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Abstract

This thesis discusses recent advances in a variety of areas in multi-parametric programming
and explicit model predictive control (MPC). First, novel theoretical and algorithmic re-
sults for multi-parametric quadratic and mixed-integer quadratic programming (mp-QP/mp-
MIQP) problems extend the current state-of-the-art: for mp-QP problems, it is shown that
its solution is given by a connected graph, based on which a novel solution procedure is
developed. Furthermore, several computational studies investigate the performance of dif-
ferent mp-QP algorithms, and a new parallelization strategy is presented, together with an
application of mp-QP algorithms to multi-objective optimization. For mp-MIQP problems,
it is shown that it is possible to obtain the exact solution of a mp-MIQP problem without
resorting to the use of envelopes of solutions, whose computational performance is compared
in a computational study with different mp-MIQP algorithms. Then, the concept of robust
counterparts in robust explicit MPC for discrete-time linear systems is revisited and an el-
egant reformulation enables the solution of closed-loop robust explicit MPC problems with
a series of projection operations. This approach is extended to hybrid systems, where the
same properties are proven to hold. Finally, a new approach towards unbounded and binary
parameters in multi-parametric programming is introduced, and several examples highlight
its potential.
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mp-LP Multi-parametric linear programming
mp-MILP Multi-parametric mixed-integer linear programming
mp-MINLP Multi-parametric mixed-integer nonlinear programming
mp-MIQP Multi-parametric mixed-integer quadratic programming
mp-MOO Multi-parametric multi-objective optimization
mp-MPC/eMPC Multi-parametric/explicit model predictive control
mp-QCQP Multi-parametric quadratically constrained quadratic programming
mp-NLP Multi-parametric nonlinear programming
mp-P Multi-parametric programming
mp-QP Multi-parametric quadratic programming
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Chapter 1

Introduction

Portions of this chapter have been published in:

• Oberdieck, R.; Diangelakis, N.A.; Nascu, I.; Papathanasiou, M.M.; Sun, M.; Avraami-
dou, S.; Pistikopoulos, E.N. (2016) On multi-parametric programming and its applica-
tions in process systems engineering. Chemical Engineering Research and Design, 116,
61-82.

• Oberdieck, R.; Diangelakis, N.A.; Papathanasiou, M.M.; Nascu, I.; Pistikopoulos, E.N.
(2016) POP - Parametric Optimization Toolbox. Industrial & Engineering Chemistry
Research, 55(33), 8979-8991.

1.1 A historical perspective

How does the solution of an optimization problem depend on the variation of parameters
in the problem formulation? The first consideration of this question can be traced back to
1952. In an unpublished master thesis, William Orchard-Hays considered the solution of a
parametric1 linear programming problem, where he studied how the variation of the right
hand side of a linear programming (LP) problem affects the change of its optimal basis [89].
In parallel, Harry Markowitz published his groundbreaking paper ”Portfolio selection”, where
he states that a portfolio should be chosen such that it maximizes the expected return while
it minimizes risk [173]. Although considered only conceptually, his problem is a parametric
quadratic programming problem, as he himself discussed in 1956 [174]. These beginnings
led to the first publication on parametric linear programming in 1953 by Alan Manne [171],

1In general, the term ”parametric” refers to the case where a single parameter is considered, while ”multi-
parametric” suggests the presence of multiple parameters.
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and the development of the field of parametric programming and post-optimal analysis2.
Due to computational limitations, virtually all papers published between the 1950s and

the mid-1990s considered the single parameter case, i.e. how the change of a single param-
eter in the optimization problem impacts the optimal solution of the problem. A notable
exception to this is the work by Gal and Nedoma, who in 1972 published the first gen-
eral algorithm for the solution of multi-parametric linear programming (mp-LP) problems
[91], i.e. LP problems featuring multiple, independent variations in the coefficients of the
objective function and/or the constraints. The interested reader is referred to the excel-
lent monographs by Gal [90] and Bank et al. [13] for a more in-depth treatment of these
developments.

With the increased availability of computing power and commercial optimization soft-
ware, the solution of multi-parametric programming problems suddenly became computa-
tionally tractable. This led to a string of publications, starting in 1997, which combined the
algorithm of Gal and Nedoma with suitable integer programming techniques to develop al-
gorithms for multi-parametric integer and mixed-integer problems [2, 3, 56–59, 72]. In 2000,
this renewed interest in multi-parametric programming was brought to new heights, when
it was discovered that model predictive control (MPC) problems of continuous discrete-time
systems could be formulated as multi-parametric quadratic programming (mp-QP) problems
[28, 29, 217]. The solution of the mp-QP problem was achieved by applying the Basic Sen-
sitivity Theorem, developed in 1976 by Anthony Fiacco [83], in combination with a suitable
geometric exploration strategy of the parameter space. This applicability led to a surge
in interest, as many control problems could be solved explicitly (and thus offline) using
multi-parametric programming (see [7, 213, 220] and references therein), a concept which
was captured in the term ”MPC-on-a-chip”, i.e. the idea that MPC controllers could be
delivered and implemented on a simple chip [71, 215].

1.2 A mathematical perspective

In multi-parametric programming, a constrained optimization problem is solved for a range
and as a function of certain parameters. This solution is obtained based on the following
statement:

Given the solution to a continuous constrained optimization problem (x∗, λ∗, µ∗),
there exists a ball of radius ε for which the solution features the same active
constraints,

2Post-optimal analysis refers to the analysis of the solution of an optimization problem.
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where x∗ are the optimal values of the optimization variables (the primal solution), while λ∗

and µ∗ are the optimal values of the Lagrangian multipliers of the inequality and equality
constraints, respectively (the dual solution). This statement is the basis of the Basic Sensi-
tivity Theorem [83], which proves that there exists a linear approximation of the solution of
the optimization problem around (x∗, λ∗, µ∗) such that the error is bounded. For the specific
case of affine constraints and linear or convex quadratic cost functions, this approximation
is the exact solution, i.e. the optimization variables are affine functions of the parameters
[220]. However, since in different parts of the parameter space, different constraints will be
active, it is intuitively clear that the solution to a multi-parametric programming problem
will be given by two components:

Critical regions: A critical region CR describes the set of parameters, for which the ob-
tained parametric solution is optimal.

Parametric solution: The parametric solution describes how the optimal solution of an
optimization problem changes as a function of the parameter θ, i.e. (x (θ) , λ (θ) , µ (θ)).
This solution often differs between critical regions.

Thus, the following general description of the solution of multi-parametric programming
problems is stated:

θ ∈ CRi ⇒ (xi (θ) , λi (θ) , µi (θ)) is the optimal solution.

1.3 Current developments in multi-parametric program-
ming and control

Due to its applicability, multi-parametric programming has attracted great interest from the
control and process systems engineering communities. In this section, the current state-of-
the-art is highlighted in terms of theoretical/algorithmic advances and applications using
multi-parametric programming are discussed (see Figure 1.1 for a summary).

1.3.1 Theory and Algorithms - Where do we stand?

Over the last 10 years, most efforts have been put into devising novel algorithms which
exploit different characteristics of multi-parametric programming problems. For the case of
mp-QP problems, Gupta et al. showed that it is possible to design a combinatorial branch-
and-bound approach, based on the enumeration of active sets [110]. Similarly, Fáısca et al.
designed a new class of multi-parametric dynamic programming algorithms which avoids the
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Figure 1.1: The main developments in multi-parametric programming (mp-P).
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comparison procedure at each stage required by previous approaches [79]. In addition, several
authors considered the solution of multi-parametric nonlinear programming problems, such
as Domı́nguez and Pistikopoulos [68], and Grancharova and co-workers [106, 107]. Other
researchers also considered the question of inverse multi-parametric programming, i.e. the
reconstruction of the multi-parametric optimization problem when the optimal solution is
given, e.g. Hempel et al. [116, 117] and Olaru and co-workers [109, 197, 198].

Furthermore, the storage requirements of the parametric solution becomes prohibitive
for larger problems due to the increase in the number of critical regions. Thus, strategies
on how to reduce the complexity of the solution of multi-parametric programming problems
have been studied, mainly by Kvasnica and co-workers [121, 122, 153, 156, 157]. In addition,
the task of locating the correct critical region given a certain parameter value, called point
location, has been studied, e.g. by Bayat et al. [19, 20] and Morari and co-workers [52, 87,
119].

1.3.2 Applications - Where do we stand?

Most of the papers that have appeared in the last 10 years in relation to multi-parametric
programming problems present applications of its capabilities to other classes of problems.
Although the quantity of papers has decreased, the most important area of application by
far is still explicit MPC, where applications to areas such as energy systems [21, 63, 65,
114, 123, 146, 268], transportation [38, 162, 172, 204, 266], and heating, ventilating and
air conditioning systems [69, 143, 210, 235], have clearly shown the capabilities of multi-
parametric programming. Using an equivalent state-space representation, multi-parametric
programming has also been applied to several scheduling problems [146, 164, 165, 234, 262].
In addition, many researchers have considered multi-parametric programming for robust
MPC problems, such as Morari and co-workers [18, 32, 39, 222, 226] and Pistikopoulos and
co-workers [49, 148, 237].

Remark 1. Note that in most cases explicit MPC has only been applied to simulated systems.
However, several researchers have in fact exported their solution to real chips and proven the
concept on experimental setups, e.g. [21, 114, 123, 178, 204, 235, 268]. The most impressive
of these is arguably the work by Doyle and co-workers, who employed explicit MPC to design
an aspect of an artificial pancreas and have recently began one of the largest ever long-term
clinical trials [70].

However, there have also been developments beyond explicit MPC, which mainly exploit
the fact that multi-parametric programming yields the optimal solution of an optimization
problem as an explicit function over a range of parameters. This enables tasks such as
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integration of design, scheduling and control, where the design and scheduling variables of
the system are treated as parameters in the explicit MPC problem [216, 220]. Additionally,
multi-parametric programming provides an elegant solution approach of bi-level optimization
problems, as the lower level problem is solved explicitly as a function of the upper level
variables [66, 67, 76, 78, 138]. Other areas of interest are multi-parametric moving horizon
estimation [62, 190, 259] and multi-objective optimization via multi-parametric programming
[25, 208, 231].

1.3.3 Software - Where do we stand?

Despite the applicability of multi-parametric programming, prior to the release of the POP
toolbox (see Appendix A) only one software tool was available for the solution of multi-
parametric programming problems: the Multi-Parametric Toolbox (MPT). This tool, devel-
oped jointly by groups at ETH Zurich and the Slovak University of Technology in Bratislava,
enables the solution of multi-parametric linear and quadratic programming problems, per-
forming linear algebraic geometry and set operations as well as the design of explicit MPC
problems for linear discrete-time systems [118, 154, 158]. In addition, it is linked to the
modelling tool YALMIP [169], which employs a tailor-made symbolic notation for dynamic
systems. This link also features a solution strategy for multi-parametric mixed-integer linear
and quadratic programming problems via dynamic programming and exhaustive enumera-
tion.

1.4 Objectives and outline of this thesis

Despite these developments over the last 10 years, several challenges have remained and were
set as the main objectives of this thesis:

• The solution of mp-LP and mp-QP problems can be obtained either via a geometrical
or combinatorial approach. However, these two solution strategies are not linked to
each other and explore fundamentally different properties of the problem formulation.
Is it possible to bring these approaches together and show the link between them?

• The solution of mp-MIQP problems features so-called envelopes of solutions, where
more than one parametric solution is stored in each critical region. This is necessary,
as the quadratic nature of the objective function would lead to quadratically con-
strained critical regions, if an exact solution was considered. Is it possible to design an
algorithm which solves mp-MIQP problems exactly and without resorting to envelopes
of solutions?
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• Is it possible to contribute towards the increased integration between robust optimiza-
tion techniques in robust MPC, and can multi-parametric programming be used to do
it?

• It is standard practice to assume the parameters in multi-parametric programming to
be continuous and bounded. Is it possible to develop algorithms for the solution of
unbounded or binary parameters?

Inspired by these open questions, this thesis discusses recent theoretical and algorithmic
advances in multi-parametric programming and control. After some basic notation informa-
tion and background on polytopes is provided in Chapter 2, Chapter 3 extends the results
of Gal and Nedoma [91] to the case of mp-QP problems, which leads to the development of
an efficient mp-QP solver. In Chapter 4, new advances for multi-parametric mixed-integer
quadratic programming (mp-MIQP) problems are shown, as an algorithm is presented which
enables the exact solution of such problems, resulting in quadratically constrained critical
regions. In Chapter 5, the work of Kouramas et al. [148] on robust explicit MPC is revisited,
and it is shown that it leads to a paradigm for the application of robust opitmization to ro-
bust model predictive control for discrete-time linear continuous and hybrid systems. Finally,
Chapter 6 presents a generalized version of the combinatorial algorithm for the solution of
mp-QP problems featuring unbounded or binary parameters.
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Chapter 2

Theoretical Background

This chapter sets out the recurring notation in this thesis. In addition, due to their inti-
mate relationship with multi-parametric programming, polytopes are discussed and some
definitions are given which are going to be used throughout the thesis.

2.1 Notation

The notation used in this thesis is fairly standard. The zero matrix of dimension n ×m is
denoted as 0n×m. Let a ∈ Rn and A ∈ Rn×n, then ak and Ak denote the vector and matrix
formed from the elements and rows of a and A indexed by k1, AT denotes the transpose of
A, ||a||2 and ||A||2 denotes the 2-norm of a and 2-norm of each row of A respectively, and
|a| and |A| denote the element-wise absolute value of a and A, respectively. Additionally,
card (p) denotes the cardinality of the set p. Let n, k ∈ R and p be a set. Then the binomial

coefficient is denoted as
n
k

, while
p
k

 denotes the set of all possible sets of cardinality k

which are subsets of p. Lastly, let P be a polytope, then int (P ) denotes the interior of P ,
and Co (·) denotes the convex hull. Furthermore, Q � 0 denotes that the matrix Q ∈ Rn×n

is positive definite.

2.1.1 Nomenclature

The terms ’linear’ and ’affine’ are used interchangeably. In addition, the term ’integer’ refers
to binary variables, based on which any integer variable can be modeled [229]. Furthermore,
the terms ’programming’ and ’optimization’ (e.g. ’programming problems’ and ’optimization
problems’) are also used interchangeably.

1If set k is of cardinality 1, then ak and Ak denotes the k-th element and row of a and A.
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(a) (b) (c)

Figure 2.1: The schematic depiction of the notions of (a) disjoint, (b) overlapping and (c)
adjacent polytopes.

2.2 Polytopes

In the case of mp-LP and mp-QP problems, the resulting critical regions are polytopes (see
eq. (3.9)). Thus, multi-parametric programming is intimately related to the properties and
operations applicable to polytopes. In the following, some basic definitions on polytopes
are stated which are used throughout the thesis. For an excellent treatment on (convex)
polytopes, the interested reader is referred to [108].

Definition 1. The set P is called a n-dimensional polytope if and only if it satisfies:

P :=
{
x ∈ Rn |aTi x ≤ bi, i = 1, ...,m

}
, (2.1)

where m is finite.

In addition to Definition (1) the following well-known characteristics of polytopes are
considered:

• A polytope is called bounded if and only if there exists a finite xmin ∈ Rn and xmax ∈ Rn

such xmin ≤ x ≤ xmax for all x ∈P.

• A polytope which is closed and bounded is called compact. Unless stated otherwise,
all polytopes considered in this thesis are assumed to be compact.

• Two polytopes P1 and P2 are called disjoint if P1∩P2 = ∅. Similarly, two polytopes
P1 and P2 are called overlapping if int (P1)∩ int (P2) 6= ∅. Lastly, two polytopes P1

and P2 are called adjacent or neighboring if P1∩P2 is a n−1-dimensional polytope.
In Figure 2.1, these definitions are depicted schematically.
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• Let P be an n-dimensional polytope. Then, a subset of a polytope is called a face of
P if it can be represented as:

F = P ∩
{
x ∈ Rn |aTx = b

}
(2.2)

for some inequality aTx ≤ b which holds for all x ∈ P. The faces of polytopes of
dimension n− 1, 1 and 0 are referred to as facets, edges and vertices, respectively.

• Let P be an n-dimensional polytope. Then, there exists a series of k vertices xi ∈ Rn

such that:

P :=
{
x ∈ Rn |x =

k∑
i=1

λixi,
k∑
i=1

λi = 1, λi ≥ 0
}
. (2.3)

• Eq. (2.1) is referred to the halfspace (or H) representation, while eq. (2.3) denotes the
vertex (or V) representation. The process of moving from the halfspace to the vertex
representation is referred to as vertex enumeration.

• The Chebyshev center of a polytope is given as the largest Euclidean ball that lies
in a polytope [45]. It can be determined by solving the following linear programming
problem:

R∗ = minimize
x,r

−r

subject to Aix+ r ||Ai||2 ≤ bi, ∀i = 1, ...,m,
(2.4)

where the solution x∗ and R∗ denotes the location and radius of the largest Euclidean
ball, respectively. Based on the solution of problem (2.4), the following conclusions
can be drawn:

– Problem (2.4) is infeasible: The polytope is empty.

– R∗ = 0: The polytope is lower-dimensional.

– R∗ > 0: The polytope is full-dimensional.

2.2.1 Approaches for the removal of redundant constraints

A concept which is very important in multi-parametric programming is the aspect of redun-
dancy:
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(a) (b)

Figure 2.2: The schematic depiction of the notions of (a) weakly and (b) strongly redundant
constraints.

Definition 2 ([250]). Consider a n-dimensional compact polytope P in halfspace represen-
tation. A constraint ATi x ≤ bi is called redundant if

Pi = {x ∈ Rn |Aix > bi, Akx ≤ bk,∀k 6= i} = ∅. (2.5)

Additionally, a constraint Aix ≤ bi is called strongly redundant if

P ′
i = {x ∈ Rn |Aix ≥ bi, Akx ≤ bk,∀k 6= i} = ∅. (2.6)

Remark 2. A constraint is called weakly redundant if it is redundant but not strongly re-
dundant, i.e. eq. (2.5) but not eq. (2.6) holds. Furthermore, if a polytope P does not
feature any redundant constraints, it is said to be in minimal representation. A schematic
representation of Definition 2 is given in Figure 2.2.

Consider an n-dimensional compact polytope P = {x ∈ Rn |Ax ≤ b}, where A ∈ Rm×n

and b ∈ Rm. The following strategies aim at identifying the minimal representation of P:

Remark 3. Here, only the approaches used in this thesis are reported. The field of the
removal of redundant constraints has been widely studied and its review is beyond the scope
of this thesis. The reader is referred to [137, 250] for an interesting treatment of the matter.

Lower-Upper bound classification [46]

Given the bounds lj ≤ xj ≤ uj, ∀j = 1, ...,m, a constraint Aix ≤ bi is redundant if

Ui ≤ bi, (2.7)
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where

Ui =
∑
j∈Pj

Aijuj +
∑
j∈Nj

Aijlj, (2.8)

where Pj = {j|Aij > 0} and Nj = {j|Aij < 0}. This approach relies on the identification of
the worst-case scenario given the lower and upper bounds. If these bounds are not available,
they can be calculated by solving the following 2n linear programming (LP) problems [247]:

minimize
x

±xi
subject to x ∈P.

(2.9)

Solution of linear programming problem

Consider the following constraint-specific version of problem (2.4):

Ri = minimize
x,r

−r

subject to Ax ≤ (b− ||Ai||2 r)
Aix = bi

||Ai||2 =
∣∣∣∣∣∣1− (AATi )2

∣∣∣∣∣∣
2

x ∈P, r ∈ R,

(2.10)

where (·)2 denotes the element-wise square of (·). Note that Ax ≤ b is assumed to be
normalized such that ||ai||2 = 1 for all i = 1, ...,m. Then the i-th constraint is redundant if
and only if Ri ≤ 0. Note that this identifies weakly and strongly redundant constraints.

Remark 4. The solution of problem (2.10) identifies the largest Euclidean ball which on the
set K = {x|x ∈ P ∪ Aix = bi}, i.e. which lies on the i-th constraint. Thus, the solution
can be understood as the center of the i-th constraint with respect to P.

2.2.2 Projections

One of the operations used in this thesis is the (orthogonal) projection:

Definition 3 (Projection [131]). Let P ⊂ Rd×Rk be a polytope. Then the projection
πd (P ) of P onto Rd is defined as:

πd (P ) =
{
x ∈ Rd |∃y ∈ Rk, (x, y) ∈ P

}
. (2.11)

Projecting polytopes is one of the fundamental operations in computational geometry
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and has many applications in control theory. As its efficient calculation is paramount for
this thesis, two different strategies have been implemented for this thesis:

• Solving a multi-parametric linear programming (mp-LP) problem (see e.g. [148])

• Performing a Fourier-Motzkin (FM) elimination (see e.g. [241])

In addition, the concept of a hybrid projection is introduced:

Definition 4 (Hybrid projection). Consider the set P ⊂ Rd×Rk×{0, 1}r. Then, the hybrid
projection π̃d (P ) of P onto Rd is defined as:

π̃d (P ) =
{
x ∈ Rd |∃y ∈ Rk×{0, 1}r, (x, y) ∈ P

}
. (2.12)

By inspection it is clear that (a) π̃d (P ) is obtained by performing at most 2r projections,
one for each combination of the binary variables and consequently (b) π̃d (P ) is generally a
union of at most 2r possibly overlapping polytopes.

A hybrid projection can thereby be performed by solving a mp-MILP problem purely
based on feasibility requirements.

2.2.3 Modelling of the union of polytopes

The aim is to represent a union of polytopes P =
p⋃
i=1
{x|Gix ≤ gi} as a single set of linear

inequality constraints. However, in order to address the possible non-convexity within unions
of polytopes, the introduction of suitable binary variables is required. First, consider that a
point x ∈ P if and only if there exists at least one i such that Gix ≤ gi. Thus, one binary
variable yi is defined such that:

[
Gix ≤ gi

]
→ [yi = 1] (2.13a)

p∑
i=1

yi ≥ 1. (2.13b)

Let Gi
j and gij denote the j-th row and element of Gi ∈ Rti×n and gi ∈ Rti , respectively.

Then, the statement Gix ≤ gi holds if and only if Gi
jx ≤ gij, ∀j. Thus, one binary variable
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per row of Gi, yij, is defined such that:

[
Gi
jx ≤ gij

]
↔
[
yij = 1

]
(2.14a) ti∑

j=1
yij = ti

→ [yi = 1] (2.14b)

p∑
i=1

yi ≥ 1. (2.14c)

Based on [23, 260], eq. (2.14a-2.14b) are reformulated as:

Gi,T
j x+Myij ≤M + gij (2.15a)

Gi,T
j x−myij ≥ gij (2.15b)

tiyi ≤
ti∑
j=1

yij (2.15c)

yi ≥
ti∑
j=1

yij + 1− ti, (2.15d)

where m ≤ x ≤ M , ∀x ∈ P . Thus, the final formulation of the union as a set of linear
inequality constraints featuring binary variables is given as:

P =
p⋃
i=1
{x|Gix ≤ gi} →



Gi,T
j x+Myij ≤M + gij

−Gi,T
j x+myij ≤ −gij
tiyi −

ti∑
j=1

yij ≤ 0

−yi +
ti∑
j=1

yij ≤ ti − 1

−
p∑
i=1

yi ≤ −1

. (2.16)
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Chapter 3

Contributions to multi-parametric
quadratic programming

Portions of this chapter have published in:

• Oberdieck, R.; Diangelakis, N.A.; Papathanasiou, M.M.; Nascu, I.; Pistikopoulos, E.N.
(2016) POP - Parametric Optimization Toolbox. Industrial & Engineering Chemistry
Research, 55(33), 8979 - 8991.

• Oberdieck, R.; Diangelakis, N.A.; Pistikopoulos, E.N. (2017) Explicit Model Predictive
Control: A connected-graph approach. Automatica, 76, 103-112.

• Oberdieck, R.; Pistikopoulos, E. N. (2016) Parallel computing in multi-parametric
programming. In Computer Aided Chemical Engineering, 38, p. 169 - 174.

• Oberdieck, R.; Pistikopoulos, E. N. (2016) Multi-objective optimization with convex
quadratic cost functions: A multi-parametric programming approach. Computers &
Chemical Engineering, 85, 36 - 39.

3.1 Introduction

Multi-parametric quadratic programming (mp-QP) problems have attracted extensive atten-
tion in recent years due to their applicability to explicit model predictive control (MPC) [31].
Despite this interest and the subsequent developments, several theoretical and algorithmic
questions still remain open. The aim of this chapter is twofold: first, an overview over the
current state-of-the-art from a theoretical and algorithmic perspective is given. Then, some
recent advances in the area of mp-QP problems are discussed, namely:
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• Development of a novel solution procedure which is based on the fact that the solution
of a mp-QP problem is given by a connected graph.

• A computational analysis which shows the performance of the different solution ap-
proaches and the discussion of qualititative rules as to which algorithm is more appli-
cable in which circumstance.

• Description of a parallelization procedure applicable to the most commonly used solu-
tion techniques for mp-QP problems.

• The approximate solution of certain multi-objective optimization problems using mp-
QP problems.

3.2 Theoretical and algorithmic background for mp-
QP problems

Consider the following mp-QP problem:

z(θ) = minimize
x

(Qx+Hθ + c)T x
subject to Ax ≤ b+ Fθ

x ∈ Rn

θ ∈ Θ := {θ ∈ Rq |CRAθ ≤ CRb},

(3.1)

with Q ∈ Rn×n � 0, H ∈ Rn×q, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, F ∈ Rm×q, CRA ∈ Rr×q,
CRb ∈ Rr and Θ is compact.

Remark 5. The properties discussed below are also valid for mp-LP problems of the form:

z(θ) = minimize
x

cTx

subject to Ax ≤ b+ Fθ

x ∈ Rn

θ ∈ Θ := {θ ∈ Rq |CRAθ ≤ CRb}.

(3.2)

Note however that due to the positive semi-definite nature of problem (3.2)1, this might lead
to dual degeneracy, as discussed in section 3.2.2.

Remark 6. In order to facilitate readability, throughout this thesis equality constraints will
be omitted in the problem formulations of multi-parametric programming problems as they

1Problem (3.2) can be viewed as a special case of problem (3.1) with Q = 0n×n and H = 0n×q, which is
inherently positive semi-definite.
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can be understood as inequality constraints which have to be active in the entire parameter
space (i.e. they are always part of the active set).

3.2.1 Theoretical Properties

The key question when considering problem (3.1) is how to obtain the parametric solution
x (θ) and λ (θ), where λ denotes the Lagrangian multiplier2. In the open literature, two ways
have been presented:

Post-optimal sensitivity analysis: Consider problem (3.1), let f(x, θ) and gi(x, θ) ≤ 0
denote the objective function and the i-th constraint, respectively and let θ be fixed to
θ0. Then the resulting quadratic programming (QP) problem can be solved using the
Karush-Kuhn-Tucker (KKT) conditions, which are given by:

∇xL = ∇xf (x, θ0) +
m∑
i=1

λi∇xgi (x, θ0) = 0 (3.3a)

gi (x, θ0) ≤ 0, λi ≥ 0, ∀i = 1, ...,m (3.3b)

λigi (x, θ0) = 0,∀i = 1, ...,m, (3.3c)

where the optimal solution is given by the optimizer x0 and the Lagragian multipliers
λ0 = [λ1, λ2, ..., λm]T . This consideration leads to the main theorem on post-optimal
sensitivity analysis:

Theorem 1 (Basic Sensitivity Theorem [83]). Let θ0 be a vector of parameter values
and (x0, λ0) the solution derived from the KKT conditions in eq. (3.3), where λ0 is
non-negative and x0 is feasible. Also assume that: (i) strict complementary slackness
(SCS) holds; (ii) the binding constraint gradients are linearly independent (LICQ:
Linear Independence Constraint Qualification); and (iii) the second-order sufficiency
conditions (SOSC) hold. Then, in the neighborhood of θ0, there exists a unique, once
differentiable function [x (θ) , λ (θ)] satisfying eq. (3.3) with [x (θ0) , λ (θ0)] = (x0, λ0),
where x (θ) is a unique isolated minimizer for problem (3.1) and

(
dx (θ0)

dθ ,
dλ (θ0)

dθ

)T
= − (M0)−1N0, (3.4)

2For an introduction into the concept of Lagrangian multipliers and duality in general, the reader is
referred to the excellent textbook by Floudas [84].

31



where

M0 =


∇2L ∇g1 · · · ∇gm
−λ1∇Tg1 −g1

... . . .
−λm∇Tgm −gm

 (3.5a)

N0 =
(
∇2
θ,xL ,−λ1∇T

θ g1, ...,−λm∇T
θ gm

)T
(3.5b)

L = f(x, θ) +
m∑
i=1

λigi (x, θ) . (3.5c)

As a result of Theorem 1 the parametric solutions x(θ) and λ(θ) are affine functions
of θ around θ0.

Parametric solution of the KKT conditions: Consider problem (3.1) and eq. (3.3)
without fixing θ to θ0. Additionally, let k be a candidate active set, then the cor-
responding KKT conditions are given as3:

∇xL (x, λ, θ) = ∇x

(
(Qx+Hθ + c)T x

)
+∇x

∑
i∈k

λi (Aix− bi − Fiθ)
 (3.6a)

= Qx+Hθ + c+ ATk λk = 0 (3.6b)

Akx− bk − Fkθ = 0. (3.6c)

Thus, eq. (3.6b) is reformulated such that

x = −Q−1
(
Hθ + c+ ATk λk

)
. (3.7)

Note that Q is invertible since it is positive definite. The substitution of eq. (3.7) into
eq. (3.6c) results in:

−AkQ−1
(
HT θ + c+ ATk λk

)
− bk − Fkθ = 0

⇒ λk (θ) = −
(
AkQ

−1ATk
)−1 (

bk + Fkθ + AkQ
−1 (Hθ + c)

)
, (3.8)

which can be substituted into eq. (3.7) to obtain the full parametric solution.
3Assuming no degeneracy, in the case of mp-LP problems, the cardinality of the active set k is card (k) = n

and thus the parametric solution is directly given as x (θ) = A−1
k (bk + Fkθ).
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Once the parametric solution has been obtained, the set over which it is valid is defined by
feasibility and optimality requirements:

Ax(θ) ≤ b+ Fθ (Feasibility of x(θ)) (3.9a)

λ(θ) ≥ 0 (Optimality of x(θ)) (3.9b)

CRAθ ≤ CRb (Feasibility of θ) (3.9c)

For mp-LP and mp-QP problems, eq. (3.9) denotes a set of linear inequalities, and thus the
critical region where a parametric solution is optimal is a polytope. Since this analysis is
valid for any feasible point θ0, the main properties of mp-LP and mp-QP solutions is given
as follows:

Definition 5. A function x (θ) : Θ → Rn, where Θ ∈ Rq is a polytope, is called piecewise
affine if it is possible to partition Θ into non-overlapping polytopes, called critical regions,
CRi and

x (θ) = Kiθ + ri, ∀θ ∈ CRi. (3.10)

Remark 7. The definition of piecewise quadratic is analogous.

Theorem 2 (Properties of mp-QP solution [31, 74]). Consider the mp-QP problem (3.1).
Then the set of feasible parameters Θf ⊆ Θ is convex, the optimizer x (θ) : Θf 7→ Rn

is continuous and piecewise affine, and the optimal objective function z(θ) : Θf 7→ R is
continuous, and piecewise quadratic.

Remark 8. In the case of mp-LP problems, Theorem 2 still holds, however the optimal
objective function z(θ) : Θf 7→ R is continuous, convex and piecewise affine [90].

Remark 9 (Active set representation). Each critical region in a mp-LP or mp-QP problem
is uniquely defined by the optimal active set associated with it, and the solution of problem
(3.1) can be represented as the set of all optimal active sets.

3.2.2 Degeneracy

One of the most important issues encountered in linear and quadratic programming is degen-
eracy. However, since the solution to a strictly convex QP is guaranteed to be unique, some
types of degeneracy do not occur in QP and consequentially in mp-QP problems. Thus, for
completion consider a standard mp-LP problem, where degeneracy generally refers to the
situation where the active set for a specific LP problem (e.g. problem (3.2) with θ = 0)
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cannot be identified uniquely4. Commonly, the two types of degeneracy encountered are
primal and dual degeneracy (see Figure 3.1):

Primal degeneracy: In this case, the vertex of the optimal solution of the LP is overde-
fined, i.e. there exist multiple sets k1 6= k2 6= ... 6= ktot such that:

xk1 = xk2 = ... = xktot , (3.11)

where xk = A−1
k bk.

By inspection of Figure 3.1, it is clear that primal degeneracy is caused by the presence
of constraints which only coincide with the feasible space, but do not intersect it.
Thus, if any of these constraints would be chosen to be part of the active set of the
corresponding parametric solution, this results in a lower-dimensional critical region5,
and only one active set k exists for which a full-dimensional critical region results, and
it is constituted by those constraints which intersect with the feasible space.

Remark 10. Constraints which coincide but do not intersect with the feasible space are
also referred to as weakly redundant constraints (see also Figure 2.2).

Dual degeneracy: If there exists more than one point x have the same optimal objective
function value z, then the optimal solution is not unique. Thus, there exist multiple
sets k1 6= k2 6= ... 6= ktot with xk1 6= xk2 6= ... 6= xktot such that:

zk1 = zk2 = ... = zktot , (3.12)

where zk = cTxk.

In general, the effect of primal degeneracy within the solution procedure of mp-LP prob-
lems is manageable, since it can be detected by substituting xk into the constraints and
if necessary solving one LP problem for each constraint6. However, dual degeneracy
is more challenging as the different active sets might result in full-dimensional, but
potentially overlapping, critical regions. In particular since the optimal solutions xk
differ, the presence of dual degeneracy might eliminate the continuous nature of the
optimizer described in Theorem 2. However, three approaches have been proposed to
generate continuous optimizers as well as non-overlapping critical regions [134, 205].

4This does not consider problems arising from scaling, round-off computational errors or the presence of
identical constraints in the problem formulation.

5Consider Figure 3.1: if the constraint which only coincides at the single point with the feasible space is
chosen as part of the active set, the corresponding parametric solution will only be valid in that point.

6For example, problem (2.10) can be solved for each constraint, and if R∗ = 0, then the constraint is
weakly redundant and is not part of the active set.

34



x1 x1

x2 x2

(a) (b)

Figure 3.1: Primal and dual degeneracy in linear programming. In (a), primal degeneracy
occurs since there are three constraints which are active at the solution, while in (b) dual
degeneracy occurs since there is more than one point (x1, x2) which features the optimal
objective function value.

The most promising one is thereby the application of lexicographic perturbation tech-
niques, which is based on the idea that the problem of dual-degeneracy only arises
because of the specific numerical structure of the objective function and the constraints
[134]. In order to overcome the degeneracy, the right-hand side of the constraints as
well as the objective function are symbolically perturbed in order to obtain a single,
continuous optimizer for the solution of the mp-LP problem. Note that the problem
is not actually perturbed, but only the result of a proposed perturbation is analyzed
and enables the formulation of a continuous optimizer.

3.2.3 Solution algorithms for mp-LP and mp-QP problems

Based on Theorem 2 and Remark 9, it is possible to consider the solution to problem (3.1)
either as a set of non-overlapping polytopes which cover the feasible parameter space Θf or
as a set of optimal active sets, which generate the critical regions based on the parametric
solution x (θ) , λ (θ). This has given rise to three distinct types of solution approaches: a
geometrical approach, a combinatorial approach and a connected-graph approach for mp-LP
problems.

Remark 11. Other approaches for the solution of problem (3.1) involve vertex enumeration
[185], graphical derivatives [212] or the reformulation as a multi-parametric linear comple-
mentarity problem [53, 130, 166], which can be solved in a geometrical [118] or combinatorial
[120] fashion.

The geometrical approach: Possibly the most intuitive approach to solve mp-QP prob-
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lems of type (3.1) is the geometrical approach. It is based on the geometrical con-
sideration and exploration of the parameter space Θ. The key idea is to fix a point
θ0 ∈ Θ, solve the resulting QP and obtain the parametric expressions x(θ) and λ(θ)
alongside the corresponding critical region CR. Then, a new, feasible point θ1 /∈ CR
is fixed and the same procedure is repeated until the entire parameter space has been
explored. The different contributions differ in the way the parameter space is explored:
in [31, 74], the constraints of the critical region are reversed, yielding a set of new poly-
topes which are considered separately. As this introduces a large number of artificial
cuts [252], the step-sized approach has gained importance, as it calculates a point on
the facet of each critical region and steps away from it orthogonally (see Figure 3.2)
[14, 22].

However the geometrical approach presented in [14, 22] is only guaranteed to provide
the full parametric map if the so-called facet-to-facet property is fulfilled [244]:

Definition 6 (Facet-to-facet property). Let CR1 and CR2 be two full-dimensional
disjoint critical regions. Then the facet-to-facet property is said to hold if F = CR1 ∩
CR2 is a facet of both CR1 and CR2.

Additionally, researchers have proposed techniques to infer the active set of the adjacent
critical region:

Theorem 3 (Active set of adjacent region [252]). Consider the active set of a full-
dimensional critical region CR0 in minimal representation, k = {i1, i2, ..., ik}. Ad-
ditionally, let CRi be a full-dimensional neighboring critical region to CR0 and as-
sume that the linear independent constraint qualification holds on their common facet
F = CR0∩H, where H is the separating hyperplane. Moreover, assume that there are
no constraints which are weakly active at the optimizer x (θ) for all θ ∈ CR0. Then:

Type I: If H is given by Aik+1x (θ) = bik+1 + Fik+1θ, then the optimal active set in
CRi is {i1, ..., ik, ik+1}.

Type II: IfH is given by λik (θ) = 0, then the optimal active set in CRi is {i1, ..., ik−1}.

Consequently, the following corollary is stated:

Corollary 1 (Facet-to-facet conditionality [244]). The facet-to-facet property holds
between CR0 and CRi, if the conditions of Theorem 3 are fulfilled.

36



(a) (b) (c)

Figure 3.2: A graphical representation of the geometrical solution procedure of exploring the
parameter space based on the step-size approach. Starting from an initial point θ0 ∈ Θ, in
(a) the first critical region CR0 is calculated (shown with dashed lines). In (b), a facet of CR0
is identified and a step orthogonal to that facet is taken to identify a new point θ1 /∈ CR0,
while in (c) the new critical region associated with θ1 is identified, and the remaining facet
from CR0 is identified combined with the orthogonal step from it to identify a new point.

The combinatorial approach: As stated in Remark 9, every critical region is uniquely
defined by the corresponding optimal active set. Thus, a combinatorial approach has
been suggested, which considers the fact that the possible number of active set is
finite, and thus can be exhaustively enumerated. In order to make this approach
computationally tractable, the following fathoming criteria is stated:

Lemma 1 (Fathoming of active sets [110]). Let k be an infeasible candidate active
set, i.e. (x, θ)

∣∣∣∣∣∣∣∣∣
Akx = bk + Fkθ

Ajx ≤ bj + Fjθ, ∀j /∈ k
θ ∈ Θ

 = ∅. (3.13)

Then any set k′ ⊃ k is also infeasible and may be fathomed7.

Thus, the following branch-and-bound approach has been presented [110] (see Figure
3.3):

Step 1: Generate a tree consisting of all possible active sets.

Step 2: Select the candidate active set with the lowest cardinality of the active set
and check for feasibility. If it is infeasible, fathom that node and all its child
nodes.

Step 3: Obtain the parametric solution of the selected node accordingly and check
whether the resulting region is non-empty.

7In other words: if k is infeasible, so is its powerset.
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Step 4: If there are nodes to explore, go to Step 2. Otherwise terminate.

...

...

...

...

Pruned

infeasible

Figure 3.3: A graphical representation of the combinatorial approach for the solution of
mp-QP problems. All candidate active sets are exhaustively enumerated based on their
cardinality. The computational tractability arises from the ability to discard active sets if
infeasibility is detected for a candidate active set which is a subset of the currently considered
candidate.

This approach has been shown to be particularly efficient when symmetry is present
[81, 82].

A connected graph approach for mp-LP problems: This approach was presented by
Gal and Nedoma [91] for mp-LP problems:

Definition 7 (mp-LP Graph). Let each optimal active set k of a mp-LP problem be
a node in the set of solutions S . Then the nodes k1 and k2 are connected if (a) there
exists θ∗ ∈ Θf such that k1 and k2 are both optimal active sets and (b) it is possible
to pass from k1 to k2 by one step of the dual simplex algorithm. The resulting graph
G is fully defined by the nodes S as well as all connections Γ, i.e. G = (S ,Γ).

Remark 12. One step of the dual simplex algorithm consists of changing one element of
the active set, i.e. let k1 = {i1, ..., in−1, in}, then the dual pivot involving the constraint
in yields k2 = {i1, ..., in−1, in+1}.

Theorem 4 (Connected graph for mp-LP problems [91]). Consider the solution to a
mp-LP problem and let θ1, θ2 ∈ Θf be two arbitrary feasible parameters and k1 ∈ S

be given such that θ1 ∈ CR1. Then there exists a path {k1, ..., kj} in the mp-LP graph
G = (S ,Γ) such that θ2 ∈ CRj.
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If there exists θ∗ ∈ Θf such that k1 and k2 are both optimal active sets, then the
intersection of the corresponding critical regions is non-empty, i.e. they are neighboring
in a geometrical sense. Conversely, the ability to pass from k1 to k2 by one step of
the dual simplex algorithm means that the two optimal active sets are neighboring in
a combinatorial sense. Thus, this approach bridges the division between geometrical
and combinatorial considerations as it shows how they are interlinked in the case of
mp-LP problems.

3.3 The connected graph approach for mp-QP prob-
lems

The most efficient solution procedures for mp-QP problems can broadly be classified into
geometrical and combinatorial approaches. However, although the fact that these two algo-
rithms solve the same type of problem, they exploit different characteristics of the mp-QP
problem. This section aims at combining these two algorithms together, as it is shown that
the ability to infer the optimal active set of adjacent critical regions [252] implies that the
solution of mp-QP problems is given by a connected graph. This property is used to de-
vise a novel solution algorithm, which explores the connected graph in conjunction with the
powerful fathoming criterion described in Lemma 1 [110]. After highlighting the abilities of
the new algorithm in a motivating example, it is contrasted with the recent and independent
work by Ahmadi-Moshkenani et al. [5, 6].

3.3.1 A motivating example

In most mp-LP and mp-QP problems, only a small fraction of all possible combinations of
active sets yields full-dimensional critical regions. To illustrate this, consider the following
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example problem:

minimize
x

xT


90 0 0 0
0 153 0 0
0 0 135 0
0 0 0 162

x+ 25x

subject to g1 : x1 + x2 ≤ 350

g2 : x3 + x4 ≤ 600

g3 : −x1 − x3 ≤ −θ1

g4 : −x2 − x4 ≤ −θ2

g5 : −x1 ≤ 0

g6 : −x2 ≤ 0

g7 : −x3 ≤ 0

g8 : −x4 ≤ 0

θ ∈
{
θ ∈ R2 |0 ≤ θi ≤ 1000, i = 1, 2

}
.

(3.14)

The full solution of problem (3.14) features 4 critical regions, which are reported in Table
3.1.

While the optimal solution only features 4 critical regions, there are a total of 163 pos-
sible combinations of active sets8. Even when applying Lemma 1 and removing active sets
where the LICQ does not hold, the total number of combinations considered only reduces
to 134. This approach is visualized in Figure 3.4, which features the optimal partitioning of
the parameter space as well as the search tree resulting from the use of the combinatorial
algorithm.

3.3.2 The solution of a mp-QP problem is a connected graph

Since the parametric solution of a critical region can be obtained solely based on the active
set k (see eq. (3.7)), the combinatorial approach is a simple and robust solution approach to
problem (3.1), as it does not feature the limitations of the geometrical approach such as the
necessity of consider facet-to-facet properties and step-size determination. However, even
when considering the fathoming criteria stated in Lemma 1, only 4

134 = 3% of the considered
active sets in problem (3.14) result in a full-dimensional critical region. Thus, the key to
a more efficient algorithm is to decrease the number of candidate active sets. In order to

8The total number of combinations is given as
4∑

i=0

(
8
i

)
.
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Table 3.1: The parametric solution of problem (3.14).

k = {3, 4}

x (θ) =


0.6 0
0 0.44

0.4 0
0 0.56

 θ

CR{3,4} =

θ
∣∣∣∣∣∣∣
 1 0.73
−1 0
0 −1

 θ ≤
583.3

0
0


 0 200 400 600 800 1000
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400
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θ
1

θ 2

CR
1

k = {1, 3, 4}

x (θ) =


0.26 −0.25
−0.26 0.25
0.74 0.25
0.26 0.75

 θ +


196.5
153.51
−196.49
−153.51



CR{1,3,4} =

θ
∣∣∣∣∣∣∣∣∣


1 1
−1 0.93
1 −0.93
−1 −0.73

 θ ≤


671.8
545.9
426.4
−471.3


 0 200 400 600 800 1000

0

200

400
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800
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θ
1

θ 2
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2

k = {1, 3, 4, 5}

x (θ) =


0 0
0 0
1 0
0 1

 θ +


0

350
0
−350


CR{1,3,4,5} =

θ
∣∣∣∣∣∣∣
 1 1

1 −0.93
−1 0

 θ ≤
 671.8
−545.9

0


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k = {1, 3, 4, 6}

x (θ) =


0 0
0 0
1 0
0 1

 θ +


350
0
−350

0


CR{1,3,4,6} =

θ
∣∣∣∣∣∣∣
 1 1
−1 0.93
0 −1

 θ ≤
 671.8
−426.4
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(a) Geometrical view (b) Combinatorial view
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Figure 3.4: The solution to the example problem (3.14) from (a) a geometrical perspective
and (b) from a combinatorial perspective. Note that all light gray points in (b) are checked
for feasibility, and those which are crossed out did not fulfill the LICQ criterion. Additionally,
note that the last layer misses the points which are fathomed based on Lemma 1, and that
the black points show the optimal active set.

achieve this, the results on connected graphs from mp-LP problems [91] are extended to the
mp-QP case:

Definition 8 (mp-QP Graph). Let each optimal active set k of a mp-QP problem be a node
in S . Then the nodes k1 and k2 are connected if (a) there exists θ∗ ∈ Θf such that k1 and k2

are both optimal active sets and (b) the conditions of Theorem (3) are fulfilled on the facet
or it is possible to pass from k1 to k2 by one step of the dual simplex algorithm. The resulting
graph G is fully defined by the nodes S as well as all connections Γ, i.e. G = (S ,Γ)

Corollary 2 (Connected graph for the mp-QP solution). Consider the solution to a mp-QP
problem and let θ1, θ2 ∈ Θf be two arbitrary feasible parameters and k1 ∈ S be given such
that θ1 ∈ CR1. Then there exists a path {k1, ..., kj} in the mp-QP graph G = (S ,Γ) such
that θ2 ∈ CRj.

Proof 1. If the conditions of Theorem 3 are fulfilled, then it is clear that a connected graph
results. As Theorem 3 does not hold if either LICQ does not hold or weakly active con-
straints are present, it needs to be proven that a step of the dual simplex algorithm is
enough to identify all candidates of the adjacent region. First, as strictly convex mp-QP
problems do not feature weakly active constraints, only possible violations of LICQ need
to be considered. The LICQ violation can only occur in Type I constraints of Theorem 3,
since a constraint is added and thus the linearly independent nature of the candidate active
set might change. In the case where the cardinality of the original active set is n, Theorem
4 holds directly. If the cardinality is less than n but LICQ is violated this means that an
equivalent, lower-dimensional problem can be formulated where Theorem 4 holds as well,
resulting in a connected graph.
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This theorem has the following implications:

• If the conditions of Theorem 3 are fulfilled, only one candidate active set per facet of
a critical region is generated.

• Let k be an active set with cardinality p. If LICQ is violated on the border of the

corresponding critical region, the number of candidates is given as
 p

p− 1

.

• As stated by Gal and Nedoma [91], a disconnected graph occurs if and only if dual
degeneracy occurs. Note that dual degeneracy cannot occur in strictly convex quadratic
programming problems due to the uniqueness of the minimizer.

This results in the following algorithm:

3.3.3 Step 0: Initialization

The algorithm is initialized by identifying an active set that yields a full-dimensional critical
region. In order to achieve this, there are two possibilities:

• Employ the standard combinatorial algorithm [110] until the first region has been
found.

• Perform the first iteration of the geometrical algorithm [14].

Once the active set has been obtained, add it to the list of candidate active sets N .

Remark 13. From an implementation perspective, it has proven efficient to use the first
iteration of the geometrical algorithm. If this should not yield a full-dimensional region
within a prescribed number of attempts, then the combinatorial algorithm is used. The
reason for this is that for problems with large a large number of constraints, the combinatorial
algorithm may take a long time until an initial solution is found.

3.3.4 Step 1: Feasibility

If N = ∅, the algorithm terminates. Otherwise, the candidate active set k with the lowest
cardinality is selected from N , and the following elements are considered:

• Is k /∈ S (where S is the solution set)?

• Does @j ∈ I such that k ⊃ j (where I is the set of all infeasible candidate active
sets according to Lemma 1)?
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• Does Ak have full rank?

If these conditions are fulfilled, then the feasibility of the considered candidate active set
is evaluated using Lemma 1. If it is infeasible, then k is added to I , and Step 1 is started
again.

3.3.5 Step 2: Parametric solution

Using the candidate active set, the corresponding parametric solution (x (θ) , λ (θ)) is ob-
tained, and the critical region ĈRk is formulated according to eq. (3.9). The corresponding
minimal representation CRk is obtained by removing all redundant constraints according to
section 2.2.1.

3.3.6 Step 3: Generation of new candidates

The result of the removal of all redundant constraints is the following:

CRk = ∅: Based on the feasibility check in Lemma 1, CRk = ∅ indicates that the parametric
solution is not optimal. Thus, no critical region is formed and the algorithm returns
to Step 1.

CRk is lower-dimensional: This situation occurs in the case of primal degeneracy [110].
Thus, one or more of the elements of the active set k need to be removed in order
to obtain a full dimensional critical region. Once that region has been obtained, any
weakly redundant constraint will be removed by problem (2.10) and the full dimensional
neighboring regions are identified with Theorem 3. In order to ensure the consideration
of the corresponding active set, the following candidates are generated:

L =
 k

card (k)− 1

 , (3.15)

and are added to N .

CRk is full-dimensional: In this case, each facet of CRk can be classified into Type I or
II from Theorem 3, or as the borders of Θ. If the facet is a border of Θ, there cannot
be any adjacent region. If the facet is of Type II, then it is clear that LICQ will hold,
since LICQ holds for k as full rank was established in Step 1. Thus, the assumptions
from Theorem 3 are fulfilled, the facet-to-facet property holds and the active set of the
adjacent critical region is added to the set of candidate active sets N . If the facet is
of Type I, then let k+ denote the active set obtained from Theorem 3. If Ak+ has full
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rank, then Theorem 3 applies and the active set of the adjacent critical region is added
to the set of candidate active sets N . However, if full rank is not established, then
similarly to the case of a lower-dimensional CRk full rank can only be established by
removing one of the elements of k+, i.e. to generate the following candidates:

L =
 k+

card (k)

 , (3.16)

and to add L to N . Note that this corresponds to one step of the dual simplex
algorithm.

Remark 14. In the case where the critical region CR features two or more identical con-
straints, i.e. ∃i, j such that Aiθ−bi = Ajθ−bj for all θ, the indices of all identical constraints
corresponding to facets of the critical region are considered.

Remark 15. Note that the algorithm presented here utilizes the ordering of the candidate
active sets based on their cardinality, as proposed in [110].

Thus, in summary, the following Theorem is stated:

Theorem 5. The algorithm presented in this chapter terminates in a finite number of steps
and is guaranteed to explore the entire parameter space.

Proof 2. At every step of the algorithm, a candidate active set is removed from N . As the
number of candidate active sets is finite, and every candidate can only be considered once,
the algorithm terminates in a finite number of steps. Since the union of all optimal active
sets forms a connected graph (see Corollary 2), every optimal active set is found by exploring
this graph. Thus, the entire parameter space is explored.

3.3.7 The example problem revisited

Consider the motivating example problem (3.14). After the first active set k = {3, 4} has
been obtained, the only constraint of CR{3,4} which is not part of Θ originates from constraint
1. Since the conditions of Theorem 3 are fulfilled, the only possible candidate set is k =
{1, 3, 4}, which produces a full-dimensional critical region CR{1,3,4}. The three sides of
CR{1,3,4}, which have not yet been explored, are defined by the constraints 2, 5 and 6. Thus,
the candidate active sets are given as k1 = {1, 2, 3, 4}, k2 = {1, 3, 4, 5} and k3 = {1, 3, 4, 6}.
However, since Ak1 is rank-deficient, it results in the candidates from the dual simplex step,
i.e. k11 = {1, 2, 3}, k12 = {1, 2, 4} and k13 = {2, 3, 4}.

For k11, k12 and k13 the algorithm returns empty critical regions, and thus they are not
considered further. Conversely, k2 and k3 result in full-dimensional critical regions. Both of
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them only feature one side that has not yet been explored associated with constraint 2, which
results in k4 = {1, 2, 3, 4, 5} and k5 = {1, 2, 3, 4, 6}. Since Ak4 and Ak5 are rank-deficient9, the
following candidate sets are generated: k41 = {1, 2, 3, 4}, k42 = {1, 2, 3, 5}, k43 = {1, 2, 4, 5},
k44 = {2, 3, 4, 5} and k51 = {1, 2, 3, 4}, k52 = {1, 2, 3, 6}, k53 = {1, 2, 4, 6}, k54 = {2, 3, 4, 6}.
However, all of these active sets yield empty critical regions. Thus the algorithm terminates
and all four critical regions have been identified.

Note that on the contrary to the combinatorial algorithm, the graph-based algorithm
only required the consideration of 13 nodes (16 if the rank-deficient ones are counted).
Additionally, no considerations regarding step-size or the identification of the active set
based on the solution of the QP needs to be performed as necessary in the geometrical
approach. A graphical representation of the solution of the example problem is given in
Figure 3.5.

Figure 3.5: The new approach from the combinatorial perspective, where the solid lines
represent connections between the nodes while the dashed lines represent attempted connec-
tions. At each iteration, all combinations are generated based on Theorem 3 and one step
of the dual simplex algorithm.

3.3.8 Comparison with the work by Ahmadi-Moshkenani et al.

Independently of the developments presented in this thesis, a number of conference papers by
Ahmadi-Moshkenani et al. have appeared discussing the ”Exploration of Combinatorial Tree

9Since n = 4, it is obvious that any active set featuring more than 4 constraints would be rank deficient.
This is the situation arising in mp-LP problems, where the conditions from [91] apply.
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in Multi-Parametric Quadratic Programming” [5, 6]. The main contribution is thereby ”a
method for exploring the combinatorial tree which exploits some of the underlying geometric
properties of adjacent critical regions as the supplementary information in combinatorial
approach to exclude a noticeable number of feasible candidate active sets from combinatorial
tree” [6].

The similarity with the connected graph approach presented here is that the papers
by Ahmadi-Moshkenani et al. use Theorem 3 in a combinatorial setting. However, the
consequences and underlying properties differ from the connected graph approach, and are
discussed in detail in the following. Note that for simplicity, this approach will be referred
to as ”new approach” below, in order to avoid confusion.

Algorithm design: The connected graph algorithm removes all redundant constraints to
identify the irredundant facets which will then, based on Theorem 3, directly yield
the active set of the adjacent critical region. On the contrary, the new approach
does not consider each individual facet, but the fact that Theorem 3 dictates the
cardinality of the adjacent regions. For example, consider the example problem and
let k = {1, 3, 4}. Then, after this has been identified as a full-dimensional critical
region, the new algorithm would spawn the following new candidates:

• From Type I: {1, 2, 3, 4}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}

• From Type II: {1, 3}, {1, 4}, {3, 4}.

Thus, the new algorithm does not require the removal of redundant constraints, but
limits the number of spawned candidate active sets by incorporating Theorem 3.

The solution is a connected graph: This statement only arises when the work by Gal
and Nedoma is considered for the cases where LICQ is violated on the facets. However,
this cannot be detected with the new algorithm, and thus this property is not derived.

Degeneracy handling: In the connected graph approach, degeneracy is naturally handled
as it can be automatically detected when considering a specific facet. Conversely, the
new algorithm initially proposed a post-processing method in [6], which effectively
applies the geometrical algorithm at the end of the combinatorial algorithm to ensure
the entire parameter space is explored. However, the authors stated in [5] that such
post-processing ”is timeconsuming and prone to numerical errors in high-dimensional
systems” [5]. Thus, a new strategy is equivalent to a step in the dual simplex algorithm,
and thus identical to the work presented here.
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Strict complementary slackness: The authors of the new approach consider several cases
where strict complementary slackness would not be fulfilled. However, such a condition
is not relevant for strictly convex mp-QP problems, as the minimizer is guaranteed to
be unique.

3.4 Computational aspects of mp-QP problems

Despite its importance to the solution of explicit MPC problems, so far there has been no
attempt in the open literature to contrast and compare the different solution techniques
available for mp-QP problems. This section aims at providing an initial analysis of the
computational aspects of mp-QP algorithms using test sets and example problems10. Unless
stated otherwise, the computational experiments are performed on a 4-core machine with an
Intel Core i5-4200M CPU at 2.50 GHz and 8 GB of RAM. Furthermore, MATLAB R2014a
and IBM ILOG CPLEX Optimization Studio 12.6.1 was used for the computations. The
mp-LP and mp-QP algorithms tested are:

• The geometrical algorithm [14]

• The combinatorial algorithm [110]11

• The Multi-Parametric Toolbox (MPT) v3.1 [120], which reformulates the mp-LP and
mp-QP problem into a multi-parametric linear complementarity problem (mp-LCP)
which is solved using a combinatorial algorithm.

• The connected graph algorithm presented in this chapter.

In order to verify the correctness of the obtained solution, 5000 points θ̂ ∈ Θ are randomly
generated, and the corresponding LP or QP problem is solved for that parameter realization
and compared to the parametric solution.

3.4.1 Computational performance of mp-QP algorithms on test
sets

First, the algorithms are used to solve the test sets ’POP mpLP1’ and ’POP mpQP1’ from
the POP toolbox are used, consisting of 100 mp-LP and 100 mp-QP problems, respectively.
Please see Figure A.1 for the problem statistics and a discussion on the test set in section

10The example problems are explicit MPC problems, the formulation of which is considered in section 5.2.
11Note that on the contrary to [110], this implementation first checks for feasibility, before performing the

optimality checks.
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A.3.1. The results of the computational study are shown in Figure 3.6. Additionally, a
more detailed analysis of the computational aspects of the geometrical, combinatorial and
the connected graph algorithm are investigated in Figure 3.7 for ’POP mpLP1’ and 3.8 for
’POP mpQP1’. For the geometrical algorithm, the three aspects considered are (a) solution
of the QP problem, (b) removal of redundant constraints and (c) identification of a new
point θ0. For the combinatorial and the connected graph algorithm, the different aspects are
(a) validation whether the selected active set was already considered or can be discarded as
infeasible, (b) establishing feasibility and (c) establishing optimality.

Remark 16. Note that the computational effort of finding the first critical region is not
considered. Thus, for cases where the overall solution time is relative low (i.e. a few seconds
or lower), the sum of the aspects considered will not add up to 1.
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Figure 3.6: The results of the computational study for (a) the ’POP mpLP1’ test set and
(b) the ’POP mpQP1’ test set.
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Figure 3.7: The analysis of the computational effort spent on different aspects of the al-
gorithm for the geometrical, combinatorial and connected graph algorithm for the test set
’POP mpLP1’.

49



0.1 1 10 100

0.01

1

100

Solution Time [s]

T
im

e 
[s

]
(a) Geometrical

QP solution
Redundancy
θ

0
calculation

0.1 1 10 100

0.01

1

100

Solution Time [s]
T

im
e 

[s
]

(b) Combinatorial

Validation
Feasibility
Optimality

0.1 1 10 100

0.01

1

100

Solution Time [s]

T
im

e 
[s

]

(c) Connected−graph

Validation
Feasibility
Optimality

Figure 3.8: The analysis of the computational effort spent on different aspects of the al-
gorithm for the geometrical, combinatorial and connected graph algorithm for the test set
’POP mpQP1’.

3.4.2 Computational performance of mp-QP algorithms for a com-
bined heat and power system

In order to analyze the capabilities of the different algorithms on real-world example, a
combined heat and power (CHP) system is considered. Generally, cogeneration systems aim
at increasing the system efficiency and reduce the environmental footprint by combining the
production of usable heat and electrical power into a single process based on the same amount
of fuel [64]. It is common practice to treat any cogeneration system as the interactions
between an electrical power production subsystem and a heat generation subsystem [65].
Based on a high-fidelity CHP model, and following the PAROC framework (see Appendix
B), a linear state space of the power generation subsystem capturing its dynamic behavior
of the system can be developed as follows [220]:

xk+1 = 0.9913xk + 0.00442uk (3.17a)

yk = 3.593xk, (3.17b)

where xk ∈ Rn denotes the identified system state, uk ∈ Rm denotes the system input that
determines the amount of fuel and air entering the power generation subsystem and yk ∈ Rp

denotes the amount of electrical power at time k, respectively. The approximate state space
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model is thus used to formulate a MPC problem which focuses on setpoint tracking:

minimize
x

N∑
k=1

(ySPk − yk)T1000(ySPk − yk) + uTk 0.1uk + ∆uTk 10∆uk

subject to xk+1 = 0.9913xk + 0.00442uk
yk = 3.593xk + ê

0 ≤ xk ≤ 0.7
0 ≤ uk ≤ 1
−0.1 ≤ ∆uk ≤ 0.1, ∀k ∈ [1, N ],

(3.18)

where N is the output and control horizon, which for the purposes of this computational
study have been set to equal.

The MPC problem is recast as a mp-QP problem [31], considering the initial states x0,
the control variables at the previous time step uk−1, the deviation from the high-fidelity
model output at the initial step ê = yREAL0 − y0 and the output setpoint yRk as uncertain
but bounded parameters. The multi-parametric programming counterpart of the control
problem of eq. (3.18) is solved for N ∈ [2, 10].

In Figure 3.9, the development of the computational burden with increasing horizon
length N is shown.
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Figure 3.9: The computational results for the solution of the controller for the CHP system
described in eq. (3.17). In (a) the performance of the different solution algorithms is shown
as a function of time, while in (b) the distribution of the computational load as a function
of the horizon for the case of the connected graph algorithm is shown.
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3.4.3 Computational performance of mp-QP algorithms for a pe-
riodic chromatographic separation system

As another real-world example, the challenging problem of optimally controlling a periodic
chromatographic separation system is considered [9, 186, 220]. The twin-column Multicol-
umn Countercurrent Solvent Gradient Purification Process (MCSGP) is an ion-exchange,
semi-continuous chromatographic separation process, used for the purification of several
biomolecules [150]. The setup comprises two chromatographic columns, operating in coun-
tercurrent mode and alternated between batch and interconnected state. Here, the focus is
laid upon the purification of a monoclonal antibody (mAb) from a ternary mixture, com-
posed by weak impurities (W), the product (P) and strong adsorbing impurities (S). As
described in [150], at the beginning of I1 phase, column 2 starts empty and equilibrated.
During this step, the outlet flow of column 1 enters column 2 mixed with an additional
fraction of adsorbing eluent (E). This helps the recycling of the impure fraction of the weak
impurities and the product. After the completion of I1, the two columns enter B1 phase,
where the feed (F) is introduced to column 2 and the product is eluted from column 1. In I2
phase the recycling stream containing the impure fraction of product and strong impurities
exits column 1 and enters column 2. By the end of I2 phase, column 2 starts eluting pure
W (B2 phase). B2 phase finishes when the overlapping region of W and P reach the end
of column 2. At this point the two columns switch positions. Therefore, column 1 will go
through the recycling and feeding tasks as described above, while column 2 will continue
with the gradient elution.

The MCSGP process is described by a PDAE model capturing the events taking place
during the chromatographic separation [9, 186]. The model is based on first principles and
follows a lumped-kinetic approach comprising 4119 equations with highly nonlinear terms
(after spatial discretization, using 50 collocation points). For a detailed approach on the
model development, the reader is referred to [187, 209].

Each chromatographic column can be approximated by a Single Input-Multiple Output
(3x1 SIMO) linear state space model that is used for the formulation of the mp-QP problems
[209]. The model is derived using system identification in MATALB R© and its formulation
is given below:

x(t+ Ts) = Ax(t) +Bu(t) +Dd(t) (3.19a)

y(t) = Cx(t), (3.19b)

where x, u, y are the states, inputs and outputs respectively, t corresponds to the time, Ts
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is the sample time and A, B, C, D represent the matrices of the state space model, i.e.

A =


0.9998 0.0003667 0.0004885 −9.137 · 10−5

0.0009448 0.9971 −0.003154 −0.001599
−0.001027 0.0003536 0.999 0.001881
0.000969 0.001559 0.0005033 0.9976

 (3.20a)

B =


−6.252 · 10−6

4.514 · 10−5

6.337 · 10−5

−3.396 · 10−5

 (3.20b)

C =


545.6 101.1 17.69 7.422
2925 660.2 102.6 −67.49
331.9 78.42 17.12 −11.23

 (3.20c)

D =


1.557 · 10−5 8.449 · 10−5 9.616 · 10−6

−9.018 · 10−5 −0.0004893 −5.57 · 10−5

−3.487 · 10−5 −0.0001892 −2.154 · 10−5

3.698 · 10−5 0.0002007 2.284 · 10−5

 (3.20d)

The state space model is validated against the mathematical, process model and resulted
into: 94.88%, 94.93% and 93.06% fit for the three outputs respectively.

In Figure 3.10, the computational performance is presented for different output and
control horizons NOH and NCH , respectively. The problem size thereby varies from 13
parameters, 2 optimization variables and 20 constraints up to 62 parameters, 10 optimization
variables and 240 constraints.

3.4.4 Discussion and qualitative heuristics

For mp-LP problems, the results from the test set indicate that the most efficient algorithm
seems to be the geometrical algorithm (see Figure 3.6 (a)). This is due to the fact that for
the combinatorial algorithm, the solution of the problem will always be found in a vertex,
suggesting a smaller fathoming efficiency than for mp-QP problems. For the connected graph
algorithm, it is necessary to consider all possible outcomes from the step of the dual simplex
algorithm. Thus, especially for larger problems the geometrical approach avoids the resulting
combinatorial problem. Note that since MPT has implemented a combinatorial version of
a mp-LCP algorithm, it is assumed to suffer from the same problems as the combinatorial
approach.
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Figure 3.10: The computational results for the optimal control of a periodic chromatographic
separation system. In (a) the computational time using the combinatorial algorithm for
different control and output horizons is shown while (b) presents the percentage of problems
solved as a function of time required. The different problems result from the consideration
of different output and control horizons.

For mp-QP problems, there are three computational results: the test set, the CHP system
and the MCSGP system. For the test set and the CHP system, the connected graph is
the most efficient algorithm, followed by the geometrical algorithm, MPT and finally the
combinatorial algorithm (see Figure 3.6 (b) and 3.9). The efficiency of the connected graph
algorithm is thereby attributed to the high efficiency when finding optimal active sets. For
the test set on average 68 % of the active sets considered were optimal, i.e. resulted in a
full-dimensional critical region, which is significantly higher than the 36 % obtained from
the combinatorial approach (for the mp-LP test set: 51 % and 19 % respectively).

However, for the MCSGP case, the combinatorial algorithm is most efficient, followed
by the connected graph, MPT and geometrical algorithm. The reason for this shift is the
different type of problem under consideration. The controller design presented here results
in a problem with a large number of parameters (up to 62). Thus, the geometrical algorithm
has to explore a 62-dimensional parameter space which seems to computationally less fa-
vorable than the combinatorial approach. The connected graph approach initially seems to
suffer from the same draw-back as the geometrical algorithm, as it requires the removal of re-
dundant constraints for a 62-dimensional polytope. However, with increased computational
time, the algorithm seems to become more competitive with respect to the combinatorial
algorithm.

In terms of computational effort, the geometrical algorithm does not have a clear bot-
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tleneck, as the QP solution and the θ0 calculation both demand a large part of the com-
putational power. Conversely, the combinatorial and the connected graph seem to have a
relatively clear bottleneck. The combinatorial algorithm is limited by the time required for
the validation of the active set, while the connected graph is limited by the optimality re-
quirement which is primarily associated with the removal of redundant constraints. This is
an interesting perspective as this indicates that the number of candidates generated is not
computationally limiting, but rather the way in which these are generated. This conclusion
is supported by the computational results from the heat recovery subsystem for the CHP
system (see Figure 3.9 (b)), where the connected graph approach also outperforms every
other algorithm considered here.

Thus, based on these results, no algorithm is clearly superior to the others. In addition,
none of the algorithms have been proven to improve on the worst-case complexity. As a result,
any comparison between them highly depends on the specific problem under consideration.
However, in the following several heuristics for the geometrical, combinatorial and connected
graph algorithms are provided, which mirror the strengths and weaknesses of the different
algorithms.

Remark 17. Note however that these are merely indicative and it is still impossible to predict
prior to solving the problem which approach will be the most efficient technique.

The geometrical approach:

• In the case of well-behaved mp-QP problems, it is highly efficient.

• For pathological mp-QP problems and in general for mp-LP problems, the risk of
incomplete exploration of the parameter space is significant and thus the use of a
geometrical approach should be avoided.

• The algorithm tends to scale well if the number of optimization variables increases.

• For problems with large numbers of constraints, the algorithm tends to perform
poorly due to the requirement of removing redundant constraints at each step.

The combinatorial approach:

• The combinatorial algorithm is ill-suited for mp-LP problems as it requires the
exhaustive enumeration of all options.

• For problems with a large number of constraints but few optimization variables,
the combinatorial algorithm has been proven to be effective.

• If the problem contains symmetry elements, then this can be utilized to increase
the pruning efficiency as thus the overall efficiency of the algorithm.
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The connected graph approach:

• As the connected graph approach is guaranteed to explore the entire parameter
space, it is well suited for the solution of mp-LP problems as it does not necessarily
require the exhaustive enumeration of all combinations.

• The connected graph approach is ill-suited for dual degenerate mp-LP problems,
as the presence of disconnected graphs may result in incomplete parameter space
exploration.

• In the case of well-behaved mp-QP problems, the connected graph approach has
also been shown to be highly efficient since, if Theorem 3 is applicable, the ad-
jacent active set can be identified unambiguously, thus dramatically reducing the
number of candidate active sets to consider.

• Similarly to the geometrical approach, the connected graph approach relies on
the removal of redundant constraints. Thus, problems featuring large number of
constraints tend to be ill-suited for the connected graph approach.

Remark 18. Note that the worst-case computational complexity of all these algorithms is
still exponential in the optimization variables.

3.4.5 Parallel multi-parametric quadratic programming

Despite the availability of different solution approaches, solving mp-QP problems is still a
computationally expensive task. However, despite that, so far the use of parallel computing
in multi-parametric programming (mp-P) algorithms has not been documented, and the only
contribution related to mp-P considers the point location problem, a problem closely related
to explicit MPC [265]. Note that while the MPT toolbox [118] explicitly considers parallel
programming, neither is the exact strategy clear nor has MPT documented their procedure.
Furthermore, initial tests seem to indicate that the solution using parallel computing requires
more time than the sequential version. Thus, the application of parallel computing does not
seem to be straightforward.

In order to investigate the applicability of parallel computing to the solution of mp-QP
problems, the geometrical algorithm is considered [14]. The parallelization thereby takes
place over the elements of N , i.e. the facets of the critical regions constituting the solution.

Parallelization inherently exploits independent aspects of an algorithm and distributes
them on different machines, where these independent subproblems are computed in parallel.
The non-overlapping nature of the critical regions thereby naturally generates independent
subproblems which can be solved in parallel. Additionally, as the solution of a subproblem
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1: N = 0, S = ∅, θ0 ∈ Θ
2: Solve first iteration, get S ←

(CR0, x0(θ), λ0(θ)) and N = H (CR)
3: while N 6= ∅ do
4: Pop halfspace ω(θ) ≤ 0 from N
5: Using variable step-size, find θ0 ∈ Ω :=
{θ0 ∈ Θ|ω(θ0) > 0}

6: Fix θ0 in problem (3.1), and solve the
resulting QP; identify x0, λ0

7: if feasible then
8: Obtain x(θ) and λ(θ) from Basic

Sensitivity Theorem
9: Obtain CR = {θ ∈ Θ|Ax(θ) ≤
b + Fθ, λ(θ) ≥ 0} and remove redundant
constraints

10: S ← (CR, x(θ), λ(θ))
11: N ←H (CR)
12: end if
13: end while

Figure 3.11: The solution approach for problem (3.1) presented in [14]. Note that H (CR)
denotes the half-spaces defining critical region CR, and that the part highlighted in gray is
executed in parallel.
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might generate new subproblems due to the exploration of the parameter space, the concept
of the limiting iteration number ρlimit is defined:

Definition 9. The limiting iteration number ρlimit is the maximum number of iterations
performed on a single machine before the result is returned to the main algorithm.

Hence it is possible to choose between continuing the current computation locally or to
return the results to the main algorithm and perform a re-distribution of the problems. The
resulting trade-off is between an increased overhead resulting from the information transfer
between the machines and the possibility of calculating possibly suboptimal or unnecessary
solutions, as the re-distribution always ensures that the algorithm performs optimally.

Remark 19. Since at the end of the algorithm all results are combined together, the final
solution is always optimal.

Consequently, the parallelization strategy proposed here can be summarized as follows:

Step 1: Formulation of the sequential solution algorithm

Step 2a: Identification of the most external iterative procedure

Step 2b: Identification of the independent elements computed at each iteration

Step 2c: Definition of ρlimit

Step 3: Connection to different machines and equal distribution of elements

Step 4: Execution of the current computation locally until (i) the pre-defined termination
criteria are met or (ii) the number of iterations has reached ρlimit

A graphical representation of the use of ρlimit is shown in Figure 3.4.5.

Results of the parallelization

The computations of the numerical examples were carried out on a 4-core machine with an
Intel Core i7-4790 CPU at 3.60 GHz and 16 GB of RAM. Furthermore, MATLAB R2015a,
IBM ILOG CPLEX Optimization Studio 12.6.2 and NAG MB24 was used for the computa-
tions. The proposed parallelization algorithm was tested on a randomly generated test set
of 52 mp-QP problems, and key problem statistics are reported in Figure 3.4.5. Note that
the test set has been ordered in ascending order with respect to the time needed to solve the
problem sequentially.

In order to define the efficiency of the parallelization, the concept of a speedup factor is
defined:
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Figure 3.12: A schematic depiction of the influence of the ρlimit parameter.

Figure 3.13: The key problem statistics for the randomly generated test set: (a) the number
of variables, (b) the number of parameters and (c) the number of constraints for each test
problem.
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Definition 10. The speedup factor Ψ is defined as

Ψ = tSequential
tParallel

, (3.21)

where tParallel and tSequential are the time needed to solve the parallelized and sequential
algorithm, respectively.

In Figure 3.4.5 (a) the average speedup factor is reported as a function of the number
of cores with ρlimit = 1, while in Figure 3.4.5 (b) the average speedup factor is shown as
a function of ρlimit, with the number of cores set to 4. In order to highlight the impact of
parallel computing onto the computational efficiency, the development of a MPC controller
for a residential combined heat and power (CHP) system is considered [65, 220]. The reduced-
order model of the heat recovery subsystem used here is given as

xk+1 =


0.9712 −0.0207 −0.0529
0.0012 0.8169 −0.0524
−0.0099 −0.0302 0.9551

xk +


−0.0245 −0.0079
−0.1009 0.0593
−0.02457 0.0125

uk (3.22)

where xk and uk are the states and inputs of the system at time k, respectively. The
corresponding MPC problem12 is then given as

minimize
x

xTNPxN +
N−1∑
k=0

xTkQxk + uTkRuk

subject to Eq. (3.22)
xk ∈ [−5, 5]2 , ∀k = 0, ..., N
uk ∈ [−2, 2]2 , ∀k = 0, ..., N − 1,

(3.23)

where matrices have appropriate dimensions. The computational time as a function of the
horizon length N is reported in Figure 3.4.5 (c), which clearly shows the computational gains
possible from parallel computing.

Discussion

The results in Figure 3.4.5 indicate that the parallelization leads to a speedup of the solution
time. However, investigations which are currently underway indicate that the results here
cannot be generalized for the geometrical algorithm, and that in general the parallelized
version is less efficient than the sequential code. The main reason for this is that the overhead

12In the light of brevity and conciseness, the problem formulation presented here is intentionally simplistic
in the sense that it does not consider elements such as outputs, disturbances or possible differences between
control and output horizons.
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Figure 3.14: The numerical results for the speedup of the computation by using parallel
computing. In (a), the computational benefits as a function of the number of cores is shown
while in (b) the dependence on the number of iterations performed on a single thread is
investigated. In (c) the computational benefits obtained when using parallel computing
are shown for the multi-parametric model predictive control of a combined heat and power
system.
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is extremely high for larger problems: the point on the facet from which the parameter space
has to be explored as well as all the critical regions in their explicit representation.

However, as shown in Table 3.2, the parallelization approach developed here for the ge-
ometrical algorithm can be applied to several other algorithms for the solution of multi-
parametric programming problems. This is due to the fact that the presence of non-
overlapping critical regions naturally lends itself to parallel computing, which bases its
computational benefits on the distribution of independent elements or tasks onto different
machines and the parallel execution of the required operations on these machines.

In particular, the parallelization of the combinatorial and the connected graph approach
has been implemented and has yielded very good results so far. An extensive numerical
investigation is currently underway, however it appears that a good value for ρlimit seems to
be 100. The authors is pleased to report that this approach has already been implemented
in the POP toolbox and has been used on high-performance computing architectures.

Table 3.2: The problem class and corresponding independent element of several classes of
multi-parametric programming algorithms
Problem class Independent elements
Multi-parametric linear and quadratic programming -
geometrical approach [14, 74] Each facet/critical region

Multi-parametric linear and quadratic programming -
combinatorial and connected graph approach [110] Each combination of active sets

Direct multi-parametric dynamic programming [43] Each critical region of the previ-
ous stage

Multi-parametric mixed-integer programming - Global
optimization [74, 199] Each critical region

Multi-parametric mixed-integer programming - Branch
and bound and exhaustive enumeration [40, 200] Each node/integer combination

3.5 Multi-objective optimization with convex quadratic
cost functions as a new application for mp-QP prob-
lems

While the solution of mp-QP problems is mostly required for explicit MPC problems, this
section shows that there are also other applications where the solution of mp-QP problems
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can be applied suitably. Consider the following multi-objective optimization (MOO) problem

minimize
x

{f1(x), f2(x), ..., fN(x)}
subject to Ax ≤ b,

x ∈ Rn,

(3.24)

where A ∈ Rm×n, b ∈ Rm and the objective functions are of the form

fi(x) = xTQix+ cTi x+ di, ∀i = 1, ..., N, (3.25)

where Qi ∈ Rn×n � 0, ci ∈ Rn and di ∈ R, ∀i = 1, ..., N . Problems of type (3.24)
arise in many different applications, such as engineering, economics and biological systems
[54, 182, 183]. A solution x∗ of problem (3.24) is thereby called optimal if it is a Pareto
point.

Definition 11 (Pareto point and Pareto front). A point x∗ is called a Pareto point if there
does not exist a point x̂ such that there exists fi(x̂) < fi(x∗) and fj(x̂) ≤ fj(x∗), j 6= i. The
set of all Pareto points is called the Pareto front P.

One of the most well known strategies to obtain a Pareto point is the ε-constraint
method13, i.e.

minimize
x

f1(x)
subject to fj(x) ≤ εj, ∀j = 2, ..., N

Ax ≤ b

x ∈ Rn,

(3.26)

where the parameter εj denotes an upper bound on the function fj(x). Another important
strategy is the linear scalarization method14, i.e.

minimize
x

N∑
i=1

wifi(x)

subject to Ax ≤ b,

wi ≥ 0,∀i = 1, ..., N,
k∑
i=1

wi = 1,

x ∈ Rn,

(3.27)

However in both strategies the solution of the MOO problem depends on the values of
certain parameters, namely εj and wi. Hence, while many researchers consider the iterative

13Note that the choice of f1(x) as the objective function is arbitrary (see [183]).
14This method is sometimes also referred to as weighting method [183].
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solution of the resulting optimization problems for different parameter values [8, 48], some
attention has been given to the explicit calculation of the entire Pareto front via parametric
programming15, which solves optimization problems as a function and for a range of certain
parameters. In [93, 264] the authors consider the case of linear cost functions, and in [208]
the case of a mixed-integer nonlinear MOO was considered. The case of quadratic cost
functions was treated in [95, 96], although either only conceptually or for the case where
the quadratic part remains constant. Thus in this section, an algorithm for the approximate
explicit solution of MOO problems with general convex quadratic cost functions and linear
constraints via multi-parametric programming is proposed.

3.5.1 Multi-objective optimization via multi-parametric program-
ming

By inspection, it is clear that problem (3.24) results in a quadratically constrained quadratic
programming (QCQP) problem, whose explicit solution would require the solution of a multi-
parametric QCQP (mp-QCQP) for which no efficient solution approach exists16. In this sec-
tion an algorithm to approximate the original mp-QCQP using a multi-parametric quadratic
programming (mp-QP) with a suitable set of affine overestimators is presented, which can
be readily solved with existing solvers.

Reformulation of mp-QCQP

In order to convert the mp-QCQP problem (3.26) into a mp-QP, given a convex quadratic
function f(x), a suboptimality gap ε and a domain X = {x ∈ Rn |Ax ≤ b}, the aim is to
find a suitable convex piecewise affine overestimator F (x) = max

1≤k≤M
{f 1(x), f 2(x), ..., fM(x)},

such that

0 ≤ F (x)− f(x) ≤ ε (3.28)

where

fk(x) = aTk x+ bk, ∀k = 1, ...,M. (3.29)

Remark 20. It is well known that F (x) can be described via a set of linear inequalities [45].
15In the following, this is referred to as the explicit solution of a MPP problem.
16An exact algorithm has been derived for the single parameter case in [228]. Classically, the explicit

solution of the Pareto front is approximated by solving a set of global optimization problems [175].
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First, consider a point xR and define

f(x) ≥ f(xR) +∇f(xR)(x− xR) (3.30)

based on the first-order Taylor expansion. Given a suboptimality gap ε, it is obvious that
the neighbourhood around xR for which eq. (3.30) is a sufficient approximation is given by

f(x)− f(xR)−∇f(xR)(x− xR) ≤ ε. (3.31)

Substitution of f(x) = xTQx+ cTx+ d and ∇f(x) = 2Qx+ c then yields

xTQx− 2xTRQx+ xTRQxR ≤ ε. (3.32)

Thus, in order to ensure that eq. (3.32) holds over the entire domain X , it is necessary to
find a set of points xiR, 1, ...,M such that

ε ≥ η = maximize
x

minimize
i

xTQx− 2xi,TR Qx+ xi,TR QxiR

subject to x ∈X .
(3.33)

Note that problem (3.33) is can be reformulated into a classical min-max problem via

maximize
x

minimize
i

Fi(x) = −minimize
x

maximize
i

(−Fi(x)) , (3.34)

for which commercial solvers are readily available (e.g. in the MATLAB R© Optimization
Toolbox). Thus, it follows that

F (x) = max
1≤k≤M

{f 1(x), f 2(x), ..., fM(x)} (3.35)

with

f i(x) = f(xiR) +∇f(xiR)(x− xiR) + ε, ∀i = 1, ...,M. (3.36)

Remark 21. As problem (3.33) is non-convex, the convexity assumption for the objective
functions in eq. (3.25) is not necessary for the application of the general strategy outlined
in this section. As however eq. (3.30) only holds for convex f(x), it is necessary to choose
a set of affine overestimators which do not require a convex objective function such as the
McCormick relaxations [180].

The algorithm on how to calculate F (x) is presented in Algorithm 1.
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Algorithm 1 Piecewise-affine approximation on f(x)
Require: f(x), X , ε
Ensure: F (x)

1: Set η ←∞, x1
R = arg min{problem (2.4)}, M = 1

2: while η > ε do
3: Solve problem (3.33)
4: if η > ε then
5: Set M = M + 1, xMR = arg min{problem (3.33)}
6: end if
7: end while
8: Set F (x) = {f(xiR) +∇f(xiR)(x− xiR),∀i = 1, ...,M}

Remarks

Initial point x1
R: The initial point of the algorithm is the Chebyshev center of the polytope

X .

Choice of ε: Obviously, the complexity of the approximation as well as the quality of the
solution of the mp-QP problem depend on the choice of ε. As ε denotes the abso-
lute suboptimality, it cannot be fixed without considering the objective function f(x).
The reason relative suboptimality is not used as a measure for the quality of the ap-
proximation is that it favours very tight approximation around the origin while looser
approximations further off. In order to avoid this distortion, in this approach the
following relation is defined:

ε = ε∗max
x
|f(x)| , (3.37)

where ε∗ is a normalized suboptimality. Note that the extreme point of f(x) can be
obtained with limited computational effort.

Solution of the multi-parametric programming problem

Thus, Fj(x) is substituted for each fj(x) into problem (3.26) and thus obtain the following
mp-QP problem

minimize
x

f1(x)
subject to Fj(x) ≤ εj, ∀j = 2, ..., N

Ax ≤ b,

x ∈ Rn,

εj ∈ E :=
{
ε ∈ RN−1 |εminj ≤ εj ≤ εmaxj , j = 1, ..., N − 1

}
.

(3.38)
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Note that problem (3.38) is a standard mp-QP problem, which can be readily solved with
exitisting solvers.

Remark 22. The values for εminj and εmaxj denote the lower and upper bounds of the objective
function.

Generation of Pareto front

In order to retrieve the Pareto front P for problem (3.24), for each polytope CRi the solution
x(ε) is substituted into the objective functions fi(x(ε)), ∀i, thus resulting in the description
of the Pareto front in the criterion space.

Theorem 6 (Correctness of Algorithm and Convergence). Algorithm 1 solves problem (3.24)
approximately up to an accuracy of ε in finite time.

Proof 3. It is known that problem (3.26) solves problem (3.24) [183]. Additionally, problem
(3.26) is solved by solving (3.38) up to a suboptimality gap ε. The algorithm converges in
finite time since the number of critical regions is bounded from above [110].

3.5.2 Numerical Examples

Example problem

Consider the following example problem:

f1(x) = xT

2.5 0
0 7.5

x+
3

0

T x, f2(x) = xT

3.3 0
0 8.5

x+
 1
−1

T x− 1, (3.39a)

f3(x) = xT

3.5 0
0 0.25

x+ 2, A =



4 −3
0 −3
−4 2
6 0
−6 −2
−9 −1


, b =



20
14
8
20
39
17


(3.39b)

where ε2 = [−1180, 1180] and ε3 = [−375, 375]. Using ε∗ = 0.001, the optimal partitioning
of the parameter space as well as the Pareto front P are shown in Figure 3.15.

Computational study

In order to investigate the scaling capabilities of the presented approach, the randomly
generated set X = {x ∈ [−10, 10]5 |Ax ≤ b} is considered, where A ∈ R7×5, b ∈ R7. Using
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Figure 3.15: The solution of the example problem. Note that the partitioning of the param-
eter space has been zoomed into, in order to show the details of the partitioning, which are
not visible when considering the entire space with ε2 = [−1180, 1180] and ε3 = [−375, 375].

ε∗ = 0.1 and starting from N = 2, subsequently randomly generated functions fi(x) are
added to the problem and track its performance, shown in Table 3.5.2.

3.5.3 Application to linear scalarization

As mentioned in the introduction, one other key method for the formulation of multi-
objective optimization problems is the the linear scalarization method. Clearly problem
(3.27) can be reformulated as multi-parametric programming problem by treating the weights
w = [w1, w2, ..., wN ] as parameters. This in turn leads to a multi-parametric non-linear

Table 3.3: Results from the computational study in seconds of section 3.5.2, where N is the
number of objective functions and m the total number of constraints.

N m Time mp-QP [s] Partitions
2 27 0.3 7
3 40 2.0 57
4 49 10.1 143
5 60 70.3 462
6 62 157.2 777
7 74 351.0 1317
8 88 1428.3 3313
9 100 2266.9 5470
10 112 4399.7 8309
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programming (mp-NLP) problem, as the objective function features cross-terms between
quadratic terms of the optimization variables and linear terms of the parameters. Thus,
equivalently to problem (3.26), it possible to reformulate problem (3.27) into a standard
mp-QP by adapting the approach presented here, i.e.

minimize
x

N∑
i=1

witi

subject to Fi(x) ≤ ti, ∀i = 1, ..., N,
Ax ≤ b,

wi ≥ 0, ∀i = 1, ..., N,
k∑
i=1

wi = 1,

x ∈ Rn,

(3.40)

which follows directly from Remark 20.

3.5.4 Discussion and applicability

Based on the small computational study shown in Table 3.5.2, the applicability of the mp-
MOO approach presented in this chapter seems to promising, especially for larger number
of objective functions. Additionally, the calculation of the complete solution of the MOO
problem enables similar features as with MPC, i.e. the offline solution of the problem and the
online presentation of the solution for a specific parameter realization. Thus, computational
elements and software are not required and enable quick and seamless application.

The main disadvantage at this point seems to be the ability to solve and store large-scale
mp-QP problems, which may limit the use of this strategy to certain specific applications.

69



Chapter 4

Contributions to multi-parametric
mixed-integer quadratic programming
problems

Portions of this chapter have been published in:

• Oberdieck, R.; Pistikopoulos, E.N. (2015) Explicit hybrid model-predictive control:
The exact solution. Automatica, 58, 152-159.

• Oberdieck, R.; Diangelakis, N.A.; Papathanasiou, M.M.; Nascu, I.; Pistikopoulos, E.N.
(2016) POP - Parametric Optimization Toolbox. Industrial & Engineering Chemistry
Research, 55(33), 8979 - 8991.

4.1 Introduction

Applying MPC to hybrid systems requires the online solution of a mixed-integer quadratic
programming (MIQP) problem [23]. Due to the inherently high computational burden, this
has limited the use of hybrid MPC, for example by relaxing the binary variables of future
time steps to continuous variables to provide a tractable problem [136]. Thus, in order to
reduce this computational burden, multi-parametric programming has been used to solve
the MIQP problem offline, which results in a multi-parametric MIQP (mp-MIQP) problem.

In this chapter, the current state-of-the-art of theoretical and algorithmic developments
of mp-MIQP problems is described, before some recent advances are discussed, namely:

• The reduction of number of envelopes of solutions using McCormick relaxations
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• An algorithm for the exact solution of mp-MIQP problems, featuring the analytical
representation of the critical regions

• A computational study which provides initial insights into the computational tractabil-
ity of the different algorithms

4.2 Theoretical and algorithmic background for mp-
MIQP problems

Consider the following multi-parametric mixed-integer quadratic programming (mp-MIQP)
problem

z∗ (θ) = minimize
x,y

(Qω +Hθ + c)T ω

subject to Ax+ Ey ≤ b+ Fθ

x ∈ Rn, y ∈ {0, 1}p, ω =
[
xT yT

]T
θ ∈ Θ := {θ ∈ Rq |CRAθ ≤ CRb},

(4.1)

where Q ∈ R(n+p)×(n+p) � 0, H ∈ R(n+p)×q, c ∈ R(n+p), A ∈ Rm×n, E ∈ Rm×p, b ∈ Rm,
F ∈ Rm×q and Θ is compact.

4.2.1 Theoretical Properties

The properties of the solution of mp-MIQP problems of type (4.1) are given by the following
theorem, corollary and definitions.

Theorem 7 (Properties of mp-MIQP solution [43]). Consider the optimal solution of prob-
lem (4.1) with Q � 0. Then, there exists a solution in the form

xi (θ) = Kiθ + ri if θ ∈ CRi, (4.2)

where CRi, i = 1, ...,M is a partition of the set Θf of feasible parameters θ, and the closure
of the sets CRi has the following form

CRi =
{
θ ∈ Θ|θTGi,jθ + hTi,jθ ≤ wi,j, j = 1, ..., ti

}
, (4.3)

where ti is the number of constraints that describe CRi.

Corollary 3 (Quadratic boundaries [43]). Quadratic boundaries arise from the comparison
of quadratic objective functions associated with the solution of mp-QP problems for different
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feasible combinations of binary variables. This means that if the term Gi,j in eq. (4.3) is
non-zero, it adheres to the values given by the difference of the quadratic optimal objective
functions in the critical regions featuring this quadratic boundary.

Definition 12 (Envelope of solutions [74]). In order to avoid the nonconvex critical regions
described by Corollary 3, an envelope of solutions is created where more than one solution is
associated with a critical region. The envelope is guaranteed to contain the optimal solution,
and a point-wise comparison procedure among the envelope of solutions is performed online.

Definition 13 (The exact solution). The exact solution of a mp-MIQP problem denotes
the explicit calculation of eq. (4.2) and (4.3) for every critical region, and consequently no
envelopes of solutions are present.

On the notion of exactness

The notion of the exact solution for mp-MIQP problems as the explicit calculation of eq.
(4.2) and (4.3) for every critical region does not imply that solutions which feature envelopes
of solutions are incorrect or approximate. As stated in Definition 12, such implicit solutions
are guaranteed to feature the optimal solution. Thus, the term exactness does not indicate
any difference in the evaluation of the numerical value of the solution, but a difference in the
solution structure itself. The merit of an exact solution, and by extension of the algorithm
presented in this chapter, is the explicit availability of the critical region description in its
potentially nonconvex form given in eq. (4.3). This enables the assignment of one solution
to each region, and consequently an assessment of the impact and meaning of each region.

This is relevant as the solution to a multi-parametric programming problem not only
yields the optimal solution for any feasible parameter realization considered, but also infor-
mation regarding the structure of the underlying optimization problem. For example, the
consideration of when a certain binary variable is 0 or 1 may imply when a certain decision
such as a valve position is decided. This enables insights and post-optimal analysis akin to
sensitivity analysis. However, such an analysis is only possible if the exact solution of the
problem is obtained, and not a solution featuring envelopes of solutions, as then the critical
region partitioning in itself does not have any meaning.

4.2.2 Solution algorithms for mp-MIQP problems

Literature overview

Several authors have proposed strategies for the solution of mp-MIQP problems. First, Dua
et al. described a decomposition approach, where a candidate integer variable combination is
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found by solving a mixed-integer nonlinear programming (MINLP) problem [74]. After fixing
this candidate solution, the resulting mp-QP problem is solved and the solution is compared
to a previously obtained upper bound, which results in a new, tighter upper bound, and
a new iteration begins. The introduction of suitable integer and parametric cuts to the
MINLP ensures that previously considered integer combinations as well as solutions with a
worse objective function value are excluded. A schematic representation of this approach is
given in Figure 4.1.

Check for new
combination of
binary variables

Fix y* and
solve mp-QP

Upper Bound

Compare and
update the

Pick new
critical region

Figure 4.1: A graphical representation of the decomposition algorithm. The algorithm starts
with an upper bound, from where a critical region is selected. After obtaining a new candi-
date integer solution, the solution of the corresponding mp-QP problem yields a new solution
for the given critical region. This solution is then compared with the upper bound and an
updated, tighter upper bound results.

Conversely, Borrelli et al. proposed an exhaustive enumeration approach instead of the
solution of a MINLP [42], and the subsequent solution of all resulting mp-QP problems.
Lastly, Axehill et al. considered a branch-and-bound approach, where at the root node the
binary variables are relaxed and the resulting mp-QP problem is solved. For each subsequent
node, a binary variable is fixed to a specific value and the resulting mp-QP problem is solved,
followed by a suitable comparison procedure with a previously obtained upper bound in order
to produce a tighter upper bound and to fathom any part of the parameter space which is
guaranteed to be suboptimal. A schematic representation of this approach is given in Figure
4.2.

Remark 23. The exhaustive enumeration approach by Borrelli et al. may be regarded as a
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Figure 4.2: A graphical representation of the branch-and-bound algorithm. The algorithm
starts from the root node, where all binary variables are relaxed. Subsequently, at each
node a binary variable is fixed, the resulting mp-QP problem is solved and the solution is
compared to a previously established upper bound to produce an updated, tighter upper
bound and to fathom any part of the parameter space which is suboptimal.
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special case of the branch-and-bound approach which only considers the leaf nodes of the
tree.

As the decomposition algorithm is used in the remaining part of the chapter, it is now
discussed in more detail.

4.2.3 The decomposition algorithm

The decomposition algorithm consists of three parts: calculation of a new candidate integer
solution via the solution of a MINLP problem, solving the mp-QP problem resulting from
fixing the candidate integer solution in the original mp-MIQP problem and comparing the
obtained solution to a previously obtained upper bound. Note that the initial upper bound
is set to ∞.

Calculation of a new candidate integer solution

A candidate integer solution is found by solving the following global optimization problem:

zglobal = minimize
x,y,θ

(Qω +Hθ + c)T ω

subject to Ax+ Ey ≤ b+ Fθ

(Qω +Hθ + c)T ω − ẑi (θ) ≤ 0∑
j∈Ji

yj −
∑
j∈Ti

yj ≤ card (Ji)− 1

x ∈ Rn, y ∈ {0, 1}p, ω =
[
xT yT

]T
θ ∈ CRi,

(4.4)

where i = 1, ..., v and v is the number of critical region that constitute the upper bound,
ẑi (θ) is the objective function value of the upper bound in the critical region CRi considered,
and Ji and Ti are the sets containing the indices of the integer variables ŷi associated with
the upper bound ẑi (θ) that attain the value 0 and 1 respectively, i.e.

Ji = {j|ŷij = 1} (4.5a)

Ti = {j|ŷij = 0}. (4.5b)

Remark 24. Without loss of generality, it is assumed that CRi only features one upper bound
ẑi (θ) in problem (4.4).
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mp-QP solution

Once a candidate integer solution has been found, it is fixed in the mp-MIQP problem, thus
resulting in a mp-QP problem. This problem can be solved with any mp-QP solver (see
Chapter 3).

Comparison procedure

Within the algorithm, the solution obtained from the mp-QP problem is compared to a
previously obtained current best upper bound ẑ (θ) to form a new, tighter upper bound.
This can be expressed as:

z (θ) = min {ẑ (θ) , z∗ (θ)} , (4.6)

where z∗ (θ) denotes the piecewise quadratic, optimal objective function obtained by solving
the mp-QP problem resulting by fixing the candidate solution of the binary variables obtained
from the solution of problem (4.4). The solution of eq. (4.6) requires in turn the comparison
of the corresponding objective functions in each critical region CRi, i.e.

∆z (θ) = ẑ (θ)− z∗i (θ) = 0, (4.7)

where z∗i (θ) denotes the objective function within the i-th critical region of the solution of
the mp-QP problem. Due to the quadratic nature of the objective functions, ∆z (θ) might
be nonconvex. Within the open literature, two strategies for the solution of problem (4.6)
have been presented, excluding the work presented in this thesis:

No objective function comparison: This approach, pioneered in [72] and first applied
to mp-MIQP problems in [74], does not consider eq. (4.7) and stores both solutions,
ẑ (θ) and z∗i (θ), in CRi, thus creating an envelope of solutions.

Objective function comparison over the entire CR: This approach was first presented
for the solution of multi-parametric dynamic programming (mp-DP) problems [43], but
has been applied to mp-MIQP problems in [11]. In this approach, eq. (4.7) is solved
over the entire critical region CRi, i.e. the following (possibly nonconvex) quadratic
programming problem is solved:

δmax = max
θ∈CRi

∆z (θ) (4.8a)

δmin = min
θ∈CRi

∆z (θ) . (4.8b)
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Note that solving eq. (4.8) is not straightforward since it may be nonconvex. The
results of solving eq. (4.8) allow for the following conclusions:

δmax ≤ 0→ z1 (θ) ≥ z2 (θ) ∀θ ∈ CRi (4.9a)

δmin ≥ 0→ z1 (θ) ≤ z2 (θ) ∀θ ∈ CRi (4.9b)

If δmin < 0 and δmax > 0, then both solutions are kept and an envelope of solutions is
created.

Remark 25. Without loss of generality it was assumed in eq. (4.7) that only one objec-
tive function is associated with each critical region, and that no envelope of solutions
is present (see Definition 12).

4.3 On the reduction of solutions per envelope of so-
lutions in mp-MIQP problems

For the case of mp-MIQP problems, the optimal objective function zi(θ) over a critical region
CR is generally quadratic. This requires the creation of envelopes of solutions is the polytopic
nature of the critical regions is to be retained. However, an increased number of solutions per
critical region not only requires an increased computational effort when the solution is to be
evaluated, but also that the solution structure and features are not as readily available. In
this section, the aim is to find a way to reduce the number of envelopes of solutions in each
critical region while retaining their polytopic nature. In general, consider the critical region
CR and the difference between the incumbent optimal objective value z∗ (θ) and current
best upper bound ẑ(θ), which is given by

∆z(θ) = ẑ(θ)− z∗ (θ)

= θTPθ + fT θ + w, (4.10)

where P ∈ Rq×q, f ∈ Rq and w ∈ R.

Remark 26. Note that on the contrary to eq. (4.7), the index i is omitted in order to achieve
a simpler representation.

If P = 0q×q, then ∆z (θ) is an affine function, the critical region CR can be readily
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partitioned, i.e.:  CR1 = CR ∩∆z (θ) ≤ 0
CR2 = CR ∩∆z (θ) ≥ 0,

(4.11)

where CR1 and CR2 are polytopes and in CR1 z∗ (θ) is optimal while in CR2 ẑ (θ) remains
optimal. However, if P 6= 0q×q, then a linear under- and overestimator is created, satisfying

g(θ) = aTu θ + bu (4.12a)

h(θ) = aTo θ + bo (4.12b)

with
g(θ) ≤ θTPθ + fT θ + w

h(θ) ≥ θTPθ + fT θ + w

θ ∈ CR ⊆ Ξ,
(4.13)

where the subscripts u and o indicate the coefficients of the under- and overestimator, re-
spectively. This enables the definition of the following three critical regions:

CR1 = CR ∩ g(θ) ≥ 0
CR2 = CR ∩ h(θ) ≤ 0
CR3 = CR ∩ g(θ) ≤ 0, h(θ) ≥ 0,

(4.14)

where in CR1 z∗ (θ) is optimal while in CR2 ẑ(θ) remains optimal, and in CR3 both solutions
are stored in an envelope of solutions. Since h(θ) and g(θ) are affine functions, CR1, CR2

and CR3 are polytopes.

The construction of linear under- and overestimators for the comparison proce-
dures

The task is to find

g(θ) = aTu θ + bu (4.15a)

h(θ) = aTo θ + bo (4.15b)

with
g(θ) ≤ θTPθ + fT θ + w

h(θ) ≥ θTPθ + fT θ + w

θ ∈ CR,
(4.16)
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where the main issue is to adress the bilinearities on the right-hand side of the constraints in
eq. (4.16). The number of these bilinear terms is given by the number of non-zero elements
in P ′. First, for every bilinear term θiθj the McCormick under- and overestimator are created
according to

θiθj ≥ max{θmax
j θi + θmax

i θj − θmax
i θmax

j , θmin
j θi + θmin

i θj − θmin
i θmin

j } (4.17a)

θiθj ≤ min{θmax
j θi + θmin

i θj − θmin
i θmax

j , θmin
j θi + θmax

i θj − θmax
i θmin

j } (4.17b)

Note that θmin
i and θmax

i are obtained via the solution of linear programming problems.

4.4 Solution Strategy for the Exact Solution of mp-
MIQP Problems

The aim of this algorithm is the exact solution of mp-MIQP problem (4.1), i.e. the explicit
calculation of eq. (4.2) and (4.3) for every critical region.

Remark 27. The new approach is first shown in detail in combination with the decomposition
algorithm [74]. However, it can also be applied in combination with the branch-and-bound
or exhaustive enumeration approach, which is shown at the end of this section.

4.4.1 Initialization

Consider mp-MIQP problem (4.1). In line with the decomposition approach presented in
[74], a candidate solution for the binary variables is found by solving the following MIQP
problem

zglobal = minimize
x,y,θ

(Qω +Hθ + c)T ω

subject to Ax+ Ey ≤ b+ Fθ

x ∈ Rn, y ∈ {0, 1}p, ω =
[
xT yT

]T
θ ∈ Θ := {θ ∈ Rq |CRAθ ≤ CRb},

(4.18)

where the parameter θ is treated as an optimization variable, and the problem is solved
using available MIQP solvers. If problem (4.18) is infeasible, problem (4.1) is also infeasible.
Otherwise, a binary solution y∗ is obtained and subsequently fixed in (4.1), thus resulting
in a mp-QP of the form (3.1). This problem can be solved using one of the approaches
presented in the literature, which results in an initial partitioning of the parameter space
and provides a parametric upper bound to the solution. The upper bound for the remaining
part of the parameter space which has not yet been explored is set to infinity.
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4.4.2 Step 1 - Candidate Solution for Binary Variables

In the first step of the algorithm, in each critical region CRi of the current upper bound the
parameter θ is treated as an optimization variable and the following optimization problem
is solved

zglobal = minimize
x,y,θ

(Qω +Hθ + c)T ω

subject to Ax+ Ey ≤ b+ Fθ

(Qω +Hθ + c)T ω − ẑi (θ) ≤ 0∑
k∈Ji

yk −
∑
k∈Ti

yk ≤ card (Ji)− 1

x ∈ Rn, y ∈ {0, 1}p, ω =
[
xT yT

]T
θ ∈ CRi,

(4.19)

where i = 1, ..., v and v is the number of critical region that constitute the upper bound, ẑi (θ)
is the objective function value of the upper bound associated with the critical region CRi and
Ji and Ti are the sets containing the indices of the integer variables of the integer combination
ŷi associated with the upper bound ẑi (θ) that attain the value 0 and 1 respectively, i.e.

Ji = {k|ŷik = 1} (4.20a)

Ti = {k|ŷik = 0}. (4.20b)

Remark 28. The two additional constraints introduced in problem (4.19) in comparison to
problem (4.18) are called parametric and integer cut respectively. They ensure that the
solution of problem (4.19) is better than the current upper bound, and that previously
visited integer combinations are not considered again [74].

Note that in this step the general quadratic critical region CRi of the form is considered:

θ ∈ CRi =
{
θ ∈ Rq |gi,j (θ) = θTGi,jθ + hTi,jθ + wi,j ≤ 0, j = 1, ..., ti

}
, (4.21)

where ti is the total number of constraints in the i-th critical region. The constraints reported
in eq. (4.21) can readily be incorporated into problem (4.19), since θ is an optimization
variable and thus, from a conceptual point of view, they are as complex as the parametric
cuts, which are also possibly quadratic in x, y and θ.

Problem (4.19) is a MINLP problem which is solved to global optimality using available
solvers [184, 249]. If the problem is infeasible, the critical region is not considered for further
evaluation, and the current upper bound is the solution of this critical region. If however
a solution is found, the corresponding binary variables y∗ are substituted into the original
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mp-MIQP problem, which results in the following mp-QP problem:

z (θ) ,= minimize
x

(Qx +Hxθ + c̃x)T x+ f(θ)
subject to Ax ≤ (b− Ey∗) + Fθ

x ∈ Rn, θ ∈ CRi.

(4.22)

where the matrices and vectors Qx ∈ Rn×n, Hx ∈ Rn×q and c̃x ∈ Rn as well as the function
f(θ) are obtained by fixing y∗ in (4.1).

4.4.3 Step 2 - Creation of an Affine Outer Approximation

Due to the nonlinearities in CRi, it is not possible to solve problem (4.22) using the ap-
proaches presented in the literature. Thus, in this step, a polytope Ξi is constructed such
that

CRi ⊆ Ξi, (4.23)

where Ξi is called an affine outer approximation of CRi. In order to create Ξi it is necessary to
find an affine relaxation for each nonlinear constraint of CRi, i.e. each constraint gi,j (θ) ≤ 0
in eq. (4.21) where Gi,j is nonzero. This is achieved by employing McCormick relaxations
[180] for each bilinear or quadratic term in the constraints. Since the nonlinearities in the
constraints only arise from comparison procedures (see Corollary 3), these relaxations are
calculated during the comparison procedure.

4.4.4 Step 3 - Solution of the mp-QP Problem

Similarly to the Initialization step in section 4.4.1, the candidate solution of the binary
variables y∗ is substituted into the initial problem, thus resulting in a mp-QP. Note that
Ξi is considered instead of CRi, thus enabling the use of available mp-QP algorithms. This
results in the following mp-QP problem

z (θ) = minimize
x

(Qx +Hxθ + c̃x)T x+ f(θ)
subject to Ax ≤ (b− Ey∗) + Fθ

x ∈ Rn, θ ∈ Ξi.

(4.24)

The solution of problem (4.24) is given by

x∗i,k (θ) = Ki,kθ + ri,k, ∀θ ∈ CRi,k, (4.25)
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where k = 1, ...,m and m is the total number of critical regions created in Ξi.

Remark 29. The critical regions CRi,k in eq. (4.25) are polytopes. This directly results from
Theorem 2, since Ξi is a polytope.

4.4.5 Step 4 - Comparison with Upper Bound

Remark 30. This and all subsequent steps have to be performed for each critical region
CRi,k in eq. (4.25). Therefore the general (polytopic) critical region CR is considered.
Furthermore, note that at this point the upper bound ẑi (θ) is assumed to be valid over Ξi.
This will be reversed in a later stage of the algorithm.

As stated in section 4.2, the envelope of solutions is created if δmin < 0 and δmax > 0
from eq. (4.9a). However, here the explicit solution of the problem is considered and thus
two new critical regions are created, namely CR1 = CR ∩∆z (θ) ≤ 0

CR2 = CR ∩∆z (θ) ≥ 0,
(4.26)

where in CR1 z∗ (θ) is optimal while in CR2 ẑ (θ) remains optimal, where

∆z (θ) = ẑ (θ)− z∗i (θ) = 0. (4.27)

Note that as shown in eq. (4.10), ∆z(θ) = θTPθ + fT θ + w. Since all quadratic constraints
in the critical regions stem from the comparison procedure (see Corollary 3), all non-zero
elements of Gi,j in eq. (4.3) are a result of the constraints ∆z (θ) ≤ 0 or ∆z (θ) ≥ 0.

4.4.6 Step 5 - Creation of Affine Relaxations

As mentioned in Step 2 in section 4.4.3, it is necessary to calculate appropriate relaxations
for ∆z (θ) in order to create the outer approximation for the next iteration. Since ∆z (θ) ≥ 0
as well as ∆z (θ) ≤ 0 in eq. (4.26) are considered, the McCormick under- and overestimator
are created according to

θ1θ2 ≥ max{θmax
2 θ1 + θmax

1 θ2 − θmax
1 θmax

2 , θmin
2 θ1 + θmin

1 θ2 − θmin
1 θmin

2 } (4.28a)

θ1θ2 ≤ min{θmax
2 θ1 + θmin

1 θ2 − θmin
1 θmax

2 , θmin
2 θ1 + θmax

1 θ2 − θmax
1 θmin

2 } (4.28b)

Note that θmin
i and θmax

i are obtained via the solution of linear programming problems.

82



4.4.7 Step 6 - Recovery of CRi from Ξi

As noted in Remark 30, the upper bound (x̂ (θ) , ŷ) with an optimal objective function ẑ (θ)
was assumed to be valid for Ξi which is in fact incorrect. In order to account for this, the
original inequalities from CRi in eq. (4.21) are re-introduced to each newly formed critical
region, while the relaxations used to create Ξi are removed.

However, this may lead to critical regions CR which are empty in CRi, but not in Ξi, i.e.

CR ∩ Ξi 6= ∅ ∧ CR ∩ CRi = ∅. (4.29)

Due to the possibly quadratic boundary of the set CR ∩ CRi the problem in eq. (4.29)
is equivalent to finding a feasible point in a general quadratically constrained quadratic
programming problem, i.e.

minimize
θ

0
subject to θ ∈ CR ∩ CRi,

(4.30)

which may be challenging to solve, as it may be nonconvex. At this point, the newly formed
critical regions are returned to Step 1 thus resuming the iteration.

4.4.8 Termination

Similarly to the decomposition algorithm in [74], the proposed algorithm terminates as soon
as problem (4.19) is infeasible for all critical regions. Since the number of critical regions as
well as the number of possible integer combinations is finite, the algorithm will terminate in
a finite number of iterations. Upon termination, the parameter space will be described by
a set of possibly nonconvex critical regions, and each critical region is only associated with
one solution (x (θ) , y, z (θ))∗. The algorithm is presented in detail in Algorithm 2.

4.4.9 Application to the Branch-And-Bound Algorithm

As suggested in Remark 27, this algorithm can be extended to branch-and-bound type
algorithms. On the branching stage, the same procedure as in [200] and [11] is applied. After
solving the resulting mp-QP problem at the node, the comparison between the solution at
the node and the current best upper bound is performed according to Steps 4 and 5. If
the currently considered node is a leaf node, then the current best upper bound is updated,
if necessary. Otherwise, the node is branched and the part of the parameter space which
features a smaller objective function value than the current best upper bound is passed onto
the newly created nodes. If this part of the parameter space is quadratically constrained,
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Algorithm 2 Exact Solution of mp-MIQP problem
Require: mp-MIQP problem, suboptimality ε
Ensure: S

1: (x̂ (θ) , ŷ, ẑ (θ))← (void,void,∞)
2: Add (Θ, x̂ (θ) , ŷ, ẑ (θ)) to LIST
3: while length(LIST) > 0 do
4: TEMP ← ∅
5: Pop element (CR, x̂ (θ) , ŷ, ẑ (θ)) from LIST
6: Solve problem (4.4) for element (CR, x̂ (θ) , ŷ, ẑ (θ))
7: if problem (4.4) is infeasible then
8: Add (CR, x̂ (θ) , ŷ, ẑ (θ)) to S
9: else

10: Retrieve y∗ from solution of problem (4.4)
11: Generate Ξ based on eq. (4.23)
12: Solve problem (4.24) for y∗ and in Ξ and obtain (CRk, x

∗
k (θ) , y∗, z∗k (θ))

13: for each CRk do
14: Solve eq. (4.8)
15: if δmax ≤ 0 then
16: Add (CRk ∩ CR, x∗k (θ) , y∗, z∗k (θ)) to TEMP
17: else if δmin ≥ 0 then
18: Add (CRk ∩ CR, x̂ (θ) , ŷ, ẑ (θ)) to TEMP
19: else
20: Define CR1

k and CR2
k according to eq. (4.26)

21: Add (CR1
k ∩ CR, x∗k (θ) , y∗, z∗k (θ)) to TEMP

22: Add (CR2
k ∩ CR, x̂ (θ) , ŷ, ẑ (θ)) to TEMP

23: end if
24: end for
25: Remove entries with redundant critical regions CR from TEMP.
26: Remove (CR, x̂ (θ) , ŷ, ẑ (θ)) from LIST
27: Add TEMP to LIST
28: end if
29: end while
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under- and overestimators are used to create an affine outer approximation according to eq.
(4.23), in which the mp-QP problem of the new node is solved.

4.5 Implementation of the algorithm

Although the algorithm presented here was originally implemented this way, propagating
quadratically constrained critical regions is an issue due to the inability of MATLAB R© to
handle non-linearity in a straightforward way. Thus, in order to use this algorithm beyond
its conceptual value, the following changes were made so as to enable the efficient implemen-
tation1:

• The algorithm requires the solution of the MINLP problem (4.19), where the non-
linearity is given by a set of quadratic constraints featuring continuous and binary
variables. Thus, the connection between MATLAB R© and a MINLP solver platform
(e.g. GAMS) is required, which not only is very fragile from an algorithmic stand-
point, but also incurs a high overhead. Since MATLAB features a MILP solver called
intlinprog, problem (4.19) was reformulated as:

z = minimize
x,y,θ,t

t

subject to Ax+ Ey ≤ b+ Fθ⌊
(Qω +Hθ + c)T ω − ẑi (θ)

⌋
≤ t∑

k∈Ji

yk −
∑
k∈Ti

yk ≤ |Ji| − 1

t ≤ −ε
x ∈ Rn, y ∈ {0, 1}p, ω =

[
xTyT

]T
θ ∈ bCRic ,

(4.31)

where t is a scalar which ensures that the new solution is at least by a numerical tol-
erance ε > 0 better than the upper bound2, and b·c denote the generation of two Mc-
Cormick underestimators, which linearize the constraints and convert it into a MILP.
Since the left-hand side of the constraints is underestimated, it is still guaranteed
that all optimal combinations of binary variables will be identified. However, also
non-optimal combinations might be fixed, which will be identified in the comparison
procedure.

1These changes are purely motivated by algorithmic requirements dictated by the software used.
2This has proven to be relevant, as otherwise the combinations of binary variables of all adjacent critical

regions are also needlessly considered.
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• The algorithm requires the tracking of quadratically constrained regions CRi. However,
this is a difficult task in MATLAB R©. Thus, the following modification was made for
the implementation of the algorithm: for the iterative procedure, the algorithm uses
the procedure by Dua et al. [74], i.e. without any comparison procedure. Once the
final map featuring envelopes of solutions is obtained, problem (4.30) is solved for each
stored solution using the MATLAB R© function fmincon.

• The algorithm requires the solution of non-convex optimization problems. Thus, only
an ε-tolerance can be given on the solution of such problems in order to guarantee a
termination of the algorithm in finite time. The impact of this issue onto the algorithm
will be part of future work in this research direction.

Note that the version of the algorithm featuring these modifications is implemented in POP,
the Parametric OPtimization toolbox (see Appendix A).

4.6 Numerical Examples

Remark 31. The algorithm presented in this chapter has been used extensively in the ap-
plication of hybrid MPC to intravenous anaesthesia. The interested reader is referred to
[191–194] for further reading on this topic.

4.6.1 Example problem

Consider the following example

Q =



6 0 0 0

−1 4 0 0

0 0 6 0

0 0 −1 1


, H =



5 0

0 −8

0 −1

3 0


, c =



0

0

0

0


(4.32)
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with

A =



1 1

1 0

0 1

−1 0

0 −1


, E =



0 0

−1 0

0 −1

0 0

0 0


, b =



1.5

1

1

1

1


, F =



0 0

0 0

0 0

0 1

1 0


(4.33)

and

θ ∈ Θ = {θ ∈ R2 |0 ≤ θl ≤ 1, l = 1, ..., 2}. (4.34)

After the initialization step, the integer vector y = [0 0]T is identified as the candidate
combination for the binary variable and the resulting mp-QP according to eq. (4.22) is
solved.

Let us consider the first critical region of the solution, namely

CR1 =
{
θ ∈ R2 |0.10417θ1 − θ2 ≤ −0.5; 0 ≤ θ1 ≤ 1; θ2 ≤ 1

}
(4.35)

with the corresponding objective function value

z∗(0,0) (θ) = −2.0833θ2
1 + 0.4167θ1 − 8θ2 + 2. (4.36)

Since no quadratic terms are present in eq. (4.35), no outer approximation needs to
be constructed. Thus, the global optimization problem (4.4) is solved in CR1, identifying
the integer combination y∗ = [0 1]T as a new candidate solution. The solution of the
corresponding mp-QP problem is one solution over CR1 with the following objective function
value

z∗(0,1) (θ) = −1.1364θ2
1 − 3.6364θ1θ2 − 2.9091θ2

2 + 6.0682θ1 − 7.0909θ2 + 2.9546, (4.37)
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The comparison of eq. (4.37) and eq. (4.36) yields

∆z (θ) = z∗(0,1) (θ)− z∗(0,0) (θ)

= 0.9470θ2
1 − 3.6364θ1θ2 − 2.9091θ2

2 + 5.6515θ1 + 0.9091θ2 + 0.9546

= 0. (4.38)

In order to obtain an initial classification of optimality in CR1, eq. (4.8) is solved. This
results in:

δmax = 0.6182 (4.39a)

δmin = −1.2636, (4.39b)

where δmax and δmin are over- and underestimators of δmax and δmin.
Therefore, CR1 is divided according to eq. (4.26), thus resulting in the following critical

regions

CR1
1 =

{
θ ∈ R2 |CR1 ∩ 0.9470θ2

1 − 3.6364θ1θ2−

2.9091θ2
2 + 5.6515θ1 + 0.9091θ2 + 0.9546 ≤ 0

} (4.40a)

CR2
1 =

{
θ ∈ R2 |CR1 ∩ 0.9470θ2

1 − 3.6364θ1θ2−

2.9091θ2
2 + 5.6515θ1 + 0.9091θ2 + 0.9546 ≥ 0

} (4.40b)

and the following affine McCormick relaxations

∆z (θ) = 2.9242θ1 − 4.1818θ2 + 2.9182 (4.41a)

∆z (θ) = 2.4697θ1 − 6.6545θ2 + 5.6091, (4.41b)

where ∆z (θ) and ∆z (θ) are the under- and overestimator, respectively. Note that only one
linear approximator was created by only considering the first of the two possible relaxations
in eq. (4.28). In CR1

1 the solution associated with y = [0 1]T is optimal, while in CR2
1

the solution associated with y = [0 0]T is. This concludes the comparison procedure,
and the next iteration of the decomposition algorithm is started by considering CR2

1. The
partitioning of the critical regions of the example problem is shown in Figure 4.3, while the
corresponding numerical values are shown in Table 4.1.
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Figure 4.3: The partitioning of the parameter space into critical regions of the example
problem.

Table 4.1: The exact solution of the example problem.

Critical Region Solution

θ1 ≥ 0; θ2 ≤ 0; 0.9470θ2
1 − 3.6364θ1θ2 −

2.9091θ2
2 + 5.6515θ1 + 0.9091θ2 + 0.9546 ≤ 0

X = (−0.4546θ1 − 0.7273θ2+
0.5455, 0.4546θ1+
0.7273θ2 + 0.9546)

Y = [0 1]T

0.5208θ1 − θ2 ≤ −0.75; θ2 ≤ 1; 0.9470θ2
1 −

3.6364θ1θ2−2.9091θ2
2+5.6515θ1+0.9091θ2+

0.9546 ≥ 0

X = (−0.8333θ1, 1)
Y = [0 0]T

0.1042θ1 − θ2 ≤ −0.5;−0.5208θ1 + θ1 ≤
0.75; 0 ≤ θ1 ≤ 1; θ2 ≤ 1

X = (−0.8333θ1, 1)
Y = [0 0]T

−0.1042θ1 + θ2 ≤ 0.5; 0 ≤ θ1 ≤ 1; θ2 ≥ 0 X = (−0.8333θ1,
−0.2083θ1 + θ2)

Y = [0 0]T

4.6.2 The computational impact of the comparison procedure

Although different comparison procedures have been presented in the literature, no compre-
hensive computational study has been carried out trying to identify (a) what the impact of
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the comparison procedure on the overall computational effort is and (b) how the different
comparison procedures differ in their computational requirements.

Using the test set ’POP mpMIQP1’ consisting of 100 mp-MIQP problems, a first tentative
answer to these questions is provided (see Chapter A for the problem statistics). In Figure 4.4
the percentage of problems in a certain time is reported for different comparison procedures,
while Figure 4.5 highlights the computational requirements for each comparison procedure
in the overall algorithm. The four procedures considered are:

None: No comparison procedure is carried out, as proposed in [74].

MinMax: Only optimization problem (4.8) is solved and a decision according to eq. (4.9a)
is made, as proposed in [11].

Affine: McCormick relaxations [180] are used to encapsulate the nonconvexity, as shown in
[200] (see section 4.3 for details).

Exact: The exact comparison between objective functions is considered, as described in this
chapter.
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Figure 4.4: The computational results for the solution of a test set problems
’POP mpMIQP1’ for the different comparison procedures.

4.6.3 Discussion

For the mixed-integer case, the computational efficiency of using no, a min-max or an affine
comparison procedure are very similar. This is due to the fact that the main computa-
tional effort is spent in the solution of the mp-QP problem. This is surprising, as eq. (4.7)
is non-convex and thus its solution could be potentially limiting. However, as an approx-
imate algorithm without strict error tolerance requirements was used, this did not cause
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Figure 4.5: The computational requirements for each aspect of the algorithm for the different
comparison procedures.

computational limitations. In addition, it appears that the increased number of partitions
resulting from the use of an affine comparison procedure (see [199]) does not impact the
computational performance significantly. However, the use of the exact algorithm resulted
in an increased computational expense. In addition, the calculation of the exact solution for
mp-MIQP problems requires the solution of a quadratically constrained feasibility problem.
In numerous cases, this led to numerical tolerance issues, as the convergence of the algorithm
(the MATLAB R© in-built fmincon) was sometimes not guaranteed.
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Chapter 5

Robust explicit/multi-parametric
model predictive control

5.1 Introduction

In model predictive control (MPC), the aim is to devise an optimal, model-based control
strategy able to control a multivariable, constrained system [227]. Two classes of systems
considered in the open literature are discrete-time linear continuous and hybrid systems1. In
many cases, the dynamics of a system are subject to uncertainty, and thus the corresponding
MPC problem needs to consider the presence of this uncertainty by devising robust MPC
strategies.

The area of robust MPC has received significant attention, especially for continuous
systems. Beginning with pioneering works in [47, 147], it has significantly grown, considering
different types of uncertainty including parametric [32, 147, 148], unstructured [80, 170] or
stochastic [221] uncertainties. The textbooks [44, 149, 227] provide an excellent overview
over the current state-of-the-art in robust MPC of continuous systems. Similarly, robust
hybrid MPC has also been considered for classes of hybrid systems, notably in Kerrigan and
Mayne [139, 140], Raković et al. [223–225] and others [55, 160, 181, 255] for the case of
additive disturbance.

The field of robust optimization considers the question of constraint satisfaction for a
(static) set of inequality constraints subject to a given uncertainty. This field, pioneered by
Soyster [243], gained significant attention with the work of Ben-Tal and Nemirowski [33–35]
as well as Bertsimas and Sim [37]. The main concept is thereby the formulation of a so-called
robust counterpart of the uncertain constraint set, the satisfaction of which guarantees the

1Hybrid systems are processes which feature continuous and discrete elements such as valves, switches or
logical decisions.
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constraint satisfaction for all possible realizations of the uncertainty [111, 112].
Despite the similarities between robust optimization and robust MPC, only few contri-

butions have combined these two areas of research: Löfberg discussed the use of robust
counterparts for the solution of uncertain semidefinite programs [167, 168], while Goulart et
al. expanded the notion of adjustable robust counterparts for additive disturbance [97, 98]
introduced by Ben-Tal et al. [34]. Van Hessem and Bosgra considered a conic reformulation
which utilized robust optimization principles [254]; Pistikopoulos and co-workers employed
robust optimization in order to handle parametric uncertainty in combination with multi-
parametric dynamic programming [148, 219].

In this chapter, a novel approach for the design of robust MPC controllers for discrete-
time linear systems featuring a combination of continuous and binary inputs is described for
the special case of parametric, box-constrained uncertainty. It is based on a generalization
of the results in [148, 219], as it performs recursive projections of robust counterparts of
the uncertain constraint sets. This enables the design of robust admissible sets, robust
control invariant sets and finally robust MPC controllers. The main advance with respect to
[148, 219] is twofold: first, in [148, 219] the solution of a mp-QP problem at each stage with
a growing number of parameters is required. This chapter shows that it is possible to obtain
the same outcome using only projection operations. Second, the approach is extended to
hybrid systems, where the same principles are proven to hold.

5.1.1 Notation

The n-dimensional space of real numbers is denoted by Rn, and the set of non-negative
integers is denoted by N. Let a, b ∈ N with a < b, then N[a,b] = {a, a + 1, ..., b} and
Nb = N[0,b]. A polytope is defined as the closed and bounded intersection of a finite number
of halfspaces. Given the vector a ∈ Rn and the matrix A ∈ Rm×n, the element-wise absolute
value is given as |a| and |A|, respectively. The weighted 2-norm of x is given as ||x||Q, i.e.
||x||Q = xTQx, and the identity matrix is defined as In ∈ Rn×n. The inner approximation of
a set P is denoted as P , i.e. P ⊆ P .

5.2 Background on Model Predictive Control (MPC)

Remark 32. In this thesis, only discrete-time linear systems are considered.
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5.2.1 Nominal Systems

In general, nominal systems refer to the situation where the state space model is assumed
to give perfect information about the dynamic development of the system, and are generally
defined as:

x+ = Ax+Bu, (5.1)

where x, u and x+ are the state, input and successor state, respectively.

Continuous Systems

In continuous systems, there are only continuously varying elements in the system. Thus,
the general MPC problem for a continuous linear discrete-time system can be described as:

minimize
U

xTNPxN +∑N−1
k=1

(
xTkQkxk +

(
yk − yRk

)T
QRk

(
yk − yRk

))
+∑M−1

k=0

((
uk − uRk

)T
Rk

(
uk − uRk

)
+ ∆uTkR1k∆uk

)
subject to U = [u0, u1, ..., uM−1]T , xN ∈XT , e ∈ E

xk+1 = Axk +Buk + Cdk

yk = Dxk + Euk + e

uk ∈ U , xk ∈X , yk ∈ Y , dk ∈ D

∆uk = uk − uk−1 ∈ U∆


∀k = 0, ...,M − 1

xk+1 = Axk +BuM−1 + Cdk

yk = Dxk + EuM−1 + e

xk ∈X , yk ∈ Y , dk ∈ D


∀k = M, ..., N − 1

(5.2)

where uRk is the control variables set points, ∆uk is the difference between two consecutive
control actions, yk and yRk denote the outputs and their respective set points, dk denote the
measured disturbances, Qk, Rk, R1k and QRk are the corresponding weights in the objective
function, P is the stabilizing term derived from the Riccati Equation for discrete systems
[179], N and M are the output horizon and control horizon respectively, k is the time step,
A, B, C, D, E are the matrices of the discrete linear state space model and e denotes the
mismatch between the actual system output and the predicted output at initial time. Note
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that U , X , Y , D and U∆ denote compact polytopes containing the origin, and XT denotes
the terminal set.

Remark 33. It is beyond the scope of this thesis to provide treatment of the intricacies
of MPC, as the main focus is laid upon the explicit solution of problem (5.2) via multi-
parametric programming. For an excellent introduction into MPC, the reader is referred to
the textbook by Rawlings and Mayne [227].

Since problem (5.2) is a function of the states at the initial time (x0), the set points
(uRk and yRk ), the initial output mismatch, the previous control actions in ∆uk and the
disturbances (dk), they are treated as uncertain parameters denoted by the parameter vector
θ, which yields a mp-QP problem of type (3.1).

Hybrid Systems

Hybrid systems are characterized by the presence of both continuous and discrete elements.
This represents a very large class of problems, such as decision processes, piecewise affine
models and discrete control actions. The modelling of such systems is very complex and goes
beyond the scope of this thesis. The interested reader is referred to the excellent textbook
[260] and the papers [23, 115] for some of the key results. Within this thesis, hybrid systems
are defined to be systems featuring discrete control actions, i.e. the state-space is given as:

x+ = Ax+Bu, (5.3)

where u ∈ Rmc ×{0, 1}mb . As a result, the hybrid MPC problem considered in this thesis is
equivalent to problem (5.2), however with a changed definition of u. Note that the application
of the principles of [31], as detailed above, results in a mp-MIQP problem [23, 74, 199].

5.2.2 Robust Systems

Consider the following linear discrete-time dynamics:

x+ = Ax+Bu. (5.4)

In nominal MPC, it is assumed that A and B in eq. (5.4) are exactly known and thus
accurately describe the propagation of the system without any disturbance. However, due
to model mismatch and unmeasured disturbances, this may not be true, as the values of
state-space matrices may be uncertain, i.e. (A,B) ∈ Ω, where Ω is called the uncertainty
set. Thus, the performance of any model based strategy utilizing the predictive capability
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of a system of type (5.4) with (A,B) ∈ Ω will need to devise methodologies to cope with the
impact of the uncertainty. In the case of MPC, this has led to the development of robust
MPC [10, 161, 176, 177, 203, 206]. Beginning with pioneering works in [47, 147], it has grown
considerably, considering different types of uncertainty including parametric [32, 147, 148],
unstructured [80, 170] or stochastic [221] uncertainties. In the following, a brief overview
over the concepts used in this thesis is given. For a more in-depth treatment on robust MPC,
the reader is referred to the textbooks by Kouvaritakis and Cannon [149] and Borrelli et al.
[44].

The uncertainty set Ω

Classically2, the uncertainty set Ω is considered to be a polytope of the form (see e.g. [149]):

Ω =

(A,B)

∣∣∣∣∣∣∣∣∣
V∑
i=1

λiAi, 0 ≤ λi ≤ 1,
V∑
i=1

λi = 1
V∑
i=1

λiBi, 0 ≤ λi ≤ 1,
V∑
i=1

λi = 1

 , (5.5)

where Ai and Bi are the i-th vertex of the uncertainty set Ω, and V denotes the total number
of vertices. Clearly, eq. (5.5) defines Ω to be a polytope. However, in this thesis, the more
restrictive case of box-constrained uncertainty sets is considered:

Ω = {(A,B) |A = A0 + ∆A,B = B0 + ∆B} , (5.6)

where ∆A ∈ A and ∆B ∈ B with:

A = {∆A| − εa |A0| ≤ ∆A ≤ εa |A0|} (5.7a)

B = {∆B| − εb |B0| ≤ ∆B ≤ εb |B0|} , (5.7b)

Note that (in a slight abuse of notation), εa and εb can be scalars or matrices of dimen-
sions of A0 and B0 respectively, which renders the multiplication εa |A0| also element-wise.
The reason for this choice is that the extreme points of a box-constrained system can be
described using the halfspace representation, and thus it is not necessary to perform a ver-
tex enumeration to apply the robust MPC strategies discussed in this chapter. A graphical
representation of the difference to the general polytopic case is shown in Figure 5.1.

Remark 34. Note that the uncertainty set Ω refers to a time-varying uncertainty.

2In the open literature, ellipsoidal uncertainty sets have also often been considered, which is however not
in the focus of this chapter.
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Figure 5.1: A schematic representation of a (a) polytopic and (b) box-constrained uncertainty
set. The key difference lies in the ability to implicitly describe maximum of the box using a
halfspace representation; this is not possible for the general polytopic case.

Robust Model Predictive Control

Consider system (5.4) with (A,B) ∈ Ω and eq. (5.6), uk ∈ U × {0, 1}mb and xk ∈ X , ∀k,
where U and X are assumed to be compact polytopes which contain the origin3. Thus, the
following sets are defined:

Definition 14 (Robust control invariant set). Given a system of type (5.4), a set Φ ⊆ X

is robust control invariant if ∀x ∈ Φ, there exists an admissible control action u such that
x+ = Ax+Bu ∈ Φ, ∀ (A,B) ∈ Ω.

Definition 15 (Robust admissible set). Given a set P , the robust admissible set (RAS)
C (P ) is defined as:

C (P ) = {x ∈X |∃u ∈ U × {0, 1}mb s.t.

x+ = Ax+Bu ∈ P, ∀ (A,B) ∈ Ω
}
. (5.8)

Remark 35. In this chapter, it is assumed that robust admissible sets and robust control
invariant sets are polytopes or unions of polytopes, respectively. This is due to the fact
that the projection of a polytope is a polytope, and the hybrid projection of a union of
polytopes is a union of polytopes. Note that any union of polytopes can be described as a
set P = {(x, y)|x ∈ Rnc , y ∈ {0, 1}nb} (see section 2.2.3).

3In the case of continuous systems, mb = 0.
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Robust Optimization

In robust optimization, the aim is to find solutions to uncertain optimization problems
which are feasible for all uncertainty realizations. In order to achieve this, the uncertain
optimization problem is reformulated using an appropriate robust counterpart:

Definition 16 (Robust counterpart). A robust counterpart ãTx ≤ b of an uncertain con-
straint aTx ≤ b with a ∈ A is given as:

aTx ≤ ãTx ≤ b, ∀a ∈ A. (5.9)

In this thesis, the uncertainty is present in the state-space model, and thus the robust
counterpart to be formulated has to ensure the satisfaction of constraints across this state-
space model, i.e. let there be a polytope P = {x|Gx ≤ g}. Then given the system of type
(5.4) with eq. (5.6-5.7), the constraint set to be considered is given as:

Gx+ ≤ g (5.10a)

G (Ax+Bu) ≤ g, (A,B) ∈ Ω (5.10b)

GA0x+ εa |G| |A0| |x|+GB0u+ εb |G| |B0| |u| ≤ g (5.10c)

Eq. (5.10c) is called the robust counterpart of eq. (5.10b), and by construction it generally
holds for the sets P = {(x, u) |Eq. (5.10b)} and Q = {(x, u) |Eq. (5.10c)} that Q ⊆ P .

Remark 36. In eq. (5.10c), the absolute values are relaxed using the auxiliary variables
z = |x| and v = |u| defined by the following set of linear inequality constraints:

−z ≤ x ≤ z (5.11a)

−v ≤ u ≤ v. (5.11b)

Note that if a ≥ 0, then a = |a| and no auxiliary variable needs to be created. In particular,
for any binary variable δ = {0, 1} it holds that δ = |δ|. In addition, note that eq. (5.11) is a
relaxation of the absolute value terms, and only yields the exact reformulation if one of the
constraints is active.
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5.3 Inner approximations of robust admissible sets via
projections

In this section, inner approximations of robust admissible sets are calculated using a series
of projections. First, consider the case when the set P is a polytope, before the general case
of a union of polytopes.

5.3.1 P as a polytope

Consider the set P = {x|Gx ≤ g} in conjunction with uncertain discrete-time linear system
described in eq. (5.4-5.7). Then, combining the RAS definition from eq. (5.8) with eq.
(5.10c) yields the following inner approximation of the RAS, C (P ):

C (P ) = {x|∃ (u, v, z) such that (x, u, v, z) ∈ P ′} , (5.12)

where

P ′ =


(x, u, v, z)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈X , u ∈ U × {0, 1}mb

GA0x+ εa |G| |A0| z +GB0u+ εb |G| |B0| v ≤ g

−z ≤ x ≤ z,−v ≤ u ≤ v


. (5.13)

The explicit formulation of C (P ) is obtained by performing the projection πn (P ′) if mb = 0
or the hybrid projection π̃n (P ′) if mb > 0.

5.3.2 P as a union of polytopes

In the case of hybrid systems, P may not be a polytope, however based on Definition 4, the
explicit formulation of C (P ) is guaranteed to be a union of polytopes (see also Remark 35).
Thus, consider the set P =

p⋃
i=1
{x|Gix ≤ gi} in conjunction with the state-space dynamics

(5.4) and the uncertainty set Ω defined according to (5.6). Then, combining the RAS defi-
nition from eq. (5.8) with eq. (5.10c) yields the following inner approximation of the RAS
C (P ):

C (P ) = {x|∃ (u, v, z) such that (x, u, v, z) ∈ P ′} , (5.14)
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where

P ′ =
p⋃
i=1

P ′i , (5.15)

with

P ′i =


(x, u, v, z)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈X , u ∈ U × {0, 1}mb

GiA0x+ εa |Gi| |A0| z +GiB0u+ εb |Gi| |B0| v ≤ gi

−z ≤ x ≤ z,−v ≤ u ≤ v


. (5.16)

The explicit formulation of C (P ) is obtained by performing p (hybrid) projections.

Theorem 8. For any x ∈ C (P ) based on eq. (5.14), there exists a control action u such
that x+ ∈ P .

Proof 4. C (P ) differs from C (P ) solely in the consideration of x+ ∈ P . While eq. (5.8)
utilized the description of eq. (5.10b), eq. (5.14-5.16) utilized eq. (5.10c). Thus, according
to section 5.2.2, C (P ) ⊆ C (P ) holds, which completes the proof.

Remark 37. If p = 1, then eq. (5.15-5.16) are identical to eq. (5.13). Thus, eq. (5.12-5.13)
is a special case of eq. (5.14-5.16).

Theorem 9. The calculation of C (P ) based on eq. (5.14) requires at most p2mb projections.

Proof 5. Consider the case of p = 1 as discussed in section 5.3.1. Then, the exhaustive
enumeration of all possible binary variables yields 2mb combinations. If a combination is
fixed in P ′, then the resulting set is a polytope, and a projection yields the desired set
C (P ). Thus, at most 2mb projections are required in order to consider each combination of
binary variables. Now consider a general p. Then for each polytope Pi, the same argument
holds, i.e. at most 2mb projections are required. Thus, the number of projections is bound
from above by p2mb .

Lemma 2. For the continuous case, the calculation of C (P ) requires one projection.

Proof 6. This follows trivially from Theorem 9.

5.3.3 Recursion of RAS

In order to obtain a robust MPC formulation, the propagation of the robust admissible set
beyond a single stage needs to be considered. Consider k = N−1 with PN =

p⋃
i=1
{x|Gix ≤ gi}
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and the state-space dynamics in eq. (5.4) and the uncertainty set Ω defined according to eq.
(5.6-5.7). Then, the k-step RAS C (Pk+1) is given by eq. (5.14-5.16). In order to complete
the recursion, set Pk = C (Pk+1), and k = k − 1.

Theorem 10. If x0 ∈ P0 and Pk = C (Pk+1), ∀k ∈ NN−1, then based on eq. (5.14-5.16)
there exists an admissible control sequence uk, k ∈ NN−1 such that xk ∈ Pk, ∀k ∈ R[1,N ].

Proof 7. From Theorem 8, it is clear that xN−1 ∈ PN−1 = C (PN) guarantees xN ∈ PN . By
extension, it immediately follows that xN−2 ∈ C (PN−1) guarantees xN−1 ∈ PN−1. Perform-
ing this computation N − 1 times yields the theorem and completes the proof.

Lemma 3. The calculation of P0 requires at most p
N∑
k=1

2kmb projections.

Proof 8. Based on Theorem 9, the calculation of PN−1 requires at most p2mb projections.
Thus, PN−1 can feature at most p2mb polytopes, which by extension of Theorem 9 limits the
number of projections for the calculation of PN−2 by:

p2mb2mb = p22mb . (5.17)

Thus, the extension of eq. (5.17) for N steps yields the desired result.

5.3.4 Robust control invariance

The recursion of the RAS can be used to calculate a robust control invariant set for system
(5.4).

Theorem 11. Consider the set P =
p⋃
i=1
{x|Gix ≤ gi}. Then, P is robust control invariant if

P ⊆ C (P ).

Proof 9. According to Theorem 8, x ∈ C (P ) guarantees x+ ∈ P . Thus, if P ⊆ C (P ), then
x ∈ C (P ) guarantees x+ ∈ C (P ), which completes the proof.

5.4 Robust Model Predictive Control

Here, a model predictive control strategy is considered robust if it results in a sequence of
admissible control actions uk, k ∈ NN−1 which guarantee constraint satisfaction for all future
time steps in the face of the considered uncertainty for discrete-time linear systems described
by eq. (5.4-5.6). Thus, the following set is defined:

Gk (Pk+1) =
{

(x, u) |∃ (v, z) s.t. (x, u, v, z) ∈ P ′k+1

}
. (5.18)
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As a result, for any pair (x, u) ∈ Gk it is guaranteed that x+ ∈ Pk+1. In order to obtain
a robust MPC formulation, Theorem 10 and eq. (5.18) are used and the following robust
MPC problem is formulated:

minimize
U

||xN ||T +
N−1∑
i=0
||xk||Q + ||uk||R

subject to uk ∈ U × {0, 1}mb , k ∈ NN−1

(xk, uk) ∈ Gk (Pk+1) , k ∈ NN−1

Pk = C (Pk+1) , k ∈ N[1,N−1]

PN = Φ

Eq. (5.14-5.16,5.18)

xk+1 = A0xk +B0uk, k ∈ NN−1

U = [u0, u1, ..., uN−1]T .

(5.19)

where Φ is the robust control invariant set defined in Definition 14.

Theorem 12. If problem (5.19) is feasible for a given initial state x0, then the successor
state x+ ∈ P1 for any realization of the uncertainty described by eq. (5.6-5.7).

Proof 10. Problem (5.19) is feasible if (x0, u0) ∈ G0 (P1). Thus, based on Theorem 8, the
proof follows.

5.4.1 The continuous case

In the case of a continuous system, problem (5.19) is a convex quadratic programming
problem. As a result, the robust control laws can be obtained explicitly offline via the
solution of the corresponding multi-parametric quadratic programming problem [31]. This
is very similar to the procedure presented in [148, 219], where multi-parametric programming
was also used to obtain a robust MPC formulation. However, the approach presented in this
chapter differs and improves upon [148, 219] in two principal ways:

The use of the projection operation: In [148, 219], the robust admissible set is calcu-
lated by solving the stage-wise control problem recursively in a multi-parametric fash-
ion. The algorithm employed to that end in [148, 219] increases the number of param-
eters at each stage as it treats the future control actions as parameters. This hinders
the extension of this approach to any but small enough control problems. This issue
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does not occur when using the projection-based approach presented in this chapter, as
the recursion can take place with constant dimensionality.

The use of the mp-QP formulation: The approach in [148, 219] solves the stage-wise
control problem recursively as an mp-QP problem. Thus, the entire map of control
actions is obtained for the RAS at that stage. However, this information is not required,
as only the explicit of the RAS is passed onto the next stage. Note that in [148, 219]
the information is also not used. The calculation of this superfluous information does
not occur in the algorithm presented in this chapter.

5.4.2 The hybrid case

In the case of a hybrid system, problem (5.19) is a mixed-integer quadratic programming
problem. As a result, the robust control laws can be obtained explicitly offline via the solution
of the corresponding multi-parametric mixed-integer quadratic programming problem [220].
The main contribution of this approach is thereby twofold:

The extension of the idea in [148, 219]: The work presented in this chapter is a direct
extension of the work in [148, 219] to hybrid systems. This is especially clear as the
mathematical description is identical if the hybrid nature of the control action is allowed
for. As a result, the conceptual understanding and implementation of this approach is
straightforward.

The use of the projection operation: The approach presented in this chapter heavily
relies on the execution of the projection operation. The key advantage for hybrid
systems is not only given by the great amount of work done in computational geometry
to design efficient algorithms for the projection operation, but also that the efficiency
of the algorithm is directly linked to the ability to perform this widespread operation.
Thus, the implementation, complexity analysis and convergence can be assessed in a
straightforward manner based on the projection operation.

5.4.3 Discussion and implications

The formulation in eq. (5.19) is not common representation for robust MPC problems. Thus,
the author would like to make the following comments:

• The objective function is given as the objective function of the nominal MPC problem
(see e.g. [24, 158]). However, recently a min-max approach considering the worst-case
scenario for box-constrained uncertainty has also been presented [92].
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• Problem (5.19) is a closed-loop robust MPC problem, i.e. the problem formulation
assumes that a measurement will be available at the next time step [32]. Thus for
the time steps k ∈ N[2,N ], it is sufficient to ensure that xk ∈ Pk, and the constraint
(x0, u0) ∈ G0 (P1) ensures that x1 ∈ P1.

• The use of robust counterparts generally incurs a degree of suboptimality, i.e. the sets
calculated using the approach presented here are inclusions of the exact sets, available
by propagating the vertices of the uncertainty exhaustively (see e.g. [158]). However,
the results presented here aim at disseminating the idea that robust counterparts can
be applied efficiently to robust MPC and that this idea can directly be extended to
hybrid systems.

• The set Gk (Pk+1) can be understood as a robust version of the nominal constraint
set Gnom

k (Pk+1) = {(x, u) |x ∈X , u ∈ U , x+ = A0x+B0u ∈ Pk+1}, which guarantees
constraint satisfaction across the uncertain state-space.

• A common representation of closed-loop robust MPC problems is the following recur-
sion (c.f. [44]):

minimize
uk

Jk (xk, uk)

subject to xk ∈X

uk ∈ U

A (wak)xk +B (wpk)uk ∈Xk+1

wak ∈ W a, wpk ∈ W p,

(5.20)

where Jk is the stage-wise cost at stage k4, and W a and W b are the sets featuring
the vertices of the uncertainty set Ω, each realization of which is shown as A (wak) and
B (wpk), respectively. In particular, note that Xk+1 is defined as:

Xk =


x ∈X

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃u ∈ U s.t.

A (wak)xk +B (wpk)uk ∈Xk+1,

wak ∈ W a, wpk ∈ W p


(5.21)

where XN = Xf and Xf is a terminal set. However, since a closed-loop control
is considered, only u0 is applied. As a consequence, the impact of the recursions

4Note that Jk also features the optimal cost of stage k + 1.
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k ∈ N[1,N−1] is based on the propagation of the robust admissible set Xk, which is
equivalent to the considerations made here (see section 5.4.3).

• In this chapter, only hybrid systems which are characterized by continuous and binary
inputs are considered. However, from a conceptual level the same ideas can be be
applied to many classes of hybrid dynamical systems such as mixed-logical dynamical
systems and their equivalent representations [23, 115] by defining equivalent uncer-
tainty sets for the state-space matrices.

A reformulation of problem (5.19) in the form of problem (5.20)

Remark 38. For ease of representation, the equivalence for uncertain discrete-time linear
systems with only continuous inputs, as described in eq. (5.4-5.6) with mb = 0, is shown.

The solution of problem (5.20) yields the control action of stage k, uk, which minimizes
the cost function and ensures that xk+1 ∈Xk+1, ∀(A,B) ∈ Ω. The control action is thereby
defined as a function of the current stage, i.e. uk (xk). Thus, it is a closed-loop strategy as it
does not consider all possible realizations of xk for a given x0 subject to the uncertainty but
only the realization that will occur at stage k. As a result, the impact of uk (xk) is twofold:
(a) it is used to calculate Xk and (b) it is substituted in the objective function J∗k (xk) =
Jk (xk, uk (xk)). The only exception is the last stage, i.e. u0 (x0) which is implemented at
every time step.

Thus, in order to show the equivalence of problem (5.20) with problem (5.19) it is neces-
sary to show that Xk is the robust admissible set as per Definition 15 and as a consequence
that any control action calculated from problem (5.19) is a feasible solution of problem (5.20).

Following Definition 15, it follows:

Xk =


x ∈X

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃u ∈ U s.t.

A (wak)x+B (wpk)u ∈Xk+1,

wak ∈ W a, wpk ∈ W p


(5.22)

= {x ∈X |∃u ∈ U s.t.

x+ = Ax+Bu ∈Xk+1, ∀ (A,B) ∈ Ω
}

(5.23)

= C (Xk+1) (5.24)

The equivalence between eq. (5.22) and eq. (5.23) is based on the fact that the uncertainty
set Ω is completely characterized by the set of its vertices W a and W p. Thus, re-writing the
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constraint set of (5.20) yields:

Ck =


(x, u)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈X , u ∈ U

A (wak)x+B (wpk)u ∈Xk+1,

wak ∈ W a, wpk ∈ W p


(5.25)

=

(x, u)

∣∣∣∣∣∣∣∣∣
x ∈X , u ∈ U

Ax+Bu ∈Xk+1,∀ (A,B) ∈ Ω

 (5.26)

⊇
{

(x, u) |∃ (v, z) s.t. (x, u, v, z) ∈ P ′k+1

}
(5.27)

= Gk (Pk+1) , (5.28)

which shows the equivalence.

5.5 Example problem

Remark 39. The calculations were carried out on a single-threaded machine running Mi-
crosoft Windows 7 with an Intel Core i5-4200M CPU at 2.50 GHz and 8 GB RAM. Further-
more, MATLAB R2014a, ILOG Optimization Studio 12.6.1, POP v1.62 [201] and MPT 3.1
[118] were used for the computations.

Consider the following example problem:

A0 =

1 1

0 1

 , B0 =

0 −1

1 1

 (5.29a)

X =

x
∣∣∣∣∣∣∣∣∣
−10 ≤ [1 0]x ≤ 10

−10 ≤ [0 1]x ≤ 10

 , (5.29b)

and εa = εb = 0.1, Q = R = I2 and T the solution of the discrete-time algebraic Riccati
equation of the nominal system [179]. First, consider the discrete-time linear system with
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Trajectory
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Figure 5.2: The controllability set of the nominal system Xnom, the corresponding robust
control invariant set Φ and the trajectories of 300 different simulations of 50 steps with
different disturbance profiles starting from [9.8,−5] is shown in (a) for the system with only
continuous inputs and in (b) for the system featuring continuous and binary inputs.

only continuous inputs, i.e.:

U =

u
∣∣∣∣∣∣∣∣∣
−1 ≤ [1 0]u ≤ 1

0 ≤ [0 1]u ≤ 1

 , (5.30)

and in Figure 5.2(a) the feasible space of the nominal system and the robust control invariant
set Φ obtained from the application of Theorem 11 is shown. In addition, 300 simulations
with 50 time steps with different disturbance signals starting from [9.8,−5] are displayed.
In order to consider an equivalent system featuring a combination of continuous and binary
inputs, consider:

u ∈ U × {0, 1}, (5.31)

where U = {u| − 1 ≤ u ≤ 1}, i.e. the second input has been converted from a continuous
input bound between 0 and 1 to a binary variable. In Figure 5.2(b) the feasible space of
the nominal system and the robust control invariant set Φ obtained from the application of
Theorem 11 is shown, as well as 300 simulations with 50 time steps with different disturbance
signals starting from [9.8,−5]. The computation of the robust control invariant set required
12.4 and 121.0 seconds for the continuous and hybrid system, respectively. For comparison,
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Figure 5.3: The explicit solution of the (a) nominal and (b) robust MPC controller for the
example problem.

the calculation of the robust control invariant set for the continuous system was performed
with MPT (see [158]) and required 23.4 seconds.

5.5.1 Detailed discussion

In this section, the example problem is used to highlight several features of the robust
approach presented in this chapter.

Complexity increase from nominal to robust MPC

The calculation of a robust MPC strategy not only reduces the controllability set, but in
general renders the controller more complex as the different worst-case realizations need to be
considered. For the example problem, Figure 5.3 shows the explicit solution of the nominal
and robust controller, respectively. In particular, it is to note that although the controllability
set of the nominal controller is significantly larger, it only features 81 critical regions, as
opposed to the 131 regions obtained for the robust controller. However, certain aspects of
the explicit solution such as the reverse S-shaped center and the layered regions around it
have been preserved, indicating the structural relationship between these controllers.

This underlying similarities are intriguing, and future research directions may focus into
understanding why these features in particular have been preserved. In addition, this may
lead to interesting considerations regarding the ability to infer aspects of the structure of
robust controllers based on the nominal controller.
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Figure 5.4: The comparison of the exact robust control invariant set with the inner approx-
imation of the same set obtained via robust optimization.

Conservatism of the robust optimization approach

One of the key points in robust optimization is the introduction of overly tight constraints
which decreases the feasible space beyond what would be necessary in order to ensure robust-
ness. This aspect, brilliantly discussed in the paper ”The price of robustness” by Bertsimas
and Sim [37], has been a main focus for more than a decade in the area of robust opti-
mization. In fact, it was only recently that Floudas and co-workers were able to reduce this
”price” for the first time since the work of Ben-Tal and Nemirowski as well as Bertsimas and
Sim [111, 112].

Consequently for the case of robust MPC via robust optimization, this conservatism is
crucial as a robust counterpart is formed at each stage. Thus, the conservativeness is in fact
compounded beyond a single stage, which leads to an increase of conservatism as the horizon
length increases. For the example problem above, the conservatism is highlighted in Figure
5.4, where the exact robust control invariant set is compared to the inner approximation
calculated using robust optimization. As it can be seen, for the considered example the
conservatism is noticeable, however it is relatively limited.

Note however that the impact of this conservatism varies among different examples, and
highly depends on the strategy used to formulate the robust counterpart. Thus, future direc-
tions will consider the incorporation of tighter robust counterparts, as well as considerations
of probability bounds for the robust control invariant set in order to produce controllers with
larger controllability sets.
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Differences between continuous and hybrid systems

Although Figure 5.2 may suggest that the sets for the continuous and hybrid system are
identical, the controllability set of the nominal system as well as the robust control invari-
ant set of the hybrid system are subsets of the continuous system, as expected. However,
the general shapes are preserved as the control actions on the extreme points are given
by the maximum admissible control actions, which are still admissible for the hybrid case
(i.e. 0 and 1). However, there are two important differences in terms of computation and
implementation.

First, the time required for the computation of each differs by one order of magnitude.
This is primarily due to two effects: (a) the number of polytopes forming the union of
polytopes for the hybrid system and (b) merging polytopes whose union is convex. As these
factors are in most cases bound to increase with increasing dimensionality, it is expected that
the overall computation time for the hybrid system will very quickly become computationally
intractable. Thus, new solutions such as parallelization, analysis of the structure of the
system as well as approximate methods are expected to enable significant progress in the
area of computational attractiveness of the presented approach.

Second, while there are several tools for the computation of robust controllers in gen-
eral and robust control invariant sets in particular for continuous systems, to the author’s
knowledge such a tool does not exist for hybrid systems. Thus, comparisons in terms of con-
servatism and computational performance are not available. However, the author expects
that such tools will be developed in the near future due to the growing interest in robust
control for hybrid systems paired with the shrinking cost of computational power.
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Chapter 6

Unbounded and binary parameters in
multi-parametric programming

Portions of this chapter have been published in:

• Oberdieck, R.; Diangelakis, N. A.; Avraamidou, S.; Pistikopoulos, E. N. (2016) On
unbounded and binary parameters in multi-parametric programming: Applications to
mixed-integer bilevel optimization and duality theory. Journal of Global Optimization,
in print.

6.1 Introduction

Commonly in multi-parametric programming, the parameters are assumed to be bounded
and continuous [220]. While these conditions are met in many circumstances, there are
cases where this is not true. Examples include optimal control problems where some of
the states are binary variables and bilevel optimization problems featuring continuous and
binary variables on both stages. In this section strategies are proposed to overcome these
limitations. In particular, first conditions are derived based on which the boundedness of
the parameters is not necessary. It is also shown how the concept of binary variables can
be directly integrated into combinatorial approaches used for the solution of mp-LP/mp-
QP problems. Then, these two strategies are combined into a new, more general version of
the combinatorial algorithm which allows for the solution of multi-parametric programming
problems featuring unbounded and binary parameters. Numerical examples are used to
highlight the steps of the proposed strategies, along with a mixed-integer bilevel optimization
example. A discussion on the parametric solution of dual problems is also presented.
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6.2 Theoretical Background

We consider the following generalized version of the mp-QP problem:

z (θ) = minimize
x

(Qx+Hθ + c)T x

subject to Ax ≤ b+ Fθ

x ∈ Rn, θ = [θc, θb]T

θc ∈ Rq, θb ∈ Bp = {0, 1}p

(6.1)

where Q ∈ Rn×n is symmetric positive definite, H ∈ Rn×q+p, c ∈ Rn, A ∈ Rm×n, b ∈ Rm and
F ∈ Rm×q+p.

Remark 40. Commonly, the parameter θc are constrained to a so-called parameter space,
often denoted as Θ. However, for the sake of generality, any parameter-specific constraints
have been incorporated into the constraint set Ax ≤ b + Fθ. Thus, problem (3.1) also
includes the case where some or all elements of θc are bounded.

For the rest of the section, the following notation is defined:

Definition 17. Let T = 1, ...,m be a set of indices. Then, given the subset I ⊂ T , the
complement is defined as ¬I such that I ∪¬I = T . Additionally, let A ∈ Rm×n, then AI

denotes a matrix composed of the rows of A identified by the indices in I . Lastly, problem
(6.1) is called unbounded if not all θc are bounded given the set of constraints Ax ≤ b+Fθ1.

6.3 Unbounded multi-parametric programming

6.3.1 Motivating example

Consider the following mp-LP problem:

minimize
x

x

subject to −4x ≤ −1 + θ

−2x ≤ 2− θ

x ∈ R, θ ∈ R

(6.2)

1Note that binary parameters are inherently bounded.
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It is evident that problem (6.2) is unbounded (see Figure 6.1). However, by inspection it is
also clear that the solution to this problem is given by

x1 (θ) = −0.25θ + 0.25, ∀θ ≤ 5
3 (6.3a)

x2 (θ) = 0.5θ − 1, ∀θ ≥ 5
3 (6.3b)

where the subscript denotes which constraint is active and the numerical values are a direct
function thereof.

θ

-4 -3 -2 -1 0 1 2 3 4 5 6

x

-0.5

0

0.5

1

1.5

2

Constraint 1

Constraint 2

Figure 6.1: The feasible space of problem (6.2) in the (x, θ) domain.

Remark 41. Note that CPLEX 12.6.1 reports the error ”unbounded or infeasible” if θ is fixed
for values greater than 1022, a conclusion which is avoidable by using eq. (6.3).

6.3.2 The solution of unbounded mp-LP and mp-QP problems

The key for obtaining eq. (6.3) is that we only consider the active set of the optimization
problem. Thus, as soon as an initial bounded solution is found, there is no requirement for
the resulting polytopic region to be bounded. This results in the following Theorem:

Theorem 13. Let there be at least one bounded solution for a parameter realization of
problem (6.1), and let p = 0 (i.e. no binary parameters). Then, the combinatorial approach
solves problem (6.1) even if any θ in the set

P =
{

(x, θ) ∈ Rn×q |Ax ≤ b+ Fθ
}

(6.4)

are unbounded.
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Proof 11. The solution x (θ) in a polytopic region only depends on the corresponding active
set (see Lemma 9). Thus, if there exists a bounded solution of one parameter realization, we
can initialize the tree consisting of all possible active sets. Since the active set of a region
only changes if the feasibility or optimality requirements of the solution are violated, it is
clear that such a violation directly results in a new active set, resulting in a new solution.
Conversely, if no such violation occurs then no new active set is generated, thus allowing for
the description of an unbounded solution.

Lemma 4. Any feasible strictly convex positive definite quadratic programming (QP) prob-
lem has a unique and bounded solution. Thus, for mp-QP problems Theorem 13 holds
unconditionally.

Proof 12. Let us consider the unconstrained case. If we can prove that the solution to
an unconstrained QP is bounded, then it is obvious that this extends to constrained QP
problems as well. Let f (x) denote the objective function. Then, due to strict convexity of
f (x), the necessary and sufficient condition of optimality is:

∇xf(x) = 2Qx+ c = 0, (6.5)

where ∇x is the Nabla-operator. Since Q � 0, the system of linear equalities in (6.5) has
full rank, and thus a unique solution x∗. Since the Hessian H > 0 and constant, there
exists a ball B of radius ε > 0 around x∗, for which all x which lie on B it holds that
∇xf(x) 6= 0. This implies that there does not exist a direction d, along which x∗ could
become unbounded.

In order to apply Theorem 13, it is necessary to apply the combinatorial approach as it
directly uses the active sets rather than the polytopic region description. In order to ensure
that the feasibility checks do consider an unbounded problem2, arbitrary bounds are put in
place, which however does not impact whether the problem is recognized as feasible nor not
(see section 6.5 for details).

2This was the reason for the solution reported in Remark 41.
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6.3.3 Numerical Example

Consider the following mp-QP problem:

minimize
x

xT230.08x− θT

0

5

x+ x

subject to



4

4

9

10

2

7

13

−1

8

14



x ≤



7

21

6

23

25

34

2

27

29

12



+



0 −5

0 0

−3 0

0 0

−11 −11

−3 −6

0 0

0 0

−6 −5

0 0



θ

(6.6)

In order to visualize the unbounded nature of problem (6.6), Figure 6.2 shows the solution
of problem (6.6) for the bounded space (a) θ ∈ [−5, 5]2, (b) θ ∈ [−500, 200]2 and (c) θ ∈
[−5 · 104, 2 · 104]2. In addition, Table 6.1 presents the solution of the unbounded problem
(6.6), based on section 6.3.2.

Figure 6.2: A graphical visualization of the unbounded solution, as the bounds of the pa-
rameter space are increased from (a) to (b) to (c) .
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Table 6.1: The solution to problem (6.6). The notation CRn corresponds to the nth critical
region or Figure 6.2.

Active Set Critical Region Solution

- CR1:
−7.28 ≤ θ2 ≤ 1.43, 0.998θ1 −
0.065θ2 ≤ 2.01, 0.709θ1 + 0.706θ2 ≤
1.61

x(θ) = −0.02θ2 − 0.004

{1} CR2: 0.791θ1 +0.611θ2 ≤ 1.55, 1.43 ≤ θ2 ≤
23 x(θ) = −1.25θ2 + 1.75

{3} CR3: 0.68θ1 + 0.73θ2 ≤ 1.57,−0.998θ1 +
0.65θ2 ≤ −2.01, 1.54 ≤ θ1 ≤ 83 x(θ) = −0.333θ1 + 0.667

{5} CR4:
−0.79θ1− 0.61θ2 ≤ −1.55,−0.69θ1−
0.73θ2 ≤ −1.57, 0.71θ1 + 0.71θ2 ≤
5.08,−0.709θ1 − 0.706θ2 ≤ −1.61

x(θ) = −5.5θ1−5.5θ2 +12.5

{7} CR5: θ1 ≤ 1.54, θ2 ≤ −7.28 x(θ) = 0.154

6.4 Multi-parametric programming with binary param-
eters

Consider problem (6.1), featuring both continuous and binary variables. However, in the case
where θ = [θc, θb]T , eq. (3.4) in the Basic Sensitivity Theorem has to be reconsidered for θb,
as any function defined over Bp = {0, 1}p from problem (6.1) is inherently non-differentiable.
However, note that the right-hand side of eq. (3.4) does not depend on θ in any way, i.e. it
is constant. Thus, the change of x(θ) and λ(θ) is constant. Consequently we can directly
replace the differential with a difference equation and obtain:

(
∆ (θ0)
∆θb

,
∆λ (θ0)

∆θb

)T
= − (M0)−1N0, (6.7)

where ∆θb = 1. Thus, the corresponding critical region is given by:

Ax(θ) ≤ b+ Fθ (Feasibility of x(θ)) (6.8a)

λ(θ) ≥ 0 (Optimality of x(θ)) (6.8b)

θb ∈ Bp = {0, 1}p (Integrality of θb) (6.8c)

θ = [θc, θb]T (6.8d)
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As a result, the solution to a mp-QP problem featuring binary parameters is given by eq.
(3.7) and eq. (3.2.1), which is optimal over the non-convex critical region described in eq.
(6.8). If θb is fixed to any feasible combination, the resulting lower-dimensional critical
region is a polytope. Thus, eq. (6.8) describes a disjoint set of polytopes, over which the
same parametric solution remains optimal. This concept is graphically visualized in Figure
6.3, which highlights the transition from a parametric solution featuring only continuous
parameters to a solution featuring continuous and binary parameters.

6.4.1 The solution of problem (6.1)

In order to develop solution algorithms for problem (6.1) featuring binary parameters, it
is necessary to enable the handling of critical regions of type eq. (6.8). Thus, considering
binary parameters in conjunction with an algorithm which requires the polytopic nature of
the critical region, e.g. a geometrical approach, is challenging from a conceptual perspec-
tive. Thus, similarly to the case of unbounded parameters, we propose a modified version
of the combinatorial approach for the consideration of binary parameters (see section 6.5
for details). The key idea is to incorporate the binary nature of the parameters in the
feasibility and optimality checks. While this does not alter the algorithm in itself, it does
require the solution of mixed-integer linear programming (MILP) problems, which might be
computationally expensive.

Binary

parameters

Figure 6.3: A schematic representation of a situation with one binary and one continuous
variable. On the left we consider the problem where the binary variable is treated as a
continuous variable [0, 1] and on the right we show the equivalent binary representation.
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6.4.2 Numerical Example

Consider the following mp-QP featuring binary parameters, adapted from problem (6.6):

minimize
x

xT230.08x− θT

0

5

x+ x

subject to



4

4

9

10

2

7

13

−1

8

14



x ≤



7

21

6

23

25

34

2

27

29

12



+



0 −5

0 0

−3 0

0 0

−11 −11

−3 −6

0 0

0 0

−6 −5

0 0



θ

θ = [−5, 5]× {0, 1}

(6.9)

The solution to this problem is reported in Table (6.2) and visualized in Figure 6.4.

Table 6.2: The solution to problem (6.9).

Active Set Critical Region Solution

- CR1 :
θ1 ≥ −5, θ2 ∈ {0, 1},−7.28 ≤ θ2 ≤
1.43, 0.998θ1 − 0.065θ2 ≤ 2.01, 0.709θ1 +
0.706θ2 ≤ 1.61

x(θ) = −0.02θ2 − 0.004

{3} CR2 :θ2 = 0, 2.013 ≤ θ1 ≤ 2.290 x(θ) = −0.333θ1 + 0.667

{5} CR3 :θ1 ≤ 5, θ2 = {0, 1},−0.69θ1 − 0.73θ2 ≤
−1.57,−0.709θ1 − 0.706θ2 ≤ −1.61 x(θ) = −5.5θ1−5.5θ2 +12.5
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(a) (b)

Figure 6.4: A graphical visualization of the solution featuring binary parameters. In (a) we
show the solution where the parameter is relaxed between 0 and 1 while (b) shows the same
solution when θ2 is treated as a binary variable.

6.5 A generalized combinatorial algorithm

Based on the discussions in sections 6.3 and 6.4, we now combine these concepts and strate-
gies into the description of a combinatorial algorithm which enables the solution of problem
featuring unbounded and binary parameters. The pseudo-code for this approach is given in
Algorithm 1.

Lemma 5 (Convergence). Algorithm 3 converges in a finite number of steps which is
bounded above by

φmax =
n∑
i=0

m
i

 , (6.10)

where m is the number of inequality constraints.

Proof 13. Algorithm 3 represents a generalized version of the combinatorial algorithm from
[110], which in its worst case relies on the exhaustive enumeration of all possible combinations
of active sets, φmax.

Remark 42. Note that appropriate indexing avoids the repetitive consideration of active sets.
In addition, note that in reality it is in most cases not necessary to evaluate φmax constraints
due to Lemma 9.

Given a candidate active set I from Algorithm 3, the first requirement is to ensure that
there exists a parameter value θ for which the active set is feasible (see Lemma 9). In order
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Algorithm 3 The generalized combinatorial approach enabling the solution of problems
featuring unbounded and binary parameters. Note that Line 11 denotes the addition of all
new candidate sets which result by adding one of the inactive constraints to the active set.

1: C ← {∅}, S ← ∅, T ← ∅,
2: while C 6= ∅ do
3: Pop I with lowest cardinality from C
4: if LICQ is fulfilled, I /∈ T and problem (6.11) is feasible then
5: Obtain x(θ) and λ(θ)
6: Obtain CR from eq. (6.8)
7: if problem (6.12) is feasible then
8: S ← (CR, x(θ), λ(θ))
9: T ← I

10: end if

11: C ← I ∩


¬I

1




12: end if
13: end while

to ensure this, we solve the following Chebyshev problem:

R = minimize
x,θ,t

−t

subject to A¬I x− F¬I θ ≤ (b¬I − ||A¬I ||2 t)

AI x− F¬I θ = b¬I

t ≤M

t ∈ R, θ = [θc, θb]T

θc ∈ Rq, θb ∈ Bp = {0, 1}p.

(6.11)

The constant M in the problem (6.11) represents a sufficiently large number which bounds
the auxiliary variable t to an upper bound3. This boundary is required for stability, as the
variable indicates the lowest distance in a 2-norm sense from the constraint. In the case of an
unbounded problem, this distance will also be unbounded, which requires the introduction
of the artificial bound M in order to ensure the stability of the algorithm. Note that it does
not alter the outcome of the solution, as only a feasibility check is required.

If problem (6.11) is infeasible, then the active set is infeasible and together with its super-
set can be discarded (see Lemma 9). However, if problem (6.11) is feasible, the parametric

3Within our numerical studies, we successfully utilized M = 105.
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solution can be directly calculated. Based on this, the critical region can be formulated
based on eq. (6.8). However, this might lead to lower-dimensional regions due to underly-
ing degeneracies (see [110, 133] for excellent treatments on degeneracy in multi-parametric
programming). In order to identify these cases, we solve the following Chebyshev problem:

R = minimize
θ,t

−t

subject to CRAθ ≤ (CRb − ||CRA||2 t)

t ≤M

t ∈ R, θ = [θc, θb]T

θc ∈ Rq, θb ∈ Bp = {0, 1}p.

(6.12)

If problem (6.12) is infeasible or t ≤ ε, where ε is a prescribed numerical tolerance, then
the region is deemed lower-dimensional and the active set is discarded. Note that this
however does not lead to the fathoming of its superset according to Lemma 9, since it was
deemed feasible by the solution of problem (6.11). If t > ε, then the region is considered
full-dimensional and stored as a solution to problem (6.1).

Remark 43. The algorithm presented in this section requires the solution of the linear pro-
gramming problems (6.11-6.12). Thus despite the generality of Theorem 13, the approach
presented in this paper requires that there exists at least one point in each critical region
such that the failure reported in Remark 41 does not occur. Note that it is obvious that this
condition will be fulfilled for all well-posed problems, i.e. for all problems where θ ≥ 1022

would not impact the feasibility.

6.5.1 Numerical examples

Following the examples shown in the text for the different aspects of the generalized algo-
rithm, here we highlight two classes of problems, previously intractable with multi-parametric
programming, that can now be solved using the proposed algorithm.

Case 1 - Mixed-integer bilevel optimization: In bilevel optimization, an optimization
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problem is solved while subjected to a different optimization problem, i.e.

minimize
x

F (x, y)

subject to G(x, y) ≤ 0

x ∈X

y ∈ argmin
y
{f(x, y) : g(x, y) ≤ 0, y ∈ Y } ,

(6.13)

where all the functions and sets have appropriate dimensions. Multi-parametric pro-
gramming has been applied to bilevel and multilevel optimization ([66, 76, 78, 138]).
However, the case where F (x, y), G(x, y), f(x, y) and g(x, y) are affine functions of
continuous x ∈ X and binary y ∈ Y variables, with the latter appearing in both
the upper and lower problem (6.14) has not been considered in the realm of multi-
parametric programming.

min
xi,yj

A1×n[xi, xp]T +B1×m[yj, yq]T + c

s.t. min
xp,yq

D1×n[xi, xp]T + E1×m[yj, yq]T + f

s.t. gl×n[xi, xp]T + hl×m[yj, yq]T + k ≤ 0

xi,p ∈ Rn, yj,p ∈ {0, 1}m

|i|+ |p| = n, |j|+ |p| = m

(6.14)

where A, B, D, E, g, h matrices of appropriate dimensions and c, f , k fixed terms.
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The MILP-MILP bilevel problem is now considered:

min
x3,x4,y3,y4

−x3 − x4 + 5y3 + 5y4

s.t. min
x1,x2,y1,y2

−3x1 − 8x2 + 4y1 + 2y2

s.t. x1 + x2 − x3 ≤ 13

5x1 − 4x2 − 10y3 ≤ 10

−8x1 + 22x2 − x4 ≤ 121

−4x1 − x2 + 4y4 ≤ −4

0 ≤ xi ≤ 10yi,∀i ∈ {1, 2}

0 ≤ xj ≤ 10, ∀j ∈ {3, 4}

yk ∈ {0, 1}, ∀k ∈ {1, 2, 3, 4}

(6.15)

The lower level MILP problem is reformulated as the following multi-parametric mixed
integer linear programming (mp-MILP) problem featuring both continuous (θ1, θ2) and
binary (yθ1 , yθ2) parameters, i.e. x3, x4, y3 and y4 the optimal values of which are
determined by the upper level problem are treated as parameters in the lower level
and denoted as θ1, θ1, yθ1 and yθ2 , respectively:

min
x1,x2,y1,y2

−3x1 − 8x2 + 4y1 + 2y2

s.t. x1 + x2 ≤ 13 + θ1

5x1 − 4x2 ≤ 10 + 10yθ1

−8x1 + 22x2 ≤ 121 + θ2

−4x1 − x2 ≤ −4− 4yθ2

0 ≤ xi ≤ 10yi

yi ∈ {0, 1}

0 ≤ θi ≤ 10

yθi
∈ {0, 1},∀i ∈ {1, 2}

(6.16)
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Based on the Algorithm 1 the solution of problem 6.16 is presented in Table 6.3 and
Figure 6.5.
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Figure 6.5: Graphical representation of the lower level mp-MILP with binary parameters.
Clockwise from top left the binary parameters are: {0, 0}, {0, 1}, {1, 0}, {1, 1}.

The critical regions can be further reduced into two as shown in Table 6.4.

Note that the multi-parametric solution approach to the lower level MILP problem
preserves all optimal solutions in case of multiplicity, i.e. in case the objective function
value of the lower level problem is parametrically identical for more than one parametric
expressions of the continuous variables, in the same parametric space, all parametric
solutions are preserved in an “envelope of solutions”. Subsequently, the upper level
MILP problem has to consider all possible solutions.
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Case 2 - Parametrized Lagrangian multipliers: Given the optimization problem:

minimize
x

f(x)

subject to h(x) = 0

g(x) ≤ 0

x ∈X

(6.17)

it is well known that its dual problem takes the following form (e.g. [84]):

maximize
λ,µ≥0

minimize
x∈X

L (x, λ, µ)

subject to L (x, λ, µ) = f(x) + λTh(x) + µTg(x).
(6.18)

Problem (6.18) is one of the cornerstones of mathematical optimization, and reviewing
its rich history goes beyond the scope of this section. The interested reader is re-
ferred to the excellent textbooks [84] and [36] for an in-depth treatment of the subject.
Within this section, problem (6.18) is considered through the lens of multi-parametric
programming. As such, the consideration of problem (6.18) shows that the primal vari-
ables x can be expressed as a parametric function of the Lagrangian multipliers (λ, µ).
However, so far no attempt has been made to solve problem (6.18) using state-of-the-
art multi-parametric programming algorithms, as the parameters should be bounded,
a requirement which cannot be guaranteed for (λ, µ). Thus, using the generalized al-
gorithm 3, we can now consider such problems. The inner minimization problem is a
mp-NLP problem the solution of which is outside the scope of this paper. It is clear
though, that by considering both λ and µ as parameters then the inner minimization
problem yields parametric expressions for x of the form of eq. (6.19):

x = pfi(λ, µ) for λ, µ ∈ CRi, ∀i ∈ I (6.19)

where CRi is the ith critical region of the problem.

Therefore, based on this approach the outer maximization problem becomes:

maximize
λ,µ

pfi(λ, µ)

subject to λ, µ ∈ CRi,∀i ∈ I .

(6.20)
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The solution of problem (6.20) can be attractive when degeneracy is present in the
primal problem and in cases where uncertainty is also considered. This is subject of
currently ongoing research.

Remark 44. All computations in this paper were carried out on a Intel Core i5-4200M
CPU at 2.50 GHz and 8 GB of RAM. Furthermore, MATLAB R2014a and IBM ILOG
CPLEX Optimization Studio 12.6.1 were used for the computations.
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yθ1 = 0, yθ2 = 0

CR1

−26θ1 + 3θ2 ≤ −125

CR2

26θ1 − 3θ2 ≤ 125

0 ≤ θ1 ≤ 10 0 ≤ θ1 ≤ 10

0 ≤ θ2 ≤ 10 0 ≤ θ2 ≤ 10

y1 = 1, y2 = 1 y1 = 1, y2 = 1

x1 = 4
78θ2 + 704

78 x1 = 22
30θ1 − 1

30θ2 + 165
30

x2 = 5
78θ2 + 685

78 x2 = 8
30θ1 + 1

30θ2 + 225
30

yθ1 = 0, yθ2 = 1

CR3

−26θ1 + 3θ2 ≤ −125

CR4

26θ1 − 3θ2 ≤ 125

0 ≤ θ1 ≤ 10 0 ≤ θ1 ≤ 10

0 ≤ θ2 ≤ 10 0 ≤ θ2 ≤ 10

y1 = 1, y2 = 1 y1 = 1, y2 = 1

x1 = 4
78θ2 + 704

78 x1 = 22
30θ1 − 1

30θ2 + 165
30

x2 = 5
78θ2 + 685

78 x2 = 8
30θ1 + 1

30θ2 + 225
30

yθ1 = 1, yθ2 = 0

CR5

−22θ1 + θ2 ≤ −135

CR6

22θ1 − θ2 ≤ 135

0 ≤ θ1 ≤ 10 0 ≤ θ1 ≤ 10

0 ≤ θ2 ≤ 10 0 ≤ θ2 ≤ 10

y1 = 1, y2 = 1 y1 = 1, y2 = 1

x1 = 10 x1 = 22
30θ1 − 1

30θ2 + 165
30

x2 = 1
22θ2 + 201

22 x2 = 8
30θ1 + 1

30θ2 + 225
30

yθ1 = 1, yθ2 = 1

CR7

−22θ1 + θ2 ≤ −135

CR8

22θ1 − θ2 ≤ 135

0 ≤ θ1 ≤ 10 0 ≤ θ1 ≤ 10

0 ≤ θ2 ≤ 10 0 ≤ θ2 ≤ 10

y1 = 1, y2 = 1 y1 = 1, y2 = 1

x1 = 10 x1 = 22
30θ1 − 1

30θ2 + 165
30

x2 = 1
22θ2 + 201

22 x2 = 8
30θ1 + 1

30θ2 + 225
30

Table 6.3: Parametric solution of the lower level mp-MILP with binary parameters.127



yθ1 , yθ2 ∈ {0, 1}2

CR1n

−(26 − 4yθ1)θ1 + (3 − 2yθ1)θ2 ≤
−125− 10yθ1

CR2n

−(26 − 4yθ1)θ1 + (3 − 2yθ1)θ2 ≤
−125− 10yθ1

0 ≤ θ1 ≤ 10 0 ≤ θ1 ≤ 10

0 ≤ θ2 ≤ 10 0 ≤ θ2 ≤ 10

y1 = 1, y2 = 1 y1 = 1, y2 = 1

x1 = ( 4
78 −

4
78yθ1)θ2 + 704

78 + 76
78yθ1 x1 = 22

30θ1 − 1
30θ2 + 165

30

x2 = ( 5
78 −

8
429yθ1)θ2 + 685

78 + 152
429yθ1 x2 = 8

30θ1 + 1
30θ2 + 225

30

Table 6.4: Reduced parametric solution of the lower level mp-MILP with binary parameters.
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Chapter 7

Conclusions and Future Work

This thesis discussed a broad range of topics in the area of multi-parametric programming
and control. In this section, some conclusions from this body of work are drawn and an
opinionated view on future research directions linked to this thesis is given.

7.1 Conclusions

In this thesis, some recent developments in multi-parametric programming and control are
discussed. In the beginning, it is shown how the solution to a mp-QP problem is given
by a connected graph, a result which enables the description of the most efficient mp-QP
algorithm known to date. Then, mp-MIQP problems are considered and it is shown how the
suitable use of underestimation of the critical regions leads to the first algorithm capable of
solving mp-MIQP problems exactly. Additionally, the thesis considered the formulation of
robust MPC problems for continuous and hybrid systems, as well as the generalization of
the combinatorial algorithm for the solution of mp-QP problems featuring unbounded and
binary parameters.

In summary, this thesis has presented:

• The extension of the connected-graph theorem to mp-QP problems and the design of
a novel solution procedure which outperforms current state-of-the-art methods.

• The development of a solution procedure to obtain the exact solution for mp-MIQP
problem.

• An approach towards the application of robust optimization in robust MPC for con-
tinuous and hybrid systems featuring parametric uncertainty.
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• An algorithm for the solution of mp-QP problems featuring unbounded and binary
parameters.

7.2 Future Directions

These developments have enabled the routine solution of mp-MILP and mp-MIQP problems
beyond exhaustive enumeration, as well as the most efficient solution strategies for mp-LP
and mp-QP problems. The topics discussed in the following build upon this ability to explore
new and exciting areas of research:

Computational development and parallelization: Although it is fairly straightforward,
the work presented in this thesis is the first application of parallel computing in multi-
parametric programming. In particular, the parameter ρlimit was introduced which
provided a trade-off between overhead and efficiency of parallelization. Based on this
work, parallelization options for the combinatorial and graph-based approach have been
included in POP, and are currently under way for the mixed-integer solvers as well.
This development enables the use of high-performance computers for the solution of
multi-parametric programming problems, and will open up avenues for new problems
to be considered. Specifically, the following questions are of interest:

• How many LP and QP problems are solved on average for a mp-LP or mp-QP
problem?

• What is a good value for ρlimit in general? Should it vary dynamically throughout
the solution of the problem?

• How far can multi-parametric programming be pushed with these new software
capabilities? What are the limitations at those points?

• Which architecture beyond MATLAB R© is suitable for the future of multi-parametric
programming? Which one is the most appropriate?

Decentralization via multi-parametric programming: As highlighted with its appli-
cability to bilevel programming and multi-objective optimization problems, multi-
parametric programming is very well suited to cope with vertical or horizontal de-
centralization of an optimization problem. If the overall problem can be decomposed
into a series of smaller problems, then each of these problems can be solved using
multi-parametric programming [246, 253]. This strategy was also sucessfully applied
in [209] for periodic systems and in [65] for combined heat and power systems. These
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contributions indicate that there is a huge potential for the development of techniques,
specifically for the following questions:

• Is it possible to (automatically) recognize whether and how a given optimization
problem can be decentralized?

• How and based on which criteria should different multi-parametric solutions be
linked? Should it be direct using parameters or should there be a supervisory
level?

• Can multi-parametric programming be used beyond optimization for e.g. simula-
tion procedures where such decentralization occurs?

Robust explicit MPC: As evident from the high interest within the community, the issue
of robust MPC cannot be considered solved. While some contributions were discussed
in this thesis, especially the area of tube-based MPC appears to be very promising.
However, regardless of the strategy which proves itself in the community, the issue of
computational tractability will still remain. The author believes that multi-parametric
programming offers the unique ability to overcome these challenges directly. Specifi-
cally, the following questions are of interest:

• Can the set-theoretical methods used in robust/tube-based MPC be made com-
putationally more efficient by using special structures (such as box-constrained
systems) and/or multi-parametric programming?

• Is it possible to combine the notion of decentralization (see above) with model
predictive control, possibly even for the robust case?

• Can the novel robust counterparts devised by Guzman et al. [111, 112] be applied
to robust MPC as well?

Other areas: As many topics have been discussed in this thesis, many questions have also
come up which may seem peripheral but are nonetheless, at least in the authors’
opinion, highly exciting questions. Note that some of these are very hard and have
been considered for decades or even longer:

• Is there a (more) efficient way to perform projection operations? Although with
modifications, the state-of-the-art strategy for projections is still the Fourier-
Motzkin elimination. While the author is aware of the ’Equality Set Projection’
approach by Jones et al. [131], the fact that it had been implemented in MPT
v2 but is absent from v3 indicates that it may not be as promising as it initially
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was conceived to be. Intuitively, it appears that there should be some approach
which provides a new angle for this fundamental operation.

• What more can be understood about the structure of multi-parametric program-
ming problems? As mentioned in the introduction of section 3, for most problems
only very few of all possible combinations of active sets yield full-dimensional crit-
ical regions. While the connected-graph approach certainly reduces the number
of active sets to be considered, it is still an unanswered question as to whether
something can be found in the structure of the problem itself which enables an
even deeper understanding of which active sets will be optimal or not.

• Is it possible to solve dual problems via multi-parametric programming? As men-
tioned in section 6, the dual of an optimization problem is inherently a multi-
parametric programming problem. The author believes that solving dual problems
explicitly might deliver very exciting insights into the workings of optimization
problems and the role of duality beyond what is currently known.

7.3 Publications resulting from this thesis

For completion, this section lists in chronological order all publications by the author. Note
that the work published in [200] was performed prior to the start of the PhD studies during
a research stay. The papers are divided into full-length, book chapters, short notes and
conference papers.

Remark 45. Many of the contributions presented in this thesis will be featured in a book
which is currently in preparation:

Pistikopoulos, E. N.; Diangelakis, N. A.; Oberdieck, R. Multi-parametric Op-
timization and Control. Wiley-VCH, in preparation.

7.3.1 Full-length papers

• Oberdieck, R.; Wittmann-Hohlbein, M.; Pistikopoulos, E. N. (2014) A branch and
bound method for the solution of multiparametric mixed integer linear programming
problems. Journal of Global Optimization, 59(2-3), 527-543.

• Oberdieck, R.; Pistikopoulos, E. N. (2015) Explicit hybrid model-predictive control:
The exact solution. Automatica, 58, 152-159.

132



• Pistikopoulos, E. N.; Diangelakis, N. A.; Oberdieck, R.; Papathanasiou, M. M.;
Nascu, I.; Sun, I. (2015) PAROC - an Integrated Framework and Software Platform for
the Optimization and Advanced Model-Based Control of Process Systems. Chemical
Engineering Science, 136, 115-138.

• Papathanasiou, M. M.; Avraamidou, S.; Steinebach, F.; Oberdieck, R.; Mueller-
Spaeth, T.; Morbidelli, M.; Mantalaris, A.; Pistikopoulos, E. N. (2016) Advanced
Control Strategies for the Multicolumn Countercurrent Solvent Gradient Purification
Process (MCSGP). AIChE Journal, 62(7), 2341-2357.

• Oberdieck, R.; Diangelakis, N. A.; Papathanasiou, M. M.; Nascu, I.; Pistikopou-
los, E. N. (2016) POP - Parametric Optimization Toolbox. Industrial & Engineering
Chemistry Research, 55(33), 8979-8991.

• Oberdieck, R.; Diangelakis, N. A.; Avraamidou, S.; Pistikopoulos, E. N. (2016) On
unbounded and binary parameters in multi-parametric programming: Applications to
mixed-integer bilevel optimization and duality theory. Journal of Global Optimization,
in print.

• Oberdieck, R.; Diangelakis, N. A.; Nascu, I.; Papathanasiou, M. M.; Sun, M.;
Avraamidou, S.; Pistikopoulos, E. N. (2016) On multi-parametric programming and
its applications in process systems engineering. Chemical Engineering Research and
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tion for MPC. In Raković, S. V.; Levine, W. S. Handbook of Model Predictive Control
(MPC), in preparation.

133



7.3.3 Short notes

• Oberdieck, R.; Pistikopoulos, E. N. (2016) Multi-objective optimization with convex
quadratic cost functions: A multi-parametric programming approach. Computers &
Chemical Engineering, 85, 36-39.
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[14] M. Baotić. An Efficient Algorithm for Multiparametric Quadratic Programming. Tech-
nical report, ETH Zurich, 2002.
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[78] N. P. Fáısca, V. Dua, B. Rustem, P. M. Saraiva, and E. N. Pistikopoulos. Parametric
global optimisation for bilevel programming. Journal of Global Optimization, 38(4):
609–623, 2007.

[79] N. P. Fáısca, K. I. Kouramas, P. M. Saraiva, B. Rustem, and E. N. Pistikopoulos. A
multi-parametric programming approach for constrained dynamic programming prob-
lems. Optimization Letters, 2(2):267–280, 2008.

[80] P. Falugi and D. Q. Mayne. Getting Robustness Against Unstructured Uncertainty: A
Tube-Based MPC Approach. IEEE Transactions on Automatic Control, 59(5):1290–
1295, 2014.

[81] C. Feller and T. A. Johansen. Explicit MPC of higher-order linear processes via com-
binatorial multi-parametric quadratic programming. In European Control Conference
(ECC), pages 536–541, 2013.

[82] C. Feller, T. A. Johansen, and S. Olaru. An improved algorithm for combinatorial
multi-parametric quadratic programming. Automatica, 49(5):1370–1376, 2013.

[83] A. V. Fiacco. Sensitivity analysis for nonlinear programming using penalty methods.
Mathematical Programming, 10(1):287–311, 1976.

[84] C. A. Floudas. Nonlinear and mixed-integer optimization: Fundamentals and applica-
tions. Topics in chemical engineering. Oxford University Press, New York, 1995.

[85] I. A. Fotiou, P. Rostalski, P. A. Parrilo, and M. Morari. Parametric Optimization
and Optimal Control using Algebraic Geometry Methods. International Journal of
Control, 79(11):1340–1358, 2006.

143



[86] I. A. Fotiou, P. Rostalski, B. Sturmfels, and M. Morari. An algebraic geometry ap-
proach to nonlinear parametric optimization in control. In American Control Confer-
ence, pages 3618–3623, Minneapolis, MN, 2006.

[87] A. Fuchs, D. Axehill, and M. Morari. On the choice of the Linear Decision Functions
for Point Location in Polytopic Data Sets - Application to Explicit MPC. In IEEE
Conference on Decision and Control, pages 5283–5288, Atlanta, USA, 2010.

[88] A. Fuchs, D. Axehill, and M. Morari. Lifted Evaluation of mp-MIQP Solutions. IEEE
Transactions on Automatic Control, 60(12):3328–3331, 2015.

[89] T. Gal. The Historical Development of Parametric Programming. In Parametric Op-
timization and Approximation, volume 72 of International Series of Numerical Math-
ematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série interna-
tionale d’Analyse numérique, pages 148–165. Birkhäuser Basel, 1985.
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[108] B. Grünbaum, V. Kaibel, V. Klee, and G. M. Ziegler. Convex polytopes, volume 221
of Graduate texts in mathematics. Springer, New York, 2nd ed. / prepared by vokel
kaibel, victor klee, and günter m. zeigler edition, 2003.

145



[109] M. Gulan, N. A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe, and B. Rohal’-Ilkiv. Implica-
tions of Inverse Parametric Optimization in Model Predictive Control: Developments
in Model-Based Optimization and Control: Distributed Control and Industrial Appli-
cations. pages 49–70. Springer International Publishing, Cham, 2015.

[110] A. Gupta, S. Bhartiya, and P. Nataraj. A novel approach to multiparametric quadratic
programming. Automatica, 47(9):2112–2117, 2011.

[111] Y. A. Guzman, L. R. Matthews, and C. A. Floudas. New a priori and a posteri-
ori probabilistic bounds for robust counterpart optimization: I. Unknown probability
distributions. Computers & Chemical Engineering, 84:568–598, 2016.

[112] Y. A. Guzman, L. R. Matthews, and C. A. Floudas. New a priori and a posteri-
ori probabilistic bounds for robust counterpart optimization: II. A priori bounds for
known symmetric and asymmetric probability distributions. Computers & Chemical
Engineering, in print, 2016.

[113] J. Habibi, B. Moshiri, A. K. Sedigh, and Manfred Morari. Low-complexity control of
hybrid systems using approximate multi-parametric MILP. Automatica, 63:292–301,
2016.

[114] Hao Jiang, Jin Lin, Yonghua Song, Shi You, and Yi Zong. Explicit model predictive
control applications in power systems: an AGC study for an isolated industrial system.
I E T Generation, Transmission and Distribution, 10(4), 2016.

[115] W. Heemels, B. d. Schutter, and A. Bemporad. Equivalence of hybrid dynamical
models. Automatica, 37(7):1085–1091, 2001.

[116] A. B. Hempel, P. J. Goulart, and J. Lygeros. Inverse Parametric Quadratic Program-
ming and an Application to Hybrid Control. In Nonlinear Model Predictive Control,
pages 68–73, Noordwijkerhout, NL, 2012.

[117] A. B. Hempel, P. J. Goulart, and J. Lygeros. Inverse Parametric Optimization With
an Application to Hybrid System Control. IEEE Transactions on Automatic Control,
60(4):1064–1069, 2015.

[118] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. Multi-Parametric Toolbox 3.0.
In European Control Conference (ECC), pages 502–510, 2013.
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[157] M. Kvasnica, J. Hled́ık, I. Rauová, and M. Fikar. Complexity reduction of explicit
model predictive control via separation. Automatica, 49(6):1776–1781, 2013.
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[169] J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In
CCA/ISIC/CACSD, 2004.

[170] C. Løvaas, M. M. Seron, and G. C. Goodwin. Robust output-feedback model predictive
control for systems with unstructured uncertainty. Automatica, 44(8):1933–1943, 2008.

[171] A. S. Manne. Notes on Parametric Linear Programming. RAND Corporation, pages
P–468, 1953.

[172] C. Manoso, A. P. d. Madrid, and M. Romero. Explicit predictive control of a hybrid
system: A case study: Control of the longitudinal dynamics of a commercial vehicle
at very low speed. In Control Automation Robotics Vision (ICARCV), 2014 13th
International Conference on, pages 1251–1256, 2014.

[173] H. Markowitz. Portfolio Selection. The Journal of Finance, 7(1):77–91, 1952.

[174] H. Markowitz. The optimization of a quadratic function subject to linear constraints.
Naval Research Logistics Quarterly, 3(1-2):111–133, 1956.

[175] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for
engineering. Structural and Multidisciplinary Optimization, 26(6):369–395, 2004.

[176] R. Mart́ı, S. Lucia, D. Sarabia, R. Paulen, S. Engell, and C. d. Prada. Improv-
ing scenario decomposition algorithms for robust nonlinear model predictive control.
Computers & Chemical Engineering, 79:30–45, 2015.

151



[177] R. Mastragostino, S. Patel, and Swartz, Christopher L. E. Robust decision making
for hybrid process supply chain systems via model predictive control. Computers &
Chemical Engineering, 62:37–55, 2014.

[178] I. Maurovic, M. Baotic, and I. Petrovic. Explicit Model Predictive Control for trajec-
tory tracking with mobile robots. In Advanced Intelligent Mechatronics (AIM), 2011
IEEE/ASME International Conference on, pages 712–717, 2011.

[179] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789–814, 2000.

[180] G. P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I — Convex underestimating problems. Mathematical Programming, 10(1):147–
175, 1976.

[181] P. Mhaskar, N. H. El-Farra, and P. D. Christofides. Robust hybrid predictive control
of nonlinear systems. Automatica, 41(2):209–217, 2005.

[182] A. Mian, A. V. Ensinas, and F. Marechal. Multi-objective optimization of SNG pro-
duction from microalgae through hydrothermal gasification. Computers & Chemical
Engineering, 76:170–183, 2015.

[183] K. Miettinen. Nonlinear Multiobjective Optimization, volume 12 of International Series
in Operations Research & Management Science. Springer US, Boston, MA, 1998.

[184] R. Misener and C. A. Floudas. ANTIGONE: Algorithms for coNTinuous Integer Global
Optimization of Nonlinear Equations. Journal of Global Optimization, 59(2-3):503–526,
2014.

[185] M. Monnigmann and M. Jost. Vertex based calculation of explicit MPC laws. In
American Control Conference (ACC), pages 423–428, 2012.
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Appendix A

The POP toolbox

Portions of this chapter have been submitted for publication in:

• Oberdieck, R.; Diangelakis, N. A.; Papathanasiou, M. M.; Nascu, I.; Pistikopoulos, E.
N. (2016) POP - Parametric Optimization Toolbox. Industrial & Engineering Chem-
istry Research, 55(33), 8979-8991.

In this section, the different aspects of POP, the Parametric OPtimization toolbox, are
presented, involving three key features: problem solution, problem generation and problem
library.

A.1 Problem solution

A.1.1 Solution of mp-QP problems

In POP, the geometrical [14], a variation of the combinatorial [110] and the connected-graph
[202] algorithm have been implemented. These are accessible as functions in the Command
Window:

Solution = Geometrical(problem)
Solution = Combinatorial(problem)
Solution = ConnectedGraph(problem),

where problem is the structured array containing the mp-LP/mp-QP problem to be solved.
Additionally, POP provides an interface with the solver used in MPT:

Solution = POPviaMPT(problem).
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Note that this requires the separate download of the MPT toolbox. Thus, POP features
every major solution strategy for problems of type (3.1). These have been combined in a
single wrapper:

Solution = mpQP(problem)

The interested user is referred to the User Manual available at http://paroc.tamu.edu/Software/
and our YouTube channel ’POP Toolbox’. Additionally, each solver provides statistical in-
formation about its performance, a feature which is also explained in detail in the User
Manual.

A.1.2 Solution of mp-MIQP problems

In POP, a decomposition-based algorithm based on [74] has been implemented featuring four
different comparison procedures discussed below. The solver is available in the Command
Window as:

Solution = mpMIQP(problem)

Additionally, the solver provides statistical information about its performance, a feature
which is also explained in detail in the User Manual.

A.1.3 Requirements and Validation

It is possible to use all functionalities of POP using only the built-in functionalities of
MATLAB and its toolboxes. However, for speed and stability reasons, the use of commercial
tools is encouraged. In particular, POP features links to CPLEX and NAG as LP and QP
solvers, as well as CPLEX for the MILP and MIQP problems.

A.1.4 Handling of equality constraints

For the case of mp-LP and mp-QP problems, equality constraints are simply considered as
active constraints of the solution. Conversely, for mp-MILP and mp-MIQP problem, the
global optimization problem is solved straight up, as it is expected that the chosen solver is
capable of handling such issues. Once a candidate combination of binary variables has been
found and fixed, the resulting equality constraints are considered in the mp-LP and mp-QP
problem.

Remark 46. As CPLEX only provides MILP and MIQP solvers, in case of mp-MIQP prob-
lems the quadratic constraints in problem (4.4) are underestimated using a suitable set of
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McCormick estimators. Note that this guarantees correct execution of the algorithm. How-
ever if no comparison procedure is employed, then the number of solutions per critical region
might be higher than in the case where a MINLP solver is used.

In order to validate the solution obtained from problem (3.1) or (4.1), POP features the
function VerifySolution, which randomly seeds 5000 points in the parameter space Θ and
solves the corresponding deterministic problem. While this does not provide a full certificate
of guarantee, it is a strong indicator that a correct solution has been obtained.

A.2 Problem generation

The aim is to generate random, feasible problems with suitably defined constraints such that
different active sets become optimal in different parts of the parameter space, thus resulting
in a partitioning of the parameter space into several critical regions. For the case of mp-QP
problems, the development of such a generator can be decomposed into the following steps:

Step 1 - Objective Function: In order to define the objective function, Q, H and c ac-
cording to problem (3.1) need to be defined. While for H and c no specific criterion
apply, Q needs to be symmetric positive definite. This is achieved by randomly gener-
ating a diagonal matrix featuring positive entries.

Step 2 - Constraints: The two criteria for the generation of constraints for multi-parametric
programming problems are (i) feasibility and (ii) tightness in the sense that different
solutions should be optimal in different parts of the parameter space. Furthermore,
any set of linear constraints can be written as a set of matrices. Thus, generating
random constraints is equivalent to generating random matrices. Two of the most im-
portant things to look for in a matrix is its sparsity and its dynamic range, i.e. the
scale of the weights. The algorithm used for the random generation provides random
parameters for sparsity and dynamic range, and thus aims at providing structurally
and numerically different constraints at each run (see in Algorithm 4).

Remark 47. Note that it is up to the user whether or not redundant constraints should be
removed or not.

Remark 48. The following comments are made regarding Algorithm 4:

• Algorithm 4 also applies to multi-parametric mixed-integer programs.

• As the generator described is random, the feasibility of the generated problem cannot
be guaranteed by default. Thus, in order to ensure a non-empty feasible set for any
generated problem, the Chebyshev center is calculated according to eq. (2.4).
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Algorithm 4 Generation of a random feasible set of inequality constraints. Note that Di,k

represents the element of D in the i-th row and k-th column of the D-matrix, and · denotes
the rounding to the closest integer below.
Require: n, q
Ensure: A, E, b, F

1: Define r = ρ (max (λ)−min (λ)), where λ = eig (Q)
2: Define number of constraints m = ψ (n+ q)
3: for k=1:m do
4: Generate random TA ∈ [0, 1]n and αA = {i|Ti ≥ α∗A}
5: Randomly generate GA ∈ [0−G∗A, 1−G∗A]n and set Ak,αA

= rGA

6: Generate random TF ∈ [0, 1]q and αF = {i|Ti ≥ α∗F}
7: Randomly generate GF ∈ [0−G∗F , 1−G∗F ]q and set Fk,αF

= rGF

8: end for

• The parameter space Θ is by default defined as Θ = {θ ∈ Rq | − 10 ≤ θl ≤ 10, l =
1, ..., q}.

• The coefficients in Algorithm 4 are randomly generated for each problem instance in
order to make the generation procedure as random as possible.

Within POP, the problem generator is accessible from the Command Window as:

problem = ProblemGenerator(Type,Size,options)

where Type is ’mpLP’, ’mpQP’, ’mpMILP’ or ’mpMIQP’ and Size is a structured array
featuring the desired dimensions of the optimization variables, parameters and constraints.
Additionally, the options input specifies settings which are discussed in detail in the User
Manual. In particular, it is possible to generate more than one problem directly, which
enables the seamless generation of problem libraries and test sets.

A.3 Problem library

The third key feature of POP is its problem library, currently featuring the four randomly
generated test sets ’POP mpLP1’, ’POP mpQP1’, ’POP mpMILP1’ and ’POP mpMIQP1’
containing 100 randomly generated mp-LP, mp-QP, mp-MILP and mp-MIQP problems re-
spectively (see Figures A.1 and A.2). These problem libraries are used later on to analyze
the performance of the different solvers and options available in POP. These test problems
represent to our knowledge the first ever comprehensive library of test problems in multi-
parametric programming.

Within POP, each problem is stored in the folder ’Library’, which contains a folder for
each test set, which in return contains all the individual problems as ’.mat’ files. These files
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can be loaded into MATLAB and the corresponding problem can be solved. Additionally, it
is possible to use the Graphical User Interface (GUI, see next section), to perform statistical
analysis as well as to create customized test sets which can be exported and solved directly.
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Figure A.1: The problem statistics of the test sets ’POP mpLP1’ and ’POP mpQP1’.
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Figure A.2: The problem statistics of the test sets ’POP mpMILP1’ and ’POP mpMIQP1’.

A.3.1 Merits and shortcomings of the problem library

The aim of the POP toolbox is not only to provide the means to solve multi-parametric
programming problems, but also in general to advance the computational side of multi-
parametric programming solvers beyond their description and solution of some test cases.
For this purpose, it is vital to create test beds where new and old algorithms can be compared
against each other. The larger this basis of test cases is, the more efficient and robust will
the implementations of these algorithms be. The problem library included in POP is the first
step towards this direction, as it provides 100 problems for each of the four major problem
classes. It therefore enables the access to larger quantities of data for solver performance and
as a result the inference of bottlenecks in algorithms and comparisons of different solvers.
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However, these problems are randomly generated using the problem generator of the POP
toolbox. This means that the problems themselves are not based on real-world applications.
Thus, the problem library in its current form does not give any information as to what
algorithm is more appropriate for a MPC or scheduling application, and therefore conclusions
drawn from the results of the problem library should be taken as suggestive and not definitive.
In future, the aim is to vastly expand the problem library and automate the benchmarking
to an extent that enables the readily available testing of any new implementation.

A.4 Graphical User Interface (GUI)

In order to facilitate its use, POP is equipped with a GUI which can be launched from the
Command Window using:

POP

It enables direct access to the different functions of POP including post-processing and
exporting automatically generated code. The main screens of the interface are shown in
Figure A.3, i.e. the welcome screen, and the solver, library and generator interfaces. Note
that in order to maintain a user-friendly approach, some of the options available in POP are
set to defaults when the interface is used. More information on the interface can be found
in the User Manual.
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Figure A.3: The structure of the graphical user interface (GUI) of POP.
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Appendix B

PAROC - an Integrated Framework
and Software Platform for the
Optimization and Advanced
Model-Based Control of Process
Systems

Portions of this chapter have been published in:

• Pistikopoulos, E.N.; Diangelakis, N.A.; Oberdieck, R.; Papathanasiou, M.M.; Nascu,
I.; Sun, M. (2015) PAROC - an Integrated Framework and Software Platform for
the Optimization and Advanced Model-Based Control of Process Systems. Chemical
Engineering Science, 136, 115-138.

• Nascu, I.; Diangelakis, N. A.; Oberdieck, R.; Papathanasiou, M. M.; Pistikopoulos,
E. N. (2016) Explicit MPC in real-world applications: the PAROC framework. In
Proceedings of the American Control Conference, 913-918.

In this chapter the PAROC (PARametric Optimisation and Control) framework is described
in detail, which is depicted in Figure B.1.

B.1 High-Fidelity Modeling and Analysis

The first step of the PAROC framework is high-fidelity modeling and analysis. In particular,
the scope is to (i) develop a high-fidelity model of the process [141, 152], (ii) analyze the orig-
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Figure B.1: The PAROC framework.

inal problem e.g. using global sensitivity analysis [142, 145, 240] and (iii) perform parameter
estimation and dynamic optimization of the developed model. Within our framework, the
modeling software PSE’s gPROMS R©ModelBuider is used, as it provides the aforementioned
tools either directly or allows for their implementation via gO:MATLAB, a connection tool
between MATLAB R© and gPROMS R©.

B.2 Model Approximation

Although it is possible to use a high-fidelity model for optimal design decisions, its complexity
may usually render its direct use for the development of model-based strategies computa-
tionally expensive. Consequently, it may be necessary to simplify the representation of the
model while compromising its accuracy. In PAROC this is addressed by the following two
approaches:

System Identification: A series of simulations of the high-fidelity model for different initial
states is used to construct a meaningful linear state-space model of the process using
statistical methods. One of the most widely applied tools within this area is the System
Identification Toolbox from MATLAB R©.
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Model-Reduction Techniques: While system identification relies on the user in terms of
interpretation of the data and processing of the results, model-reduction techniques
somewhat ”automate” the reduction process based on formal techniques.

B.3 Multi-parametric Programming

After the model approximation step a state-space model is obtained which is used for the
development of receding horizon policies. The calculation of such policies, e.g. in the form
of control laws or scheduling policies, traditionally requires the online solution of an opti-
misation problem, which might be computationally infeasible [214]. Therefore, the PAROC
framework employs multi-parametric programming, where the optimisation problem is solved
offline as a function of a set of parameters. In addition, depending on the cost function and
the characteristic of the system considered, the complexity of the optimisation problem
changes considerably.

B.4 Multi-parametric Moving Horizon Policies

While mulit-parametric programming has been applied in a variety of areas, a key application
lies in the offline calculation of moving horizon policies such as control laws and scheduling
policies. The underlying idea is thereby to consider the states of the system as parameters,
and thus solve the optimisation problem over a range of admissible states.

Remark 49. In addition, measured disturbances, if present, are also considered as parameters
as well as state-space and model mismatch and the output set point.

In general, we consider the following optimisation problem

V ∗N(x0) = min
U∈U

J(U,X)

= min
U∈U

‖xN‖pP +
N−1∑
k=0
‖xk‖pS + ‖uk‖pR

s.t. xk+1 = Axk +Buk + Cdk

yk = Dxk + Euk + e

h(uk, xk, yk) ≤ 0

xk+N ∈XT ,

(B.1)

where u, x and y are the moving horizon policies, states and outputs of the considered
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system, U = [u0, ..., uN−1], ‖·‖p is the p-norm and P , S and R are the corresponding weights.
In addition, x0 are the initial states and the set XT is the terminal set that, if well-defined,
ensures stability [227].

Remark 50. The parameter dependence of the objective function can be avoided using the
Z-transformation [31], i.e.

z = u+H−1F Tx, (B.2)

where H is the Hessian and F is the bilinear term between u and x.

While problem (B.1) describes the general case of moving horizon policies, the remaining
part of the section will focus predominately on multi-parametric model-predictive control
(mp-MPC). This is due to the extensive number of contributions and advances that have
been made in this field.

Remark 51. Moving horizon estimation is an estimation method based on optimization that
considers a limited amount of past data. One of the main advantages of moving horizon
estimation is the possibility to incorporate system knowledge as constraints in the estimation.
This results in a MPC-like online optimization problem, which can be solved offline using
multi-parametric programming.

B.5 Software Implementation and Closed-loop Valida-
tion

B.5.1 Multi-parametric Programming Software

In conjunction with the aforementioned theoretical developments, PAROC provides soft-
ware solutions to key aspects of the framework (see paroc.tamu.edu). In particular, it offers
tools for the formulation and solution of multi-parametric programming problems. Based
on POP [211], it contains state-of-the-art algorithms which allow for an efficient solution of
mp-LP, mp-QP, mp-MILP and mp-MIQP problems. Furthermore, its interconnection with
gPROMS R© ModelBuilder (see below) makes the use of the PAROC framework straightfor-
ward and allows for an intuitive approach for design, operation and control problems.

B.5.2 Integration of PAROC in gPROMS R© ModelBuilder

The developed multi-parametric moving horizon policies and estimators are validated in a
closed-loop fashion against the original high-fidelity model. However, within the PAROC
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framework, the high-fidelity modeling and analysis is performed in gPROMS ModelBuilder R©
while the model reduction as well as the formulation and solution of the multi-parametric
programming problem is carried out in MATLAB R©. Thus currently, the closed-loop valida-
tion of the developed controller is done in MATLAB R© using the gPROMS ModelBuilder R©
tool gO:MATLAB. While this is a valid way of performing closed-loop validation, this does
not allow for the use of the tools available in gPROMS R© (e.g. dynamic optimisation). In
addition, this procedure is conceptually problematic, as it suggests the test of a controller
given a certain system rather than the test of a mp-MPC controlled system.

Therefore, we have developed a software solution that enables the direct export of the
mp-MPC controller devloped in MATLAB R© into gPROMS R© ModelBuilder as a foreign
object. This foreign object, written in C++, loads the matrix representation and provides a
simple look-up table as part of the gPROMS R© ModelBuilder architecture, similarly to e.g.
a Proportional-Integral-Derivative (PID) controller.
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