
Integrated systems biology to study non-alcoholic fatty liver disease in obese women 

Background 
Non-alcoholic fatty liver disease (NAFLD) is a multi-factorial condition and one of the most common causes 
of chronic liver disease, with its prevalence increasing worldwide as a result of the obesity epidemic1,2. 
Data are available from rodent models regarding the role of the gut microbiota and microbiome in liver 
disease and their contribution to NAFLD phenome stratification (i.e. a comprehensive set of molecular 
phenotypes useful to identify subgroups of patients). Microbial factors associated with NAFLD include 
bacterial lipopolysaccharides (LPS) and bile acid–FXR activators2,3. The relevance of such factors in 
humans remains poorly understood. In addition, gut microbial populations of humans with NAFLD are 
inadequately characterized, and it is not known if changes in these populations and/or their functions 
contribute to initiation of NAFLD and/or its progression. We used an integrative multi-omics approach 
combining shotgun metagenomics (faecal microbiome) and molecular phenomics (liver transcriptome, 
plasma and urine metabonomes, clinical phenotyping) to decipher multi-scalar interactions in NAFLD in 
obese women.  
 

Objective 
To integrate metagenomic, transcriptomic, metabonomic and clinical data to evaluate the contribution of 
the faecal microbiome to the molecular phenome (hepatic transcriptome, plasma and urine metabonomes) 
of NAFLD independent of clinical confounders in morbidly obese women recruited to the FLORINASH 
study. 
 

Methods 
Faecal, liver biopsy, blood and urine samples and data for 28 clinical variables were collected for 56 obese 
[body mass index (BMI) >35 kg/m2] women from Italy (n = 31) and Spain (n = 25) who elected for bariatric 
surgery. Confounder analyses of clinical data were done using linear modeling. Histological examination of 
liver biopsies was used to grade NAFLD (NAFLD activity score: 0, 1, 2, 3). Faecal metagenomes were 
generated and analysed using the Imperial Metagenomics Pipeline4. Differentially expressed genes were 
identified in hepatic transcriptomes using limma5, and analysed using Enrichr6, network analyses and 
Signaling Pathway Impact Analysis (SPIA)7. 1H-NMR data were generated for plasma and urinary 
metabonomes8. Clinical, metagenomic, transcriptomic and metabonomic data were integrated using partial 
Spearman’s correlation, taking confounders (age, BMI and cohort) into account. Interactions between the 
faecal microbiome and the clinical/molecular phenome were quantified, allowing generation of a Receiver 
Operating Characteristic (ROC) curve that confirmed the diagnostic power of molecular phenomic and 
metagenomic indices.  
 

Results 
1.  NAFLD activity score was anti-correlated with microbial gene richness, and correlated with abundance 

of Proteobacteria. Microbial gene richness was correlated with clinical markers of NAFLD (Fig. 1). 

 

 

2.  KEGG analyses of metagenomic data suggested increased microbial processing of dietary lipids and 
amino acids, as well as endotoxin-related (LPS) processes related to Proteobacteria (Fig. 2). 

 

 

 

3.  Metabonomic profiles highlighted imbalances in branched-chain amino acid metabolism, gut-derived 
microbial metabolites resulting from metabolism of amino acids and choline metabolism (Fig. 3). 

4.  NAFLD-associated hepatic transcriptomes were associated with branched-chain amino acid 
metabolism, endoplasmic reticulum/phagosome. Hepatic genes significantly correlated with NAFLD 
activity score and microbial gene richness were significantly associated with immune responses 
associated with non-specific microbial infections and insulin resistance, and the most connected gene 
was INSR (insulin receptor) (Fig. 4). 

5.  Molecular phenomic signatures were stable and predictive regardless of sample size, and consistent 
with the microbiome making a significant contribution to the NAFLD phenome (Fig. 5).  

 

 

 
 
 
 
Conclusions 
i)  Low microbial gene richness is associated with NAFLD. 

ii)  There is disruption of the gut–liver axis in NAFLD, which can be seen in the faecal microbiome, hepatic 
transcriptome and urinary and plasma metabonomes. 

iii)  Consistency of phenome signatures strongly supports a relationship between microbial amino acid 
metabolism and microbial gene richness, hepatic gene expression and biofluid metabonomes, and 
ultimately NAFLD activity scores. 

iv)  There is a close association between the faecal microbiome, plasma/urinary metabonomes, hepatic 
steatosis, and clinical and molecular insulin resistance in morbid obesity. 

v)  Translational validation of rodent model data demonstrating an interplay between the microbiome and 
host gene expression in inflammation and host metabolism. 
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Fig. 1. (a) Association of 
microbial gene richness 
and (b) abundance of 
Proteobacter ia in the 
faecal microbiota with 
NAFLD activity score. (c) 
Correlation of microbial 
gene richness with clinical 
data. P values adjusted for 
multiple correction testing 
(Benjamini–Hochberg). 

Fig. 2. Heat map 
showing associations 
o f m e t a g e n o m e -
d e r i v e d  K E G G 
pathway data with 
c l i n i ca l da ta . + , 
S t a t i s t i c a l l y 
s i g n i f i c a n t 
associat ion (P < 
0 .05, Benjamin i–
Hochberg). 

Fig. 3. (a) Plasma metabolites most significantly (P < 0.05, 
Benjamini–Hochberg) partially correlated with NAFLD activity 
score. First three panels, branched-chain amino acids; 
phenylacetate is derived from microbial use of phenylalanine. 
(b) Urinary metabolites most significantly (P < 0.05, 
Benjamini–Hochberg) partially correlated with NAFLD activity 
score. First three panels, branched-chain amino acids. Our 
data suggest choline is excreted rather than used by the gut 
microbiota. 

Fig. 4. KEGG pathways over-represented in the genes significantly correlated with (a) NAFLD activity score and (b) microbial 
gene richness. Only significant results (P < 0.1, Benjamini–Hochberg) are shown. (c) SPIA analysis of NAFLD activity score–
microbial gene richness intersecting genes. (d) Network analysis of the NAFLD activity score–microbial gene richness 
intersecting genes. The correlation values for NAFLD activity score were used to generate the network: the bluer a node, the 
more significantly anti-correlated NAFLD activity score is with the hepatic gene; the redder a node, the more significantly 
correlated NAFLD activity score is with the hepatic gene. Analysis of betweenness centrality showed INSR to be the most 
connected gene in the network.  

Fig. 5. Phenome-wide crosstalk and predictive 
analyses. (a) Metagenome–phenome matrix 
correlation network computed for the patients using 
the modified Rv correlation matrix coefficient. (b) 
Performance of classification of NAFLD activity 
score 3 status (n = 9, vs others, n = 47) based on 
matching molecular phenome and faecal 
metagenome profi les. A Receiver-Operator 
Characteristic (ROC) curve was obtained for the 
cross-validated model predictions derived from an 
O-PLS-DA model, reaching an AUC of 0.8913, 
corresponding to the successful prediction rate.  


