Imperial College
London

MRC

Medical
Research
Council

* p K

Integrated systems biology to study non-alcoholic fatty liver disease in obese women

Lesley Hoyles'™, José-Manuel Fernandez-Real?*, Massimo Federici®*, Matteo Serino*°, Vincent Azalbert*°, Vincent Blasco*°, James Abbott’, Richard H. Barton', Josep Puig?, Gemma
Xifra?, Wifredo Ricart?, Mark Woodbridge', Christopher Tomlinson', Marina Cardellini3, Francesca Davato?, Iris Cardolini®, Ottavia Porzio®, Paolo Gentilieschi®, Frédéric Lopez*>,
Fabienne Foufelle’, Catherine Postic®, Sarah A. Butcher’, Elaine Holmes', Jeremy K. Nicholson?, Rémy Burcelin*>, Marc-Emmanuel Dumas’

'Surgery and Cancer, MRC-PHE Centre for Environment and Health, Imperial College London; 2Department of Endocrinology, Diabetes and Nutrition, Universitat of Girona, Spain; 3Department of Systems Medicine, University of Rome Tor Vergata, ltaly; 4Institut National de la Santé et de
la Recherche Médicale (INSERM), Toulouse, France; °Université Paul Sabatier (UPS), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), France; °Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome; “Sorbonne Universités, UPMC Univ

Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France

Background

Non-alcoholic fatty liver disease (NAFLD) is a multi-factorial condition and one of the most common causes
of chronic liver disease, with its prevalence increasing worldwide as a result of the obesity epidemic’?.
Data are available from rodent models regarding the role of the gut microbiota and microbiome in liver
disease and their contribution to NAFLD phenome stratification (i.e. a comprehensive set of molecular
phenotypes useful to identify subgroups of patients). Microbial factors associated with NAFLD include
bacterial lipopolysaccharides (LPS) and bile acid—FXR activators?3. The relevance of such factors in
humans remains poorly understood. In addition, gut microbial populations of humans with NAFLD are
inadequately characterized, and it is not known if changes in these populations and/or their functions
contribute to initiation of NAFLD and/or its progression. We used an integrative multi-omics approach
combining shotgun metagenomics (faecal microbiome) and molecular phenomics (liver transcriptome,
plasma and urine metabonomes, clinical phenotyping) to decipher multi-scalar interactions in NAFLD in
obese women.

Objective

To integrate metagenomic, transcriptomic, metabonomic and clinical data to evaluate the contribution of
the faecal microbiome to the molecular phenome (hepatic transcriptome, plasma and urine metabonomes)
of NAFLD independent of clinical confounders in morbidly obese women recruited to the FLORINASH
study.

Methods

Faecal, liver biopsy, blood and urine samples and data for 28 clinical variables were collected for 56 obese
[body mass index (BMI) >35 kg/m?] women from ltaly (n = 31) and Spain (n = 25) who elected for bariatric
surgery. Confounder analyses of clinical data were done using linear modeling. Histological examination of
liver biopsies was used to grade NAFLD (NAFLD activity score: 0, 1, 2, 3). Faecal metagenomes were
generated and analysed using the Imperial Metagenomics Pipeline*. Differentially expressed genes were
identified in hepatic transcriptomes using limma®, and analysed using Enrichr®, network analyses and
Signaling Pathway Impact Analysis (SPIA)’. "H-NMR data were generated for plasma and urinary
metabonomes8. Clinical, metagenomic, transcriptomic and metabonomic data were integrated using partial
Spearman’s correlation, taking confounders (age, BMI and cohort) into account. Interactions between the
faecal microbiome and the clinical/molecular phenome were quantified, allowing generation of a Receiver
Operating Characteristic (ROC) curve that confirmed the diagnostic power of molecular phenomic and
metagenomic indices.

Results

1. NAFLD activity score was anti-correlated with microbial gene richness, and correlated with abundance
of Proteobacteria. Microbial gene richness was correlated with clinical markers of NAFLD (Fig. 1).
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2. KEGG analyses of metagenomic data suggested increased microbial processing of dietary lipids and
amino acids, as well as endotoxin-related (LPS) processes related to Proteobacteria (Fig. 2).
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Fig. 2. Heat map

3. Metabonomic profiles highlighted imbalances in branched-chain amino acid metabolism, gut-derived
microbial metabolites resulting from metabolism of amino acids and choline metabolism (Fig. 3).
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4. NAFLD-associated hepatic transcriptomes were associated with branched-chain amino acid
metabolism, endoplasmic reticulum/phagosome. Hepatic genes significantly correlated with NAFLD
activity score and microbial gene richness were significantly associated with immune responses
associated with non-specific microbial infections and insulin resistance, and the most connected gene
was INSR (insulin receptor) (Fig. 4).

Fig. 4. KEGG pathways over-represented in the genes significantly correlated with (a) NAFLD activity score and (b) microbial
gene richness. Only significant results (P < 0.1, Benjamini—-Hochberg) are shown. (c) SPIA analysis of NAFLD activity score—
microbial gene richness intersecting genes. (d) Network analysis of the NAFLD activity score—microbial gene richness
intersecting genes. The correlation values for NAFLD activity score were used to generate the network: the bluer a node, the
more significantly anti-correlated NAFLD activity score is with the hepatic gene; the redder a node, the more significantly
correlated NAFLD activity score is with the hepatic gene. Analysis of betweenness centrality showed INSR to be the most
connected gene in the network.
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5. Molecular phenomic signatures were stable and predictive regardless of sample size, and consistent
with the microbiome making a significant contribution to the NAFLD phenome (Fig. 5).

Fig. 5. Phenome-wide crosstalk and predictive
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Conclusions

1) Low microbial gene richness is associated with NAFLD.
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i) There is disruption of the gut-liver axis in NAFLD, which can be seen in the faecal microbiome, hepatic
transcriptome and urinary and plasma metabonomes.

i) Consistency of phenome signatures strongly supports a relationship between microbial amino acid
metabolism and microbial gene richness, hepatic gene expression and biofluid metabonomes, and
ultimately NAFLD activity scores.

Iv) There is a close association between the faecal microbiome, plasma/urinary metabonomes, hepatic
steatosis, and clinical and molecular insulin resistance in morbid obesity.

v) Translational validation of rodent model data demonstrating an interplay between the microbiome and
host gene expression in inflammation and host metabolism.
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