as P,

role Consumer as C)

{
rec Loop {

produce () from B to P;

par {
choice at P {

dm() from P to B;

continue Loop;

} or {
exit() from P to B;

}
} and {

dm() from B to C;

more() from C to B;}}
}

Producer Consumer with Bounded Buffer. The overall scenario of this use

case is that producers push work into the buffers, while consumers pull from it. The

implementation uses actors for producers, consumers and a buffer. The Buffer

actor is concurrently receiving messages from both Producers and Consumers.
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Thus, the benchmark measures also the contention overhead of the actor imple-

mentation. The Scribble protocol is given in Listing 6.13. To represent the pattern

(producers are sending messages concurrently, but there is causality between the

message send from a Producer and the message send to the Consumer). We use

a combination of recursion and parallel branches. In each recursive execution, we

require Consumers and Producers to send or receive concurrently. At the same

time, the Producer can keep sending (starting a new recursive execution), before

the Consumer has finished their branch.

6.6. Related Work

Behavioural and session types for actors and objects There are several theo-

retical works that have studied behavioural types for verifying actors [MV11, Cra].

The work [Cra] proposes a behavioural typing system for an actor calculus where

a type describes a sequence of inputs and outputs performed by the actor body.

In [MV11], a concurrent fragment of Erlang is enriched with sessions and session

types. Messages are linked to a session via correlation sets (explicit identifiers,

contained in the message), and clients create the required references and send them

in the service invocation message. The developed typing system guarantees that

all within-session messages have a chance of being received. The formalism is

based on only binary sessions.

Several recent papers have combined session types, as specification of proto-

cols on communicating channels, with object-oriented paradigm. A work close to

ours is [GVR+10], where a session channel is stored as a field of an object, there-

fore channels can be accessed from different methods. They explicitly specify the

(partial) type for each method bound to a channel. Our implementation also al-

lows modularised sessions based on channel-based communication. Their work

[GVR+10] is mainly theoretical and gives a static typing system based on binary

session types. Our work aims to provide a design and implementation of runtime

verification based on multiparty session types, and is integrated with existing de-

velopment frameworks based on Celery [Cel] and AMQP [AMQ].

The work in [Cai08] formalises behaviours of non-uniform active objects where

the set of available methods may change dynamically. It uses an approach based

on spatial logic for a fine grained access control of resources. Method availability

in [Cai08] depends on the state of the object in a similar way as ours.
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Other Actor frameworks The most popular actor’s library (the AKKA frame-

work [akk] in Scala studied in [TDJ13]) supports FSM verification mechanism

(through inheritance) and typed channels. Their channel typing is simple so that

it cannot capture structures of communications such as sequencing, branching or

recursions. These structures ensured by session types are a key element for guar-

anteeing deadlock freedom between multiple actors. In addition, in [akk], chan-

nels and FSMs are unrelated and cannot be intermixed; on the other hand, in our

approach, we rely on external specifications based on the choreography (MPST)

and the FSMs usage is internalised (i.e. FSMs are automatically generated from a

global type), therefore it does not affect program structures.

Several works study an extension of actors in multicore control flows. Multi-

threaded active objects [HHI13] allow several threads to co-exist inside an active

object and provide an annotation system to control their concurrent executions.

Parallel Actor Monitors (PAM) [STM14] is another framework for intra actor par-

allelism. PAMs are monitors attached to each actor that schedule the execution

of messages based on synchronisation constraints. Our framework also enables

multiple control flows inside an actor as [HHI13, STM14]. In addition, we embed

monitors inside actors in a similar way as [STM14, HHI13] embed schedulers.

The main focus of the monitors in [HHI13, STM14] is scheduling the order of

the method executions in order to optimise the actor performance on multi-core

machines, while our approach aims to provide explicit protocol specifications and

verification among interactions between distributed actors in multi-node environ-

ments.

The work [SPH10] proposes a technique to have multiple cooperatively sched-

uled tasks within a single active object similar to our notion of cooperative roles

within an actor. The approach is implemented as a Java extension with an actor-

like concurrency where communication is based on asynchronous method calls

with objects as targets. They resort to RMI for writing distributed implementa-

tions and do not allow specifying sequencing of messages (protocols) like ours.

The work [RYC+06] proposes a three-layered architecture of actor roles and

coordinators, which resemble roles and protocol mailboxes, respectively, in our

setting. Their specifications focus on QoS requirements, while our aim is to de-

scribe and ensure correct patterns of interactions (message passing).

Comparing with the above works, our aim is to provide effective framework for

multi-node environments where actors can be distributed transparently to different

machines and/or cores.
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Several extensions of the actor model suggest more complex synchronization of

the actor inbox such as multi-headed messages with guards [SLVW08], join-style

actors [FG00] and synchronous replies [VA01]. These works focus on more ex-

pressive pattern matching for precise and correct dispatch of the messages to the

corresponding message handlers implemented in an actor. Thus, the synchronisa-

tion constraints are specified on the local actor behaviour. The emphasize of our

work is on expressing synchronization constraints globally, as part of the over-

all choreography of an actor system, and inferring (through projection) the local

behaviour of a single actor.

6.7. Concluding Remarks

We propose an actor specification and verification framework based on multiparty

session types, providing a Python library with actor communication primitives.

Cooperative multitasking within sessions allows for combining active and reactive

behaviours in a simple and type-safe way. The framework is naturally integrated

with Celery [Cel] which uses advanced message queue protocol (AMQP [AMQ]),

and uses effectively its types for realising key mechanisms such as actor discov-

ery. We demonstrated that the overhead of our implementation is very small. We

then show that programming in session actors is straightforward by implement-

ing and rewriting use cases from [akk]. The work presented in this chapter links

FSMs, actors and choreographies in a single framework. As actor languages and

frameworks are becoming more popular, we believe that our work would offer

an important step for writing correct large-scale actor-based communication pro-

grams.
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7. Recoverability for Monitored MPST
processes

Safety-critical distributed systems need to run all the time, i.e. even in the presence

of failure, the overall system should stay alive. Despite the importance of fast and

correct recovery in such systems, it is still difficult and error-prone to implement

fault-tolerant distributed components.

Let it Crash recovery model. A popular fault-tolerance model is the Let it crash

model, adopted by the programming language Erlang. In Erlang, rather than trying

to handle and recover from all possible exceptional and failure states, one can

instead let processes crash and let the runtime automatically recycle them back to

their initial state. Failures and error propagation are managed by organising the

running processes in a hierarchical structure, called a supervision tree, where each

process and its dependencies are monitored by a parent process, called supervisor.

While the Let it crash model has gained popularity and has recently been adopted

in other commercial languages and frameworks (Go, Akka/Scala), it still faces two

major technical problems. First, the correctness of recovery strategies relies on the

assumption that a global process structure (i.e. a supervision structure) of the

system is correctly written by a programmer. A recent study reveals a miscon-

figuration of the supervision structures is a common source of errors for recovery

[Nys09b]. Second, supervision strategies are statically given; hence they often

recover too few or too many processes, and are unable to capture the dynamic

nature of the communication dependencies between processes. This often leads

to a redundant and/or unsound recovery mechanism (as shown and explained in

Table 7.1).

In this chapter we propose a novel recovery strategy, tackling the challenges

mentioned above. The strategy is realised as part of a Scribble-based runtime ver-

ification framework in Erlang, capacitated not only to ensure safety of monitored

processes, but also to optimise the communication overhead during recovery after

a process failure.
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G =


A1→ A2
A2→ A3

. . .
An→ C

 |


B1→ B2
B2→ B3

. . .
Bn→ D


C→ E;D→ E;

E→ C :

{
accept.E→ D : reject
reject.E→ D : accept

1 %% CODE FOR A, B, C, D
2 handle_cast(A, msg)
3 A1 = get_next()%failure 1
4 A1 ! msg.
5 handle_cast(A, accept)
6 io:format(’accept’).
7 %% CODE E
8 init(_,msg)
9 %failure 2

10 receive {C, msg1}→
11 io:format(msg1/msg2)
12 receive {D, msg2} →
13 io:format(msg1/msg2)
14 C ! accept,
15 D ! reject.%failure 3

Figure 7.1.: Trading Negotiation Global Protocol (left) and Erlang Implementation
(right)

Our approach. Our recovery strategy relies on two design ideas: (1) messages

that should be resent are identified based on the dependencies in the type structure

of a process and (2) only affected participants are notified and recovered. To re-

alise these ideas we propose a novel algorithm, which analyses the communication

flow, given as a multiparty protocol, to extract the causal dependencies between

processes. The algorithm works by traversing a dependency graph, automatically

inferred from a given global protocol. We calculate all dependencies in the graph,

affected by a given state. On failure, the processes from the calculated paths are

recovered. Thus, only a minimal amount of data is propagated, that is, the global

point of failure. Although the algorithms is static, we use runtime monitors to track

process states and invoke the recovery procedure when a process crash is detected.

Trading negotiation example. We start by illustrating the difficulty of sound and

efficient recovery on chained parallel interactions which is a common topology

found in Erlang applications. Fig. 7.1 (right) shows an Erlang program for a trading

negotiation protocol, while Fig. 7.1 (left) shows the protocol written as a global

multiparty session type 1. The notation Ai → Ai+1 denotes a message exchange

from participant Ai to participant Ai+1, and G | G′ denotes a parallel execution of

protocol G and protocol G′. A sequence of messages is denoted by semicolon ”;”

and {label1 : G1, label2 : G2} represents a choice of G1 or G2 with label label1
or label2. Messages are ordered on the sender and receiver side. For example,

1We use the syntax of global types as given in Chapter 2 with addition of ; and we omit the label
of the message when a branch is singleton.
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C→ E;D→ E describes messages to be processed by E in the specified order.

The trading negotiation process is split into three phases: In the first phase, two

groups of participants, the team of Alice (Ai) and the team of Bob (Bi) forward

messages to their group leaders, C and D respectively, with their suggested trading

quote. The communication between the groups is independent (represented by a

parallel composition of two global protocols). In the second phase, the leaders

of the groups notify the trader E regarding their proposals (represented by C→
E;D→ E). Finally, E chooses the best quota and sends accept or reject to each

group leader (represented by a choice). Note that since the parallel compositions

end with participants C and D, respectively, there is the ordering from the chain of

Ai to E→ C and from the chain of Bj to D→ C, respectively.

In the above protocol the dependencies between the processes are dynamic and

change with the execution of the protocol. We consider, as examples, three possi-

ble failures and give the set of affected participants in each case using our MPST-

induced approach. Table 7.1 summarises the result and compare it with two Erlang

recovery strategies.

Scenario 1: Ai fails before sending the message to Ai+1 (line 3) Ai affects only

its predecessors. Thus, for example, if A3 fails, only A1 and A2 are restarted.

(Line 10).

Scenario 2: E fails at receiving the message from C (line 10) All participants are

restarted. Note that since the network is asynchronous C might have already

sent the message to E, although E might not have selected the message from

the queue. When E fails, the queue will be erased and the messages will be

lost. Thus, inevitably C must be informed about E’s failure.

Scenario 3: E fails before sending the message to D (Line 15). The proto-

col prescribes that E has already received the quota from Alice’s group.

Therefore, only D should resend its quota. We recover everyone on the path

B1, . . . ,Bn,D.

Erlang recovery strategies. In Erlang, there are three types of supervisions. In

one-for-one supervision, if a worker fails, only this worker is restarted by the super-

visor; in all-for-one supervision, if any worker dies, all the workers are restarted;

and in rest-for-one supervision, if a worker terminates, only the rest of the workers

(the processes followed by the terminated process) are terminated.

In Fig. 7.2 we present two representative supervision hierarchies with combined

strategies and compare them with our approach in Table 7.1.

The rest-for-one supervision is suitable for disjoint groups of chained inter-
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Fig. 7.2 (a) restarts Fig. 7.2 (b) restarts Our approach
Scenario 1 A1 . . .Ai A1 . . .Ai A1 . . .Ai
Scenario 2 everyone only E (unsound) everyone
Scenario 3 everyone (inefficient) only E (unsound) B1 . . .Bn,D,E

Table 7.1.: Comparison between Erlang recovery and MPST-induced recovery

actions. Hence we connect Alice’s group Ai by a rest-for-one supervisor and

Bob’s group Bi by another supervisor of the same type. Then a worker E is

grouped with the rest by all-for-one supervisor (Fig. 7.2(a)) or one-for-one su-

pervisor (Fig. 7.2(b)). The recovery driven by (a) or (b) is, as explained below,

either inefficient or unsound.

Supervisor 
rest-for-one

role

C

E

A1 B1 D. . . . . .

Supervisor 
rest-for-one

Supervisor 
all-for-one

Supervisor 
rest-for-one

role

C

E

A1 B1 D. . . . . .

Supervisor 
rest-for-one

Supervisor 
one-for-one

Figure 7.2.: Erlang supervision strategies: (a) all-for-one and (b) one-for-one

Suppose E dies as assumed in Scenario 2. If we chose the supervision Fig. 7.2(b),

only E is restarted from the beginning. However, since C has already sent the

message to E, the message by others will be lost and E will be stuck (deadlock).

Consider that we chose Fig. 7.2(a). Then all processes are restarted from the begin-

ning, which works in Scenario 2. However, in Scenario 3, Ai’s group has already

completed the negotiation and thus it is redundant to repeat all interactions.

To summarise, the advantages of our approach are three-fold. First, executions

ensured by our protocol recovery strategy are safe by construction. While supervi-

sion trees are manually built, and recovery strategies are sometimes implemented

in an ad-hoc manner, our proposed recovery algorithm generates supervision struc-

tures automatically and is grounded on a sound theoretical foundations. Second,

our strategy guarantees small computation cost resulting in reduced overall exe-

cution times. Finally, we reduce the communication cost by notifying only the

relevant participants. As shown in Table 7.1 part of the error propagation can be
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avoided when our restart strategy is employed.

We provide a prototype implementation in Erlang on top of Erlang’s built-in

fault-tolerance semantics. Though we assume some conditions from Erlang such

as asynchronous messages passing and ordered queues (see details in Section 7.1),

our approach is general and our recovery algorithm is language-independent: as

explained in Section 7.2, our algorithm can be flexibly tuned to various assump-

tions on queues and messaging semantics.

Contributions and outline. We outline the structure of this chapter, summarising

the contributions of each part.

Section 7.1 We propose a recovery framework based on MPSTs and show how

session type-based analysis is used to provide a fault-tolerant recovery.

Section 7.2 We formalise a recovery strategy (using communicating automata

[BZ83, LTY15, DY12]) and we give semantics for recoverable properties.

Section 7.4 We provide a design and implementation of our recovery strategy on

top of runtime monitoring in Erlang. More precisely, we adapt the Scribble-

based runtime verification for actor programs, presented in Chapter 6, to

Erlang processes and facilitate it with recovery capabilities.

Section 7.5 We implement several use cases and show that our recovery strategy

is more efficient for common message-passing protocols when compared to

the Erlang all-for-one supervision.

7.1. Overview of Multiparty Protocol-Induced Recovery

Our framework involves two stages: processing a given global protocol (type)

and runtime supervision. The global type analysis from the first stage is used for

runtime monitoring and recovering during the second stage.

7.1.1. Global Protocol Processing

The global type processing involves (1) creating a global recovery table (GRT)

from a given global protocol (type) and (2) projecting the global protocol into

local types and creating a finite state machine per each local type. Each local type

corresponds to a local protocol of each participant. The GRT prescribes which

part(s) of the global protocol to be recovered on failure, and the set of processes

to be notified, while the finite state machines are used to track the current state of
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each process during the session execution.

To generate a GRT, first we create a dependency graph. A dependency graph is

a directed graph that models the actual causal dependencies between the actions in

a protocol. The dependency graph is built by syntactic traversal of the global type.

The nodes of the graph model the states of the protocol, and the edges model the

causal dependencies between the states. The recovery analysis is performed on the

dependency graph. Our analysis is built on two insights:

All input-output dependencies before the failed node should be recovered.

Since we model stateless processes, a forwarded message should be resent by its

initial sender, not by intermediary one. Consider the following example where we

underline the failed point:

A→ B; B→ C; (7.1)

If C fails to receive the message from B, then A should also resend the message to

B. This is because B’s mail box is emptied and B’s output data to C may depend on

the message from A.

However if the programmer wishes not to recover all input-output dependent

participants (e.g. the case there is no data dependency between the receiving and

sending actions at the same participant), one can annotate the global type, for

example, as follows:

A
?−→B; B→ C; (7.2)

which means A does not have to be recovered (see Remark 7.2.2 in Section 7.2).

All messages in the queue of the failed process should be resent. When a

process fails, its queue is emptied. At compile time (when the graph processing is

done), the state of the queue is unknown. Consider the following two examples:

A→ B; C→ B; and A→ B; C→ B; (7.3)

If B fails when receiving the message from A, the message from C might be already

in B’s queue. That is why our analysis will list both A and C as potential participants

which should recover. Hence we notify A and C by sending the request for recov-

ery. Since A already sent the message to B, A and B should be recovered. However

C has two choices: if C has still not sent the message to B, it can ignore the request

for recovery message; otherwise C should be recovered since its message in B’s

queue was lost. Similarly if A fails, then both B and C should be notified.

Now consider the following protocol which has additional intermediate commu-
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0 : A1→ A2

1 : A2→ C

4 : C→ E

2 : B1→ B2

3 : B2→ D

5 : D→ E

6 : E→ C

7 : E→ D 8 : E→ D

node role reset points
0 A1 {A1 : 0}
0 A2 {A2 : 0,A1 : 0}
1 A2 {A2 : 1,A1 : 0}
1 C {C : 1,A2 : 1,A1 : 1}
3 B2 {B2 : 3,B1 : 2}
3 D {D : 3,B2 : 2,B1 : 2}
4 C {C : 1,A2 : 1,A2 : 1}
5 D {D : 3,B2 : 2,B1 : 2}
4 E {C : 1,A2 : 1,A1 : 1,D : 3,B2 : 2,B1 : 2}
5 E {C : 1,A2 : 1,A1 : 1,D : 3,B2 : 2,B1 : 2}
6 E {C : 1,A2 : 1,A1 : 1,D : 3,B2 : 2,B1 : 2}
6 C {C : 1,A2 : 1,A1 : 1,D : 3,B2 : 2,B1 : 2}
7 E {C : 1,A2 : 1,A1 : 1,D : 3,B2 : 2,B1 : 2}
7 D {C : 1,A2 : 1,A1 : 1,D : 3,B2 : 2,B1 : 2}
8 E {C : 1,A2 : 1,A1 : 1,D : 3,B2 : 2,B1 : 2}
8 D {C : 1,A2 : 1,A1 : 1,D : 3,B2 : 2,B1 : 2}

Figure 7.3.: Dependency graph (a) and Global Recovery Table (b) for Trading Ne-
gotiation

nications to (7.3):

A→ B;B→ D;D→ C;C→ B; (7.4)

Here there is an input-output chains from the failed node at B (underlined) to C.

Since the output on C is guarded by failed B, C does not have to recover since the

output on C depends on the output from B, which is not sent yet.

7.1.2. Global Recovery Table and Algorithm

We give an overview of our recovery approach, following our running example.

Fig. 7.3 (a) shows the dependency graph for our example and Fig. 7.3 (b) shows

the global recovery table, generated by our algorithm. The algorithm explores

all paths of the session graph connected to the failed node. Since the syntax is

finite, the length of such paths is limited so that the algorithm terminates. For each

path, the algorithm works recursively on the edges, and maintains a dictionary that

records the recovery points for each participant. The GRT records the failed node

(corresponding to the node of the global graph), which role has failed, and a reset

(recovery) point of all roles, which depend on the failed role.

7.1.3. Runtime Supervision

In our framework, a supervision is setup at runtime when a session is started.
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Global Recovery Table

role
Local Type Local Type Local TypeLocal Type

Initial Failure Unaffected Recovered Ignore Failure

Process 
A

Process 
B

Process 
C

Process 
D

Figure 7.4.: Recovering messaging between the supervisors, and processes

Two types of entities are created: local process supervisors and processes. The

local process supervisors (also called monitors) track the state of the process they

supervise. Each local supervisor has a finite state machine created from the local

type (during the global graph processing stage). Whenever the process performs a

communication action, the monitor inspects the current state.

In Fig. 7.4, we list four possible actions that the local supervisors (LS) can take

after a failure.

Once a process fails, its LS is notified. The LS performs a lookup in the Global

Recovery Table (GRT) and notifies the LSs of the affected processes by sending

them a request for recovery, containing the failed state. When the local supervisors

receive request for recovery they query the GRT to retrieve their new state. If this

state has not been reached yet, they “ignore” the request for recovery; otherwise

they “restart” the process. The other processes remain unaffected (the second left-

most Fig. 7.4).

As an example, consider the case in (7.3). The initial failure message for B’s

failure is sent to B’s LS; Then B’s LS sends the recovery messages to A’s LS and

C’s LS. Then A is restarted (the second right-most Fig. 7.4); and if C has not sent

the message to B yet, then role B remains unaffected, otherwise it is recovered.
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7.2. Semantics and Properties of Multiparty Induced
Recovery

This section first presents the syntax of multiparty session types. After giving

the basic ideas of our recovery algorithm, we formalise it by defining the causal

relation of global types and labelled transitions of local types.

7.2.1. Global and Local Types

Syntax. We follow that exact syntax of global and local types, presented in Chap-

ter 2. For convenience, the syntax is recalled below:

G ::= A→B :{ai.Gi}i∈I | G|G | | µt.G | t | end
T ::= B!{ai.Ti}i∈I | B?{ai.Ti}i∈I | µt.T | t | end |

We remind the main constructs and notations. A global type, written G,G′, ..,

describes the whole conversation scenario of a multiparty session as a type signa-

ture, and a local type, written by T,T ′, .., abstracts session communication struc-

tures from each end-point’s view. A (a,b,c, ...) denotes a finite alphabet and P is

a set of participants fixed throughout the chapter. A,B, · · · ∈P denote participants

and ai ∈ A corresponds to the usual message labels in session type theory. Note

that we omit the carried types from the syntax, presented in this chapter, as we

are not directly concerned with typing processes. The basic interaction type (also

referred to as global branching) A→B :{ai.Gi}i∈I states that participant A can send

a message with one of the ai labels to participant B and that interaction described

in Gi follows. We require A 6= B to prevent self-sent messages and a j 6= ak for all

j 6= k ∈ I. Recursive types µt.G are for recursive protocols, assuming that type

variables (t, t′, . . . ) are guarded in the standard way, i.e. they only occur under

branchings. Type G1 | G2 is a parallel composition. Type end represents session

termination (often omitted). The function id(G) gives the participants of G.

Concerning local types, the branching type p?{ai.Ti}i∈I specifies the reception

of a message from p with a label among the ai. The selection type p!{ai.Ti}i∈I is

its dual. The remaining type constructors are as for global types. When branching

is a singleton, we write A→ B : a;G′ for global, and B!a.T or B?a.T for local.

For completeness, we also give the definition of projection, which formalises the

formal correspondence between local and global types. The algorithms follows the
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one in [BCD+08, HYC08]. We define the projection with the merging operator

from [DY11] to allow branching of the global type to actually contain different

interaction patterns.

Definition 7.2.1 (Projection) The projection of G onto A (written G�A) is defined

as:

A→B :{ai.Gi}i∈I �C =


A!{ai.G j � C}i∈I C= A

B?{ai.Gi � C}i∈I C= B

ti∈IGi � C otherwise

(µt.G) � p=

µt.G � p G � p 6= t

end otherwise

(G1 | G2) � C = G1 � C | G2 � C if C 6∈ G1 or C 6∈ G2; and fv(Gi) = /0

t � C = t end � C= end

where fv(G) denotes a set of free type variables in G. For projection of branch-

ings, we appeal to a merge operator along the lines of [DY11], written T t T ′,

ensuring that if the locally observable behaviour of the local type is dependent of

the chosen branch then it is identifiable via a unique choice/branching label.

7.2.2. Errors Generated by an Incorrect Recovery

We explain the errors that can occur by a faulty recovery process and explain the

essence of our algorithm. Fig. 7.5 shows some global types and three possible

cases that a recovery process introduces.

In the types, the point of recovery is marked by red and the point of error is

marked by orange. We look at several popular approaches to recovery [Nys09a]:

(1) recovery by resending the undelivered messages, (2) restarting the failed pro-

cesses from the beginning and (3) restarting all processes. We demonstrate errors

caused by unsound failure handling.

Recovery by resending a message (a deadlock). The process A fails before

receiving the message from B. An intuitive recovery strategy might be to resend the

unsuccessfully delivered message from B to A, not taking into account the existence

of other parties (C and D). When A recovers, all contents of A’s queue are deleted.

However, since messaging is asynchronous, it is possible that C has already sent

the message to A. This message will be lost when the queue is deleted. The process
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G1 = B→ C; A→ C;
B→ A; C→ A;
A→ D; D→ C;

A : C!.B?.C?.D!
B : C!.A!
C : B?.A?.A!.D?
D : A?.C!

G2 = B→ C; A→ C;
B→ A; A→ D;
D→ C;

A : C!.B?.C?.D!
B : C!.A!
C : B?.A?.A!.D?
D : A?.C!

G3 = E→ F{l1 : A→ B; A→ C; C→ B;
B→ A; A→ B; ,
l2 : A→ C; C→ B; B→ A;

A→ B; B→ C;}
A : B!.C!.B?.B?
B : {l1 : A?.C?.A!.A!, l2 : C?.A!.A?.A!}
C : A?.B!

Figure 7.5.: Recovery errors: (1) deadlock (2) orphan message error and (3) re-
ception error (We omit the labels from local and global types except
branching.)

C is at a state of receiving a message from D, after receiving the resend message

from B. But A will be stuck waiting to receive the message from C. The processes

end up in a deadlock.

Recovery by restarting the processes (orphan message error). Here we assume

the same failure with the above case, but a different recovery strategy. Instead of

resending the failed message we recover both affected processes by restarting them

from the beginning. No messages are lost and no deadlock occurs in this case.

However, both A and B will repeat their interactions (B→ C and A→ C). Since C

has already received these messages, the orphan messages will stay in the queue

of C and will not be consumed.

Recovery might not guarantee success (reception errors). As a result of non-

determinism in the global type, recovering one choice might be correct, but another

choice might get stuck. In (3), there is a race condition at B, which can first receive

from A or C. An initial execution might proceed with B receiving the message from

A first. After recovery, B might receive first the message from C, and therefore

taking a branch that is not implemented by A.

7.2.3. A Dependency Analysis on Global Types

As shown by examples in Section 7.1.3 and Section 7.2.2, the recovery algorithm

needs a dependency analysis of global types. We define the two key relations (≺≺IO
and C) used in the algorithm in this subsection.

Session graphs. Global types can be seen isomorphically as session graphs, that

we define in the following way. First, we annotate in G each syntactic occurrence

of subterms of the form A→B :{ai.Gi}i∈I with a node name (denoted by n1,n2, . . .)

Then, we inductively define a function nodes that gives a set of nodes (or the

special node end) for each of the syntactic subterm of G as follows:
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nodes(end) = end nodes(G1 | G2) = nodes(G1)∪nodes(G2)

nodes(µt.G′) = nodes(G′) nodes(n : A→B :{ai.Gi}i∈I) = n

nodes(t) = nodes(µt.G′) (if the binder of t is µt.G′ ∈ G)

Prefixes n and n′ are distinct if they correspond to different syntax occurrences

in G. We define G as a session graph in the following way: for each subterm of G

of the form n′ : A→B :{ai.Gi}i∈I , we have edges from n′ to each of the nodes(Gi)

for i ∈ I. We also define the functions pfx(ni), id(ni) and ch(ni) that respectively

give the prefix (A→ B : k), participants (A,B) and label (k) that correspond to ni.

Example 7.2.2 (Session graph) To illustrate session graphs on recursive global

types, we augment the main body of our running example with a recursion in the

first case of the choice, as shown below:

µt.C→ E;D→ E;E→ C :

accept.E→ D : reject.t,

reject.E→ D : accept.end

}
Then its graph representation with the initial node n1 is given as:

n1 : C→ E n2 : D→ E n3 : E→ C n4 : E→ D

n5 : E→ D n6 : end

reject

acceptaccept

reject

The recursion call yields a cycle in the graph, while branching gives the edges

a2 and a3.

The edges of a given session graph G define a successor relation between nodes,

written n ≺ n′ (omitting G). Paths in this session graph are referred to by the

sequence of nodes they pass through. The empty path is ε . The transitive and

reflexive closure of ≺ is ≺≺.

Causality and causality chains. We define causality relations in a given G by the

relationsC and≺IO. The dependency relationC represents the order between two

nodes which has a common participant; and the IO-relation ≺IO asserts the order

between a reception by a principal and the next message it sends. Formally,

n1Cn2 if n1≺≺n2 and id(n1)∩ id(n2) 6= /0

n1≺IOn2 if n1≺≺n2 and pfx(n1)=p1→p :a1 and pfx(n2)=p→p2 :a2
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An input-output dependency (IO-dependency) from n1 to nn is a chain n1 ≺IO
· · ·≺IOnn (n≥ 1) and we write ≺≺IO for a reflexive and transitive closure of ≺IO.

7.2.4. Algorithm and Semantics of Recovery

LTS for a local type. To formulate the semantics of recovery, we start from the

labelled transition relation between local (endpoint) types, as given in Chapter 2.

We extend the observable actions (`,`′, ...) to denote a recovery message †. The

full grammar for actions is given below.

` ::= AB!a | AB?a | †

Next we add a recovery rule to the definition of LTS over local types. The

relation T `−→ T ′, for the local type of participant A, is defined as, and we highlight

the new rule:

B!{ai.Ti}i∈I
AB!a〈S〉−−−−→ T j ( j ∈ I) bLSELc

B?{ai.Ti}i∈I
AB?a〈S〉−−−−→ T j ( j ∈ I) bLBRAc

T[µt.T/t] `−→ T ′ imply µt.T `−→ T ′ bLRECc

T †−→ T ′ imply ϕ(G,A,T )[A] = T ′ bRECc

The first three rules are standard. The rule [REC] represents the case partici-

pant A fails at the point of T and recovers as T ′. It is defined by the function

ϕ(G,B,T )[A] = T ′ which means, given global type G, the participant A recovers to

T ′ if it fails at T .

The main function ϕ(G,B,TB)[A] returns the minimum occurrence of affected

nodes of participant A when TB of participant B fails. In [REC], since participant

A fails at T , we calculate ϕ(G,A,T )[A]. To calculate a set of affected nodes, we

use the dependency relations defined in Section 7.2.3. We define ϕ(G,A,T )[A] in

Definition 7.2.3 later.

Affected nodes. In this paragraph, we define the algorithm to decide the set of

the affected nodesN when node ni in global type G failed. Below (1)N ← is a set

of newly affected nodes going backwards an IO-dependency from ni; (2) N → is

a set of newly added affected nodes going forward an IO-dependency from ni and
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(3)S is a set of non-affected nodes. Recall also that nC n′ means that n′ depends

on n; and n≺≺IO n′ means that there is an IO-chain from n to n′.

To avoid confusion with the given examples in the algorithm we denote partic-

ipants range over p, q and r, and we assume p is the failed participant. We also

write n= p→ q if pfx(n) = p→ q : k.

1. Initialisation SetN =N → = {n | (ni C n and n= r→ p) or n= ni}
SetS = {n′ | ((ni C n and n= p→ r) or n= ni 6= n′) and n≺≺IO n′}

2. Main Body SetN ← =

{n | n≺≺IO n′ and (n′C n′′ and n′ ∈S and n′′ ∈N →\S) or n′ ∈N →\S}
SetN → = {n | n′ C n and (n′ 6= ni or id(n) 63 p) with n′ ∈N ←}.

3. Final Condition Stop ifN ← =N → =∅
otherwise setN → =N → \N andN =N ∪N ← and repeat from Step 2.

Below we explain each step with examples.

Step 1: Initialisation The affected nodes N should include the failed node ni

and all nodes of the form r→ p succeeding the failed node. For example, suppose

global type A → B;C → A and A or B failed at the underlined point. Then the

participant C should be notified by the reason explained in equation (7.3).

The set of non-affected nodes S is set at the initialisation. By the reason ex-

plained in the equation (7.4), all nodes in the IO-dependencies starting with a mes-

sage sent from the failed participant should not be affected (nodes of the form

A→ r). The first part is the case where the failed node ni is of the form A→ r.

For example, in the case where A fails in A→ B;B→ C, the node B→ C is added

to S . Another case is that the failed node is of the form r→ A. For example, if

A→ B;B→ A;A→ C, then both B→ A and A→ C are added inS .

Step 2: Main Body This step is repeated until the final condition is met. The

set N ← is constructed from IO-dependencies preceding any of the affected nodes

(N → \S) by the reason explained in (7.1). The recovered node n′ is a backward

node from the failed node n in an IO-dependency. In addition, if the first node

n′ belongs to S , it should be excluded, but if it depends node n′′ which does not

belong toS but the backward nodes from n′ on an IO-dependency should be added

inN ←.

As an example, consider the case B→ C;C→ D;E→ C;E→ D. Participant E

should be recovered because of E→ C (since the queue of C is erased). Therefore

participant D should be recovered. However, if we recover D from state E→ D, there

will be an orphan message because the states of D and C are misaligned. Hence D

should be recovered at the point of C→ D.
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The set N → is constructed starting from N ← forward. The reason is that

every participant that appears after the recovery point which are not in the IO-

dependencies should be informed. For example, suppose A→ B;C→ A;A→ D;.

Then input from C and output to D might be lost, hence C and D should be added to

N →.

We exclude the case n′ = ni and the nodes of forms A→ r and r→ A (by the

condition id(n) 63 p). This is because they have been already added in S in Step

1 or in S . For example, suppose A→ C;E→ C;D→ C and A→ C;E→ C;C→ D.

Then D→ C and C→ D is added in Step 1.

Step 3: We stop if there is no additional affected node. Otherwise we define a new

set of forward additional nodes (N →) as the nodes excluding the current affected

nodes (N ). Then we update the set of affected nodes (N ) with the set of backward

nodes (N ←) that were calculated in Step 2.

Below we write G/nq to denote a subterm (subgraph) of G whose occurrence is

nq. For example, if we take the session graph in Example 7.2.2, G/n5 = C→ A :

a6.end and G/n2 = C→ A : a4;A→ C : a5;G, writing the outputs by the syntax of

global types.

Write T ⊇ T ′ to denote T is a subterm of T ′ (e.g. B!b.end ⊆ A?a.B!b.end). We

define max({Ti}i∈I) = Tj if for all i ∈ I, Tj ⊇ Ti.

Definition 7.2.3 (Recovery point) Assume that N is the set of affected nodes

when ni in global type G failed. Assume the participant p ∈ id(ni) failed and

G/ni1 ↓= Tp. We then define, for each q ∈P, (1) ϕ(G,p,Tp)[q] = max({G/nqq ↓
| n ∈N ,q ∈ id(n)}); or (2) ϕ(G,p,Tp)[q] = /0 if q 6∈ id(n) for all n ∈N .

LTS over a configuration. We define the LTS for a configuration which consists

of a collection of local types and FIFO queues. The item (1) below defines the

standard asynchronous communication rules from communicating finite state ma-

chines [BZ83]. The participant A enqueues a value to FIFO queue wAB of channel

Aq, and participant B dequeues a value from wAB. In addition, we define the two

cases when participant A fails at TA (item 2 below). The item (a) is the case when

participant B needs to recover as local type T ′B. In this case, we clean up its input

queues. The item (b) is the case participant B does not need to recover. In this case,

we do not have to change the configuration for B. Note by the case (2-a), failed

participant A always clean up its input queues.
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Definition 7.2.4 (A configuration and its LTS) A configuration s = (~T ;~w) of a

system of local types {TA}A∈P is a pair with ~T = (TA)A∈P and ~w = (wAB)A6=B∈P

with wAB ∈ A∗. The initial configuration of G is s = (~T ;~w) with wAB = ε and

TA = G ↓A.

A final configuration is s = (~T ;~ε) with Ti = end. We then define the transi-

tion system for configurations starting from the initial configuration of G. For a

configuration s = (~T ;~w), the visible transitions of s `−→ s′ = (~T ′;~w′) are defined as:

1. TA
AB!a−−→ T ′A and w′AB = wAB ·a and T ′A′ = TA′ for all A′ 6= A; or

TB
AB?a−−→ T ′B and wAB = a ·w′AB and T ′A′ = TA′ for all A′ 6= B

with w′A′B′ = wA′B′ for all A′B′ 6= AB; or

2. TA
†−→ T ′A then

a) if ϕ(G,TA,A)[B] = T ′′B then T ′B = T ′′B and w′CB = ε for all r 6= B; and

b) if ϕ(G,TA,A)[B] = /0 then T ′B = TB and w′CB = wCB and w′BC = wBC for all

C 6= B

We denote s `1···`n−−−→ s′ (or s−→∗ s′) for s `1−→ s1 · · ·sn−1
`n−→ s′.

A configuration s is reachable if s0→∗ s.

Remark 7.2.1 (Asynchrony of recovery) While the rules for recovery in Defini-

tion 7.2.4 (2-a) looks synchronous, combining enqueue and dequeue rules in (1),

the definition represents asynchronous semantics. It can model the situation where

the recovery message is stored in the queue and propagated to the participants.

Example 7.2.5 (Trading Negotiation) We recall the example from Fig. 7.3.

(1) Participant B2 fails at node 3. Then by Definition 7.2.3, ϕ(G,B2,TB2)[B2] =

TB2; ϕ(G,B2,TB2)[B1] = TB1 where TB1 = G � B1 and TB2 = G � B2. Also for all

p 6∈ {B1,B2}, ϕ(G,B2,TB2)[A] = /0. By Definition 7.2.4(2), TB2

†−→ TB2 . We also set

the input queues of B1 and B2 to be empty. Hence w′B1B2
= w′B2B1

= ε . By (2-a), we

set T ′B1
= TB1 . Except B1 and B2, the queues and local types are unchanged. Note

that if p 6= B1, wAB2 is empty before B2 fails (since ϕ(G,B2,TB2)[A] = /0). The cases

when A2 fails at node 1 and C fails at node 4 can be calculated similarly.

(2) Participant E fails at node 4. By the algorithm, (1) nodes 0 and 1 are added

to N since there is a backward IO-dependency n0 ≺≺IO n1 ≺≺IO n4; also node 5

is added to N → since n4 C n5. From node 5, there is a backward IO-dependency

n2 ≺≺IO n3 ≺≺IO n5, hence nodes 2 and 3 are also added to N . Hence for all p,

ϕ(G,B2,TB2)[A] =G � p. By Definition 7.2.4 (2-a), all participants will restart from

the beginning of the protocol.
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Remark 7.2.2 (Reducing a backwards IO-dependency.) As we discussed in (7.1)

the programmer might not wish to recover all participants in the backwards IO-

dependencies from the failed node, for example, when there is no data dependency.

In this case, we annotate a global type as A ?−→B : a;G where ? represents this node

does not have to recover. For example, if we annotate like A
?−→B : a;B→ C : b,

even C failed, A does not have to recover.

In this case, we do not add node A→ B to a set of the recovery nodes N when

B→ C : b fails. The rest of the algorithm is unchanged.

7.2.5. Towards Transparency of Recovery

One remaining technical question is transparency of the recovery procedure. Trans-

parency means that once a configuration recovers to some state after a failure, there

are always transitions which can reach another state unaffected by failures. Hence

we can recover the configuration as if there were no failure. More precisely, the

property of transparency is formalised in the following statement.

Transparency: Suppose s0 is the initial configuration of G. Assume

s0
~̀−→∗s †−→s′. Then there exists s′

~̀1−→s′′ where s0
~̀2−→∗s′′ and ~̀2 does not

contain †.

Thus, if we restart a set of processes after a failure of some process, all processes

will recover from some point of a complete subprotocol of the original G. Our

intuition is grounded on two conjectures. First, a set of local types defined by ϕ

for a given failed type Tp and G, i.e. {ϕ(G,p,Tp)[q]}q∈P should form a projection

of a subgraph of G. Second, if ϕ(G,p,Tp)[q] is empty, then its queue must be

empty before recovery.

7.3. Erlang Programming with Multiparty Session
Protocols

We implement the recovery semantics and algorithm (as explained in Section 7.2.4)

in a new Erlang library. We use the practical incarnation of session types, the spec-

ification language Scribble, presented in Chapter 2, to write global protocols. The

main components of the library are summarised in Table 7.2.

• Scribble module (sribblec): a module for processing global Scribble pro-

tocols. The module takes a Scribble protocol as an input and generates (1)
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Component Usage
gen protocol −behaviour(gen protocol )
protocol supervisor −bevaiour( protocol supervisor )
role role:send
monapp mon app:configure
scribblec scribblec:create rec table ()

Table 7.2.: Components of a library for protocol-induced applications

local types (following 7.2.1) and (2) global recovery tables (following the

recovery algorithm from Section 7.2.4).

• Monitoring runtime (monapp application and role modules): these com-

ponents implement the runtime semantics for protocol verification and re-

covery. The monitor application (monapp) creates a monitor process (called

role) per Erlang process. A role checks, at runtime, that the messages sent

and received by the process correspond to the local type. In the case of fail-

ure, roles restart their respective processes following the semantics given in

Section 7.2.4.

• An interface for local processes (gen protocol behaviour): this mod-

ule provides the basic functionality for a process to be eligible for verifica-

tion and recovery.

For developers to use the system there are two requirements (the figure numbers

correspond to the respective implementation for each requirement for the Trading

Negotiation protocol in Section 7):

1. Define the process interactions into a Scribble protocol (Listing 7.1)

2. Implement a gen protocol process for each role in a protocol. The role and

the protocol must be specified as part of the process initialisation (Fig. 7.6).

The process is also required to implement message handlers for all interac-

tions in the protocol (Fig. 7.3).

We explain the processing of Scribble protocols and how to program with gen protocol

in Section 7.3.1 and Section 7.3.2 respectively.

7.3.1. Scribble Protocols for Recovery and Verification

The correspondence between Scribble constructs and their multiparty session types

(MPST) is given in Chapter 2. The global Scribble protocol for the Trading Nego-

tiation example, is shown in Listing 7.1.
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Listing 7.1: Scribble Protocol for Trading Negotiation

1 global protocol Trading (

2 role A, role B,

3 role C, role D){
4 par {
5 quote(int) from A to C;

6 }
7 and

8 {
9 quote(int) from B to D;

10 }
11 quote(int) from C to E;

12 quote(int) from D to E;

13 choice at E {
14 accept () from E to C;

15 accept () from E to D;

16 or {
17 reject () from E to C;

18 reject () from E to D;

19 }
20 }}

Next we highlight the details important for runtime semantics.

Protocol Processing Once the protocol is written, the Scribble tool automatically

checks the correctness of the protocol and generates local specifications. We

then translate them to finite state machines (FSMs) to allow efficient state

tracking (see Fig. 7.4). While our recovery analysis is solely based on global

protocols, we use the correspondence between local types and finite state

machines [DY12] to monitor and track the execution state for each role for

monitoring.

Storing global recovery tables Our tool parses a global Scribble protocol to

create a dependency graph (as explained in Section 7.2.3). Then it calculates

the corresponding Global Recovery Table (GRT), following Section 7.2.4,

and stores it in a database. This is done statically before an application is

started. We generate a GRT per protocol. The scheme for the database

table, holding the GRT records, follows the shape, presented Fig. 7.3; e.g. for

every protocol state, a map of affected roles and their reset points is stored.

For a persistent storage, we use Mnesia, which is optimised for fast query

processing on a read-only tables where locks are not needed, as in our case.

At runtime the GRT records are accessed only when a role has to retrieve its

204



Process Monitor Role
config protocol spawn role

config done(role id)

ready

role:send(role id)

Figure 7.6.: Process configuration calls diagram

new state due to a process failure.

7.3.2. Constructs and Erlang API

Roles. A role intercepts all incoming/outgoing messages associated to its linked

process; Roles correspond to the local supervisors shown Fig. 7.4 in Section 7.1.

When a role is spawned, it is parameterised with a local protocol. One local proto-

col is translated to one FSM. Every time a process sends a message, the role checks

it is expected w.r.t. the current state; if so the current state moves to the next state

and the message is sent to the destination role.

Endpoint processes. Endpoint (gen protocol) processes implement the busi-

ness logic for a role in a protocol. The endpoint processes are reactive. They define

message handlers and react upon received message. The order of messages is not

specified since all protocols are statically defined, and the verification process (the

role associated to the endpoint process) ensures the messages follow the order in

the protocol.

For an endpoint process to be part of a protocol, it should implement a custom

behaviour gen protocol. Behaviours in Erlang are similar to abstract classes;

they encapsulate a common pattern (behaviour) and expose a set of required meth-

ods to be implemented. We implement the gen protocol behaviour as an event

server. It receives messages from the process mailbox and dispatches them to the

message handlers defined in the process. For example, if a message of the form

{<123>, sum, 1, 2} is received in the mailbox of the process with id <123>

the event server dispatches the message, and invokes the function sum(1, 2) for

that process. To comply with the gen protocol a module should define several

methods: init, config done, ready and terminate.
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Listing 7.2: Process configuration code snippet

1 -behaviour(gen_protocol).

2
3 init({Role})→
4 Pr = {self(),

5 [{?Protocol,Role,?Roles,?Methods}]},

6 ok = monapp:config_protocol(Pr),

7 {ok, #state}.

8
9 config_done({Id}, State)→

10 {noreply, State#state{role = id}}.

11
12 ready(_,State) →
13 role:send(State#state.session, ?C, quote, 100),

14 {noreply, State}.

Configuration. Fig. 7.6 displays the sequence of configuration calls performed

when a process is initialised and Listing 7.2 (right) shows the corresponding code

snippet that should be implemented by gen protocol processes. Process initiali-

sation is performed in the function init. On init a process sends its configuration

details to the monitoring application (line 6), namely its process id (self()), the

name of a protocol (?Protocol) and the name of a role (?Role). The ?Methods

parameter is a mapping from Scribble labels to message handlers. For example,

the ?Methods parameter for role E is defined as

-define(METHODS, [{quote:quote}, {accept:accept}, {reject:reject}].

This mapping is used at runtime, prior to starting any protocol interaction, to check

that all interactions have corresponding handlers.

When the monitoring application receives a configuration call, it spawns a pro-

cess of type role. The role process replies to the endpoint process, that initiated

the configuration, with its id (role id) (line 9). Then the role id is saved as part

of the endpoint process state (line 10). When all roles are configured a message

ready is sent to all endpoint processes and the processes can start interacting. For

example, the Trading protocol in Fig. 7.1 prescribes that the roles A and B are the

first to send a message. Line 13 in Listing 7.2 shows the ready implementation

for role A. The other processes, e.g C, D and E are started in a waiting state and

therefore the ready handler is implemented as:

ready(_, State) → {ok, State}
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Communication between endpoint. Endpoint processes communicate via the

following API function:

role:send(Id, role_name, method_name, Args)

The first parameter, Id, is the id of a role linked to a process, role name is

the name of the destination role as given in the protocol. For example, line 13 in

Listin 7.6 specifies sending a message to role C (?C). The parameter method name

is a label for the message being sent. For example, if a protocol specifies sum(int

, int) then method name is sum. The last parameter, Args, stands for payload

arguments.

Message handlers as callbacks. The rest of an endpoint process implementation

consists of defining message handlers for protocol messages.

Listing 7.3: Message handlers for endpoint processes

1 % Handlers for C and D

2 quote({msg, Val}, State) →
3 role:send(State#state.role, ?E, quote, Val).

4
5 accept({msg, _}, State) → {ok, State}

6 reject({msg, _}, State) → {ok, State}

7
8 % Handlers for E

9 quote({msg, Val}, State) when State.prev==undef →
10 {noreply, State#state{prev=Val}};

11
12 quote({msg, Val}, State) when State#state.prev < Val →
13 role:send(State#state.role, roleE, accept, empty),

14 role:send(State#state.role, roleD, reject, empty),

15 {noreply, State};

16
17 quote({msg, Val}, State) when State#state.amount > Val →
18 role:send(State#state.role, roleE, reject, empty),

19 role:send(State#state.role, roleD, accept, empty),

20 {noreply, State}.

Fig. 7.3 displays the callbacks required for the modules implementing the end-

point processes for roles C, D, and E. Note that A and B do not have any interactions

after sending an initial quote message and no other handlers except ready are

needed. The C process and the D process implement the function quote, accept

and reject. In quote both C and D simply resend the received message to the

process E. The internal choice on E described in the protocol is implemented as
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a guard on the message handler quote. The guard compares the values received

from C and D and sends accept to whoever sends the highest quote.

Starting a protocol. The last requirement is implementing a supervisor for the

endpoint processes. A supervisor declaration specifies the initial parameters for

the endpoint processes as the one given below:

-module(trading_supervisor).

-behaviour(protocol_supervisor).

init([]) → {ok, [{roleA, {roleA,start_link,[A]},

. . .{{roleE, {roleA,start_link,[E]}]}.

The behaviour (protocol supervisor) is a custom behaviour of type supervisor

and takes the one-for-one-strategy. The init function returns the list of processes

that should be started as part of the protocol. The parameter lists has the form

module, initial function, arguments.

Finally to start a protocol we execute trading supervisor:start () . It spawns

all endpoint processes defined in the supervisor.

7.4. Implementation of Multiparty Induced Recovery

This section summarises the implementation of monitoring and recovering.

7.4.1. Protocol Checking

Fig. 7.7 highlights the calls between components on sending a message. More

specifically, the diagram shows role processes are implemented as gen server . The

behaviour gen server is an Erlang/OTP behaviour, which is a generic implemen-

tation of an event-loop server and messages are sent asynchronously using the Er-

lang call gen server:cast . First, the message is sent to the process role, where it is

checked for correctness and resent to the destination role via (1) gen server:cast

( RoleId, Msg). The destination role dispatches the message to a message handler

in the destination process via (2) gen protocol:cast ( id, Msg)).

Process
role:send(...)

Role
checkMsg

Role
checkMsg

Process
method()−>

(1) (2)

Figure 7.7.: Sending a message from one process to another.

The message is dispatched to the role process that matches the process id, given

as a first argument of gen server:cast . The role process checks whether the mes-
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sage has a matching transition in the local FSM. If it does, the message is sent

to the destination process invoking (2) gen protocol:cast ( id, Msg). Note that

the process of generation of FSMs from Scribble protocols and the design of a

Scribble-based monitor, follows the ones presented in Chapter 2 and Chapter 6,

respectively. In this section we focus only on technical challenges that are specific

to implementing a monitor module in Erlang.

Selective receive. The behaviour gen server is an event server with a FIFO queue

and its receive semantics correspond to the asynchronous unordered receives as

described by A→ B | C→ B in a global type.

On the other hand, the runtime configuration semantics presented in Section 7.2.4

require selective receive as represented by the global type A→ B;C→ B. Consider

the case when role B receives a message from C before receiving a message from

A, the role (monitor) process will tag the message as an invalid one since it is an

unexpected message w.r.t the current state. To prevent this behaviour we imple-

ment selective receive on top of the gen server FIFO queues. We borrow the idea

from the selective receive implementation as developed in core Erlang [Scra]. The

idea is to store the early arrived messages in an in-memory queue (hereafter saved

queue). If a message arrives too early (in case of unordered delivery), it is stored

in the saved queue. Every time the server is awakened to read messages from its

FIFO queue, it first checks the saved queue for any messages that are ready to be

processes and only after that reads from the FIFO queue.

7.4.2. Supervision

Supervisor 
one-for-one

Supervisor 
simple-one-for-one

role role role
Process Process Process 

Figure 7.8.: Supervision hierarchy

Supervision. We build our recovery strategy on top of the runtime protocol ver-

ification, provided by role and gen process. Decoupling of a protocol checker

209



Process Monitor Role
config protocol process id

config done(role id)

ready(label)

role:send(role id)

Figure 7.9.: Process restart

( role ) and an endpoint process (gen process) is essential for the recovery. This

way processes do not send messages directly to the other endpoints and as a result

when a process fails only its role is notified about the new process id. Therefore

the failure is transparent to the other endpoint processes.

The implementation of our recovery mechanism draws on two Erlang features:

1. Erlang links: a mechanism for creating a bidirectional link between pro-

cesses. It ensures that terminating processes emit exit signals to all linked

processes. We use link to connect a running process to its role.

2. dynamic supervision strategy (simple−one−for−all): a strategy which is

similar with one−for−all strategy, but allows all workers to be started dy-

namically. This strategy can be applied only if all of the workers have the

same type. We use simple−one−for−one supervision to spawn and super-

vise roles.

A running system with three participants is shown in Fig. 7.8. The figure dis-

plays the supervision structure and the links (denoted as dotted red arrows) created

by our runtime. It shows three processes, grouped by a protocol supervisor (Su-

pervisor one-for-one in Fig. 7.8), which is an extension of the Erlang’s one−to−one

supervisor. The latter is needed to prevent a cascading failure. When a role is

created during process initialisation (as explained in Fig. 7.6), the role receives the

process id and links to it (invoking the built-in Erlang function link ( processId )).

The link ensures the role will be notified if the process fails.

Failure handling. The recovery mechanism after a process fails consists of three

key parts:

1. Notification of a failure. A role receives the system message ’EXIT’ when

a process fails (this is handled by the Erlang built-in mechanism of links ).

Then the role broadcasts the failed state to the other affected roles (message
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’FAIL’). The set of affected roles is retrieved from the GRT. Only the state

number is broadcasted, because it uniquely identifies the state. The projec-

tion ensures a unique correspondence between local states and states in the

global dependency graph.

2. Restart a process. Fig. 7.9 displays the sequence of configuration calls

when a process init function is invoked after a restart. The restart specific

actions are marked in green. First, the process registers with the monitor.

Then the monitor checks that a role exists. If it exists, the monitor sends the

id of the new process to the existing role.

3. Obtain reset points. A a role queries the GRT when it receives a mes-

sage ’FAIL’ or ’EXIT’. As a result, the role retrieves the reset state for

the new process. A state represents a node in the local FSM and has the

form: ( state number, state kind, scribble label, role ); where state

kind specifies if this is a sending or a receiving state. The role updates

its FSM and invokes the process function ready passing the label name

( gen protocol:handle cast ( ready, ProcessId, label )).

7.5. Use Cases and Evaluations

Example Source #roles #states GRT Affected roles G
Trading Negotiation (TN) p.1 2∗n+1 2∗n+4 0.17 in Table 1 Y
MapReduce (MR) [IS14] n+1 n+2 0.11 W[1] . . . W[n] Y
Ring (Rg) [IS14] n 2∗n 0.16 A[n], A[n−1] Y
Calculator (Calc) [HWT14] n+1 4∗n 0.75 A[1] N
Resource Allocator (Cig) [IS14] n n+1 +e A[1], R Y

Table 7.3.: Use cases performance summary (GRT generation time is calculated
for n = 100 and the last column (G) indicates if results of our approach
are better than the Erlang all-for-one strategy

The aim of the evaluation in this section is to demonstrate the applicability of

our recovery strategy (called hereafter protocol-recovery) to several typical con-

currency patterns from the literature [IS14, HWT14]. The overhead of protocol-

recovery comes from (1) the overhead of propagating the error and (2) the lookups

performed on the global recovery table.

We compare protocol-recovery against the Erlang all-for-one supervision strat-

egy. In summary, the overhead of protocol-recovery is very small and it out-

performs when recovering fewer processes, resulting in faster protocol execution
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times than the all-for-one strategy. Although comparing with all-for-one may

sound limited, no other static recovery strategy can be safely applied to the ex-

amples without resulting in an inconsistent (unsound) monitor state.

7.5.1. Evaluation Methodology

We present four examples with different communication patterns. We implement

the programs using the Erlang API, presented in Section 7.3. For each example,

we give the global type and discuss the result of protocol-recovery in terms of (1)

number of recovered participants and (2) overhead. For the latter, we compare the

execution times for completing the protocol without a failure, and with a failure

followed by a subsequent recovery. The results of our evaluation are summarised

in Table 7.3 and Fig. 7.10. Table 7.3 shows, in this order, the number of roles for

each protocol (#roles), the number of states in the dependency graph (#states), the

time (in seconds) for calculating the Global Recovery Table (GRT), the roles that

will be notified (Affected roles), and the performance improvement of our runtime

when comparing with all-for-one supervision (G). Fig. 7.10 (left) shows the results

of executing the four scenarios of the Trading Negotiation example; and Fig. 7.10

(right) shows the benchmark results of other use cases.

Setup. We repeated each scenario 50 times and measured the overall execution

time. Each example is parameterised on an input size n (as shown Fig. 7.3) and

the results displayed Fig. 7.10 are for n=100. Programs are written using Erlang,

version 17.0. All processes run on the same Erlang node with a Mnesia database

running on a separate node. The configuration for the machine is Ubuntu 13.04

64bits GNU/Linux; 8 Cores: Intel(R) Core i7-4770 CPU @ 3.40GHz 16Gb of

RAM.

7.5.2. Use Cases and Benchmarks

Trading Negotiation (Fig. 7.1 in Section 7). We spawn 100 processes for Alice’s

and Bob’s group. The results of an execution without recovery of the protocol is

given in Fig. 7.10 (left) (denoted as Sc0). The failing scenarios (displayed Fig. 7.10

(left) as Sc1, Sc2 and Sc3) correspond to the ones from the scenarios in Section 7.

In case of recovering fewer processes, as in Sc1 and Sc3, the protocol completes

faster if we apply protocol-recovery than if we restart all interactions by the all-

for-one supervision. In case of Sc2, we need to restart all processes. In this case,

protocol-recovery induces only a small overhead 0.9% in comparison to all-for-
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Figure 7.10.: Execution time for Trading Negotiation (left) and Ring (RG),
MapReduce (MR1 and MRN) and Calculator (Calc) (right)

one supervision.

MapReduce. Listing 7.4 shows the implementation of a map-reduce protocol. Its

global type is given as follows using the notation from Chapter 2:

Master
?−→Worker[i : 1..n] : map; Worker[i]→ Master : result;

A1

A2

An

M Map RReduce

The protocol describes a master (Master) send-

ing map messages to worker process (Worker[i])

(1 ≤ i ≤ n). Notation Worker[i : 1..n] means i is

parameterised ranging over 1 to n and i binds the

rest of the free occurrences of i in the rest of the

global type. ? is the annotation for ignoring recov-

ery as explained in the equation (7.2) in Section 7.1.3 and in Remark 7.2.2. Each

worker performs a task and notify the Master by sending a result message. All

threads are executed in parallel, and Master gathers all results.

Failure. The process Master fails after sending map to everyone. Without

protocol annotations, our algorithm calculates that the protocol should be

restarted from the beginning since the final result of the value might be de-

pended on the value initially sent by Master. However, if we annotate the

protocol as above, Master can recover from a state where it waits to receive

a result from a worker. Therefore, if workers still have not sent result,

they do not need to recompute their task.

Results. The execution time with recovery depends on the number of lost mes-
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sages in Master’s mailbox and the executions of this scenario vary depend-

ing on the the computation intensity of the task performed by the workers.

As shown in Fig. 7.10 (bars MRN and MR1), when workers respond imme-

diately after receiving a map message (denoted MRN in Fig. 7.10), protocol-

recovery behaves similar to all-for-one strategy because almost all result

messages are resent. However, when workers perform more computation in-

tensive tasks (denoted MR1 in Fig. 7.10) (in our benchmark each Worker[i]

sorts a list of 10000 elements), after a failure, protocol-recovery outperforms

the all-for-one recovery taking only 20% of the time to complete the proto-

col (the time before the recovery starts).

Listing 7.4: Map Reduce Protocol Implementation

1 init({Num, Total})→
2 {registered, Id} = monscr:register(self()),

3
4 Pr = {Id,[{?PROT, role_name(Num),

5 generate_others(Num, Total), ?METHODS}]},

6
7 ok = monscr:config_protocol(Pr),

8 {ok, #state{count = 0, num=Num, total=Total}}.

9
10 ready(_,S) when S#state.num =:= 1→
11 % send map to all roles

12 [role:send(S#state.role,role_name(Num),map, val)

13 || Num <- lists:seq(2, S.total)],

14 logger:log("Failure Point")

15 {noreply, S};

16
17 ready(_,S) when S#state.num > 1 → {noreply, S}.

18
19 map({msg, Val}, S) →
20 % sort a list of sort_list(File)

21 role:send(S#state.role,role_name(1), result, val),

22 {noreply, S};

23
24 result({msg, Val}, S) →
25 {noreply, S#state{count = S#state.count + 1}}.

26
27 % The protocol ends

28 result({msg, Val}, State)

29 when S#state.count =:= S#state.total →
30 {noreply, S};
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Ring. Next we consider a common pattern of chained interactions between the

number of n processes where each process A[i] sends a ping message to its imme-

diate neighbour A[i+1]. When a process A[n] receives a ping message, it starts

a chain of pong messages. The implementation is shown in Listing 7.5 and the

global type for the protocol is given below:

A[i : 1..n−1]
?−→A[i+1] : ping;

A[i : n..2]→ A[i−1] : pong;
A1 A2pong

ping

A3pong

ping

Anpong

ping

Failure. We consider a failure at process k before sending a pong message. We

insert a check point on the chain of pong messages.

Result. The total of n-k+1 processes are restarted (these are processes n, n−1,
. . ., k). Fig. 7.10 (bar Rg) shows the execution time when k = n−1 which

requires restart of only two processes and thus the significant performance

gain (protocol-recovery outperforms the all-for-one recovery by 52%).

Distributed Calculator. This protocol is a modification of the ring protocol. Pro-

cesses cooperate to solve an equation. Each process (A[i]) calculates an expression

(by sending expr to a calculator C) and to resend the continuation cont (the rest

of the equation) to its neighbour. Then the process A[i] waits for result from C

and for the result of their neighbour A[i+1]. When both are received it sends

the total result to A[i−1]. Its global type is given as:

A[i : 1..n−1]→ C : expr;A[i]→ A[i+1] : cont;C→ A[i] : result;

A[n]→ C : expr;C→ A[n] : result;A[i : n..2]→ A[i−1] : result;

Failure. C fails after processing a message form A[i].

Result. All processes are recovered since they are all connected by the IO-

dependencies and each output is depended by the previous input. Since all

processes are restarted from the beginning, the usage of protocol-recovery

for this use case does not result in a performance gain.

Listing 7.5: Ring Protocol Implementation

1 ready(_,S) when S#state.num > 1 → {noreply, S}.

2 ready(_,S) when S#state.num =:= 1 →
3 role:send(S#state.role,role_name(2), ping, val)

4 {noreply, S}

5
6 ping({msg, Val}, S) →

215



7 % sort a list of sort_list(File)

8 role:send(S#state.role,next_role(S), ping, val),

9 {noreply, S};

10
11 ping({msg, Val}, S)

12 when S#state.num =:= S#state.total →
13 role:send(S#state.role, next_role(S), pong, val),

14 {noreply, S}.

15
16 pong({msg, Val}, S)

17 sort_list(get_numbers()), %failure point

18 role:send(S#state.role,prev_role(S), pong, val),

19 {noreply, S};

20
21 % The protocol ends

22 pong({msg, Val}, S)

23 when S#state.count =:= 1 → {noreply, S}.

Listing 7.6: Resource Allocator Protocol Implementation

1
2 ready(_,S) →
3 Num = get_random(),

4 role:send(S#state.role, Num, start, val)

5 {noreply, S};

6
7 started({From, val},S) →
8 case is_enough() of

9 no → Next = get_random(),

10 role:send(S#state.role, Next, exit, val),

11 role:send(S#state.role, Next, start, val)

12 yes →
13 role:send(S#state.role, Next, exit, val)

14 end

15 {noreply, S};

16
17 start(_,S) →
18 role:send(S#state.role, ?ARB, exit, my_num())

19 {noreply, S};

20
21 exit(_,S) →
22 {noreply, S};

Resource Allocator (Cigarette Smoker in [IS14]). This is a variant of the

request-reply pattern. The implementation is given in Listing 7.6. The protocol
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has one Arbiter, A[i] and n processes, C[i : 1..n]. At random, A chooses a process

C[i] and sends request to which C[i] replies with request. Its global type is

given as follows:

µt.A→ C[i ∈ Random(1,n)]{start.C[i]→ A : started; t,

exit.C[i]→ A : done;end}

Failure. The process A fails after sending start to C[i].

Result. At any given time only two processes are interacting. Thus only C[i] is af-

fected by A’s failure. By the same reason, if C[i] fails, only A is affected. The

protocol-recovery strategy reduces the number of redundant restarts (since

the processes do not perform work, while waiting for the message from A),

it is not relevant to measure the performance and thus this example is not

presented Fig. 7.10 (bar Calc)). By applying protocol-recovery only two

processes (at most) are restarted/notified in any case of failure.

Summary. Our protocol-recovery strategy outperforms Erlang all-for-one strat-

egy when there are more intensive local computations; and protocols are more

parallelised (i.e. they are more disconnected, hence there are less IO-dependencies

from the failing node). It incurs a little overhead comparing to the case with no

failure. The motivation of our work is not performance gain, but an automatic error

prevention both at the process level (we assure processes are safe and conform to a

protocol); and at the level of the supervision trees and dynamic process linking (we

create supervision trees and link processes dynamically based on a protocol struc-

ture). As discussed in Section 7, writing the supervision trees and linking them to

processes are a common source of errors as mentioned in [Arm02]. Specific per-

formance optimisations (such as using persistent storage to cache the intermediate

messages) and recovery actions (such as changing the database connection if this

was the reason for the initial failure) are orthogonal/complementary concerns to

our work and interesting topics for future investigation.

7.6. Related Work

Checkpoint and Recovery Algorithms. Our recovery method which calculates

a recovery point is related to checkpoint techniques studied in software recov-

ery for message-passing systems [EAWJ02] and for web-service choreographies

[VM14b, VM14a]. The survey [EAWJ02] categorises their checkpointing proto-
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cols as uncoordinated, coordinated and communication-induced. Our approach

belongs to the third class, where the coordination is done in a lazy fashion by

piggy-backing control information on application messages where usually a local

checkpoint is on the fly associated to a consistent global checkpoint. Both works

[EAWJ02, VM14b] study how to reach a consistent global state. A global check-

point consists of a set of local checkpoints, one for each process, from which a

distributed computation can be restarted after a failure. In [EAWJ02], recovery re-

lies on the knowledge and skillset of the user; and in [VM14b], the faulty service

has to restart from the beginning. Our approach does not require these assump-

tions that rely on the user and the restart point is not required to be always from

the beginning.

The work [VM14a] classifies different interaction patterns and defines a check-

point based on executed patterns. The supported patterns are nesting, sequencing,

concurrent and iterative. The checkpoints are generated using rules (heuristic) de-

fined on the pattern structures. For example, for each request-reply a checkpoint is

generated in the initiator after receiving the reply. Their tool takes a choreography

of web services (given as a UML diagram) as an input and generates checkpoint-

ing locations in the given choreography (the initial UML diagram augmented with

checkpoint locations) as outputs. Although such an approach may reduce the re-

covery time, it requires additional assumptions and restrictions at the code level.

The targets of the applications studied in [EAWJ02, VM14b, VM14a] are clearly

different from ours.

As a different approach, in [HYH08], binary session types are used at runtime to

calculate the lost messages that can happen in an asynchronous delegation. When

the connection is moved, the messages that may be lost could be regarded as a fail-

ure, and the session types from both sides provide checkpoints of recovery and are

used to work out where the last synchronised state is, thus the relevant messages

can be re-sent to get back to the correct state. This approach only accounts for del-

egations between two parties and is not applicable to recover multiple processes at

once in the situation where messages are propagated following a global protocol

and stored in mailboxes some of which are emptied at the failure.

Verification and Recovery in Erlang. A few practical works target to improve

the recovery mechanisms of Erlang supervision structures. Currently, to obtain the

process structure of an application, one must manually inspect the source code or

rely on external documentation. To resolve this issue, the work [Nys09a, Nys09b]

presents a fault-detection analysis on the process structure of an Erlang applica-
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tion. It checks that a supervision structure is constructed in a way that guarantees a

recovery from process failures. It implements a tool which statically extracts a pro-

cess trees from the source code and analyses it to determine the effect of process

failures. It identifies the effect of a particular process failure on the entire process

structure, that shows which processes will be terminated and restarted and whether

the structure itself is restored to the situation before the failure. In our work, we

define a protocol first for checking contracts between a client and servers, and im-

plement an automatic recovery strategy based on that protocol. In this way, we

can always guarantee both communication safety and an optimal recovery point

statically for a given session typed program. Since theoretically it is possible to

construct a global type from a set of local endpoint types [LTY15], it is an interest-

ing future work to combine both approaches to develop a software life cycle for,

e.g. legacy code applications.

The work [CFG11] proposes a runtime monitoring framework for Erlang called

Elarva to detect a message which does not conform to their specification language.

Their main aim is porting their former synchronous monitoring Larva [Lar] for

object-oriented languages to asynchronous monitoring for Erlang. They do not

aim to study efficiency of recovery.

Modelling recovery or Erlang based on session types. There are several works

which use session types for modelling recovery and Erlang. The work [GP15]

investigates the integration of constructs for runtime adaptations in a session type

discipline and presents a session type framework for adaptable processes. The pro-

cesses can be suspended, restarted, upgraded or discarded at runtime. The work

extends a session π-calculus with primitives for located and updated processes. A

located process l[P] evolves autonomously until it is updated by an update action

on l. The authors prove session consistency (the update does not disrupt active ses-

sion behaviour) and give an encoding of the Erlang supervision trees (one-for-one

strategy and one-for-all strategy) where located processes correspond to workers

and updated processes to supervisors. To implement the supervision model, every

time a worker establishes a session with a client, it also connects with its super-

visor. The processes are updated only if there is no active session and therefore

the type system ensures that no session is disrupted during active communication.

Their work is theoretical, and neither the adaptation mechanism nor the typing

system is implemented. Our approach proposes a new method for recovery with

dynamic checking and repairing active sessions, and does not aim to model exist-

ing supervision strategies. We implemented and evaluated our algorithm in Erlang.
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The work [AR12] investigates a use of session types for an analysis of dead-

lock freedom and typable communication in the presence of dynamically changing

code. The session calculus is enriched with region annotation f (t) which repre-

sents the code block to be updated. The arrival of an update is treated as an event

external to the program. They proved processes are safe and live when the pro-

cesses with empty queues are updated and typed by a set of local types projected

from some global type. This means that processes are always updated from some

initial point, unrelated to previous states. Our approach uses a more fine-grained,

static dependency analysis of global types for performing an optimal recovery for

Erlang without any assumption of queue conditions. In addition, our algorithm

provides a way to recover processes from the middle of an existing session with

respect to the current states (queues) of processes.

The work [MV11] proposed a concurrent fragment of Erlang enriched with ses-

sions and session types. Messages are linked to a session via correlation sets (ex-

plicit identifiers, contained in the message), and clients create the required refer-

ences and send them in the service invocation message. The developed typing sys-

tem guarantees that all within-session messages have a chance of being received.

The formalism is based on only binary sessions and does not support recovery.

The typing system is not implemented.

7.7. Concluding Remarks

In this work, we propose an algorithm to analyse and extract causal dependencies

from a given multiparty session protocol, and use it to ensure that communicating

processes are recovered from consistent states in the presence of a failure. The

messages to be resent and the set of processes to be notified are computed stati-

cally based on the dependencies in the process structures. To our best knowledge,

this is the first work to apply session types not only for error-detection, but also

for defining a recovery strategy and optimising recovery overhead. Our approach

can automatically generate supervision structures in Erlang from types, and we

implement the recovery strategy on top of runtime monitoring. Our programming

model uses session type-based abstractions (1) to reduce complexity which is often

introduced when process dependencies are manually specified and (2) to increase

robustness of the system which is often undermined when unsound supervision

strategies are used. We demonstrate that our recovery strategy can be applied to

common concurrency patterns to reduce the recovery overhead as well as to guar-
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antee safe executions after recovery.
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8. Conclusion

The following recaps some of the main technical challenges tackled and the new

session programming features developed through the course of this thesis.

Formalising Scribble In Chapter 2 we showed the correspondence between the

protocol specification language Scribble and its formal counterpart, multiparty ses-

sion types (MPST). We prove that a trace of global specification is equivalent to a

trace of configuration of local specifications. In addition, we gave an encoding of

local specifications to communicating state machines (CFSMs). This allowed us

to reuse well-established results to show that a traces produced by a global speci-

fication is equivalent to a trace of a system of CFSMs. As a consequence, Scribble

specifications can be used for local verification of processes without the need of

runtime synchronisation.

Runtime framework for session programming Chapter 3 discusses the core

design elements regarding implementation of a session-based API (conversation

API) in a dynamically-typed language, Python. Communication safety of the

whole system is guaranteed at runtime by monitors that check execution traces

comply with an associated protocol. The central idea, enabling the verification of

distributed Python components, is embedding session type specific information,

called conversation header, as part of the message payload. Through a runtime

layer for protocol management Scribble protocols are loaded and translated to CF-

SMs such that during a program execution, messages emitted by the programs are

checked against corresponding CFSMs.

An advantage of the session programming proposed by this thesis is that it per-

mits non-disruptive integration to existing code base, as demonstrated by our eval-

uation. We have integrated the Python library for communication programming in

a real-world cyber-infrastructure project [OOIa]. Consideration for performance

is crucial when considering runtime verification techniques. The benchmarks used

to evaluate the performance of Python programs with embedded runtime monitors
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show that dynamic checking against Scribble specifications can be realised with

negligible overhead.

Extensions The examination of session programming in practice (in particular

the integration of the framework in a real world project) has led to the development

of new Scribble features beyond the basic primitives of the theory.

Chapter 4 demonstrated a new construct, interrupt, which permits exception-

like patterns in Scribble protocols. We integrate the extension in our runtime

and extend the conversation API in Python. We introduced the notion of session

scopes, which syntactically splits the protocol into sub-regions, allowing certain

messaging to act on the regions as a whole and thus permitting controllable races,

traditionally disallowed by the theory of session types. Scopes are mapped natu-

rally to Python’s exception handling mechanism (with statement). The generation

of CFSMs from local protocols, presented in Chapter 3, is extended to support

interruptible protocol scopes by generating nested CFSM structures. By annotat-

ing messages with scopes and by tracking the local progress of a protocol, the

runtime at each endpoint in the session is able to resolve discrepancies in protocol

state by discarding incoming messages that have become irrelevant due to an asyn-

chronous interrupt. Although performed independently by each distributed mon-

itor, this mechanism preserves global safety for the whole session of distributed

components. We showed the soundness of our framework by proving session fi-

delity, asserting that the decentralised verification of a system always conforms

to its global specification in the presence of nested interrupt, multiparty proto-

cols and continuations to interruptible blocks. The extension allowed expressing a

new range of communication patterns, mainly in the context of data streaming and

publish-subscribe protocols, which could not be represented before.

In Chapter 5 we extended the runtime framework to support specification and

verification of real-time protocols. We presented a syntactic checker for global

protocols. The checker rules out protocols with unsatisfiable temporal constraints

that would intrinsically force well-intentioned principals to either stop performing

actions or continue by violating the protocols constraints. The implementation of

temporal constraints is general as it uses an SMT solver to check time satisfia-

bility formulas, defined over the structure of timed global protocol. We validated

the usability of our verification by surveying temporal patterns distilled from the

literature. Handling protocol violations, including time constraints, is naturally in-

tegrated with the standard Python mechanism for exception handling. We demon-
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strated that transparency and overhead are closely related in the timed scenario. We

also gave an approximation on the number of interactions that can be performed

before a violation occurs.

Actor programming In Chapter 6 we presented the design and implementation

of Scribble-based verification for actor programming through the usage of the run-

time mechanism and infrastructure presented in Chapter 6. Scribble verification

is enabled on actor instances via code annotations. In particular, code annotations

map session operations to operations on actor mailboxes, promoting an intuitive

implementation methodology for Scribble specifications. The central idea is the

notion of a role, which is a passive object inside an actor and encapsulates infor-

mation used for Scribble verification. Two specific characteristics of the presented

model are (i) actors are location-transparent and can connect to other actors with-

out explicitly knowing their addresses and (ii) actors can implement multiple pro-

tocols, thus our framework allows cooperative multithreading inside a single actor.

We surveyed a popular benchmark suit for actor programming and we showed that

Scribble is expressive enough to capture typical concurrency patterns. In addition,

we demonstrated detection of orphan messages, deadlock and unexpected termi-

nation for actor systems.

Recoverability In the last part of the thesis we applied the runtime monitoring

for actors from Chapter 6 to Erlang programs. In addition, we developed a theory

for recoverable session types. More precisely, we proposed an algorithm to analyse

and extract causal dependencies from a Scribble protocol, and use it to ensure that

Erlang processes are recovered from consistent states in the presence of a failure.

We showed that our recovery strategy is not only sound, but also more efficient for

common message-passing protocols comparing to a built-in static recovery strat-

egy in Erlang.

8.1. Future Work

The accomplishments of this thesis offer a basics for the investigation of many

further topics. The following outlines some of the most interesting directions re-

lated to the aspects of runtime verification and Scribble in general. We focus only

on a few general extensions to Scribble and give potential applications for session
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monitoring. Future work, specific to the extensions presented in this thesis, has

already been covered in the respective chapters.

Beyond Scribble annotations In Chapter 3 we demonstrated the usage of a

Scribble extension for assertions on message payloads. The extension was pre-

sented as annotations on message interactions. A promising future research topic

in this context is adding value-dependent session types to Scribble. As [TY16]

shows value-dependent session types can be used for self-certifiable code. An-

other interesting topic for investigation would be to integrate a synthesis tool such

as Rosetta [TB14] to reduce the number of runtime checks on assertions performed

by the monitor. The idea is inspired by [Thi16], which demonstrates that finding a

simplified runtime check on a dependently typed language with refinement types

amounts to a synthesis problem.

We also believe it is promising to apply Scribble annotations in a broader con-

text. Here we give two potential applications of Scribble annotations for develop-

ing additional verification and analysis techniques.

• Integration with object capabilities for memory management in the style of

[CW16]. One of the challenges in an active objects based languages for

parallel programming is memory management. The requirement of actor

systems that actors do not share state has undesirable performance impli-

cations. A promising idea, explored in the Encore language [BCC+15] is

to share objects between actors by controlling capabilities (for access) and

obligations (for deallocation) of a shared state. The integration of capability

management and session types, as to enable checking the validity of passing

an object between actors while avoiding expensive program analysis, is an

interesting research problem. There are a number of technical components

that need to be developed. First, session types should be extended with meta

information regarding: (1) who can access an object (who has the capability

of accessing an object in terms of reading and writing) and (2) who is re-

sponsible to delete an object (who has the obligation of deleting an object).

Both capabilities and obligations can be represented as annotations on mes-

sage interactions in a Scribble protocol, where objects are the payloads ex-

changed between actors (represented as roles in a protocol). Second, session

type support for the ENCORE language is needed. We envision such inte-

gration as a library for annotating protocols on active object classes, inspired

by the design of session actors, presented in Chapter 6. Examples of proper-
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ties to be enforced by a session type system with capability annotations are:

(1) before issuing a write capability for an object all read capabilities for

that object should be released; (2) during write no other actors will use the

object for read (only one actor can write to an object at any given time); (3)

when a delete obligation is fulfilled the type system guarantees no dangling

references for the objects.

• Integration with commitment logic for policy enforcement in the style of

[DCS07]. The idea of a governance framework based on session monitors

where agents exchange commitments attached to network messages origi-

nates from our collaboration with OOI [OOIa]. In such a framework session

monitors are used as a base to ensure the validity of the agreed upon com-

municating parties. Message interactions are annotated with commitments

associated to the label of an interaction, or represented as a function of the

label and the message payload. From session monitor perspective, com-

mitments are treated as a black box. Once the protocol is checked by the

session monitor, annotations are passed for processing to their respective li-

brary. Ensuring consistency of commitments usage in Scribble protocols is

challenging and requires the addition of dependent types to the language.

Session types for communication optimisations Static and dynamic perfor-

mance optimisations based on session types are promising topics for future in-

vestigation. In Chapter 7 we already explored one application of session types

for potential optimisations in cases of failure. The rich communication structure

offered by Scribble protocols invites optimisations of other communication mech-

anism. One example is reducing the size of the transferred metadata. Message

payloads with matching conversation headers can be packed together, therefore

decreasing the size of the overall communication cost. Although the latter optimi-

sation is directly applicable to our framework for runtime verification, buffering

and batch processing of messages might create a bottleneck and increase the mon-

itor overhead and thus requires careful examination where several heuristics of the

system are taken into consideration. Another potential area for optimisation is for

reducing latency between communicating parties by generating topologies from

protocols. Roles that communicate frequently can be positioned in the same fed-

eration clusters (in case of middleware), nodes (in case of cloud computing), or

cores (in case of multi-core programming). The work [FDY14] explores the latter

idea in the context of multi-core systems suggesting session types annotations on
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classes for static calculation of communication cost for sending and receiving of

objects. The monitoring infrastructure in Erlang presented in Chapter 7 invites for

exploring a similar technique where processes can be dynamically assigned Erlang

nodes depending on the protocols they are participating.

Session types in practice Here we discuss some preliminary ideas to streamline

the adoption of session types in mainstream projects and languages. We are cur-

rently developing a global repository of protocols described in Scribble, along with

a web service for protocol downloading. Note that, throughout the thesis we do

not dictate how types/protocols are offered to the monitor leaving this technical de-

tail unexplored. As long as offered services come with a protocol, monitoring can

then commence as described in this thesis once a connection has been established.

However, having an infrastructure for protocol retrieval is an important consider-

ation when applying session types in the context of a heterogeneous system with

processes written in different languages. In addition, as part of the ABCD project

[ABC] we are working to establish a common benchmark suit for session pro-

gramming, which will allow a comparison of session type implementations (both

based on language extensions and on APIs). The aim is to demonstrate the ro-

bustness, functionality, and overall applicability of session types (and Scribble, in

particular) through a diverse overview of use cases, ranging over various domains

and exhibiting different computational needs, as well as to facilitate the integration

of the tools and technologies developed in the session type community. For such

an integration, having a common message format, as the abstract representation of

session messages proposed in Chapter 3, is essential. We believe the project can be

used to unify session type implementations towards a practical session middleware

framework connecting incompatible communicating programs.

227



Bibliography

URL resources last accessed on 2016-10-20.

[AAC+05] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie
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A. Proofs for Chapter 4

This appendix includes a full proof of Theorem 4.3.3.

Theorem 4.3.3 (Session fidelity) If ∆ corresponds to G1, . . . ,Gn and ∆,ε →∗

∆′,Σ′, there exists ∆′,Σ′→∗ ∆′′,ε such that ∆′′ corresponds to G′′1, . . . ,G
′′
n which is

a derivative of G1, . . . ,Gn.

Proof. We prove that if there is an intermediate correspondence between ∆,Σ

and G1, . . . ,Gn and if ∆,ε → ∆′,Σ′, then there is an intermediate correspondence

∆′′ and G′′1, . . . ,G
′′
n which is a derivative of G1, . . . ,Gn.

We use Ω,Θ alongside ∆ to denote session environment. According to the

derivative definition above, we extend the notion of evaluation contexts to global

types.

Case (Out) is trivial from the first rule of intermediate correspondence.

Case (EOut). We have ∆ = Θ,s[A] : Ec0 [{|T |}c . 〈A?l〉;T ′]. Correspondence gives

• ∆ = Θ0,s[A] : Ec0 [{|T |}c . 〈A?l〉;T ′],∏1≤i≤n s[Ai] : Ei
ci [{|Ti|}c . 〈A?l〉;T ′i ]

and

• Σ = Σ1,Σ0 with Θ0;Σ0

corresponding to G2, . . . ,Gn and (∆−Θ′);Σ1 corresponding to G1. We know that

Σ′ = Σ0,∏1≤i≤n s[Ai] : hi.c
I[A,Ai]〈l〉. Concluding is easy using the second rule of

intermediate correspondence with k = 0.

Case (In). We assume ∆ = Θ,s[A′] : Ec[A?{li.Ti}] and Σ = Σ0,s[A′] : h.c[A,A′]〈l j〉.
We know there exists G1, . . .Gn and ∆0 such that ∆0 = Θ1, . . . ,Θn with Θi =⋃
A∈Gi

Gi ↑A.

Without loss of generality we have Θ1 = s[A′] : Ec[A?{li.Ti}],Θ′1. By the rules of

projection, it means G1 = A→A′ :{l j.G j} j∈J , implying Θ′1 = s[A′] : Ec′ [A?{li.Ti}],Θ′′1 .

So we have

∆′ = Ω,s[A] : Ec[Tj],s[A′] : Ec′ [A?{li.Ti}],Θ′1 and Σ′ = Σ0,s[A′] : h.c[A,A′]〈l j〉.
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We apply use (In) to conclude, using the projection rule on G j.

Case (EIn1). We pose A = Ak+1. We have Σ = Σ′,cI[A0,Ak+1]〈l〉.h and ϕ(Σ′,c).

Then let us define ∆=Θ,s[Ak+1] : Ec0 [{|Tk+1|}c . 〈A0?l〉;T ′] and ∆′=Θ, s[Ak+1]Ec0 [{|‖T‖|}c .
〈A0?l〉;T ′]. Without loss of generality we suppose ∆;Σ corresponds to G. We de-

duce that

• G = F{|G0|}c〈l by A〉;G′ ;

∆= s[A0] : E [{|T |}c . 〈A′?l〉; ],∏1≤i≤k s[Ai] : Ei [{|‖Ti‖|}c . 〈A′?l〉; ],∏k+1≤ j≤n s[A j] :

Ei [{|Tj|}c . 〈A′?l〉; ]; and

• Σ = Σ0,∏k+1≤ j≤n s[A j] : cI[A,A j]〈l〉.h j.

Thus we have

• ∆′= s[A0] : E [{|T |}c . 〈A′?l〉; ],∏1≤i≤k+1 s[Ai] : Ei [{|‖Ti‖|}c . 〈A′?l〉; ],∏k+2≤ j≤n s[A j] :

Ei [{|Tj|}c . 〈A′?l〉; ] and

• Σ′ = Σ0,∏k+2≤ j≤n s[A j] : cI[A,A j]〈l〉.h j.

We conclude using the second definition of intermediate correspondence with k =

k+1.

Case (EIn2). We pose An = A, we have Σ = Σ′,cI[A0,An]〈l〉.h and ¬ϕ(Σ′,c).

Then ∆ = Θ,s[An] : Ec0 [{|Tn|}c . 〈A0?l〉;T ′] and ∆′ = Θ,s[Ak+1]Ec0 [{|‖T‖|}c .

〈A0?l〉;T ′]. Without loss of generality we suppose ∆;Σ corresponds to G. We

deduce that

• G = F{|G0|}c〈l by A〉;G′ ,

• ∆= s[A0] : E [{|T |}c . 〈A′?l〉; ],∏1≤i≤n−1 s[Ai] : Ei [{|‖Ti‖|}c . 〈A′?l〉; ],s[An] :

En [{|Tn|}c . 〈A′?l〉; ] and

• Σ = Σ0,s[An] : cI[A,An]〈l〉.h.

From the semantics, we also have

• ∆′ = s[A0] : E [{|Eend|}c . 〈A′?l〉; ],∏1≤i≤n s[Ai] : Ei [{|Eend|}c . 〈A′?l〉; ]

and

• Σ = Σ0,s[An] : h.

We use the hypothesis and the intermediate correspondence rule to prove that ∆′;Σ′

corresponds to

F{|Eend|}c〈l by A〉;G′ which is a derivative of G. We conclude.

Case (Disc′) is easy using the first definition of the intermediate correspondence.

Case (EDisc1) is similar to (EIn1).

Case (EDisc2) is similar to (EIn2).

We then prove the following progress property: if ∆,Σ is in intermediate corre-
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spondence with G1, . . . ,Gn, and Σ 6= ε then there exist ∆′,Σ′ with Σ′ strictly smaller

than Σ. We prove it as follows:

• if Σ contains c[A,A′]〈l〉, we use the weak projection definitions to prove that

∆ contains either s[A′] : Ec[A?{li.Ti}] or s[A′] : Ec′ [{|‖T‖|}] . 〈A?l〉; with T

containing A?{li.Ti}. We conclude by applying (In) or (Disc′).

• otherwise Σ contains cI[A,A′]〈l〉 and we use the intermediate correspon-

dence definition to discuss whether c is inside an interrupted scope or not

and then whether ϕ(Σ0,) or not, the we conclude by applying (EIn1), (EIn2),

(EDisc1) or (EDisc2).

By using these properties, we conclude the proof.
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B. Implementations from Chapter 6

Here we present the corresponding Python code for some of the example.

Listing B.1: Fibonacci in Session Actors

1 @protocol(c, Fibonacci, P, Ch)

2 class Fibonacci(Actor):

3 def __init__(self, first = False):

4 self.ready = false

5 self.current = 0

6 self.first = first

7
8 @role(c, P)

9 def request(self, c, n):

10 if n<=2:

11 c.P.send.response(1)

12 else:

13 fib1 = c.subprotocol("Fibonacci",

14 P=self, Ch=new Fibonacci())

15 fib1.C.send.request(n-1)

16
17 fib2 = c.subprotocol("Fibonacci",

18 P=self, Ch=new Fibonacci())

19 fib2.C.send.request(n-2)

20
21 @role(c, Ch)

22 def response(self, c, n):

23 if self.ready:

24 if self.is_first:

25 print ’The result is’, n + self.current

26 else:

27 c.P.send.response(n + self.current)

28 else:

29 self.ready = True

30 self.current = n

We give in Listing B.1 the implementation of the Fibonacci protocol. The

first argument in the initialisation of a Fibonacci actor specifies if this is the
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initial actor to receive the number to be computed. As prescribed by the protocol,

two message handlers, request and response, are implemented. The latter is

the message received by the parent role P, while the former is received from the

child role Ch. Line 13–17 illustrate a new method on the ActorRole class for cre-

ating subprotocols. Note that the response method should be called twice (once

for each subprotocol). When the first response message is received the payload

is saved temporary in the actor field self.current (line 30). When the second

response is received, its value is added to self.current and the sum is returned

to the parent actor (line 27).

Listing B.2: Counter in Session Actors

1 @protocol(cc, Counter, C, P)

2 class Counter(Actor):

3 def __init__(self):

4 self.current = 0

5
6 @role(cc)

7 def val(self, n):

8 self.current+=n

9
10 @role(cc, P)

11 def retrieve_message(self, cc):

12 cc.P.send.res(self.current)

13
14 @protocol(cc, CounterProtocol, C, P)

15 class Producer(Actor):

16 @role(cc, self)

17 def join(n, cc):

18 for i in range(1, n):

19 cc.C.send.val(1)

20 cc.C.send.retrieve_message()

21
22 @role(cc, C)

23 def res(self, n)

24 print ’The result is’, n

Counter We give in Listing B.2 the implementation of the Counter protocol. We

have two Actor classes, Counter and Producer. The interactions start with the

join method of the Producer class. The body defines consecutive sending of

n messages (invoking the message handler val) of the Counter actor (role C in
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the protocol CounterProtocol). In the val method the counter actor accumulates

the number of received messages as part of its internal state (self.current).

After the iteration is completed, the Producer sends retrieve_message to the

Counter, asking for the result (line 43). The annotation on retrieve_message

specifies that the receiver of the message is the role instance cc and the sender is

the role P (Producer). In the body of retrieve_message, the Counter sends to

P (c.P.res) the final result (self.current).

Listing B.3: DiningPhilosphers in Session Actors

1 @protocol(c, DiningPhilosophers, Ph, A)

2 class Philosopher(Actor):

3 def __init__(self, no):

4 self.no = no

5
6 def join(self, c):

7 c.A.send.req(self.no)

8
9 def yes(self):

10 self.become(self.eat)

11
12 @role(c, self)

13 def eat(self):

14 if full:

15 c.A.send.done()

16
17 def no(self):

18 c.A.send.req(self.no)

19
20 @protocol(c, DiningPhilosophers, A, Ph)

21 class Arbitrator(Actor):

22
23 @role(c, Ph)

24 def req(self, c, sender=ph_no)

25 if self.free_forks():

26 c.Ph[ph_no].send.yes()

27 else:

28 c.Ph[ph_no].send.no()

29 @role(c, Ph)

30 def done(self, c):

31 print ’The dinner is over’
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DiningPhilosopher We give in Listing B.3 the implementation of the Dining-

Philosophers protocol. For sake of space and clarity, the implementation shows

only the interactions for the Arbiter and Philospher, abstracting from the re-

source management done by the Arbiter (in free_forks()). For a Philospher

the protocol starts from the method join. Using its role instance, the actor does

the first request to the Arbiter to eat (c.A.req(self.no)). To distinguish be-

tween Philosphers, each one is given a number when initialised and when a

Philosopher sends a message to an Arbiter (c.A.req) it also sends its num-

ber. The Arbiter uses this information to identify Philosopher that is waiting

for the reply(c.Ph[ph_no]). Note that in line 18 and in line 20 the Arbiter

does not know which Philospher sends the message (the annotation only speci-

fies that the sender is a role of type Ph (Philosopher)). When a Philosopher

receives a yes reply it sends a message to itself to eat (self.become(self.

eat)). If no is returned (line 14), the Philosopher repeats its request to the

Arbiter (c.A.req).

Listing B.4: CigaretteSmoker in Session Actors

1 @protocol(c, CigaretteSmoker, A, S)

2 class Arbiter(Actor):

3 def __init__(self, n):

4 self.n = n

5
6 def join(self, c):

7 # sends a message to a random smokers

8 radom = generate_random()

9 c.S[random].send.start_smoking()

10
11 @role(c, S)

12 def started_smoking(self):

13 if enough:

14 for i in range(1, n):

15 c.S[i].send.exit()

16 else:

17 radom = geenrate_random()

18 c.S[random].send.start_smoking()

19
20 @protocol(c, CigaretteSmoker, S, A)

21 class Smoker(Actor):

22 @role(c, A)

23 def start_smoking(self):

24 c.A.send.started_smoking()
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25
26 @role(c, A)

27 def exit(self):

28 print ’I am done.’

CigaretteSmoker We give in Listing B.4 the implementation of the CigaretteSmoker

protocol. Similar to the DiningPhilospher, the protocol should be initialised by

giving the number of the Smokers n. The Arbiter initiates the first interaction

through its join method, where it sends a message start_smoke to a random

smoker (it chooses random smoker from the list of smokers– S[random]). The

Smoker actor has a handler for start_smoke. The handler is annotated with

a @role, specifying this is a handler for the role smoker c and the caller for that

handler will be the role A. Then the Smoker notifies the Arbiter so the Arbiter

can proceed and give resources to other Smokers. When the Arbiter decides to

end the smoking it sends exit message to everyone.
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