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“The quaternion born, as a curios offspring of a quaternion of parents, say of geometry,

algebra, metaphysics, and poetry . . . I have never been able to give a clear statement

of their nature and their aim than I have done in two lines of a sonnet addressed to

Sir John Herschel:

“And how the one of Time, of Space the Three,

Might in the Chain of Symbols girdled be.”

It is not so much to be wondered at, that they should have let me to strike out some new

lines of research, which former methods have failed to suggest.”

Sir William Rowan Hamilton



Abstract

Advances in sensor technology have made possible the recoding of three and four-

dimensional signals which afford a better representation of our actual three-dimensional

world than the “flat view” one and two-dimensional approaches. Although it is straight-

forward to model such signals as real-valued vectors, many applications require unam-

biguous modeling of orientation and rotation, where the division algebra of quaternions

provides crucial advantages over real-valued vector approaches.

The focus of this thesis is on the use of recent advances in quaternion-valued signal

processing, such as the quaternion augmented statistics, widely-linear modeling, and

the HR-calculus, in order to develop practical adaptive signal processing algorithms in

the quaternion domain which deal with the notion of phase and frequency in a com-

pact and physically meaningful way. To this end, first a real-time tracker of quaternion

impropriety is developed, which allows for choosing between strictly linear and widely-

linear quaternion-valued signal processing algorithms in real-time, in order to reduce

computational complexity where appropriate. This is followed by the strictly linear

and widely-linear quaternion least mean phase algorithms that are developed for phase-

only estimation in the quaternion domain, which is accompanied by both quantitative

performance assessment and physical interpretation of operations. Next, the practical

application of state space modeling of three-phase power signals in smart grid man-

agement and control systems is considered, and a robust complex-valued state space

model for frequency estimation in three-phase systems is presented. Its advantages over

other available estimators are demonstrated both in an analytical sense and through

simulations. The concept is then expanded to the quaternion setting in order to make

possible the simultaneous estimation of the system frequency and its voltage phasors.

Furthermore, a distributed quaternion Kalman filtering algorithm is developed for fre-

quency estimation over power distribution networks and collaborative target tracking.

Finally, statistics of stable quaternion-valued random variables, that include quaternion-

valued Gaussian random variables as a special case, is investigated in order to develop

a framework for the modeling and processing of heavy-tailed quaternion-valued signals.
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Chapter 1

Introduction

1.1 Overview

In contrast to digital filters with constant coefficients that are only optimal for those

signals that they are specifically designed for, adaptive filters do not require any as-

sumptions on the signal generating procedure and can operate optimally even in non-

stationary environments [1, 2]. This has firmly put adaptive signal processing at the

heart of statistical signal processing research since the 1950s with adaptive signal pro-

cessing being used in a wide range of applications such as channel equalization, echo can-

cellation, magnetic resonance imaging, navigation instrumentation, radar, and sonar [1–

3]. Moreover, in recent years an increasing amount of computational power has become

readily available with lower purchasing and running costs than ever before, which has

in turn paved the path for the deployment of adaptive filtering solutions for problems

of growing complexity. In this chapter, a survey of those areas in adaptive signal pro-

cessing that are relevant to the work in this thesis is presented. This helps clarify the

motivations and contributions of the work in this thesis, which are summarized at the

end of this chapter.

1.2 Signal processing in R

The introduction of the recursive least squares (RLS) in the 1950s, mainly credited to

Plackett [4], can be seen as the starting point of adaptive signal processing research in

its modern form. The RLS algorithm is based on recursively finding the coefficients

(weights) of a filter in a manner that minimizes a weighted summation of squares of an

error measure. The use of this weighted summation of error measure squares however,

makes for fast convergence rates on one hand and high computational complexity on the

other. Although much research has been devoted to developing computationally efficient

22
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and fast versions of the RLS algorithm since its introduction [5–8], the computational

complexity of the RLS algorithm remains as its major drawback when it comes to real-

time signal processing applications. To this end, in 1959, Widrow and Hoff introduced

their least mean square (LMS) algorithm [9, 10] while conducting research on adaptive

pattern classification [9]. The LMS algorithm attempts to find optimal filtering coeffi-

cients by recursively updating the coefficients at each interval based on the gradient of

the mean square error. A simple to implement and computationally efficient algorithm,

the LMS has become the most well-known and widely used signal processing algorithm

with many variants aimed at improving its performance including a class of linearly

adjusted step-size LMS algorithms [11], the normalized least mean square (NLMS) algo-

rithm that normalizes the input signal to guarantee convergence [12], and the generalized

normalized gradient descent (GNGD) algorithm that adjusts the adaptation gain in a

non-linear fashion [13, 14].

Approximately one year after the introduction of the LMS algorithm, Rudolf Kalman

introduced his renowned Kalman filtering algorithm [15], based on the properties of con-

ditional Gaussian random variables and linear processes which promptly found appli-

cations in the primary guidance, navigation, and control system (PGNCS) that guided

the Apollo spacecrafts [16]. Since then, the framework has been expanded to cater for

non-linearity in the form of the extended and unscented Klaman filters [17, 18], where

the former linearizes the dynamic system equations around the current mean using the

first-order Taylor series expansion whereas the later relies upon sigma-point lineariza-

tion techniques. The Kalman filter and its non-linear variants have not only become the

main stay of most navigation systems [16, 19–21], but also have found applications in

areas such as finance, target tracking, robot vision, wireless communication, and neural

networks [22–27].

For the Kalman filter to operate optimally, two conditions must be satisfied [28,

29]; the covariances of the observational and state evolution noise must be precisely

established, which has resulted in specialized algorithms devoted to adaptive estimation

of noise characteristics in the 1970s [29], and the underlying system model must be

known, which has resulted in the introduction of dual Kalman filtering algorithms [30–

32]. In essence dual Kalman filters implement two Kalman filtering algorithms with

feedback, one employs the estimates of the system parameters in order to update the

estimates of the process and the other employs estimates of the process to update the

estimates of the system parameters.

Although signal processing in R has proven to be advantageous in a wide range of

diverse applications extending from spacecraft navigation to finance, there are scenarios

where it becomes necessary to use higher dimensional algebras. For instance, rotations

in two and three-dimensional spaces can be presented in R2 and R
3 using vector algebras;

however, it becomes computationally expensive and analytically complicated to extract

useful information from these matrices, such as the plane of motion, angle of rotation,
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and the speed of rotation (or rotation frequency). Furthermore, in a large number

of applications, as will be discussed in Section 1.3 and Section 1.4, the complex and

quaternion fields offer the dimensionality necessary to model the underlaying signal

directly in the multi-dimensional domain that they naturally reside in, resulting in more

elegant and efficient signal processing solutions.

1.3 Signal processing in C

Invention is often times motivated by necessity and the invention of the complex field

is no exception to this rule. Since the 8th century mathematicians were interested in

finding the roots of an arbitrary polynomial, most notably one can point to the work of

Khwarizmi that provided a general solution for polynomials of up to the second degree

with positive roots. However, the need for a number field beyond R became pressing in

the 16th century when a number of notable mathematicians, such as Niccolo Tartagila

and Girolamo Cardano, where working on a closed form solution for polynomials of third

and fourth order [33]. Rafael Bombelli, in his work on the roots of cubic polynomials

introduced the symbol
√−1 and showed that in order to solve the roots of such polyno-

mials it is necessary to perform calculations in C [33]. Regarded as “the most remarkable

formula in mathematics” by Richard Feynman, the utmost notable development regard-

ing the use of complex numbers in engineering applications is the formula put forth by

Euler, eiθ = cos(θ) + isin(θ), that allows for a convenient presentation and a framework

for analysis of two dimensional rotations, oscillation, and traveling waves [34–36].

In all fields of electrical engineering, complex-valued modeling of electrical compo-

nents, circuits, and filters provides a simple mathematical framework for solving the

differential equations that govern their behavior, allowing for speedy analysis of their

performance [37, 38]. Therefore, most developments in these areas have taken place in

the complex domain highlighting the need for complex-valued adaptive signal process-

ing techniques. Hence, there has been a concerted effort to adapt real-valued algorithms

for dealing with complex-valued signals. In 1975, Widrow presented the complex least

mean square (CLMS) algorithm [39], which is a straightforward extension of the LMS

algorithm to the complex field. The same approach has been taken in order to extend

a number of real-valued signal processing techniques to the complex domain [3, 40–42],

where often the covariance, E[xxT ], is replaced with its complex dual, E[xxH ], using

the Hermitian operator instead of the transpose operator [43, 44]. Although a zero-

mean real-valued Gaussian random variable is fully described by its covariance, this is

not the case for zero-mean complex-valued Gaussian random variables as the covari-

ance does not describe the inner-relation between the real and imaginary components

of a complex-valued random variable [33, 43, 44]. In the case of complex-valued ran-

dom variables, in order to fully describe the second-order information the covariance

should be considered simultaneously with the pseudo-covariance, E[xxT ] [33, 43, 44].
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In order to better illustrate this fact, the heat map of the histogram of four different

zero-mean complex-valued Gaussian random variables with unit variance is shown in

Figure 1.1. Notice that although all four complex-valued Gaussian random variables are

unit variance, the dependence structure of their real and imaginary components differs

significantly.

Figure 1.1: Heat map of the histogram of four zero-mean complex-valued Gaussian
random variables with unit variance and differing pseudo-covariances.

In 2008, Javidi and Mandic introduced their augmented complex least mean square

(ACLMS) algorithm [45, 46], that can exploit the full second-order statistical information

of complex-valued signals. This was achieved by employing the CR-calculus [47, 48] and

the augmented complex statistics [49], where the complex-variable and its conjugate are

treated as two different variables. The analysis indicates that the ACLMS outperforms

the CLMS for complex-valued signals with a non-vanishing pseudo-covariance [33, 43, 44,

46]. The framework has also been deployed for optimal state space filtering of complex-

valued signals by Goh and Mandic in order to develop an augmented extended complex

Kalman filter (AECKF) [50], which since has been followed by a class of augmented

Kalman filtering algorithms in [51, 52].

The Clarke transform [53] has been used for a long time in order to map the three-

phase voltages onto the complex domain to simplify circuit analysis of three-phase power

systems. More recently, augmented complex-valued signal processing techniques have

been used for adaptive frequency estimation in three-phase power systems [54]. This

is achieved by exploiting the Clarke transform to incorporate the information from all
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the phases and then employing the ACLMS or the AECKF to estimate the funda-

mental frequency of both balanced and unbalanced three-phase power systems [54–58].

Nonetheless, current algorithms can only model harmonic components as noise; in addi-

tion, their performance degrades when the three-phase systems is experiencing faults1.

These issues are addressed in Chapter 5, where a new frequency estimator based on

widely-linear complex-valued state space signal processing techniques is developed, its

performance quantized, and compared to previous frequency estimation methods.

Although complex numbers have been instrumental in new developments in power,

communications, and electrical engineering, mostly because of the platform they provide

for solving differential equations, complex numbers lack the dimensionality necessary to

model the actual three-dimensional world. For example, when dealing with three-phase

power systems using the Clarke transform will lead to partial loss of information during

faults. Therefore, it would be more elegant and analytically more appropriate to process

these signals in the quaternion domain. This is further elaborated on in Section 1.4.

1.4 Signal processing in H

First introduced by Hamilton [59], quaternions are a four-dimensional skew field and

can be seen as the extension of complex numbers, where the imaginary component

itself is three-dimensional. Since their introduction, quaternions have seen extensive

use in physics, aerospace, and computer graphics [60–64] for describing orientation and

rotation in three-dimensional spaces, due to their underlying division algebra and their

natural ability to model three-dimensional data as pure imaginary quaternions [60–63].

In comparison to rotation matrices and vector algebras, quaternions present a more

concise and computationally efficient representation of three-dimensional rotations that

allows to avoid problems associated with gimbal lock [60], resulting in accurate and

mathematically tractable solution with fewer constrains than those obtained by vector

algebras in R
3.

In signal processing applications, quaternions have only come to prominence since

the 1990s finding applications in processing of colored images [65–67], owing to their

four-dimensional nature, and in attitude estimation for aerospace control systems [62],

owing to their ability to model three-dimensional rotations. However, due to the lack

of a suitable mathematical framework, most signal processing algorithms developed for

quaternion-valued signals have taken the approach of essentially transforming quater-

nions into a vector of quadrivariate real-valued components [62–64, 68], where most

advantages of quaternions such as their division algebra and their underlying physi-

cal interpretation are lost. Suitable tools for developing rigorous signal processing al-

gorithms, such as the HR-calculus [69, 70], the augmented second-order statistics of

1A three-phase system that does not have balanced voltage phasors in its main frequency component
is referred to as operating under fault conditions or experiencing a fault.
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quaternions [71], and the quaternion fast Fourier transform [72, 73], have only recently

been developed sparking a resurgence of quaternions in signal processing with signal

processing algorithms that are derived directly in H proving advantageous in kernel

learning [74], wind profile forecasting [75], and bearings-only tracking [76].

1.4.1 Augmented second-order statistics of quaternions

At around the same time Took et al. [71] and Via et al. [77, 78] revisited the second-

order statistics of quaternion random variables establishing a mathematical framework

for exploiting the full second-order information of quaternion-valued signals. This was

achieved by considering the quaternion signal and its rotations around the three axes of

the imaginary quaternion subspace simultaneously. Similar to the augmented complex

statistics [49], it is shown that the standard covariance only partially explains the second-

order statistics of quaternion-valued signals as it does not reveal any information about

the dependence structure of the real-valued components of quaternion-valued signals.

The dependence structure of the real-valued components of a quaternion-valued

signal is revealed by the cross-covariance between the quaternion-valued signal and its

rotations around the three axes of the quaternion imaginary subspace, hereafter referred

to as pseudo-covariances [71], which has in turn allowed for the establishment of the

widely-linear model and its optimal “Wiener type” solution for conditional minimum

mean square error (MMSE) estimation in the quaternion domain [71]. In addition, it

has been shown that the widely-linear model can be simplified reducing computational

complexity of adaptive signal processing algorithms if the quaternion-valued signal has

two or three vanishing pseudo-covariances [77, 78].

1.4.2 The HR-calculus

One major stumbling block when it comes to developing adaptive signal processing al-

gorithms in the quaternion domain has been the restrictiveness of the Cauchy-Riemann-

Fueter condition for quaternion differentiability, that can only accommodate for con-

stants and linear functions [79]. Therefore, in 2010 and following along the same path

as the CR-calculus [47, 48], the HR-calculus was developed by Janhanchahi, Took, and

Mandic [69, 70, 79]. The HR-calculus establishes a duality between H
4 and R

4 by

rotating the imaginary part of the quaternion-valued variable around the axes of the

quaternion imaginary subspace, much like the augmented quaternion statistics, result-

ing in a framework for calculating the derivatives of quaternion-valued functions directly

in the quaternion domain [69, 70, 79]. The sections of the HR-calculus that are relevant

to this thesis are explained in detail in Chapter 2.
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1.5 Motivation and contributions

Although a great deal of research has been carried out on signal processing in H, practi-

cal quaternion-valued signal processing algorithms dealing with the notion of phase and

frequency in the quaternion domain are still lacking. Motivated by the recent devel-

opments in quaternion-valued signal processing and the natural ability of quaternions

to model three-dimensional rotations, we focus on quaternion-valued signal processing

algorithms dealing with the concept of phase and frequency in the quaternion domain.

The contributions of this thesis are summarized as follows:

• A novel real-time tracker of quaternion impropriety is developed. This allows to

track the dependence structure between the real-valued components of quaternion-

valued random variables in real-time, that in turn provides useful information on

selecting between widely-linear, semi-widely-linear, or strictly linear versions of

adaptive signal processing algorithms and reducing computational complexity.

• A quaternion-valued phase-only estimator is developed for adaptive estimation

of the phase of quaternion-valued signals. The work includes both a qualitative

performance assessment and a physical interpretation of the operations of the

developed algorithm.

• Although a number of strictly linear and widely-linear complex-value signal pro-

cessing algorithms for adaptive frequency estimation in three-phase power systems

have already been introduced; However, the performance of these algorithms de-

grades rapidly in crucial moments when operating under fault conditions. To this

end, a widely-linear complex-valued frequency estimator for three-phase systems

that can outperform its counterparts in addition to having consistent performance

under both nominal and fault conditions is developed.

• It is shown that mapping the three-phase signal onto the complex domain leads

to partial loss of information when operating under fault conditions; therefore, a

quaternion frequency estimator for three-phase systems that can accommodate for

the three-phase signal without loss of information is developed. The developed

frequency estimator not only outperforms its complex-valued counterparts, but

also provides a platform for adaptive estimation of the system voltage phasors.

Finally, the framework is expanded to account for the presence of harmonics in

the power system.

• The work on quaternion state space estimators is expanded to the distributed

setting with the development of the distributed quaternion Kalman filter. The

performance analysis of the developed algorithm indicates that it operates in an

unbiased fashion. In addition, the mean square error performance of the developed

algorithm is quantified.
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• Most of the research surrounding quaternion-valued signal processing is concen-

trated around Gaussian random variables, due to their stable property. In order to

develop a framework for modeling and processing of heavy-tailed quaternion-valued

signals, the statistical analysis of quaternion-valued random variables through the

characteristic function is considered, which allows a particle filtering algorithm

for adaptive processing of elliptically contoured stable quaternion-valued random

variables, that include quaternion-valued Gaussian random variables as a special

case, to be proposed.

1.6 Organization of thesis

In order to better clarify our contributions, an overview of those areas in adaptive signal

processing that are relevant to this thesis was presented in Chapter 1. In Chapter 2,

the theoretical background which forms the mathematical foundations of this thesis, in-

cluding the HR-calculus and the augmented second-order statistics of quaternion-valued

random variables, are presented so that the reader can better understand the work

conducted in this thesis and included in the following chapters.

In Chapter 3, a novel algorithm for tracking quaternion impropriety in real-time is

developed and its performance under different degrees of impropriety is analyzed. In

Chapter 4, adaptive phase estimation of quaternion-valued signals is considered, where

a quaternion phase only estimator is developed, its performance analyzed, and its op-

eration explained from a geometric point of view. Frequency estimation in three-phase

power systems is looked into in Chapter 5, where a complex-valued adaptive frequency

estimator that can outperform its complex-valued counterparts, account for presence of

harmonics, and has consistent performance under nominal and fault conditions is devel-

oped. Frequency estimation in three-phase power systems is considered in the quaternion

domain in Chapter 6, in order to incorporate all the available information in the voltage

recordings and estimate the system voltage phasors. In Chapter 7, a distributed quater-

nion Kalman filtering algorithm with applications to smart grid and collaborative target

tracking is developed and its mean and mean square error performance analyzed. In

Chapter 8, the generality of quaternion-value stable random variables are considered in

order to establish a framework for modeling and processing of heavy-tailed quaternion-

valued signals. Finally, the work is concluded in Chapter 9, where the contributions of

this thesis and recommendations for potential future work are summarized.



Chapter 2

Background

2.1 Overview

In this chapter the mathematical foundations of signal processing in C and H, such as

the analyticity and differentiability of complex and quaternion-valued functions and the

augmented statistics of complex and quaternion-valued random variables, are revised.

2.2 Analyticity and differentiability in C

Consider a complex-valued function f(z) = fr(zr, zi) + ifi(zr, zi), where z ∈ C with fr

and fi denoting the real and imaginary parts of f, whereas the real and imaginary parts

of z are denoted by zr and zi. The derivative of f is given by

∂f

∂z
= lim

Δz→0

f(z +Δz)− f(z)

Δz
(2.1)

where if for a given point on the complex plane, z = z0, the limit in (2.1) exists and

is independent of the direction taken, then f is said to be differentiable at z = z0. In

addition, in the complex domain, the function f is differentiable at z = z0 if and only

if the partial differentials of fr and fi exist and satisfy the Cauchy-Riemann conditions

given by [80]
∂fr
∂zr

=
∂fi
∂zi

and
∂fi
∂zr

= −∂fr
∂zi

·

Moreover, if f admits the Cauchy-Riemann conditions in some neighborhood of z = z0,

then f is infinitely differentiable at z = z0, can be locally expanded in a power series, and

is referred to as analytic [80]. However, the functions encountered in signal processing

applications are often not analytic. One such example is f = zz∗ = z2r +z2i , which is used

as the cost function of the CLMS and ACLMS algorithms [45, 46] and is not analytic at

30
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any point on the complex plane, that is with the exception of z = 0. Hence, the Cauchy-

Riemann conditions constitute a very strict structure on differentiable complex-valued

functions.

In the context of the CR-calculus [81], f : C → C is considered as a bivariate function

h(zr, zi) = [fr, ifi]
T , where the total differential of h is given by

dh =
∂h

∂zr
dzr +

∂h

∂zi
dzi

=
∂fr
∂zr

dzr + i
∂fi
∂zr

dzr +
∂fr
∂zi

dzi + i
∂fi
∂zi

dzi

(2.2)

where, after some tedious mathematical manipulations and applying the transforms

dzr = (dz + dz∗)/2 and dzi = (dz − dz∗)/2i

the expression in (2.2) can be simplified to give [81]

dh =
1

2

(
∂h

∂zr
− i

∂h

∂zi

)
dz +

1

2

(
∂h

∂zr
+ i

∂h

∂zi

)
dz∗. (2.3)

Now, by slightly abusing the mathematics, considering z and z∗ as “algebraically”

independent1 variables, results in f(zr, zi) � f(z, z∗), where the total differential of f is

given by

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗. (2.4)

It follows from comparing the expressions in (2.3) and (2.4) that

∂f

∂z
=

1

2

(
∂f

∂zr
− i

∂f

∂zi

)
∂f

∂z∗
=

1

2

(
∂f

∂zr
+ i

∂f

∂zi

)

where ∂f/∂z is referred to as the R-derivative whereas ∂f/∂z∗ is referred to as the R
∗-

derivative [81]. In addition, since z and z∗ were considered as “algebraically” indepen-

dent, the partial derivatives ∂f/∂z and ∂f/∂z∗ can be calculated in the same fashion as

for real-valued multi-variate functions with z and z∗ being considered as different vari-

ables, resulting in ∂z/∂z∗ = 0 and ∂z∗/∂z = 0, which is the reason behind referring to z

and z∗ as “algebraically” independent. Note that if the Cauchy-Riemann conditions are

satisfied, then ∂f/∂z∗ = 0 and the total derivative of f will be equal to its C-derivative,

∂f/∂z [81].

1Although z and z∗ are essentially the same variable, treating them as different variables provides a
platform where the two degrees of freedom inherent in complex numbers can be accommodated for.
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2.3 Augmented estimation in C

It has now become generally accepted that for a complex-valued random variable, x,

the standard covariance, E[xxH ], does not fully describe its second-order statistical

information [33, 82]. The full description of the second-order statistical information of a

general complex-valued random variable is only possible through the augmented complex

statistics, where the complex random variable, x, is augmented with its conjugate, x∗

to give the augmented random variable as xa = [xT ,xH ]T [33]. Now, the augmented

covariance matrix can be expressed as

Cxa = E[xaxaH ] =

[
Cx Rxx

RH
xx CH

x

]

where E[·] represents the statistical expectation, while Cx = E[xxH ] is the standard co-

variance and Rxx = E[xxT ] is referred to as the pseudo-covariance [33]. It now becomes

apparent that the standard covariance can fully describe the second-order statistical in-

formation of only a spacial class of complex-valued random-variables that have vanishing

pseudo-covariances, for which the probability distribution is rotation invariant and are

referred to as second-order proper2; however, for a general complex-valued random vari-

able both the covariance and the pseudo-covariance are required to fully exploit their

second-order statistics [33].

In order to introduce the optimal second-order estimator for complex-valued signals,

first we must revisit the real-valued MMSE estimator that estimates y conditional to

observation x, given by

ŷ = E[y|x]

where ŷ is the estimate of y. For zero-mean and jointly Gaussian x and y the optimal

solution is the strictly linear estimator given by

ŷ = hTx

where h is a vector of coefficients and x is a vector of past observations referred to as

the regressor. Now, in the case where x and y are complex-valued, the MMSE estimator

should be expressed in terms of the real and imaginary components of x and y [33],

which yields

ŷ = E[yr|xr, xi]︸ ︷︷ ︸
ŷr

+i E[yi|xr, xi]︸ ︷︷ ︸
ŷi

(2.5)

2In the literature the phrases “second-order proper” and “second-order circular” are often used inter-
changeably [33, 43, 44, 83]; However, in this thesis we will refer to complex or quaternion-valued random
variables with vanishing pseudo-covariances as proper. In addition, the words “second-order” are often
dropped as Gaussianity is assumed.
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where upon replacing xr = (x+ x∗)/2 and xi = i(x∗ − x)/2 we have

ŷ = E[yr|x, x∗] + iE[yi|x, x∗].

Therefore, the optimal MMSE estimator for complex-valued zero-mean and jointly Gaus-

sian x and y becomes

ŷ = hHx+ gHx∗ (2.6)

where h and g are complex-valued coefficient vectors. From Section 2.2, recall that

∂x/∂x∗ = ∂x∗/∂x = 0, which results in the estimator in (2.6) being referred to as

widely-linear, due to the fact that it is linear with respect to both x and x∗. In addition,

the estimator in (2.6) can be rearranged into a more elegant representation as[
ŷ

ŷ∗

]
︸ ︷︷ ︸
ŷa

=

[
hH gH

gT hT

]
︸ ︷︷ ︸

Wa

[
x

x∗

]
︸ ︷︷ ︸
xa

where ŷa and xa are the augmented estimation and augmented regressor vectors, while

Wa is the augmented weight matrix. Since the widely-linear estimator uses the regressor

vector in its augmented form, it is equivalently referred as the augmented estimator.

The augmented statistics of complex-valued signals and the CR-calculus have been

exploited in [51] to introduce a class of augmented complex Kalman filtering algorithms

including the AECKF. To better explain the operations of the AECKF, consider the

evolution sequence of the complex-valued augmented state vector {xa
n, n = 0, 1, 2, . . .},

given by

xa
n = fn(x

a
n−1) + νa

n

where fn(·) is the state evolution function at time instant n and {νa
n, n = 0, 1, 2, . . .} is

the augmented state evolution noise sequence. In Kalman filtering, the objective is to

track xa
n, in real-time, through noise corrupted observations that are expressed as

ya
n = hn(x

a
n) + ωa

n

where ya
n and hn(·) are the augmented observation vector and observation function

at time instant n, while {ωa
n, n = 0, 1, 2, · · · } is the augmented measurement noise

sequence. Hereafter, at each time instant, the observation and state evolution functions

are approximated as fn(x
a
n) ≈ Aa

nx
a
n and hn(x

a
n) ≈ Ha

nx
a
n, where Aa

n and Ha
n are the

Jacobian matrices of fn(·) and hn(·), obtained through the framework of the CR-calculus.

The augmented state vector sequence can now be tracked using the AECKF given in

Algorithm 1, where Cνa
n
and Cωa

n
denote the augmented covariance matrices of νa

n

and ωa
n, while x̂a

n|n−1 and x̂a
n|n represent the a priori and a posteriori estimates of xa

n,

whereas M̂a
n|n−1 and M̂a

n|n are estimates of the augmented covariance matrices of the a

priori and a posteriori state estimation error vectors.
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Algorithm 1. AECKF [51]

Initialize with:

x̂a
0|0 = E[xa

0]

M̂a
0|0 = E

[
(xa

0 − E[xa
0])(x

a
0 − E[xa

0])
H
]

Model update:

x̂a
n|n−1 =fn(x̂

a
n−1|n−1)

M̂a
n|n−1 =Aa

nM̂
a
n−1|n−1A

aH
n +Cνa

n

Measurement update:

Ga
n =M̂a

n|n−1H
aH
n

(
Ha

nM̂
a
n|n−1H

aH
n +Cωa

n

)−1

x̂a
n|n =x̂a

n|n−1 +Ga
n

(
ya
n − hn(x̂

a
n|n−1)

)
M̂a

n|n =
(
I−Ga

nH
a
n

)
M̂a

n|n−1

2.4 Quaternion algebra

The skew-field of quaternions is a four-dimensional, non-commutative, associative, di-

vision algebra. A quaternion variable q ∈ H consists of a real part, �(q), and a three-

dimensional imaginary part or pure quaternion, �(q), that is also referred to as the

vector part due to the fact that it comprises three components �i(q), �j(q), and �k(q);

hence, q can be expressed as

q = �(q) + �(q) =�(q) + �i(q) + �j(q) + �k(q)

=qr + iqi + jqj + kqk

where qr, qi, qj , qk ∈ R. The unit vectors i, j, and k are the orthonormal basis for the

quaternion imaginary subspace and obey the following product rules

ij = k, jk = i, ki = j,

i2 = j2 = k2 = ijk = −1.

The product of q1, q2 ∈ H is given by

q1q2 =�(q1)�(q2) + �(q1)�(q2) + �(q2)�(q1)+
�(q1)×�(q2)−

〈�(q1),�(q2)〉 (2.7)

where the symbols ‘〈·, ·〉’ and ‘×’ denote the inner and cross-products, respectively.

Moreover, notice that due to the cross-product in (2.7), the quaternion product is non-

commutative unless q1 and q2 have parallel imaginary components.
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The involution of q ∈ H around ζ ∈ H is defined as qζ � ζqζ−1 [84] and can be seen

as the quaternion equivalent of the complex conjugate, as the real-valued components

of a quaternion number, q ∈ H, can be expressed using involutions as [69, 71, 79]

qr =
1

4

(
q + qi + qj + qk

)
qi =

1

4i

(
q + qi − qj − qk

)
qj =

1

4j

(
q − qi + qj − qk

)
qk =

1

4k

(
q − qi − qj + qk

)
.

(2.8)

Furthermore, in the case that ζ2 = −1 the following expressions hold true

(qζ)∗ =(q∗)ζ

ζ(qζ) =qζ

(qζ)ζ =q.

(2.9)

The quaternion conjugate is also an involution and is defined as

q∗ = �(q)−�(q) = 1

2

(
qi + qj + qk − q

)
(2.10)

while the norm of q ∈ H is given by

|q| =
√
qq∗ =

√
q2r + q2i + q2j + q2k

whereas the quaternion inverse can be written as q−1 = q∗/|q|. In addition, ∀{q1, q2} ∈ H

the following properties hold

|q1q2| =|q1||q2|∣∣∣∣q1q2
∣∣∣∣ = |q1|

|q2|
(q1q2)

∗ =q∗2q
∗
1.

In a similar fashion to complex numbers, a quaternion q ∈ H can alternatively be

expressed by its polar presentation, given by [72]

q = |q|eξθ = |q|(cos(θ) + ξsin(θ)
)

where

ξ =
�(q)
|�(q)| and θ = atan

( |�(q)|
�(q)

)
.

Moreover, it is straightforward to prove that the sin(·) and cos(·) functions can be

expressed as

sin(θ) =
1

2ξ

(
eξθ − e−ξθ

)
and cos(θ) =

1

2

(
eξθ + e−ξθ

)
(2.11)

where ξ2 = −1. Note that to express the sin(·) and cos(·) functions in their polar from,

as in (2.11), ξ can be replaced with an arbitrary normalized pure quaternion number [72].
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2.5 Three-dimensional rotations

The theorem of rigid-body rotations put forth by Euler states that the attitude of a

body after having foregone any sequence of rotations is equivalent to a single right-

hand rotation of that body by an angle θ about an axis η parallel to the direction

that is unchanged by the rotation [60, 61]. Traditionally three-dimensional rotations

are represented using rotation matrices, where a rotation of θ degrees around the unit

vector η = [ηx, ηy, ηz]
T is expressed as u′ = Ru with the vectors u and u′ representing

the pre and post-rotation coordinates of the rigid-body, whereas the rotation matrix R

is given by

R =⎡
⎢⎣ cos(θ) + η2x (1− cos(θ)) ηxηy (1− cos(θ))− ηzsin(θ) ηxηz (1− cos(θ)) + ηysin(θ)

ηyηx (1− cos(θ)) + ηzsin(θ) cos(θ) + η2y (1− cos(θ)) ηyηz (1− cos(θ))− ηxsin(θ)

ηzηx (1− cos(θ))− ηysin(θ) ηzηy (1− cos(θ)) + ηxsin(θ) cos(θ) + η2z (1− cos(θ))

⎤
⎥⎦

(2.12)

while the relation between the pre ans post-rotation coordinates can more conveniently

be represented as

u′ = cos(θ)u+ sin(θ) (η × u) + (1− cos(θ)) ηηTu (2.13)

with the expression ‘η × u’ denoting cross-product of the vectors η and u [61]. It now

becomes apparent that in addition to giving a counterintuitive depiction of the rotation

operation, extracting the parameters θ and η from R is a computationally expensive

and an inconvenient affair.

Modeling the pre-rotation Cartesian coordinates, u = [ux, uy, uz]
T , as a pure quater-

nion given by qu = iux+juy+kuz; then, the post-rotation coordinates can be calculated

through the involution

qu′ =

(
cos

(
θ

2

)
+ qηsin

(
θ

2

))
qu

(
cos

(
θ

2

)
+ qηsin

(
θ

2

))−1

where qu′ = iu′x + ju′y + ku′z represents the post-rotation coordinates, while qη = iηx +

jηy + kηz, with the rotation fully characterized by
(
cos(θ/2) + qηsin(θ/2)

)
= eqηθ/2,

much like the Euler formula that models two-dimensional rotations.

The advantages of modeling three-dimensional rotations employing quaternions as

compared to rotation matrices are summarized in the following [60, 61, 85, 86]:

• The rotation matrix, R, requires nine variables to express a rotation, whereas its

quaternion equivalent, eqηθ/2, only requires four variables when modeling the same

rotation, which reduces both memory requirements and memory access time by

more than half.
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• A rotation matrix must satisfy the conditions RRT = I and det(R) = 1; there-

fore, the need might arise to calibrated the rotation matrix after many rotations

have been performed, due to finite precision of computer calculations, which is

computationally expensive, whereas no such operation is required when modeling

rotations with quaternions [85].

• Expressing a sequence of rotations applying the roll, pitch, and yaw angles, a

degree of freedom is lost when one of the angles reaches π/2. However, this is not

the case for quaternions where only the angle and the axis of rotation are required.

• It is straightforward to produce smooth interpolations of rotations when they are

modeled with quaternions allowing for higher quality computer graphics [86].

2.6 The HR-calculus

The Cauchy-Riemann-Fueter condition for differentiability in H, given by [79, 85]

∂f

∂qr
+ i

∂f

∂qi
+ j

∂f

∂qj
+ k

∂f

∂qk
= 0

pose a severe restriction on the class of quaternion-valued differentiable functions, as

it only accommodates for constant or linear functions in H. This has been a major

stumbling block in the derivation of quaternion-valued signal processing algorithms, as

in most adaptive signal processing techniques the aim is to minimize a cost function of

an error measure which is typically a real-valued function of quaternion-valued variables.

One elegant solution to this problem is the HR-calculus [69, 70, 79, 85]. In the

context of the HR-calculus, a quaternion function f(q) : H → H represented as

f(q) = fr(qr, qi, qj , qk) + ifi(qr, qi, qj , qk) + jfj(qr, qi, qj , qk) + kfj(qr, qi, qj , qk)

in a format similar to that of the CR-calculus, is expressed as a quadrivariate function

g = [fr, ifi, jfj , kfk]
T with the total differential

dg =
∂g

∂qr
dqr +

∂g

∂qi
dqi +

∂g

∂qj
dqj +

∂g

∂qk
dqk

=
∂fr
∂qr

dqr + i
∂fi
∂qr

dqr + j
∂fj
∂qr

dqr + k
∂fk
∂qr

dqr

+
∂fr
∂qi

dqi + i
∂fi
∂qi

dqi + j
∂fj
∂qi

dqi + k
∂fk
∂qi

dqi

+
∂fr
∂qj

dqj + i
∂fi
∂qj

dqj + j
∂fj
∂qj

dqj + k
∂fk
∂qj

dqj

+
∂fr
∂qk

dqk + i
∂fi
∂qk

dqk + j
∂fj
∂qk

dqk + k
∂fk
∂qk

dqk.

(2.14)
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Exploiting the expressions in (2.8) yields

dqr =
1

4

(
dq + dqi + dqj + dqk

)
dqi =

1

4i

(
dq + dqi − dqj − dqk

)
dqj =

1

4j

(
dq − dqi + dqj − dqk

)
dqk =

1

4k

(
dq − dqi − dqj + dqk

) (2.15)

where substituting (2.15) into (2.14) and after some tedious mathematical manipulations

we have

dg =
1

4

(
∂g

∂qr
− i

∂g

∂qi
− j

∂g

∂qj
− k

∂g

∂qk

)
dq +

1

4

(
∂g

∂qr
− i

∂g

∂qi
+ j

∂g

∂qj
+ k

∂g

∂qk

)
dqi

1

4

(
∂g

∂qr
+ i

∂g

∂qi
− j

∂g

∂qj
+ k

∂g

∂qk

)
dqj +

1

4

(
∂g

∂qr
+ i

∂g

∂qi
+ j

∂g

∂qj
− k

∂g

∂qk

)
dqk.

(2.16)

Now, through considering q, qi, qj , and qk as “algebraically” independent variables3,

the total differential of f(qr, qi, qj , qk) � f(q, qi, qj , qk) is given by

df =
∂f

∂q
dq +

∂f

∂qi
dqi +

∂f

∂qj
dqj +

∂f

∂qk
dqk (2.17)

where by comparing the expressions in (2.17) and (2.16) it follows that⎡
⎢⎢⎢⎢⎢⎣

∂f(q,qi,qj ,qk)
∂q

∂f(q,qi,qj ,qk)
∂qi

∂f(q,qi,qj ,qk)
∂qj

∂f(q,qi,qj ,qk)
∂qk

⎤
⎥⎥⎥⎥⎥⎦ =

1

4

⎡
⎢⎢⎢⎢⎣
1 −i −j −k

1 −i j k

1 i −j k

1 i j −k

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂f(qr,qi,qj ,qk)
∂qr

∂f(qr,qi,qj ,qk)
∂qi

∂f(qr,qi,qj ,qk)
∂qj

∂f(qr,qi,qj ,qk)
∂qk

⎤
⎥⎥⎥⎥⎦ (2.18)

which are referred to as the HR-derivatives. In addition, the real-valued components of

q ∈ H can alternatively be expressed as

qr =
1

4

(
q∗ + qi∗ + qj∗ + qk∗

)
qi =

1

4i

(
−q∗ − qi∗ + qj + qk∗

)
qj =

1

4j

(
−q∗ + qi∗ − qj∗ + qk∗

)
qk =

1

4k

(
−q∗ + qi∗ + qj∗ − qk∗

)
resulting in

dqr =
1

4

(
dq∗ + dqi∗ + dqj∗ + dqk∗

)
qi =

1

4i

(
−dq∗ − dqi∗ + dqj + dqk∗

)
dqj =

1

4j

(
−dq∗ + dqi∗ − dqj∗ + dqk∗

)
qk =

1

4k

(
−dq∗ + dqi∗ + dqj∗ − dqk∗

)
3Note that although q, qi, qj , and qk are essentially the same variable, similar to the format in the

CR-calculus, they are considered as “algebraically” independent in the context of the HR-calculus as a
method for accommodating for the four degrees of freedom inherent in quaternion numbers.
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where following the same procedure described for the derivation of the HR-derivatives,

leads to the HR
∗-derivatives that are given by⎡
⎢⎢⎢⎢⎢⎣

∂f(q∗,qi∗,qj∗,qk∗)
∂q∗

∂f(q∗,qi∗,qj∗,qk∗)
∂qi∗

∂f(q∗,qi∗,qj∗,qk∗)
∂qj∗

∂f(q∗,qi∗,qj∗,qk∗)
∂qk∗

⎤
⎥⎥⎥⎥⎥⎦ =

1

4

⎡
⎢⎢⎢⎢⎣
1 i j k

1 i −j −k

1 −i j −k

1 −i −j k

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂f(qr,qi,qj ,qk)
∂qr

∂f(qr,qi,qj ,qk)
∂qi

∂f(qr,qi,qj ,qk)
∂qj

∂f(qr,qi,qj ,qk)
∂qk

⎤
⎥⎥⎥⎥⎦ . (2.19)

It is important to note that due to the non-commutative nature of quaternions, the

placement of the three imaginary unit vectors (i, j, and k) has been consistently kept

to the left hand side and hence the expressions in (2.18) and (2.19) are referred to as

the left derivatives. Similar results can be obtained by placing the three imaginary unit

vectors on the right hand side, known as the right derivatives [85].

Out of all the derivatives of f, of particular interest to signal processing applications

is the conjugate derivative given by

∂f

∂q∗
=

1

4

(
∂f

∂qr
+ i

∂f

∂qi
+ j

∂f

∂qj
+ k

∂f

∂qk

)

which indicates the direction of the maximum rate of change in f and therefore presenting

the HR
∗-derivatives as the gradient operator that is [85].

∇qa∗ f =

⎡
⎢⎢⎢⎢⎢⎣

∂f(q,qi,qj ,qk)
∂q∗

∂f(q,qi,qj ,qk)
∂qi∗

∂f(q,qi,qj ,qk)
∂qj∗

∂f(q,qi,qj ,qk)
∂qk∗

⎤
⎥⎥⎥⎥⎥⎦ =

1

4

⎡
⎢⎢⎢⎢⎣
1 i j k

1 i −j −k

1 −i j −k

1 −i −j k

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

∂f(qr,qi,qj ,qk)
∂qr

∂f(qr,qi,qj ,qk)
∂qi

∂f(qr,qi,qj ,qk)
∂qj

∂f(qr,qi,qj ,qk)
∂qk

⎤
⎥⎥⎥⎥⎦ = ∇f

⎞
⎟⎟⎟⎟⎠ .

The gradient operator can be applied to convex real-valued functions of quaternion-

valued variables to find the direction of steepest-descent and to calculate the first-order

Taylor series expansion of a quaternion-valued function at q = q0 ∈ H given by [85, 87]

f(q) ≈ f(q0) + ΔqaH
(
∇qa∗ f

∣∣
qa=qa

0

)
where ΔqaH = qaH − qaH

0 .

2.7 The augmented quaternion statistics

Similar to the case of complex-valued random variables, which were discussed in Sec-

tion 2.3, the standard covariance of a quaternion-valued random variable, q, given by

Cq = E[qqH ], does not reveal any information on the dependence structure or power

differences between the real-valued components of q and thus only partially describes
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the second-order statistical information of q. A full description of the second-order

statistics of a general quaternion-valued random variable is only possible through the

augmented quaternion statistics [71]. In order to account for the entire second-order

information of quaternion-valued random variables, a one-to-one relation is established

between the quaternion-valued random variable and the vector of its real-valued com-

ponents, [qT
r ,q

T
i ,q

T
j ,q

T
k ]

T , through exploiting the expressions in (2.8), that is given

by [71] ⎡
⎢⎢⎢⎢⎣

q

qi

qj

qk

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
qa

=

⎡
⎢⎢⎢⎢⎣

I iI jI kI

I iI −jI −kI

I −iI jI −kI

I −iI −jI kI

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎣

qr

qi

qj

qk

⎤
⎥⎥⎥⎥⎦ (2.20)

where due to the fact that q has been augmented with its involutions around the i, j,

and k axes, qa is referred to as the augmented quaternion vector, while A provides a

mapping from R
4N to H

4N the inverse of which is given by A−1 = 1
4A

H . The augmented

quaternion covariance matrix now becomes

Cqa = E[qaqaH ] =

⎡
⎢⎢⎢⎢⎣

Cq Rqqi∗ Rqqj∗ Rqqk∗

Rqiq∗ Cqi Rqiqj∗ Rqiqk∗

Rqjq∗ Rqjqi∗ Cqj Rqjqk∗

Rqkq∗ Rqkqi∗ Rqkqj∗ Cqk

⎤
⎥⎥⎥⎥⎦ (2.21)

where ∀ζ, ζ ′ ∈ {1, i, j, k},Rqζ′qζ∗ = E[qζ′qζH ] = RH
qζqζ′∗ and Cqζ = E[qζqζH ]. It is

also straightforward to prove that Cqζ = CH
qζ ; moreover, it can be shown that Rqiqj∗ =

Ri
qqk∗ , Rqiqk∗ = Ri

qqj∗ , and Rqjqk∗ = Rj
qqi∗ . Therefore, the augmented covariance

matrix is a Hermitian matrix and can also be presented as

Cqa =

⎡
⎢⎢⎢⎢⎣

Cq Rqqi∗ Rqqj∗ Rqqk∗

RH
qqi∗ Cqi Ri

qqk∗ Ri
qqj∗

RH
qqj∗ RiH

qqk∗ Cqj Rj
qqi∗

RH
qqk∗ RiH

qqj∗ RjH
qqi∗ Cqk

⎤
⎥⎥⎥⎥⎦ . (2.22)

Notice that the complete second-order information within the augmented covariance

matrix is contained in the standard covariance, Cq, the i-pseudo-covariance, Rqqi∗ , the

j-pseudo-covariance, Rqqj∗ , and the k-pseudo-covariance Rqqk∗ . It is now clear that the

standard covariance can only fully describe the second-order statistics of a quaternion

random variable with vanishing pseudo-covariances referred to as second-order proper.

Furthermore, a quaternion random variable is referred to as second-order i-proper if

it has vanishing j and k-pseudo-covariances. The second-order j and k-properness are

defined in an analogous way.
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Now, consider the MMSE estimation of the quaternion-valued variable, y, condi-

tional to the quaternion-valued observation, x. Akin to what was stated for complex-

valued random variables in Section 2.3, for quaternion-valued random variables the

MMSE estimator has to be expressed according to the real-valued individual compo-

nents of x and y; therefore, the MMSE estimator is given by

ŷ =E[yr|xr, xi, xj , xk]︸ ︷︷ ︸
ŷr

+i E[yi|xr, xi, xj , xk]︸ ︷︷ ︸
ŷi

+ j E[yj |xr, xi, xj , xk]︸ ︷︷ ︸
ŷj

+k E[yk|xr, xi, xj , xk]︸ ︷︷ ︸
ŷk

.

The mapping in (2.20) is now exploited to replace the real-valued components of x using

the quaternion involutions resulting in

ŷ =E[yr|x, xi, xj , xk] + iE[yi|x, xi, xj , xk]
+ jE[yj |x, xi, xj , xk] + kE[yk|x, xi, xj , xk].

Therefore, for quaternion-valued, zero-mean, and jointly Gaussian x and y, the solution

is now given in the form of the widely-linear estimator

ŷ = hHx+ gHxi + uHxj + vHxk = waHxa (2.23)

where h, g, u, v, and waH = [hH ,gH ,uH ,vH ] are vectors of quaternion-valued coeffi-

cients, while x is the regressor vector. The optimal augmented weight vector, wa
opt, that

minimizes E
[
|y − ŷ|2

]
is now given by wa

opt =
(
E
[
xaxaH

])−1
E [xay∗] [71, 77, 78] and

referred to as the Wiener solution.

2.8 The widely-linear quaternion LMS algorithm

A widely-linear quaternion least mean square (WL-QLMS) algorithm for adaptive fil-

tering of quaternion-valued signals has been introduced by Took and Mandic in [70, 88].

This has been achieved by considering the widely-linear model in (2.23) in its adaptive

formulation, given by

ŷn = hH
n xn + gH

n xi
n + uH

n xj
n + vH

n xk
n

where the coefficients are updated at each time instant in a steepest-descent fashion

according to the gradient of the cost function Jn = |εn|2 = εnε
∗
n, where εn = ŷn − yn.

The gradient of Jn with respect to h is calculated through the HR-calculus, as Jn does

not admit the Cauchy-Riemann-Fueter conditions, and is given by

∇h∗Jn = (∇h∗εn) ε
∗
n + εn

(∇h∗
n
ε∗n
)
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with ∇h∗
n
εn = xn, whereas using the expression in (2.10) yields

∇h∗
n
ε∗n = ∇h∗

n

(
xH
n hn

)
= ∇h∗

n

(
xH
n h∗i

n

2
+

xH
n h∗j

n

2
+

xH
n h∗k

n

2
− xH

n h∗
n

2

)
=

−1

2
x∗
n.

The gradients ∇g∗
n
Jn, ∇u∗

n
Jn, and ∇v∗

n
Jn can be calculated in a similar fashion and

therefore the updates of the coefficient vectors are given by [70, 88]

hn+1 =hn − μ

(
xnε

∗
n − 1

2
εnx

∗
n

)
gn+1 =gn − μ

(
xi
nε

∗
n − 1

2
εnx

i∗
n

)

un+1 =un − μ

(
xj
nε

∗
n − 1

2
εnx

j∗
n

)
vn+1 =vn − μ

(
xk
nε

∗
n − 1

2
εnx

k∗
n

)

where μ ∈ R
+ denotes the adaptation gain.

Although the WL-QLMS is optimal for both second-order proper and improper

quaternion-valued signals, if x and y are jointly proper, then the widely-linear model in

(2.23) can be simplified into a strictly linear model given by ŷ = hHx, mitigating the

need for calculating g, u, and v [77, 78]. In addition, if x and y are jointly i-proper,

then the widely-linear model in (2.23) can be simplified into a semi-widely-linear model

given by ŷ = hHx + gHxi
n, mitigating the need for calculating u and v [77, 78], with

analogues semi-widely linear models defined for the case where x and y are jointly j and

k-proper. Thus, tracking the statistical information in the pseudo-covariance matrices

in real-time can lead to significant reduction in computational complexity without loss

in performance, not only in the case of WL-QLMS, but also in a variety of quaternion-

valued adaptive filtering algorithms [70, 77–79, 85, 87].

2.9 The augmented quaternion Kalman filter

Although a wide range of Kalman filtering algorithms for dealing with quaternion-valued

signals have been developed [63, 89–92], the lack of an all inclusive mathematical frame-

work has tied these filtering algorithms to the specific applications that they were de-

signed for. In addition, these Kalman filtering algorithms are not inherently quaternion-

valued as in most cases they transform quaternions to their real-valued vector represen-

tation and process the signal in R
4. However, the augmented quaternion statistics in

conjunction with the HR-calculus have led to the development of a class of quaternion

Kalman filters [87] that are suitable for the generality of quaternion signals, are not tied

to any specific application, and are directly derived in the quaternion domain.

In a similar fashion to what was described for the AECKF in Section 2.3, consider

this time the quaternion-valued augmented state vector evolution sequence {xa
n, n =

0, 1, 2, . . .} given by

xa
n = fn(x

a
n−1) + νa

n



Chapter 2. Background 43

where fn(·) and νa
n are the state evolution function and augmented state evolution noise

at time instant n. Recall that the objective is to track xa
n in real-time; however, only

noisy observations of the augmented state vector are at hand that can be modeled as

ya
n = hn(x

a
n) + ωa

n

where ya
n, hn(·), and ωa

n are the augmented observation vector, the observation function,

and the augmented observational noise vector at time instant n.

For the sake of simplicity, hereafter we shall approximate the state evolution and

observation functions in a widely-linear fashion as fn(x
a
n) ≈ Aa

nx
a
n and hn(x

a
n) ≈ Ha

nx
a
n

through applying the HR-calculus, with Aa
n and Ha

n denoting the Jacobian matrices of

fn(·) and hn(·). Then, the trace of the augmented covariance matrix of the a posteriori

estimation error vector at time instant n is minimized through implementing the aug-

mented quaternion Kalman filter (AQKF) that is given in its information formulation

in Algorithm 2, where Cνa
n
and Cωa

n
denote the augmented covariance matrices of νa

n

and ωa
n, while x̂a

n|n−1 and x̂a
n|n represent the a priori and a posteriori estimates of xa

n,

whereas M̂a
n|n−1 and M̂a

n|n denote the augmented covariance matrices of the a priori

and a posteriori state estimation error vectors. [85, 87].

Algorithm 2. AQKF [87]

Initialize with:

x̂a
0|0 = E[xa

0]

M̂a
0|0 = E

[
(xa

0 − E[xa
0])(x

a
0 − E[xa

0])
H
]

Model update:

x̂a
n|n−1 = Aa

nx̂
a
n−1|n−1

M̂a
n|n−1 = Aa

nM̂
a
n−1|n−1A

aH
n +Cνa

n

Measurement update:

M̂a−1

n|n = M̂a−1

n|n−1 +HaH
n C

−1

ωa
n
Ha

n

Ga
n = M̂a

n|nH
aH
n C

−1

ωa
n

x̂a
n|n = x̂a

n|n−1 +Ga
n

(
ya
n −Ha

nx̂
a
n|n−1

)

From Algorithm 2, notice that the AQKF uses the state and observation vectors

in their augmented formulation. In addition, in order to incorporate their full second-

order statistical information, the augmented covariance matrix of the state evolution and

observation noise vectors are required to implement the AQKF. Although this approach

is optimal for the generality of quaternion-valued signals, it might impose an excessive

amount of computational burden on the processing unit when handling large state and
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observation vectors. In order to reduce the computational complexity of the AQKF, the

efficient implementation of the AQKF based on the structure of augmented covariance

matrices are proposed in [85, 87], where it is also shown that the widely-linear model

can be simplified when it comes to processing three-dimensional data modeled as pure

quaternions, which can further reduce the computational requirements of the AQKF.



Chapter 3

Real-Time Tracking of

Quaternion Impropriety

3.1 Overview

An algorithm for tracking the degree of quaternion impropriety in real-time is developed.

This is achieved through exploiting the i, j, and k-pseudo-covariances that make possible

the introduction of an impropriety measure as the MMSE solution for estimating the

quaternion involutions along the i, j, and k axes from the quaternion random variable

itself. The performance of the developed real-time quaternion impropriety tracker both

in the mean and mean square error (MSE) sense are analyzed allowing to establish con-

vergence bounds and quantify the effect of the degree of impropriety on the steady-state

performance of the developed real-time quaternion impropriety tracker. The concept is

verified through simulations on both synthetic and real-world data.

3.2 Introduction

The quaternion widely-linear model is based on augmenting the quaternion random vari-

able with its involutions along the i, j, and k axes [69–71, 77–79]. Therefore, quaternion-

valued signal processing algorithms established on the quaternion widely-linear model

have four times as many parameters as their strictly linear counterparts. However,

as was discussed in Section 2.8, in instances when the signal is proper, widely-linear

quaternion-valued signal processing algorithms can be simplified in order to reduce their

computational complexity without negatively effecting their performance [77, 78]. In

addition to reducing computational complexity, the higher number of updates that have

to be calculated in widely-linear algorithms result in a higher gradient noise in gradient-

based learning methods and slower convergence rates. Thus, it becomes essential to

45
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identify the degree of impropriety of a signal in real-time, in both detection and estima-

tion applications, so that the instants when a non-stationary signal changes its statistic

can be identified and an estimator that best suits the signal can be selected.

The properness of complex-valued random variables has been extensively stud-

ied [33, 43, 83, 93–95] with an impropriety measure introduced and its effect from a

geometric stand point investigated in [93]. However, In contrast to complex-valued

random variables, properness of quaternion-valued random variables has not yet been

thoroughly addressed. The approach taken in [96] is based on the probability distri-

bution function (pdf) and considers quaternion properness as the invariance of the pdf

under specific rotations. The concept was taken further in [97], where the condition for

quaternion properness was considered as invariance of the pdf under rotations around

any axis and for any angle that is

∀θ ∈ [0, 2π) and ξ ∈ H such that ξ2 = −1 then PQ (q) = PQ

(
eξθq
)
.

In [71], a quaternion-valued Gaussian random variable is defined as proper if it has

vanishing pseudo-covariances. Three different types of quaternion properness based on

vanishing of three different pseudo-covariances were defined and their impact on the

quaternion widely-linear model and quaternion-valued signal processing techniques were

analyzed in [77, 78]. In addition, an algorithm for measuring each type of impropri-

ety based on the Kullback-Leibler divergence between multivariate quaternion-valued

Gaussian distributions has been proposed in [98]. However, an algorithm for tracking

quaternion impropriety of non-stationary signals in real-time is still lacking.

In this chapter, we introduce a novel algorithm for real-time tracking of quaternion

impropriety based on quaternion-valued adaptive filtering. This is achieved through in-

troducing three impropriety measures established on the i, j, and k-pseudo-covariances

and illustrating that each impropriety measure is the MMSE solution for estimating the

involutions of a quaternion random variable along the i, j, and k axes from the quater-

nion random variable itself. For rigor, the performance of the developed impropriety

tracker is analyzed in order to establish convergence conditions and quantify the effect

of the degree of impropriety on the steady-state performance of the developed impropri-

ety tracker. Finally, the performance of the developed real-time quaternion impropriety

tracker is verified through simulations on both synthetically generated and real-world

data recordings.

3.3 Quaternion impropriety measures

The properness of a quaternion-valued random variable reflects the dependence structure

of its real-valued components, that is the ratio of signal powers and/or correlation be-

tween the real-valued components of the quaternion-valued random variable. Therefore,
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quaternion properness can be related to the properness of the projection of a quaternion-

valued random variable on the six complex planes denoted by 1-i, 1-j, 1-k, i-j, i-k, and

j-k, where “1” represents the real axis [71, 77, 78]. Thus, measuring the complex impro-

priety, defined as the ratio between the pseudo-covariance and the covariance, in these

six planes reveals the complete dependence structure of the real-valued components of

a quaternion-valued random variable and hence provides a measure of its impropriety.

The structure of the quaternion covariance and pseudo-covariances are given in

Table 3.1, from which notice that the six complex impropriety measures, corresponding

to the six mentioned complex planes, can be extracted from the i, j, and k-pseudo-

covariances. Thus, similar to the approaches in [71, 77, 78, 99], we can now define the

following three impropriety measures, ρζ = {ρi, ρj , ρk} , for quaternion-valued random

variables
ρi = C−1

q Rqqi∗ = (E[qq∗])−1E[qqi∗]
ρj = C−1

q Rqqj∗ = (E[qq∗])−1E[qqj∗]
ρk = C−1

q Rqqk∗ = (E[qq∗])−1E[qqk∗]
(3.1)

which in essence represent the correlation between the quaternion valued random vari-

able q and its involution around ζ ∈ {i, j, k}, normalized by the signal power, Cq =

E[qq∗].

Table 3.1: Structure of the quaternion covariance and pseudo-covariances.

�{·} �i{·}) �j{·} �k{·}
Cq Cqr + Cqi + Cqj + Cqk 0 0 0

Rqqi∗ Cqr + Cqi − Cqj − Cqk 0 2(Rqrqj −Rqiqk) 2(Rqrqk +Rqiqj )

Rqqj∗ Cqr − Cqi + Cqj − Cqk 2(Rqrqi +Rqjqk) 0 2(Rqrqk −Rqiqj )

Rqqk∗ Cqr − Cqi − Cqj + Cqk 2(Rqrqi −Rqjqk) 2(Rqrqj +Rqiqk) 0

3.4 Tracking quaternion impropriety in real-time

Consider the problem of finding the optimal linear mapping that relates the quaternion-

valued random variable q to its involution qζ with ζ ∈ {i, j, k}. This mapping can be

formulated as

qζ = h∗optq

where applying the conjugate operator and multiplying both sides by q gives

qqζ∗ = qq∗hopt. (3.2)

The closed form solution for hopt can now be found through taking the statistical expec-

tation of the expression in (3.2) which yields

hopt = (E[qq∗])−1E[qqζ∗]. (3.3)
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Note that the expression in (3.3) is not only the ρζ impropriety measure, but also the

MMSE or Wiener solution for estimating the ζ-involution of q form itself, that can be

formulated as

q̂ζ = h∗q

which minimizes E
[|ε|2] = E

[|q̂ζ − q|2], where q̂ζ denotes the estimate of qζ . However,

finding the Wiener solution requires knowledge of the true statistics of the signal that

in general are not available. Moreover, applying block based estimators for finding the

Wiener solution is rather inadequate for on-line applications, specially when dealing with

non-stationary signals with fast changing statistics, or in applications where it becomes

important to capture incidences that the signal changes its statistics. Thus, an adaptive

impropriety estimator is required.

The definition of the impropriety measure as the optimal Wiener solution for esti-

mating qζ from q permits the application of the strictly linear quaternion least mean

square (QLMS) adaptive filter, used here in its iQLMS [100] formulation, to track the

impropriety measure in real-time. The operations of such a real-time quaternion impro-

priety tracker are summarized in Algorithm 3, where ζ ∈ {i, j, k} and the adaptation

gain is denoted by μ ∈ R
+. As the QLMS algorithm uses instantaneous estimates of the

signal statistics, the filter coefficients never reach their optimal values in the absolute

sense and therefore it becomes important to analyze the contribution of the bias and

variance of the parameter estimates to the total MSE.

Algorithm 3. Real-Time Quaternion Impropriety Tracker

For each time instant n = 1, 2, ...

Estimate the ζ-involution of q:

q̂ζn = h∗nqn

Calculate the estimation error :

εn = qζn − q̂ζn

Update the impropriety estimate:

hn+1 = hn +
μ

2
qnε

∗
n
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3.5 Performance analysis

In order to understand the behavior of the proposed quaternion impropriety tracker, in

the sequel, we shall analyze the behavior of the weight error given by

εn = hn − hopt. (3.4)

3.5.1 Mean error behavior

In order to find a bound on the adaptation gain which insures unbiased operation of the

developed quaternion impropriety tracker, the statistical expectation of the weigh error

at each time instant must be expressed in a recursive fashion. To this end, notice that

from Algorithm 3 we have

hn+1 − hn =
μ

2
qnε

∗
n. (3.5)

In addition, replacing (3.4) into the error ε∗n = qζ∗n − q∗nhn gives

ε∗n = qζ∗n − q∗nεn + q∗nhopt. (3.6)

Now, substituting (3.6) into (3.5) yields

εn+1 − εn =
μ

2
qn(q

ζ∗
n − q∗nhn)

that can be rearranged to give

εn+1 = εn +
μ

2
qnq

ζ∗
n − μ

2
qnq

∗
nεn − μ

2
qnq

∗
nhopt. (3.7)

Taking the statistical expectation of (3.7) and replacing hopt with the expression in

(3.3), we arrive at the recursive expression for the statistical expectation of the weight

error that is given by

E[εn+1] = E[εn]
(
1− μ

2
E[qnq

∗
n]
)
.

It now becomes apparent that the statistical expectation of the weight error converges

to zero for ∣∣∣1− μ

2
E[qnq

∗
n]
∣∣∣ < 1

so that the allowable range for the adaptation gain becomes

0 < μ <
4

E[qnq∗n]
=

4

Cqn

· (3.8)

Note that the algorithm will operate in an asymptotically unbiased fashion, if the

selected adaption gain satisfies the condition set in (3.8). Furthermore, it is important
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to note that the convergence condition in (3.8) indicates that convergence in the mean

is not influenced by the degree of impropriety of the input signal.

3.5.2 Mean square error behavior

In steady-state operating conditions the variance of the weight error is given by

E
[
εn+1ε

∗
n+1

]
= E

[|εn+1|2
]
= E

[|εn +
μ

2
qnε

∗
n|2
]

where upon substituting εn = qζ∗n − q∗nhn = qζ∗ − q∗(εn + hopt) we have

E[|εn+1|2] = E
[∣∣εn +

μ

2
qn
(
qζ∗n − q∗n(εn + hopt)

)∣∣2].
Assuming that the adaptation gain meets the condition set in (3.8) and the algorithm

converges in the mean, it is reasonable to consider that in the steady-state hn+1 ≈ hn,

so that E[εn] ≈ 0, which yields

E
[|εn+1|2

]
=E
[|εn|2](1 + μ2

4
E
[|qnq∗n|2]− μE[qnq

∗
n]
)

+
μ2

4

(
E
[|qnqζ∗n |2]+ E

[|qnq∗n|2]E[|hopt|2])
− μ2

2
E
[
�(qnqζ∗n h∗optq

∗
nqn)

]
.

(3.9)

Finally, in steady-state operating conditions it is also reasonable to assume that E
[|εn+1|2

] ≈
E
[|εn|2], which allows the expression in (3.9) to be simplified into

E
[|εn|2] = μ

4χ

E[qnq∗n]− μ
4E
[|qnq∗n|2] · (3.10)

where
χ =E

[|qnqζ∗n |2]+ E
[|qnq∗n|2]E[|hopt|2]− 2E

[
�(qnqζ∗n h∗optq

∗
nqn)

]
=E

[∣∣∣qnqζ∗n − qnq
∗
nhopt

∣∣∣2] (3.11)

For the algorithm to converge in the mean square sense the steady-state weight error

variance, as expressed in (3.10), needs to remain positive and bounded. From (3.11)

notice that χ ∈ R
+; therefore, E

[ |vn|2 ] is positive and bonded if and only if

0 < μ < 4
E[qnq

∗
n]

E
[|qnq∗n|2] · (3.12)

Furthermore, in Appendix A it is shown that

E
[|qnq∗n|2] = C2

qn

2

(
3 + |ρi|2 + |ρj |2 + |ρk|2

)
. (3.13)
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Therefore, replacing (3.13) into (3.12) allows the mean square convergence condition to

be expressed as

0 < μ <
8

Cqn (3 + |ρi|2 + |ρi|2 + |ρk|2) · (3.14)

From the expression obtained for the mean square error in (3.10) and the mean

square convergence condition in (3.14), observe that the mean square behavior of the

developed quaternion impropriety tracker is dependent on the degree of impropriety, as

the terms χ and E
[|qnq∗n|2] contain impropriety information.

3.6 Simulations

In this section the performance of the developed quaternion impropriety tracker is val-

idated through simulation on synthetically generated signals and real-world wind data

recordings. In addition, the developed quaternion impropriety tracker is applied to track

the degree of channel diversity in communications systems based on Alamouti coding.

3.6.1 Synthetically generated data

First, the impropriety tracking ability of the developed algorithm is demonstrated on a

synthetically generated signal constructed from three segments of zero-mean unit power

white quaternion-valued Gaussian noises with changing pseudo-covariances, and hence

impropriety measures. The developed quaternion impropriety tracker was applied to

track the degree of impropriety of the signal with μ = 0.1. The absolute values of

the quaternion impropriety measures for the data segments with different impropri-

eties together with their estimates is shown in Figure 3.1. Observe that the developed

quaternion impropriety tracker produced accurate impropriety estimations for various

types of impropriety. In addition, the degree of impropriety arising from one of the

pseudo-covariances did not affect the steady-state performance or convergence of other

impropriety measures.

To further illustrate the ability of the proposed impropriety tracker and analyze its

mean square error performance, we considered zero-mean unit power white quaternion-

valued Gaussian noise with changing ρj only. The j-impropriety measure, ρj , was set to

0.65 for the first segment, 1 for the second segment, and 0.3 for the third segment. In

Figure 3.2, 100 realizations of the estimate of ρj and their average are shown, demon-

strating that the proposed algorithm produces unbiased estimates and that convergence

is not affected by the degree of impropriety, which verifies the analysis in Section 3.5.1

and Section 3.5.2. Moreover, observe that the steady-state variance of the impropriety

tracker depends on the degree of impropriety.
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Figure 3.1: Absolute quaternion impropriety measures for synthetically generated Gaus-
sian data (in red) and its quaternion impropriety estimates (in blue).

Figure 3.2: True value of ρj (in red) plotted alongside 100 realizations of its estimate
(in light green) and the average of the estimates (in blue).

3.6.2 Real-world wind data

The quaternion-valued wind data comprised of the wind speed measured in the north,

east, and vertical directions as the pure quaternion part and the ambient temperature

as the real part1. The recorded wind signal exhibits a high degree of impropriety, as

1Note that the same representation for wind data has been successfully used in [75, 79] for wind speed
and atmospheric temperature prediction.
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seen in the scatter diagram in Figure 3.3. Figure 3.4 shows the impropriety measures of

the recorded wind signal with the adaptation gain set to μ = 0.1.

Figure 3.3: Scatter diagram of the improper distribution of wind data.

Figure 3.4: Absolute value of the estimated impropriety measures of quaternion-valued
wind data.

3.6.3 Communication channel estimation

A multiple-input-multiple-output wireless communication system based on Alamouti

coding [101] was considered, where the coding scheme is given by[
y1

y2

]
=

[
h1 −h∗2
h2 h∗1

][
s1

s2

]
+

[
ω1

ω2

]
(3.15)

while y1 and y2 are two consecutive complex-valued received signals, s1 and s2 are two

consecutive complex-valued transmitted signals, h1 and h2 are complex-valued channel
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gains between each transmit antenna and the receiver, whereas ω1 and ω2 represent

complex-valued noise terms.

Using the Cayley-Dickson representation, two complex numbers can be combined

into a quaternion, giving the quaternion form of the Alamouti code as [99, 102]

Y = HS +W

where Y = y1 + y2j, H = h1 + h2j, S = s1 + s2j, and W = ω1 + ω2j. The impropriety

of the channel can be used to analyze its diversity and to establish whether any phase

information can be extracted from the received signal [103]. To illustrate this point, the

structure of the i, j, and k-pseudo-covariances of H are given in Table 3.2. Note that

the entire joint second-order statistical information of h1 and h2 can be extracted from

pseudo-covariances of H.

Table 3.2: Structure of the pseudo-covariances of the quaternion-valued Alamouti com-
munication channel.

1-i component j-k component

RHHi∗ Ch1 − Ch2 2Rh2h1j

RHHj∗ Rh1h1 +Rh2h2

(
Rh2h∗

1
−Rh1h∗

2

)
j

RHHk∗ Rh1h1 −Rh2h2

(
Rh1h∗

2
+Rh2h∗

1

)
j

For the first segment (0 to 2.5 seconds) the two complex valued channels in (3.15)

were independent, one was circular complex and the other was improper complex with

a complex impropriety measure of 0.8. For the second segment (2.5 to 5 seconds) both

channels were complex circular and had a cross-correlation of 0.4. Figure 3.5 illustrates

the ability of the proposed impropriety tracker to successfully track the changes in

channel statistics, where the adaptation gain was μ = 0.01 and the channel was measured

every 5 milliseconds.

Figure 3.5: Channel impropriety measure estimation of an Alamouti communica-
tion system.
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3.7 Conclusion

A real-time tracker of quaternion impropriety has been introduced. This has been

achieved based on the MMSE linear estimation of the involutions of a quaternion ran-

dom variable along the i, j, and k-axis from the quaternion random variable itself.

Convergence conditions in the mean and mean square sense have also been obtained.

The analysis has shown that the proposed algorithm produces unbiased estimates and

that the mean behavior of the algorithm is not affected by the degree of impropriety.

However, the steady-state variance of the proposed algorithm does exhibit strong de-

pendence on the degree of impropriety. The analysis has been verified using simulations

on both synthetic and real-world data.



Chapter 4

A Quaternion Adaptive

Phase-Only Estimator

4.1 Overview

Quaternions have proven to be advantageous for modeling three-dimensional rotations

in a number of applications and are now considered a favored alternative to rotation ma-

trices. However, despite their natural ability to model phase, when it comes to adaptive

phase-only estimation tasks, quaternions remain underutilized. This issue is addressed

in this chapter through the introduction of the widely-linear quaternion least mean phase

(WL-QLMP) algorithm and its strictly linear counterpart, the quaternion least mean

phase (QLMP), for adaptive phase-only estimation of quaternion-valued signals. This

is achieved through the derivation of an adaptive phase-only estimator that updates

the weights of the adaptive filter at each time instant according to a cost function of

the phase error in a steepest-descent fashion based on the HR-calculus. A quantitative

assessment of the performance of the developed algorithm is conducted, the physical

interpretation of the operations of developed algorithm is provided, and the concept is

validated in a number of practical applications including body-motion tracking and the

estimation of the fundamental frequency of a three-phase power system under different

operating conditions.

4.2 Introduction

The WL-QLMS and its strictly linear dual are the two initial algorithms in quaternion-

valued signal processing, which are based on the minimization of the MSE, a real-valued

function of quaternion variables [69, 70, 75, 79, 85]. However, in many applications

56
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involving three and four-dimensional signals, phase is particularly important as the am-

plitude information could be corrupted, such as in cases when the signal experiences

real-valued multiplicative noise. Moreover, the amplitude information may not be es-

sential, such as when modeling three-dimensional rotations. To illustrate this point,

recall from Section 2.5, that if the pre-rotation Cartesian coordinates, u = [ux, uy, uz]
T ,

is modeled as a pure quaternion given by qu = iux + juy + kuz, then the post-rotation

coordinates of qu by an angle of θ around the unit vector η can be calculated through

the involution

qu′ =

(
cos

(
θ

2

)
+ qηsin

(
θ

2

))
︸ ︷︷ ︸

ς

qu

(
cos

(
θ

2

)
− qηsin

(
θ

2

))
︸ ︷︷ ︸

ς−1

(4.1)

where qu′ = iu′x + ju′y + ku′z represents the post-rotation coordinates, while qη = iηx +

jηy + kηz. Note that the amplitude of ς has no bearing on the outcome of the rotation

expressed in (4.1) as the only parameters defining the rotation are θ and η. In such

scenarios, the optimization task is to minimize a measure of the phase error, indeed

amplitude variations may even have a detrimental effect on the performance. However,

such phase-only estimation algorithms for quaternion-valued signals are still lacking.

The direct application of the model in (4.1) results in a non-linear estimator; how-

ever, replacing ς−1 with its real-valued components gives

qu′ = ςqu�(ς−1) + ςqu�i(ς
−1) + ςqu�j(ς

−1) + ςqu�k(ς
−1)

which can be rearranged into a more elegant representation given by

qu′ = ς
[�(ς−1),�i(ς

−1),�j(ς
−1),�k(ς

−1)
]T

qa
u = ςaTqa

u (4.2)

where ςa = ς
[�(ς−1),�i(ς

−1),�j(ς
−1),�k(ς

−1)
]T

, a form consistent with the widely-

linear model (see Section 2.7).

In the complex domain, phase estimation is preformed by the least mean phase

(LMP) [104] and the least mean magnitude phase (LMMP) [105] adaptive filtering al-

gorithms. The LMP algorithm employs the phase error cost function, and has shown

superior performance compared to the CLMS algorithm when used for channel equaliza-

tion in communications applications [104]. The LMMP algorithm decomposes the MSE

into the amplitude and phase errors, and was implemented for channel equalization in

the presence of Doppler shift induced by physical motion and in array processing, out-

performing the CLMS algorithm in both applications [105]. Based on complex-valued

widely-linear modeling, the widely-linear least mean phase (WL-LMP) algorithm was

proposed in [56] for real-time estimation of the fundamental frequency in a three-phase

power system, where it outperformed conventional frequency estimation methods for



Chapter 4. A Quaternion Adaptive Phase-Only Estimator 58

unbalanced power systems. The WL-LMP algorithm was also shown to be less sensitive

to amplitude variations, a desirable property of phase-only estimators.

In this chapter, the complex-valued LMP algorithm is generalized to the quaternion

domain and the widely-linear setting, in order to provide a rigorous quaternion adaptive

phase-only estimator. To this end, the WL-QLMP adaptive filtering algorithm for both

second-order proper and improper quaternion-valued processes is introduced. In addi-

tion, a convenient geometric interpretation and stability analysis is also provided. The

performance of the proposed WL-QLMP and QLMP are validated over two practical

case studies, tracking the rotation of the limbs of an athlete while performing Tai-Chi

movements, and in estimating the fundamental frequency of a three-phase power system

under different operating conditions.

4.3 The quaternion least mean phase estimator

The polar representation of a quaternion number is given by q = |q|eξθ, where ξ is the

normalized projection of q onto the imaginary subspace of H. Given that ξ and the real

axis are orthogonal and ξ2 = −1, the real axis along with ξ define a two-dimensional

plane in H, which is isomorphic to the complex domain and includes q. In this subspace,

θ is the angle between the real axis and q. Consequently, ξθ uniquely describes the

orientation of q; thus, we consider ξθ as the phase of the quaternion variable q.

Recall from Section 2.7, that the quaternion widely-linear estimator allows us to

estimate the process y through a widely-linear estimator ŷ = waHqa, where wa and qa

are respectively the weight vector and augmented observation or regressor vector. The

phase error of the estimation at a time instant n is then given by

εn = ξŷnθŷn − ξynθyn . (4.3)

The phase-only cost function now becomes

Jn = εnε
∗
n = |ξŷnθŷn − ξynθyn |2 (4.4)

while the steepest-descent weight vector update is given by

wa
n+1 = wa

n − μ∇wa∗
n
Jn (4.5)

where μ ∈ R
+ denotes the adaptation gain.

In order to be able to implement the proposed quaternion phase estimator the

gradient of the cost function, ∇wa∗
n
Jn, is calculated next, where for the sake of simplicity

in presentation, time indices are dropped. From (4.3), observe that the phase error is a

pure quaternion; therefore, ε = −ε∗ and J = −ε2. As the cost function is a real-valued
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function of quaternion variables, by employing the HR-calculus the gradient of the cost

function becomes

∇wa∗J = −(∇wa∗ε)ε− ε(∇wa∗ε) (4.6)

where

∇wa∗ε = (∇wa∗ξŷ)θŷ + ξŷ(∇wa∗θŷ). (4.7)

Considering that ξŷ and θŷ are functions of �(ŷ), �(ŷ), �(ŷ∗), and |�(ŷ)|; for the

sake of simplicity and compact representation, we next calculate these gradients before

calculating the gradient of the cost function, ∇wa∗J . The gradients of the real and

imaginary parts of ŷ are given by

∇wa∗�(ŷ) =1

2
∇wa∗ (ŷ + ŷ∗) =

1

2
∇wa∗

(
waHqa + qaHwa

)
=
1

2
∇wa∗

(
waHqa +

qaH

2

(
wa∗i +wa∗j +wa∗k −wa∗

))
=
1

2
qa − 1

4
qa∗

∇wa∗�(ŷ) =1

2
∇wa∗ (ŷ − ŷ∗) =

1

2
∇wa∗

(
waHqa − qaHwa

)
=
1

2
∇wa∗

(
waHqa − qaH

2

(
wa∗i +wa∗j +wa∗k −wa∗

))
=
1

2
qa +

1

4
qa∗

(4.8)

while, considering that �(ŷ∗) = −�(ŷ) yields

∇wa∗�(ŷ∗) = −∇wa∗�(ŷ) = −1

2
qa − 1

4
qa∗. (4.9)

Now, through substituting |�(ŷ)| =√�(ŷ)�(ŷ∗), the gradient of |�(ŷ)| becomes

∇wa∗ |�(ŷ)| = ∇wa∗
√
�(ŷ)�∗(ŷ) =

(∇wa∗�(ŷ))�∗(ŷ) + �(ŷ)(∇wa∗�∗(ŷ)
)

2|�(ŷ)|

=
−(∇wa∗�(ŷ))�(ŷ)−�(ŷ)(∇wa∗�(ŷ))

2|�(ŷ)|
=
−� (∇wa∗�(ŷ))�(ŷ) + 〈∇wa∗�(ŷ) · �(ŷ)〉

|�(ŷ)|

(4.10)

where ∇wa∗�(ŷ) and ∇wa∗�∗(ŷ) are given in (4.8) and (4.9), respectively.

Considering that |�(ŷ)|,�(ŷ) ∈ R, application of the HR-calculus to compute the

gradient of θŷ gives

∇wa∗θŷ =
1

1 +
( |�(ŷ)|

�(ŷ)

)2∇wa∗
|�(ŷ)|
�(ŷ) =

�2(ŷ)

|ŷ|2
(∇wa∗ |�(ŷ)|

�(ŷ) + |�(ŷ)|∇wa∗
1

�(ŷ)
)

(4.11)
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where

∇wa∗
1

�(ŷ) =
−1

�2(ŷ)
∇wa∗�(ŷ)

and the terms ∇wa∗�(ŷ) and ∇wa∗ |�(ŷ)| are respectively given by (4.8) and (4.10). In

the same fashion, the gradient of ξŷ is given by

∇wa∗ξŷ =
∇wa∗�(ŷ)
|�(ŷ)| + �(ŷ)

(
∇wa∗

1

|�(ŷ)|
)

(4.12)

where

∇wa∗
1

|�(ŷ)| =
−1

|�(ŷ)|2∇wa∗ |�(ŷ)|

and the terms ∇wa∗�(ŷ) and ∇wa∗ |�(ŷ)| are respectively given by (4.8) and (4.10).

Finally, the gradient of the cost function can be calculated by replacing (4.11) and

(4.12) into (4.7), to obtain the closed-form expression

∇wa∗J =−
[(∇wa∗�(ŷ)

|�(ŷ)| − �(ŷ)∇wa∗ |�(ŷ)|
|�(ŷ)|2

)
θŷ

+ ζŷ
�2(ˆ̂y)

|ˆ̂y|2
(∇wa∗ |�(ŷ)|

�(ŷ) − |�(ŷ)|∇wa∗�(ŷ)
�2(ŷ)

)]
ε

− ε

[(∇wa∗�(ŷ)
|�(ŷ)| − �(ŷ)∇wa∗ |�(ŷ)|

|�(ŷ)|2
)
θŷ

+ ζŷ
�2(ŷ)

|ŷ|2
(∇wa∗ |�(ŷ)|

�(ŷ) − |�(ŷ)|∇wa∗�(ŷ)
�2(ŷ)

)]
(4.13)

where the terms ∇wa∗�(ŷ) and ∇wa∗ |�(ŷ)| and are given in (4.8) and (4.10).

Note that in cases where the system can be modeled in a linear fashion that is

ŷ = hHq, by replacing wa with h and replacing qa with q in (4.6) through to (4.13),

the strictly linear QLMP can be obtained using the same procedure. In addition, if

the objective is to track the bearings of an object in three-dimensions, the signal is

most conveniently modeled as a pure quaternion resulting in θ = π/2. Therefore, εn =

(ξŷ − ξy)π/2 which leads to the gradient of the cost being simplified into

∇wa∗J =− π2

4

[(∇wa∗�(ŷ)
|�(ŷ)| − �(ŷ)∇wa∗ |�(ŷ)|

|�(ŷ)|2
)]

(ξŷ − ξy)

− π2

4
(ξŷ − ξy)

[(∇wa∗�(ŷ)
|�(ŷ)| − �(ŷ)∇wa∗ |�(ŷ)|

|�(ŷ)|2
)] (4.14)

where π2/4 is essentially an scaling factor and can be incorporated into the adaptation

gain, resulting in a more computationally efficient algorithm without loss of performance.
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4.4 Geometric interpretation

Consider the estimates of the phase of the reference signal yn, before and after the weight

vector update respectively given by ŷn|n = waH
n qa

n and ŷn|n+1 = waH
n+1q

a
n. The phase

estimation improvement achieved in this way can be quantified as

Δŷn = ŷn|n+1 − ŷn|n = (wa
n+1 −wa

n)
Hqa

n

while replacing wa
n+1 −wa

n = −μ∇wa∗
n
Jn = μ(∇wa∗

n
εn)εn + μεn(∇wa∗

n
εn) obtained from

the expressions in (4.5) and (4.7) yields

Δŷn =− μ
(∇wa∗

n
Jn
)H

qa
n = μ

(
(∇wa∗

n
εn)εn + εn(∇wa∗

n
εn)

)H

qa
n

=2μ

(
�(∇wa∗

n
εn)�(εn) + �(∇wa∗

n
εn)�(εn)

+ �(∇wa∗
n
εn)�(εn)− 〈�(∇wa∗

n
εn) · �(εn)〉

)H

qa
n

=2μ

(
(∇wa∗

n
εn)εn − (∇wa∗

n
εn)× εn

)H

qa
n.

(4.15)

Furthermore, from substituting ∇wa∗
n
εn = (∇wa∗

n
ξŷn)θŷn +ξŷn(∇wa∗

n
θŷn) into the expres-

sion in (4.15) we have

Δŷn =2μθŷn

(
(∇wa∗

n
ξŷn)εn − (∇wa∗

n
ξŷn)× εn

)H

qa
n

+ 2μ

(
ξŷn(∇wa∗

n
θŷn)εn − (ξŷn(∇wa∗

n
θŷn)

)× εn

)H

qa
n.

(4.16)

In order to quantify the improvement in the estimate of the phase when using the

estimate obtained after the weight vector has been updated, we shall split the term Δŷn

as expressed in (4.16), into two parts, the angle-only term, given by

Δθn = 2μ

(
ξŷn(∇wa∗

n
θŷn)εn − (ξŷn(∇wa∗

n
θŷn)

)× εn︸ ︷︷ ︸
∇wa∗

n
Jθ
n

)H

qa
n (4.17)

and the unit vector term, given by

Δξn = 2μ

(
θŷn(∇wa∗

n
ξŷn)εn − θŷn(∇wa∗

n
ξŷn)× εn︸ ︷︷ ︸

∇wa∗
n

Jξ
n

)H

qa
n (4.18)

where it can be shown that the terms ∇wa∗
n
Jθ
n and ∇wa∗

n
Jξ
n are the gradients of the cost

function, Jn, if ξŷn and θŷn were treated as constants. Therefore, the term in (4.17)

reduces the error of the angle estimate while treating the unit vector as a constant, the
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geometric view of which is illustrated in Figure 4.1, whereas the term in (4.18) reduces

the error of the unit vector estimate while treating the angle as a constant, the geometric

view of which is illustrated in Figure 4.2. Together, these two terms form the basis for

phase estimation in the quaternion domain.

Figure 4.1: Geometric interpretation of the angle update in quaternion phase estima-
tion. The desired signal, yn, and its angle, θy, are shown relative to their phase-only
estimates both before the weight vector update, {ŷn|n, θŷn|n}, and the after weight

vector update, {ŷn|n+1, θŷn|n+1
}. The direction of −μ∇wa∗

n
Jθ
n and Δθn as presented

in (4.17) are also illustrated. The unit circle is shown in light blue as a visual reference.

Figure 4.2: Geometric interpretation of the unit vector update in quaternion phase
estimation. The desired signal, yn, is shown relative to the unit vector of the phase-
only estimate both before weight vector update, ξŷn|n , and after weight vector updates,

ξŷn|n+1
. Note that here Δξn = −μ∇wa∗

n
Jξ
n. A unit circle centered around the origin in

the plane containing ξŷn|n and ξŷn|n+1
is shown in light blue as a visual reference.
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4.5 Stability analysis

The phase estimation errors before and after the weight vector update operation are

respectively given by

εn|n =ξŷn|nθŷn|n − ξyθy

εn|n+1 =ξŷn|n+1
θŷn|n+1

− ξyθy

the aim is to find the range for the adaption gain, μ, that ensures continuous learning

that is |εn|n+1|2 < |εn|n|2. To this end, consider the The first-order Taylor expansion of

|εn|n+1|2 around |εn|n|2 given by

∣∣εn|n+1

∣∣2 = ∣∣εn|n∣∣2 + 〈∇wa∗
n

∣∣εn|n∣∣2 ·Δwa
n

〉
(4.19)

where Δwa
n = wa

n+1 − wa
n. From the expression (4.5) we have Δwa

n = −μ∇wa∗
n
Jn =

−μ∇wa∗
n

∣∣εn|n∣∣2 that upon replacing into the expression in (4.19) yields

∣∣εn|n+1

∣∣2 = ∣∣εn|n∣∣2 − μ
〈
∇wa∗

n

∣∣εn|n∣∣2 · ∇wa∗
n

∣∣εn|n∣∣2〉
=
∣∣εn|n∣∣2 − μ

∣∣∣∇wa∗
n

∣∣εn|n∣∣2∣∣∣2 . (4.20)

Through substituting the expression in (4.6) into (4.20) we have

∣∣εn|n+1

∣∣2 = ∣∣εn|n∣∣2 − μ
∣∣(∇wa∗εn|n)εn|n + εn|n(∇wa∗εn|n)

∣∣2
=
∣∣εn|n∣∣2 − 4μ

∣∣εn|n�(∇wa∗εn|n)−
〈
εn|n · �(∇wa∗εn|n)

〉∣∣2
where considering that

〈
εn|n · �(∇wa∗εn|n)

〉 ∈ R and that εn|n�(∇wa∗εn|n) lies solely in

the quaternion imaginary subspace gives

∣∣εn|n+1

∣∣2 = ∣∣εn|n∣∣2 − 4μ
∣∣εn|n∣∣2 ∣∣�(∇wa∗εn|n)

∣∣2 − 4μ
∣∣εn|n∣∣2 ∣∣�(∇wa∗εn|n)

∣∣2
=
∣∣εn|n∣∣2 (1− μ4

∣∣∇wa∗εn|n
∣∣2) .

Therefore, in order to ensure contentious learning of the developed quaternion phase-only

estimator, |εn|n+1|2 < |εn|n|2, it suffices to grantee that

∣∣∣1− 4μ
∣∣∇wa∗εn|n

∣∣2∣∣∣ < 1

resulting in the following bound for the adaptation gain

0 < μ <
1

2
∣∣∇wa∗εn|n

∣∣2 ·
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4.6 Simulations

In this section, the performance of the developed quaternion phase estimator is validated

through simulations in practical applications. The QLMP is implemented for tracking

rotations of an object in the three-dimensional domain and for estimating the main

frequency of three-phase power systems. In addition, the WL-QLMP is implemented for

tracking the limbs of a person performing Tai-Chi movements.

4.6.1 Synthetically generated three-dimensional data

In this section we consider unit amplitude three-dimensional signals modeled as pure

quaternions. The objective is to track the rotations that the signal undergoes from the

point of view of an observer at the origin, a classic problem encountered in attitude

estimation and bearings-only tracking. In this scenario, since the observer is at the

center of the coordinate system, the rotation vector, η, will always be normal to plane

of motion that encompasses the center of the coordinate system, the pre-rotation position

of the object, and the post-rotation position of the object. Thus, 〈qη ·qu〉 = 〈qη ·qu′〉 = 0,

and the quaternion rotation model expressed in (4.1) yields

qu′ =

(
cos

(
θ

2

)
+ qηsin

(
θ

2

))
qu

(
cos

(
θ

2

)
− qηsin

(
θ

2

))

=cos2
(
θ

2

)
qu + 2qηsin

(
θ

2

)
cos

(
θ

2

)
qu − sin2

(
θ

2

)
qu

=

(
cos

(
θ

2

)
+ qηsin

(
θ

2

))2

qu.

(4.21)

Therefore, considering the expression in (4.21), in these scenarios, the rotation can be

tracked using the QLMP where the filter coefficient is given by

h =

(
cos

(
θ

2

)
+ qηsin

(
θ

2

))2

= eqηθ

from which the axis and angle of rotation can easily be calculated and are given by

qη =
� (ln(h))

|� (ln(h))| and θ = |� (ln(h))| . (4.22)

In the first simulation, the performance of the developed quaternion phase only es-

timator was validated using synthetically generated signals with unit amplitude. The

signals were set to oscillate in a randomly selected plane of the quaternion imaginary

subspace with frequency of 20 Hz. The signal was considered to be corrupted by addi-

tive white Gaussian noise (AWGN) with signal to noise ratio (SNR) of 35 dB and the

sampling frequency was considered to be 1 KHz. The QLMP, QLMS, and a real-valued
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quadrivariate LMS were implemented in order to track the signal. This experiment was

repeated 100 times. The MSE performance of the QLMP is shown alongside the MSE

performance of the QLMS and the real-valued quadrivariate LMS in Figure 4.3. In

addition, the signal from one realization of the experiment and its estimates obtained

through implementing the QLMP, QLMS, and real-valued quadrivariate LMS is shown

in Figure 4.4. Observe that the developed QLMP algorithm not only converged faster,

but also achieved a lower steady-state MSE.

Figure 4.3: MSE performance of the developed QLMP algorithm compared to that of
the QLMS and real-valued quadrivariate LMS, when tracking an object oscillating in a
randomly selected plane of the quaternion imaginary subspace.

In the second simulation, the tracking ability of the QLMP algorithm is demon-

strated, where the QLMP algorithm was implemented to track the changing axis and

angle of rotation of an object rotating around the center of the coordinate system. Fig-

ure 4.5 shows the instantaneous rotation angle and its estimate, whereas the rotation

vector and its estimate are shown in Figure 4.6. Note that the QLMP accurately tracked

both the rotation vector and rotation angle.

4.6.2 Power system frequency estimation

Since their introduction, analytical signals have been an integral part of spectral analysis

of real-valued signals. In essence, analytical signals are complex-valued signals with

one-sided Fourier transforms, generated by adding a real-valued signal to its Hilbert

transform, where the phase contains the spectral information of the real-valued signal.

However, in circumstances where the signal of interest is complex-valued employing the

Hilbert transform in the complex domain, due to the limited dimensionality of complex

numbers, will lead to the loss of the information contained in the negative part of the

spectrum. Therefore, in order to fully characterize complex-valued signals, the concept

of analytical signal has been expanded to the quaternion domain in [72, 73] to present a
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Figure 4.4: Tracking a pure imaginary quaternion-valued signal with unit amplitude
through implementing the developed QLMP algorithm (in red), the QLMS algorithm
(in blue), and the real-valued quadrivariate LMS (in dark green).

Figure 4.5: Rotation angle estimation of a pure imaginary quaternion-valued signal
with unit amplitude through implementing the QLMP algorithm.
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Figure 4.6: Estimates of rotation vector, a pure imaginary quaternion-valued signal
with unit amplitude, obtained through implementing the QLMP algorithm.

quaternion-valued representation for complex-valued signals with one-sided quaternion

Fourier transforms and it has been shown that the spectral information of the complex-

valued signal is contained in the phase of its quaternion-valued representation. Based on

these developments, we next present a simple method for estimating the main frequency

component of three-phase power system signals.

For spectral analysis of three-phase power systems, the Clarke transform is used to

map the three-phase voltages onto the complex domain, where in general they are shown

to trace an ellipse [56]. The Hilbert transform of the output of the Clarke transform,

vn, with respect to the imaginary unit ζ ∈ {i, j, k} given by Hζ(vn), is used to construct

the phase-only signal

Sn =
vn +Hζ(vn)

|vn +Hζ(vn)| .

The instantaneous frequency of the system is now given by

f =
1

2πζ
ln

(
Ŝn+1

Sn

)
fs

where fs represents the sampling frequency, and Ŝn+1 is the estimate of Sn+1 obtained

using the strictly linear QLMP (for details on implementation of the Hilbert transform

see Appendix B).
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In the first experiment, the proposed algorithm was used to estimate the fundamen-

tal frequency, f = 50 Hz, of a three-phase power system where fs = 1500 Hz and it was

assumed that the measurements were corrupted by AWGN with SNR of 50 dB. The

system was operating under balanced (nominal) conditions for the first 2 seconds, then

it was forced into unbalanced operating condition by an 80% reduction in the amplitude

of one of its phases, which continued for 2 seconds, and for the last 2 seconds one of

the phases of the three-phase power systems experienced a 1 Hz amplitude modulation

given by 1 + 0.2sin(2πΔTn). Figure 4.7 shows the system frequency and its estimate

along side the frequency estimation error performance of the proposed method given by

εn = fn − f̂n

where fn and f̂n represent the system frequency and its estimate at time instant n. Note

that the proposed method accurately tracked the frequency of the power system under

both balanced and unbalanced conditions. In addition, unbalanced operating conditions

and amplitude modulation did not significantly effect the frequency estimation error

performance of the proposed method.

Figure 4.7: Frequency estimation for balanced and unbalanced three-phase power sys-

tem; frequency and its estimation (top), squared error |εn|2 =
∣∣fn − f̂n

∣∣2 (bottom).
The system is balanced for the first two seconds, is unbalanced for the next two second
seconds, and experiences an amplitude modulation on one of its phases for the last two
seconds.
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The performance of the proposed algorithm was also investigated for the case where

the power system has a rising (cf. falling) fundamental frequency, a typical case where

power generation is higher (cf. lower) than consumption, while operating under unbal-

anced condition caused by an 80% reduction in the amplitude of one phase. Figure 4.8

shows the system frequency and its estimate along side the frequency estimation error

performance of the proposed method, verifying that the proposed algorithm can accu-

rately estimate the fundamental frequency of the system. In addition, it is important

to observe that form Figure 4.8, it becomes apparent that the developed QLMP algo-

rithm can track the phase information of quaternion-valued signals even in incidences

when the phase is experiencing rapid changes. Finally, note that in three-phase power

systems frequency changes at much lower rates than is considered in this simulation and

the rates selected are to show the performance of the algorithm under extreme or worst

case scenarios.

Figure 4.8: Frequency estimation for a power system experiencing frequency change at

the rate of 2 Hz/s; frequency and its estimate (top), squared error |εn|2 =
∣∣fn − f̂n

∣∣2
(bottom).
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4.6.3 Body-motion tracking

The WL-QLMP was next used in a one-step-ahead prediction setting in order to track

the rotations of limbs of an athlete preforming Tai-Chi movements. The data were

recorded using four accelerometers, which measured the three Euler angles α, β, and

γ, as shown in Figure 4.9, these angles respectively represent the roll, pitch, and yaw

within the range [π,−π]. The Euler angles can be transformed into rotation matrices;

however, these matrices contain singularities when one of the Euler angles approaches

±π
2 , the phenomenon known as the gimbal lock.

N
X

Y

Z

X

Y

Z

γ

Figure 4.9: Inertial body motion sensor setting: fixed coordinate system (blue), sensor
coordinate system (red), and Euler angles (green). The “N” axis is used as a visual
guide to indicate the yaw angle.

In order to make the data suitable for processing1 each angle was converted into a

quaternion using the following transformations

α → (
cos(α), sin(α)

)→ ei
α
2

β → (
cos(β), sin(β)

)→ ej
β
2

γ → (
cos(γ), sin(γ)

)→ ek
γ
2

(4.23)

where each term represents the roll, pitch, and yaw rotations in the three-dimensional

space respectively. The three quaternion terms obtained in (4.23) were combined into

one quaternion given by

q =
(
ek

γ
2
)(
ej

β
2
)(
ei

α
2
)

(4.24)

which represents the total rotation. As the mapping in (4.23) is invertible, the resulting

quaternion in (4.24) preserves the dynamics of the recorded signal. Figure 4.10 shows

the recorded yaw angle measurements containing discontinuities and its corresponding

continuous transformation in (4.23) which is ready for processing.

1The recorded angles are unsuitable for processing in their original form as they contain discontinuities
around ±π.
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Figure 4.10: Recorded yaw angle measurements with discontinuities at ±π (top) and
its contentious transform (bottom).

The WL-QLMP algorithm was considered in a one-step-ahead prediction setting to

track body rotations. In Figure 4.11, the estimates of the absolute value of the phase of

the body motion signal obtained by the WL-QLMP algorithm are shown alongside those

obtained through a real-valued quadrivariate approach, where the quaternion-valued

body motion signal was considered in its vector representation and the real-valued LMS

algorithm was employed to track the signal. Notice that the WL-QLMP algorithm has a

significantly better performance than that of the quadrivariate algorithm. The individual

components of the phase of the quaternion-valued body motion signal are shown in

Figure 4.12, which confers that the proposed WL-QLMP can be used to accurately track

the rotations of an object moving in three-dimensions. In addition, from Figure 4.11 and

Figure 4.12 observe that the WL-QLMP and the quadrivariate algorithm implemented

to track the body motion signal seem to lose track of the signal during the terminating

samples. This is mostly due to the sudden change in the body motion signal statistics

or in other words the person performing the Tai-Chi movements coming to a standstill

at the end of experiment.

Figure 4.11: Absolute value of the phase of quaternion-valued body motion signal
employing the WL-QLMP algorithm and a quadrivariate approach.



Chapter 4. A Quaternion Adaptive Phase-Only Estimator 72

Figure 4.12: Phase estimation for recorded body-motion signal employing the WL-
QLMP algorithm.

4.7 Conclusion

The WL-QLMP adaptive filter has been introduced for the unified processing of three

and four-dimensional phase-only signals. The WL-QLMP has been shown to account

for both second-order proper and improper four-dimensional data represented as full

quaternions. The performance of the algorithms has been analyzed, a geometrical in-

terpretation of the operations of the proposed algorithms has been presented, and con-

vergence conditions have been established. Furthermore, the proposed algorithm has

been validated in a number of practical applications including frequency estimation in

three-phase power systems and body-motion tracking.



Chapter 5

A Non-Linear Complex-Valued

Frequency Estimator for

Three-Phase Power Systems

5.1 Overview

In this chapter, frequency estimation in three-phase power systems is considered from

a state space point of view in order to develop a robust and fast converging algorithm

for estimating the fundamental frequency of three-phase power systems in real-time.

To this end, the Clarke transform is used to incorporate the information from all the

phases into a complex-valued signal; then, a complex-valued widely-linear state space

estimator that can accurately estimate the fundamental frequency of both balanced and

unbalanced three-phase power systems is designed. Furthermore, it is shown that the

framework can be extended to account for harmonic contaminations in the system. For

rigor, the performance of the developed frequency estimator is quantified and compared

to that of its counterparts. The performance of the developed algorithm is validated

through simulations on both synthetic data and real-world data recordings, where it is

shown that the developed algorithm outperforms both standard linear and the recently

introduced widely-liner complex-valued frequency estimators.

5.2 Introduction

The components of the power grid are designed to operate optimally at a given nominal

frequency [106]. Large deviations from the nominal system frequency adversely affects

the components of the power grid [106–108], such as compensators and loads, resulting

in harmful operating conditions that can propagate throughout the network and cause

73
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stability issues. Thus, making frequency stability one of the most important factors

in power quality [106]. Therefore, accurate frequency estimation is a prerequisite to

ensuring frequency stability of the grid and maintaining optimal operating conditions.

The importance of frequency estimation in power grids has motivated the introduc-

tion of a variety of algorithms for this purpose, including frequency estimation techniques

based on the use of phase-locked loops [109, 110], recursive Newton-type frequency and

spectrum estimation algorithms applicable to three-phase power systems [111, 112], ap-

proaches based on the least squares and least mean square algorithms [113, 114], a Fourier

transform based method for estimating the main frequency in three-phase power sys-

tems [115], and an adaptive notch filter for direct estimation of frequency and its rate

of change in three-phase power systems [116]. In particular, approaches based on the

Kalman and extended Kalman filters have been shown to be advantageous [117–119], due

to their ability to model observational noise. Although a great deal of research has been

conducted in this area, there are shortcomings that are summarized in the following:

• Frequency estimation techniques based on phase-locked loops and notch filters are

computationally intensive; in addition, in the case of phase-locked loops, dedicated

hardware is also required.

• Frequency estimation techniques that use block based estimators, such as the least

squares and the Fourier transform, are not adequate for signals with rapidly chang-

ing statistics such as those encountered in power systems that are starting to

experience a fault or are recovering from one.

• In many incidences [111, 113, 117, 118], the frequency estimator only uses voltage

measurements from a single phase and cannot fully characterize three-phase sys-

tems, especially during crucial moments when one or two of the phases encounter

a sudden drop in voltage or short circuit.

• Frequency estimators based on standard complex-valued linear models [114, 119]

are shown to experience large oscillatory errors at twice the frequency of the system

when the three-phase system is operating in an unbalanced fashion [116, 120].

In order to introduce a robust frequency estimator for three-phase power systems,

the Clarke transform and widely-linear modeling of complex-valued signals have been

used in [57, 121], where an algorithm based on the ACLMS adaptive filter has been

presented. In addition, the model has been employed in its state space formulation in [58,

122] to introduce a frequency estimator based on the AECKF filter that outperforms

its ACLMS based counterpart, due to the fact that it can account for observational

noise. Although these algorithms perform significantly better than their strictly linear

counterparts, their performance deteriorates when the power system is operating under

fault conditions.
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In this chapter, frequency estimation in three-phase power systems is considered

from a new perspective. The analysis shows that the output of the Clarke transform of

a balanced three-phase system comprises a positive sequence only; however, when the

three-phase system is operating under fault conditions the output of the Clarke transform

comprises both a positive and a negative sequence element with the same fundamental

frequency. This is used to design a widely-linear state space model that accounts for the

presence of the negative sequence and can operate optimally under both balanced and

unbalanced operating conditions. The resulting frequency estimator is computationally

efficient, unbiased, and has consistent performance regardless of operating conditions.

Furthermore, we show that the framework can be extended to account for the presence

of the main harmonic components of the power signal.

5.3 Three-phase power systems

The instantaneous voltages of each phase in a three-phase power system are given by [53]

va,n =Va,ncos(2πfΔTn+ φa,n)

vb,n =Vb,ncos
(
2πfΔTn+ φb,n +

2π

3

)
vc,n =Vc,ncos

(
2πfΔTn+ φc,n +

4π

3

) (5.1)

where Va,n, Vb,n, and Vc,n are instantaneous amplitudes, φa,n, φb,n, and φc,n are instan-

taneous phases, f is the system frequency, and ΔT = 1/fs is the sampling interval with

fs denoting the sampling frequency. The Clarke transform, given by [53]

⎡
⎢⎣v0,nvα,n

vβ,n

⎤
⎥⎦ =

√
2

3

⎡
⎢⎣

√
2
2

√
2
2

√
2
2

1 −1
2 −1

2

0
√
3
2 −

√
3
2

⎤
⎥⎦
⎡
⎢⎣va,nvb,n

vc,n

⎤
⎥⎦ (5.2)

maps the three-phase power system onto a new domain where they are represented by

vn = vα,n + jvβ,n while in most practical applications v0,n is ignored and only serves

the role of making the Clarke transform reversible. When the three-phase system is

operating under blanched conditions that is Vn = Va,n = Vb,n = Vc,n and φa,n = φb,n =

φc,n = φn, it is straightforward to show v0,n = 0, which in turn results in

vn =

√
3

2
Vne

i(2πfΔTn+φn) (5.3)

that can be expressed by employing the first order linear autoregressive model

vn = ei2πfΔT vn−1

where the term ei2πfΔT is referred to as the phase incrementing element.



Chapter 5. A Non-Linear Complex-Valued Frequency Estimator for Three-Phase
Power Systems 76

The expression in (5.3) shows that when the three-phase power system is balanced,

vn is consisted of only a positive sequenced element; hence, it will trace a circle on the

complex plane making the distribution of vn rotation invariant or proper. Moreover,

under balanced operating condition the frequency of the system can be estimated by

standard linear complex-valued Kalman filters employing the state space model given in

Algorithm 4, where ϕn = ei2πfΔT is the phase incrementing element [119].

Algorithm 4. Complex Linear Frequency Estimator (CLFE) [119]

State evolution equation:[
ϕn

v̂n

]
=

[
ϕn−1

ϕn−1v̂n−1

]
+ νn

Observation equation:

vn =
[
0 1

] [ϕn

v̂n

]
+ ωn

Estimate of frequency :

f̂n =
� (ln (ϕn))

i2πΔT

The power system is designed to operate optimally at its nominal frequency and

under balanced conditions; nonetheless, in practice, a wide range of phenomena, such

as voltage sags, load imbalance, and faults in the transmission line, will lead to unbal-

anced operating conditions in three-phase power systems [107, 108]. When experiencing

unbalanced operating conditions [121]

vn = Ane
i(2πfΔTn+φn) +Bne

−i(2πfΔTn+φn)

with

An =

√
6 (Va,n + Vb,n + Vc,n)

6

Bn =

√
6 (2Va,n − Vb,n − Vc,n)

12
− i

√
2 (Vb,n − Vc,n)

4
·

where the authors in [121] have considered all phase shifts to be equal to φn for the sake

of simplicity. Therefore, vn comprises both a positive and a negative sequenced element

and will trace an ellipse in the complex plane, making the distribution of vn improper.

In order to accommodate both balanced and unbalanced systems, it has been shown

that vn can be expressed by employing the first order widely-linear autoregressive model

vn = hn−1vn−1 + gn−1v
∗
n−1
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where hn and gn are the linear and conjugate coefficients respectively [121]. The funda-

mental frequency of both balanced and unbalanced three-phase power systems can now

be estimated by a AECKF employing the state space model given in Algorithm 5 [122].

Algorithm 5. Complex Widely-Linear Frequency Estimator
(CWLFE) [122]

State evolution equation:⎡
⎢⎢⎢⎢⎢⎢⎣

hn
gn
v̂n
h∗n
g∗n
v̂∗n

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

hn−1

gn−1

hn−1v̂n−1 + gn−1v̂
∗
n−1

h∗n−1

g∗n−1

h∗n−1v̂
∗
n−1 + g∗n−1v̂n−1

⎤
⎥⎥⎥⎥⎥⎥⎦+ νa

n

Observation equation:

[
vn
v∗n

]
=

[
0 0 1 0 0 0
0 0 0 0 0 1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

hn
gn
v̂n
h∗n
g∗n
v̂∗n

⎤
⎥⎥⎥⎥⎥⎥⎦+ ωa

n

Estimate of frequency :

f̂n =
arcsin (−i� (hn + an))

2πΔT

with

an = −� (hn) +

√
�2 (hn) + |gn|2

Note that for a balanced three-phase system hn = ei2πfΔT and gn = 0; thus, under

balanced operating conditions Algorithm 5 and Algorithm 4 will essentially operate akin

to each other with the exception that Algorithm 4 cannot account for the presence of

improper observational noise, due to its underlying linear model. However, observe that

in Algorithm 5 the system frequency is calculated as a function of the filter coefficients,

hn and gn, which not only increases the computational complexity of the algorithm, but

also has a detrimental effect on its performance especially when the system is operating

under unbalanced conditions. To address these issues, a novel complex-valued state

space model for frequency estimation in three-phase power systems is presented that

has consistent performance under both balanced and unbalanced operating conditions.



Chapter 5. A Non-Linear Complex-Valued Frequency Estimator for Three-Phase
Power Systems 78

5.4 Frequency estimation using the positive and negative

sequence elements

From the expression in (5.1) and (5.2), after some tedious mathematical manipulations,

the output of the Clarke transform for a general three-phase system can be expressed as

vn = ΛI,ncos(2πfΔTn)− ΛQ,nsin(2πfΔTn)

where {ΛI,n,ΛQ,n} ∈ C and are given by

ΛI,n =

√
2

3
Va,ncos(φa,n) +

( i√3− 1√
6

)
Vb,ncos

(
φb,n +

2π

3

)
− ( i√3 + 1√

6

)
Vc,ncos

(
φc,n +

4π

3

)
ΛQ,n =

√
2

3
Va,nsin(φa,n) +

( i√3− 1√
6

)
Vb,nsin

(
φb,n +

2π

3

)
− ( i√3 + 1√

6

)
Vc,nsin

(
φc,n +

4π

3

)
.

Now, substituting the sin(·) and cos(·) with their polar representations yields

vn =
(ΛI,n

2
− ΛQ,n

2i

)
ei2πfΔTn︸ ︷︷ ︸

v+n

+
(ΛI,n

2
+

ΛQ,n

2i

)
e−i2πfΔTn︸ ︷︷ ︸

v−n

where vn has been decomposed into two counter rotating elements, v+n with only a

positive and v−n with only a negative sequenced element. The two counter-rotating

elements can be modeled individually by employing the linear recursive models

v+n = ei2πfΔT v+n−1 and v−n = e−i2πfΔT v−n−1 (5.4)

where the phase incrementing elements of the positive and negative sequence elements

are complex conjugates of each other. Therefore, vn can be expressed using the widely

linear model given by [
vn

v∗n

]
=

[
v+n−1 v−n−1

v−∗
n−1 v+∗

n−1

][
ϕn

ϕ∗
n

]
(5.5)

where ϕn = ei2πfΔT represents the phase increment coefficient. A geometric interpreta-

tion of the output of the Clarke transform, vn, for both a balanced and an unbalanced

three-phase power system that is experiencing an 80% drop in the amplitude of va,n and

a 20 degree shift in the phases of vb,n and vc,n is shown in Figure 5.1; in addition, in

Figure 5.2, the positive and negative sequence elements of the unbalanced three-phase

power system are illustrated.
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Figure 5.1: Geometric view of the output of the Clarke transform, vn, for both a
balanced and an unbalanced three-phase power system: a) geometric view of the output
of the Clarke transform, b) phasor representation.

Figure 5.2: Geometrical view of the distribution of vn in dark green “×”, v−n in red
“*”, and v+n in blue “o” for an unbalanced three-phase power system experiencing an
80% drop in the amplitude of va,n and a 20 degree shift in the phases of vb,n and vc,n.
Note that vn = v+n + v−n .
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Note that in the widely-linear model given in (5.5), the positive and negative se-

quence elements, v+n and v−n , need to be known in order to estimate the phase incre-

menting element, ϕn. However, this is not the case as only observations of the output

of the Clarke transform, vn, are at hand. Although a dual Kalman filtering approach

can be taken to simultaneously estimate ϕn and the system model parameters, v+n and

v−n , in order to simplify our approach and develop a more accurate and computationally

efficient frequency estimator, by taking into account that the phase increment elements

of v+n and v−n are complex conjugates of each other, a widely-linear state space model

for vn is presented in Algorithm 6, where the fundamental frequency of the system can

be estimated directly from the phase increment element, which is modeled as a state.

Algorithm 6. Complex Non-Linear Frequency Estimator (CNLFE)

State evolution equation:⎡
⎢⎢⎢⎢⎢⎢⎣

ϕn

v+n
v−n
ϕ∗
n

v+∗
n

v−∗
n

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕn−1

ϕn−1v
+
n−1

ϕ∗
n−1v

−
n−1

ϕ∗
n−1

ϕ∗
n−1v

+∗
n−1

ϕn−1v
−∗
n−1

⎤
⎥⎥⎥⎥⎥⎥⎦+ νa

n

Observation equation:

[
vn
v∗n

]
=

[
0 1 1 0 0 0
0 0 0 0 1 1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

ϕn

v+n
v−n
ϕ∗
n

v+∗
n

v−∗
n

⎤
⎥⎥⎥⎥⎥⎥⎦+ ωa

n

Estimate of frequency :

f̂n =
� (ln (ϕn))

i2πΔT

5.5 Harmonic contamination

The ever increasing presence of loads with non-linear voltage-current characteristics,

that is loads that draw a non-sinusoidal current from a sinusoidal voltage source such as

compensators, inverters, direct current converters, and electric motor drives, results in

distortion of the current and/or voltage signals from their desired sinusoidal shape [123].

In power engineering, these distorted voltage and current signals are mathematically

dealt with through the framework of the Fourier theory that states: a periodic wave

can be represented in terms of a summation of sinusoidal waves with frequencies at
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integer multiples of the fundamental frequency, referred to as harmonics. Since frequency

estimators, such as the CLFE and CWLFE presented in Algorithm 4 and Algorithm 5,

are designed for perfect sinusoidal wave forms, harmonic contamination is a major cause

of error in these frequency estimators.

In a similar manner to that explained in Section 5.4 for the main component of the

signal, the mth harmonic component after passing through the Clarke transform can be

expressed in the form of

vn,m = ΛI,n,mcos(2πmfΔTn)− ΛQ,n,msin(2πmfΔTn)

with {ΛI,n,m,ΛQ,n,m} ∈ C and given by

ΛI,n,m =

√
2

3
Va,n,mcos(φa,n,m) +

( i√3− 1√
6

)
Vb,n,mcos

(
φb,n,m +

2π

3

)
− ( i√3 + 1√

6

)
Vc,n,mcos

(
φc,n,m +

4π

3

)
ΛQ,n,m =

√
2

3
Va,n,msin(φa,n,m) +

( i√3− 1√
6

)
Vb,n,msin

(
φb,n,m +

2π

3

)
− ( i√3 + 1√

6

)
Vc,n,msin

(
φc,n,m +

4π

3

)
.

where {Vc,n,m, Vc,n,m, Vc,n,m}, denote the instantaneous amplitudes of the mth harmonic

voltages and {φa,n,m, φa,n,m, φa,n,m} are the instantaneous phase shifts of the mth har-

monic voltages.

In this section, two methods for dealing with harmonic contamination in three-

phase power signals is presented. The first approach simply considered harmonics as

noise components of the observed signals. The second approach takes advantage of the

flexibility of the developed CNLFE, presented in Algorithm 6, to incorporate the main

harmonic components as part of the signal.

5.5.1 Harmonics as noise

In most three-phase power distribution systems adequate provisions are put in place

to reduce the spread of harmonics, due to their negative effect on the life span and

efficiency of power grid components; in addition, the amount of harmonics that con-

sumers are allowed to create is strictly regulated [106, 123]. Therefore, under conditions

where the harmonic components of the signal is limited, it would be reasonable from a

computational complexity point of view to simply account these harmonics as the noise

component of the signal.
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The covariance of the mth harmonic component of three-phase power signal modeled

as noise is given by

E
[
vn,mv∗n,m

]
=E
[
ΛI,n,mcos(2πmfΔTn)Λ∗

I,n,mcos(2πmfΔTn)
]

+ E
[
ΛQ,n,msin(2πmfΔTn)Λ∗

Q,n,msin(2πmfΔTn)
]

− E
[
ΛI,n,mcos(2πmfΔTn)Λ∗

Q,n,msin(2πmfΔTn)
]

− E
[
Λ∗
I,n,mcos(2πmfΔTn)ΛQ,n,msin(2πmfΔTn)

]
=
|ΛI,n,m|2

2
+

|ΛQ,n,m|2
2

(5.6)

whereas its pseudo-covariance can be formulated as

E [vn,mvn,m] =
1

2
E
[
Λ2
I,n,m + Λ2

I,n,mcos(4πmfΔTn)
]

+
1

2
E
[
Λ2
Q,n,m − Λ2

Q,n,mcos(4πmfΔTn)
]

− 2E [ΛI,n,mcos(2πmfΔTn)ΛQ,n,msin(2πmfΔTn)]

=
Λ2
I,n,m

2
+

Λ2
Q,n,m

2
·

(5.7)

From the expressions in (5.6) and (5.7), note that if the three-phase voltages of the mth

harmonic component are balanced; then

E
[
vn,mv∗n,m

]
=

V 2
a,n,m + V 2

b,n,m + V 2
c,n,m

2
and E [vn,mvn,m] = 0.

However, this is not the case when the three-phase voltages of the mth harmonic are

not balanced, leading to an improper observational noise1. This furtherer validates

our approach in using complex-valued widely-linear modeling as the information in the

pseudo-covariance cannot be exploited through standard linear complex-valued modeling

of the three-phase power system.

5.5.2 Harmonics as part of the signal

Although, from a computational complexity point of view, it is convenient to model har-

monic components of the signal as noise, this approach compromises the performance

of frequency estimators as the energy of the section of the signal considered as obser-

vational noise rises rapidly with increase in harmonic contamination. In addition, it is

important in harmonic mitigation applications to be able to account for the presence of

the major harmonic components. Therefore, it is prudent to model the major harmonic

components as part of the signal.

1It is most likely that the three-phase voltages of the major harmonic components, such as the third
and fifth-order harmonics, be unbalanced, even if the system is operating under balanced conditions [123].
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In contrast to the state space parameters in Algorithm 5, the state space parameters

in Algorithm 6 have an intuitive physical interpretation, which allows for the framework

to be extended to include the main harmonic components in the three-phase power

system if necessary. For instance, a state space model taking into account a harmonic

at m times the main frequency of the system is given in Algorithm 7, where v+n,m and

v−n,m denote the positive and negative sequences of the mth harmonic component.

Algorithm 7. CNLFEWith Harmonic Contamination (CNLFE-WHC)

State evolution equation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕn

v+n
v−n
v+n,m
v−n,m
ϕ∗
n

v+∗
n

v−∗
n

v+∗
n,m

v−∗
n,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕn−1

ϕn−1v
+
n−1

ϕ∗
n−1v

−
n−1

ϕm
n−1v

+
n−1,m

ϕ∗m
n−1v

−
n−1,m

ϕ∗
n−1

ϕ∗
n−1v

+∗
n−1

ϕn−1v
−∗
n−1

ϕ∗m
n−1v

+∗
n−1,m

ϕm
n−1v

−∗
n−1,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ νa
n

Observation equation:

[
vn
v∗n

]
=

[
0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕn

v+n
v−n
v+n,m
v−n,m
ϕ∗
n

v+∗
n

v−∗
n

v+∗
n,m

v−∗
n,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ωa
n

Estimate of frequency :

f̂n =
� (ln (ϕk))

i2πΔT

Note that the CNLFE-WHC frequency estimator presented in Algorithm 7 requires

more processing power as compared to that of the CNLFE presented in Algorithm 6;

however, it accounts for the presence of the mth harmonic allowing the measure, κm =∣∣v+n,m∣∣2 + ∣∣v+n,m∣∣2, to be used to detect its presence. In addition, considering the mth

harmonic as part of the signal provides for a lower variance observational noise and

better estimates of the main frequency of the system.
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5.6 Performance analysis

In terms of computational complexity, the newly developed CNLFE presented in Algo-

rithm 6 and its counterpart, the CWLFE presented in Algorithm 5, are implemented

using the AECKF, have state vectors of similar lengths, and have identical observational

vectors; however, the CWLFE in Algorithm 5 estimates the system frequency through

a complicated function of the state vector elements, resulting in higher computational

complexity. In addition, the CWLFE can only model harmonic components of the signal

as observational noise, whereas it was shown in Section 5.5.2 that in the framework of

the CNLFE, the flexibility is available to model the harmonic components of the signal

as either observational noise or as part of the signal, dependent on the application and

processing power available. In this section, the performance of the CNLFE developed

here and presented in Algorithm 6 is quantified and compared to that of its counterpart,

the CWLFE presented in Algorithm 5, as a bench mark.

The AECKF filter provides an unbiased estimate of the augmented state vector along

side an estimate of the augmented covariance matrix of the state vector estimation error.

In this setting, the estimate of the phase incrementing element of the CNLFE can be

modeled as

ϕ̂n = ϕn + un

where ϕ̂n is the estimate of the phase incrementing element at time instant n and un is a

zero-mean complex-valued Gaussian random variable representing the estimation error,

the second-order statistics of which are also estimated by the AECKF. The estimate of

the system frequency obtained by the CNLFE can now be expressed as

f̂n =
� (ln (ϕ̂k))

i2πΔT
·

Making the assumptions that the sampling interval, ΔT , is small enough to ensure

�(ϕn) = cos(2πfΔT ) > �(un), results in ln(·) being situated in its analytical region.

Furthermore, assuming that |ϕn| = 1 � |un|, allows ln(·) to be approximated by its

first-order Taylor expansion around ϕn which yields

f̂n =
� (ln(ϕn + un))

i2πΔT
=

1

i2πΔT
�
(
ln(ϕn) +

un
ϕn

)

=
� (ln(ϕn))

i2πΔT
+

1

i2πΔT
�
(
un
ϕn

)
= f +

1

i2πΔT
�
(
un
ϕn

)
.

(5.8)

Taking into account that E[un] = 0, the statistical expectation of f̂n, as expressed

in (5.8), is given by

E[f̂n] = f +
1

i2πΔT
E

[
�
(
un
ϕn

)]
= f +

1

i2πΔT
�
(
E[un]

un

)
= f (5.9)
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indicating that the developed CNLFE produces unbiased estimates of the system fre-

quency. In addition, the MSE of the estimates of the system frequency can now be

formulated as

E

[(
f̂n − f

)2]
= E

[ −1

4(πΔT )2
�2

(
un
ϕn

)]
=

−1

8 (πΔT )2

(
�
(
Runun

ϕ2
n

)
− Cun

)

where replacing ϕ2
n = cos(4πfΔT ) + isin(4πfΔT ) yields

E

[(
f̂n − f

)2]
=

−1

8 (πΔT )2

(
�
(
Runun

ϕ2
n

)
− Cun

)

=
−1

8 (πΔT )2

(
cos(4πfΔT )�(Runun) + sin(4πfΔT )�(Runun)− Cun

)
.

(5.10)

Now, taking into account that the system frequency in three-phase power applications

is usually close to 50 Hz or 60 Hz whereas the sampling frequency is on the order of ten

to twenty times larger, it is reasonable to assume cos(4πfΔT ) ≈ 1 and sin(4πfΔT ) ≈ 0;

therefore, from the expression in (5.10) we have

E

[(
f̂n − f

)2]
=

1

8 (πΔT )2

(
Cun −�(Runun)

)
= −E

[�2(un)
]

4 (πΔT )2
=

C�(un)

4 (πΔT )2
· (5.11)

Note that from the expressions in (5.9) and (5.11) it becomes apparent that the developed

CNLFE is unbiased and its steady-state MSE is not directly dependent on the operating

conditions of the three-phase system.

Recall that the estimate of the system frequency at time instant n obtained by the

CWLFE is given by

f̂n =
arcsin (−i� (hn + an))

2πΔT
(5.12)

with

an = −� (hn) +

√
�2 (hn) + |gn|2 (5.13)

while replacing the expression in (5.13) into the expression in (5.12) yields

f̂n =
1

2πΔT
arcsin

(
−i

√
�2(hn) + |gn|2

)

where it is important to note that −i
√
�2(hn) + |gn|2 ∈ R

+. The estimates of hn and

gn obtained by the AECKF can be modeled as

ĥn =hn + uhn

ĝn =gn + ugn
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where ĥn and ĝn are estimates of hn and gn, while uhn and ugn are zero-mean complex-

valued Gaussian random variables representing the estimation error of hn and gn respec-

tively. Therefore, the estimate of the system frequency obtained by the CWLFE can be

expressed as

f̂n =
1

2πΔT
arcsin

(
−i

√
�2(hn + uhn) + |gn + ugn |2

)

=
1

2πΔT
arcsin

(
−i

√
�2(hn) + �2(uhn) + 2�(hn)�(uhn) + |gn|2 + |ugn |2 + 2�(gnugn)

)

where assuming that |hn| � |uhn | and |gn| � |ugn | and approximating the square root

function using its first-order Taylor expansion around �2(hn) + |gn|2 yields

f̂n =
1

2πΔT
arcsin

⎛
⎝−i

√
�2(hn) + |gn|2 + �2(uhn) + 2�(hn)�(uhn) + |ugn |2 + 2�(gnugn)

2i
√

�2(hn) + |gn|2

⎞
⎠ .

Now, approximating arcsin(·) around−i
√�2(hn) + |gn|2 with its first-order Taylor series

expansion allows the estimate of the system frequency to be expressed as

f̂n =
1

2πΔT
arcsin

(
−i

√
�2(hn) + |gn|2

)

+
�2(uhn) + 2�(hn)�(uhn) + |ugn |2 + 2�(gnugn)
i4πΔT

√
1−�2(hn)− |gn|2

√
�2(hn) + |gn|2

=f +
�2(uhn) + 2�(hn)�(uhn) + |ugn |2 + 2�(gnugn)
i4πΔT

√
1−�2(hn)− |gn|2

√
�2(hn) + |gn|2

·

(5.14)

The statistical expectation of f̂n, as expressed in (5.14), is now given by

E[f̂n] = f +
E
[�2(uhn)

]
+ 2E [�(hn)�(uhn)] + E

[
|ugn |2

]
+ 2E [�(gnugn)]

4πΔT
√

1−�2(hn)− |gn|2
(
i
√

�2(hn) + |gn|2
)

where considering that that uhn and ugn are zero-mean yields2

E[f̂n] = f +
Cugn

− C�(uhn )

4πΔT
√

1−�2(hn)− |gn|2
(
i
√
�2(hn) + |gn|2

) · (5.15)

Therefore, the CWLFE cannot guarantee unbiased estimates of the system frequency

regardless of the operating conditions of the three-phase system.

2Once again, note that i
√

�2(hn) + |gn|2 ∈ R; therefore, E[f̂n] as expressed in (5.15) lies in R.
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The MSE of the estimate of the system frequency, as expressed in (5.14), can be

formulated as

E

[(
f − f̂n

)2]
=

E

[(
�2(uhn) + 2�(hn)�(uhn) + |ugn |2 + 2�(gnugn)

)2]
16 (πΔT )2

(
1−�2(hn)− |gn|2

) ∣∣∣�2(hn) + |gn|2
∣∣∣ · (5.16)

Now, assuming that the sampling frequency is much higher than the system frequency

results in
(
1−�2(hn)− |gn|2

)
≈ 1; furthermore, considering the terms �2(uhn) and

|ugn |2 to be small compared to 2�(hn)�(uhn) and 2�(gnugn) allows the expression in

(5.16) to be simplified into

E

[(
f − f̂n

)2]
=

E
[�2(hn)�2(uhn)

]
+ E

[�2(gnugn)
]

4 (πΔT )2
∣∣∣�2(hn) + |gn|2

∣∣∣ · (5.17)

Regarding the expressions in (5.16) and (5.17), it is important to make the following

three remarks:

1. The expressions in (5.16) and (5.17) are dependent on hn and gn and hence on the

operating conditions of the three-phase system.

2. For a constant hn, the expressions in (5.16) and (5.17) are minimized when gn = 0,

which gives

E

[(
f − f̂n

)2] ≥E

[(
�2(uhn) + 2�(hn)�(uhn) + |ugn |2

)2]
16 (πΔT )2 (1−�2(hn)) |�2(hn)|

≈ E
[�2(uhn)

]
4 (πΔT )2

·
(5.18)

3. From comparing the expressions in (5.11) and (5.18), it becomes apparent that

the CNLFE achieves a smaller steady-state MSE than that of CWLFE, that is

assuming both algorithms achieve the same accuracy on their state vector estimates

or E
[�2(un)

] ≈ E
[�2(uhn)

]
.

5.7 Simulations

In this section, the performance of the newly developed CNLFE is validated and com-

pared to that of the CLFE and the CWLFE in different experiments involving practical

power grid scenarios. In all experiments the sampling frequency was fs = 1 kHz and the

voltage measurements were considered to be corrupted by white Gaussian noise with

SNR of 40 dB.
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5.7.1 Synthetically generated data

In the first experiment, the three-phase system was considered to be initially balanced,

then suffered a fault resulting in a voltage sag characterized by an 80% drop in the

amplitude of va,n and 20 degree shifts in the phases of vb,n and vc,n, the voltage pha-

sor plot of which is shown in Figure 5.1. Furthermore, the frequency of the system

experienced a step jump of 2 Hz. The fault lasted for a short duration and the system

returned to balanced operating conditions and its nominal frequency once more. The

estimates of the system frequency obtained through employing the CLFE, CWLFE, and

CNLFE are shown in Figure 5.3. Observe that the CLFE could only accurately estimate

the system frequency during balanced operating conditions whereas the CWLFE and

CNLFE were able to track the system frequency during both balanced and unbalanced

operating conditions. Moreover, a closer examination of the transient behavior of the

CWLFE and CNLFE is made in Figure 5.4. Notice that both when the three-phase

system was starting to experience the voltage sag and was recovering from the voltage

sag, the CNLFE outperformed the CWLFE in terms of convergence rate and had a

better dynamic behavior, that is the CNLFE had less overshoot and undershoot.

Figure 5.3: Frequency estimation for a three-phase power system experiencing a voltage
sag and a 2 Hz jump in frequency from 0.667 to 1.334 seconds. The performance of the
CLFE is shown in the top graph while the performance of the CNLFE and CWLFE
are compared in the bottom graph.
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Figure 5.4: Transient behavior of the CWLFE and CNLFE when the three-phase power
system experiences a voltage sag and a 2 Hz step jump in frequency: a) voltage sag
starting, b) voltage sag ending.

In order to further validate the performance of the CNLFE, in the next experiment

the unbalanced three-phase system that is characterized in Figure 5.1 was considered to

experience a rising (cf. falling) frequency due to mismatch between power generation

and consumption 0.5 seconds after the simulation started. The estimates of the system

frequency obtained through employing the CNLFE and CWLFE are shown in Figure 5.5.

Observe that both when the system frequency was constant and the system frequency

was changing, the CWLFE and CNLFE accurately tracked the system frequency, with

the CNLFE outperforming the CWLFE in terms of steady-state variance.

Figure 5.5: Frequency estimation for an unbalanced three-phase power system experi-
encing a changing frequency at the rate of 10 Hz/s employing the CWLFE and CNLFE.

The steady-state MSE performance advantage of the newly developed CNLFE for

various SNR values is shown in Figure 7.7, where the steady-state MSE of the CLFE,

CWLFE, and CNLFE for both a balanced and the unbalanced three-phase system shown

in Figure 5.1 are compared. Notice that the developed CNLFE achieves a better MSE
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performance than the CWLFE and CLFE, verifying the analysis in Section 5.6. Fur-

thermore, unbalanced operating conditions did not have an effect on the steady-state

MSE performance of the CNLFE, a desirable characteristic for frequency estimators of

three-phase power systems and in agreement with the analysis in Section 5.6.

Figure 5.6: Steady-state MSE performance analysis for SNR ranging from 20 dB to
60 dB: a) balanced three-phase system, b) unbalanced three-phase system.

The steady-state bias performance advantage of the newly developed CNLFE for

various SNR values is now investigated. In Figure 5.7, the steady-state bias performance

of the CNLFE is compared to that of the CWLFE and the CLFE for a balanced and the

unbalanced three-phase system characterized in Figure 5.1. Observe that the developed

CNLFE achieves a lower bias than the CWLFE and CLFE, verifying the analysis in

Section 5.6. It is important to note that for the unbalanced three-phase system the

CLFE produced estimates with around 1.7 Hz of bias regardless of the SNR of the

voltage measurements.

Figure 5.7: Steady-state bias performance analysis for SNR ranging from 20 dB to
60 dB: a) balanced three-phase system, b) unbalanced three-phase system.
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In the next experiment, the effect of harmonics on the performance of the CNLFE

is considered. This is performed through the addition of a balanced 10% third harmonic

component to the unbalanced three-phase system used in the previous experiment at

t = 0.05 s. The system voltages and estimates of the system frequency are shown in

Figure 5.8. Notice that the proposed CNLFE achieved a smaller steady-state oscillatory

error than the CWLFE; furthermore, when the proposed CNLFE was used in its modified

format, CNLFE-WHC, the frequency of the system was estimated accurately regardless

of the presence of the third harmonic component.

Figure 5.8: Frequency estimation for an unbalanced three-phase power system contam-
inated with a 10% third order harmonic: a) three-phase voltages, b) estimates of the
system frequency.

5.7.2 Real-world data

The performance of the developed CNLFE is now evaluated in a more practical setting

using real-world data recorded at a 110/20/10 k.V. transformer station. The REL 531

numerical line distance protection terminal, produced by ABB Ltd, was installed in the

station and was used to record the “phase-ground” voltages.
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In the first simulation using real-world data, the three-phase system appeared to be

operating in a balanced fashion for the first 5 seconds, then experienced a severe voltage

sag at approximately 5.05 seconds after recoding started which lasted for around 80

milliseconds. The recorded data and the estimates of the system frequency are shown

in Figure 5.9. Observe the CLFE and the CWLFE lost track of the system frequency

during the voltage sag whereas the CNLFE was able to track the system frequency

during the voltage sag and showed outstanding performance.

Figure 5.9: Frequency estimation during a sever real-world voltage sag: a) three-phase
voltages, b) estimates of the system frequency.

In the second simulation using real-world data, the three-phase system suffered a

voltage sag approximately 2.5 seconds after recording started. The recorded data and

the estimates of the system frequency are shown in Figure 5.10. Notice that once again

the newly developed CNLFE achieved a better steady-state variance as compared to the

CWLFE and CLFE.
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Figure 5.10: Frequency estimation during a voltage sag using real-world data recording:
a) three-phase voltages, b) estimates of the system frequency.

5.8 Conclusion

Frequency estimation in three-phase power systems has been considered and a unified

approach for estimating the fundamental frequency of both balanced and unbalanced

three-phase systems based on the positive and negative sequence elements in the out-

put of the Clarke transform has been presented. The output of the Clarke transform

consists of only a positive sequence when the three-phase system is balanced; however,

when the three-phase system is unbalanced, a negative sequence is also present in the

signal, which compromises the performance of standard strictly linear estimators. The

newly developed CNLFE accounts for the presence of the negative sequence element in

the output of the Clarke transform and operates optimally under both balanced and

unbalanced operating conditions. Furthermore, it has also been demonstrated that the

framework can be easily extended to account for the presence of harmonics. The per-

formance of the developed algorithm has been quantified and extensively tested using

synthetic and real-world data where it was shown to outperform the strictly linear CLFE

and the recently introduced widely-linear CWLFE, especially during critical moments

when the three-phase system was experiencing a fault and/or harmonics.



Chapter 6

A Quaternion Joint Frequency

and Phasor Estimator for

Three-Phase Power Systems

6.1 Overview

In this chapter, a novel frequency estimator for three-phase power systems based on

quaternion-valued state space modeling of three-phase power system signals is developed.

Modeling the voltage measurements from all the phases of a three-phase power system as

a quaternion-valued signal allows for the full characterization of the three-phase power

systems. In addition, the components of the state space model are designed in a manner

that permits the extraction of the voltage phasor information of each phase. To this end,

an approach for estimating the voltage phasor information of three-phase power systems

is also developed. For rigor, the performance of the developed frequency estimator is

quantified and a framework is introduced for dealing with harmonic contamination.

6.2 Introduction

The need for rigorous frequency estimation techniques in power distribution systems

was discussed in Section 5.2; however, this need becomes even more pronounced when

considering current trends in smart grid technology that in addition to having to cater

for an ever increasing unpredictable power consumption, incorporate distributed power

generation based on renewable energy sources, such as solar and wind [57, 121, 122].

In this setting, the wide-area grid is divided into a number of self contained sections

called micro-grids, with some micro-grids becoming independent in power generation

and disconnecting from the wide-area grid for prolonged lengths of time, referred to as

94
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islanding. Perfect synchrony in frequency and voltage phasors is required to connect

micro-grids and manage islanding; consequently, many smart grid control and manage-

ment techniques are dependent on accurate estimation of frequency and voltage phasors

under both balanced and unbalanced operating conditions.

For more than 50 years, the Clarke transform has formed the backbone of three-

phase power system analysis, providing a complex-valued representation of three-phase

power systems that allows for the use of the well defined complex-valued mathematical

framework for analyzing the behavior of the three-phase power grid [53]. However,

as was explained in Section 5.3, the Clarke transform can only truly represent all the

information in a three-phase power system that is operating in a balanced fashion, as

in essence the Clarke transform is a two-dimensional representation of a signal that is

by nature three-dimensional. To this end, quaternions are employed in order to model

the voltage measurements of thee-phase power systems directly in the three-dimensional

space where they naturally reside, mitigating the need to use the Clarke transform.

In this work, a novel frequency estimator for three-phase power systems is derived

based on quaternion-valued state space adaptive filtering. Furthermore, an insight to

the physical interpretation of the elements of the state space vector is provided and

exploited to estimate the voltage phasors of each phase. The resulting estimator can

fully characterize three-phase systems, operates optimally under both balanced and un-

balanced conditions, and eliminates the need to use the Clarke transform. Finally the

performance of the developed algorithm is quantified and the developed algorithm is

validated through simulation using both synthetic data and real-world data recordings

where it is shown that it can outperform its complex-valued counterparts.

6.3 The quaternion frequency estimator

The three-phase voltages are combined together to generate a quaternion-valued signal

with a vanishing real component given by

qn = iva,n + jvb,n + kvc,n (6.1)

where all the elements of qn have the same frequency. Therefore, analytical geometry

dictates that qn traces an ellipse in a two-dimensional subspace (one plane) of the three-

dimensional imaginary subspace of H. This is shown in Figure 6.1, where the system

voltages of a balanced and an unbalanced three-phase system are presented alongside a

plot of their voltage phasors.
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Figure 6.1: Geometric view of the system voltages, qn, and the corresponding phasor
diagrams of a balanced and an unbalanced three-phase system: a) system voltages, b)
phasor representation of a balanced three-phase system, c) phasor representation of an
unbalanced three-phase system. Solid red lines represent an unbalanced system, while
dashed blue lines represent a balanced system.

In order to simplify our analysis and without loss of generality a new set of imaginary

units, {ζ, ζ ′, ζ ′′}, are defined such that

ζζ ′ = ζ ′′, ζ ′ζ ′′ = ζ, ζ ′′ζ = ζ ′. (6.2)

The ζ ′ and ζ ′′ imaginary units are designed to reside in the same plane as qn, which

results in ζ being normal to this plane. An arbitrary ellipse in the ζ ′-ζ ′′ plane can then

be expressed as

qn = ζ ′Ansin(2πfΔTn+ φζ′,n) + ζ ′′Bnsin(2πfΔTn+ φζ′′,n) (6.3)

where {An, Bn} ∈ R, are instantaneous amplitudes and {φζ′,n, φζ′′,n} ∈ [0, 2π) are in-

stantaneous phases. The expression in (6.3) can be rearranged using the expressions in

(6.2) to give

qn =
(
Ansin

(
2πfΔTn+ φζ′,n

)
+ ζBnsin

(
2πfΔTn+ φζ′′,n

))
ζ ′. (6.4)
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Given that ζ2 = −1, upon replacing the sin(·) and cos(·) functions with their polar

representations, as given in (2.11), the expression in (6.4) yields

qn =
(
eζ(2πfΔTn+φζ′,n) − e−ζ(2πfΔTn+φζ′,n)

)(An

2ζ

)
ζ ′

+
(
eζ(2πfΔTn+φζ′′,n) − e−ζ(2πfΔTn+φζ′′,n)

)(Bn

2

)
ζ ′.

(6.5)

Factoring out the terms eζ(2πfΔTn) and e−ζ(2πfΔTn), the expression in (6.5) can be

rearranged to give

qn = eζ(2πfΔTn)
(eζ(φζ′,n)An

2ζ
+

eζ(φζ′′,n)Bn

2

)
ζ ′︸ ︷︷ ︸

q+n

− e−ζ(2πfΔTn)
(e−ζ(φζ′,n)An

2ζ
+

e−ζ(φζ′′,n)Bn

2

)
ζ ′︸ ︷︷ ︸

q−n

where qn has been divided into the two counter-rotating signals q+n and q−n , which can

be expressed by the corresponding first-order quaternion linear regressions

q+n = eζ(2πfΔT )q+n−1 and q−n = e−ζ(2πfΔT )q−n−1. (6.6)

The geometrical interpretation of system voltages and the counter-rotating elements, for

an unbalanced three-phase system, is illustrated in Figure 6.2.
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Figure 6.2: System voltage, qn, positive sequenced element, q+n , and negative sequence
element, q−n , of an unbalanced three-phase system suffering from an 80% drop in the
amplitude of va,n and 20 degree shifts in the phases of vb,n and vc,n.

Taking into account the linear regressions in (6.6), where the phase incrementing

element of q+n is the quaternion conjugate of the phase incrementing element of q−n ,
a state space model for qn is proposed in Algorithm 8, where ϕn = eζ2πfΔT , νn is
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the state evolution noise, and ωn is the observation noise. Note that the developed

quaternion frequency estimator in Algorithm 8 can be implemented using the strictly

linear quaternion Kalman filter. In addition, if the observation and state vectors are

considered in their augmented formulation1; then, Algorithm 8 can be implemented

using the AQKF which in turn will allow improper observational noise to be accounted

for, albeit at the cost of an increase in computational complexity.

Algorithm 8. Quaternion Frequency Estimator (QFE)

State evolution equation:⎡
⎣ϕn+1

q+n+1

q−n+1

⎤
⎦ =

⎡
⎣ ϕn

ϕnq
+
n

ϕ∗
nq

−
n

⎤
⎦+ νn

Observation equation:

qn =
[
0 1 1

] ⎡⎣ϕn

q+n
q−n

⎤
⎦+ ωn

Estimate of frequency :

f̂n =
|� (ln (ϕn))|

2πΔT
=

1

2πΔT
atan

( |�(ϕn)|
�(ϕn)

)

6.4 Phasor estimation

Through applying simple mathematical manipulations, the expression in (6.1) is rear-

ranged to give

qn = ΛI,ncos(2πfΔTn)− ΛQ,nsin(2πfΔTn) (6.7)

where ΛI,n and ΛQ,n are given by

ΛI,n =iVa,ncos(φa,n) + jVb,ncos(φb,n +
2π

3
) + kVc,ncos(φc,n +

4π

3
)

ΛQ,n =iVa,nsin(φa,n) + jVb,nsin(φb,n +
4π

3
) + kVc,nsin(φc,n +

4π

3
).

(6.8)

1In this setting, considering that the observation, qn, has a vanishing real component we have qn =
−qin − qjn − qkn. Therefore, qn is not linearly independent from qin, q

j
n, and qkn; hence, qn need not to be

included in the augmented observation vector which takes the form qan = [qin, q
j
n, g

k
n]

T . The same applies
for the state vector as q+n and q−n also have vanishing real components.
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Replacing sin(·) and cos(·) functions in the expression in (6.8) with their polar repre-

sentations, gives

qn =
ΛI,n

2

(
e(ζ2πfΔTn) + e−(ζ2πfΔTn)

)
+

ΛQ,n

2ζ

(
e(ζ2πfΔTn) − e−(ζ2πfΔTn)

)
(6.9)

where

ζ =
ΛI,n × ΛQ,n

|ΛI,n × ΛQ,n| ·

From the expressions in (6.7) and (6.8), it becomes clear that ΛI,n and ΛQ,n consist

of the real and imaginary components of the voltage phasors; thus, the problem of

estimating the voltage phasors of the three-phase system is reduced to estimating ΛI,n

and ΛQ,n. In Appendix C, a deterministic relation is established between the state vector

elements of the developed QFE and the voltage phasors. In addition to a deterministic

relation between the state vector elements of the QFE and three-phase voltage phasors,

an adaptive approach can also be taken for estimating the voltage phasors.

From the expression in (6.7), notice that ΛI,n and ΛQ,n can be estimated through

demodulating the quaternion-valued signal qn. To this end, the state space model in

Algorithm 9 is proposed, where q+n and q−n , that are elements of the state space vector

of Algorithm 8, are combined together to generate the observation signal in order to

prevent the observational noise, resulting from measurement inaccuracy, harmonics, and

other irregularities, from affecting the phasor estimates. Note that in Algorithm 9, the

observation equation is dependent on the signals sin(2πfΔTn) and cos(2πfΔTn), which

are generated recursively using sin(2πfΔT ) and cos(2πfΔT ) that in turn are extracted

from ϕn = eζ2πfΔT = cos(2πfΔT ) + ζsin(2πfΔT ). The phasor estimation process is

illustrated in Figure 6.3.

Algorithm 9. Quaternion Adaptive Phasor Estimator (QAPE)

State evolution equation:[
ΛI,n

ΛQ,n

]
=

[
ΛI,n−1

ΛQ,n−1

]
+ νn

Observation equation:

q+n + q−n =
[
cos(2πfΔTn) sin(2πfΔTn)

] [ΛI,n

ΛQ,n

]
+ ωn

Sinusoidal Signal Generator (SSG):[
cos(2πfΔTn)
sin(2πfΔTn)

]
=

[ �(ϕn) −|�(ϕn)|
|�(ϕn)| �(ϕn)

] [
cos(2πfΔT (n− 1))
sin(2πfΔT (n− 1))

]



Chapter 6. A Quaternion Joint Frequency and Phasor Estimator for Three-Phase
Power Systems 100

QFE 

SSG 

QAPE 

three-phase 
   voltages  

 

sin  
cos  
 

 
 

Figure 6.3: Schematic of the proposed quaternion frequency and phasor estimator.
The quaternion frequency estimator (QFE) presented in Algorithm 8 and quaternion
adaptive phasor estimator (QAPE) presented in Algorithm 9 with its sinusoidal signal
generator (SSG) are shown.

6.5 Performance analysis

The developed QFE is implemented using the AQKF, presented in Algorithm 2, which

produces unbiased estimates of the state vector and an estimate of the covariance matrix

of the state vector estimation error. Therefore, the estimate of the phase incrementing

element of the QFE can be modeled as

ϕ̂n = ϕn + un

where ϕ̂n is the estimate of the phase incrementing element at time instant n and un

is a zero-mean quaternion-valued Gaussian random variable representing the estimation

error, the second-order statistics of which are also estimated by the AQKF. The estimate

of the system frequency obtained by the QFE can now be expressed as

f̂n =
1

2πΔT
atan

( |�(ϕ̂n)|
�(ϕ̂n)

)
=

1

2πΔT
atan

( |�(ϕn) + �(un)|
�(ϕn) + �(un)

)
. (6.10)

Assuming that the sampling frequency is sufficiently high so that cos(2πfΔT ) ≈ 1 and

the variance of the noise element, un, is much less than one, we have

�(ϕn) + �(un) = cos(2πfΔT ) + �(un) ≈ cos(2πfΔT ). (6.11)

Furthermore, considering that �(ϕn) = ζsin(2πfΔT ), the expression |�(ϕn) + �(un)|
in (6.10) gives

|�(ϕn) + �(un)| =
√

(�(ϕn) + �(un)) (�(ϕ∗
n) + �(u∗n))

=

√
sin2(2πfΔT ) + |�(un)|2 + 2� (ζ�(un)) sin(2πfΔT )

(6.12)
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where the square root function in (6.12) can be approximated by its first-order Taylor

expansion around sin2(2πfΔT ) to give

|�(ϕn) + �(un)| = sin(2πfΔT ) + �(ζ�(un)) + |�(un)|2
2sin(2πfΔT )

· (6.13)

Now, replacing (6.13) and (6.11) into the expression in (6.10) yields

f̂n =
1

2πΔT
atan

(
sin(2πfΔT )

cos(2πfΔT )
+

�(ζ�(un))
cos(2πfΔT )

+
|�(un)|2

2cos(2πfΔT )sin(2πfΔT )

)
. (6.14)

Again assuming the sampling frequency is sufficiently high and the variance of the noise

element, un, is much less than one, allows the atan(·) functon in (6.14) to be approxi-

mated by its first-order Taylor expansion to give

f̂n = f +
�(ζ�(un))
2πΔT

+
|�(un)|2
8f(πΔT )2

· (6.15)

Taking the statistical expectation of the expression in (6.15) yields

E
[
f̂n

]
= f +

C�(un)

8f(πΔT )2
· (6.16)

In addition, after some tedious mathematical manipulations the MSE of the frequency

estimates obtained by the QFE can be expressed as

E

[(
f̂n − f

)2]
=

E
[|�(ζ�(un))|2]
4(πΔT )2

+
E
[|�(un)|4]

64f2(πΔT )4
+

E
[�(ζ�(un))|�(un)|2]

8f(πΔT )3
· (6.17)

From the inequality �(ζ�(un)) ≤ |�(un)|2, we have

E
[|�(ζ�(un))|2] ≤ E

[|�(un))|4] and E
[�(ζ�(un))|�(un)|2] ≤ E

[|�(un))|4] .
(6.18)

Now, replacing the inequalities in (6.18) into the expression (6.17) allows an upper bound

to be established for the MSE of the frequency estimates obtained by the QFE that is

given by

E

[(
f̂n − f

)2] ≤ κ

(
1

4(πΔT )2
+

1

64f2(πΔT )4
+

1

8f(πΔT )3

)
(6.19)

where κ = E
[|�(un))|4] which, using the framework established in Appendix A, can be

expressed as

κ = E
[|�(un))|4] = 3|C�(un)|2 + |R�(un)�i(un)|2 + |R�(un)�j(un)|2 + |R�(un)�k(un)|2

2
·

The expressions in (6.16), (6.17), and (6.19) show the effect of operating conditions, such

as observational noise and system frequency, on the bias and MSE performance of the
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developed QFE. The performance of the QFE is compared to that of its complex-valued

counterparts in a more practical setting in Section 6.7 using simulations on synthetically

generated data and real-world data recordings.

6.6 Harmonic contamination

In Section 5.5, two methods for dealing with harmonic contamination were presented,

accounting harmonics as observational noise and dealing with harmonics as part of the

signal. However, as it was mentioned in Section 5.5 and indicated by the analysis in

Section 6.5, accounting harmonics as observational noise, leads to a performance loss in

both bias and MSE performance. Although the harmonic components can be incorpo-

rated into the state space model of the QFE, this approach leads to a computationally

complex algorithm that requires the inversion of relatively large quaternion-valued ma-

trices. Theretofore, in this section a method for adaptive cancellation of the major

harmonic components of the three-phase power signal is presented.

Taking the same approach as in Section 6.3, the mth harmonic component of the

three-phase power signal, denoted by qn,m, can also be divided into two counter-rotating

elements so that qn,m = q+n,m + q−n,m with

q+n,m = eζm(2mπfΔT )q+n−1,m and q−n,m = e−ζm(2mπfΔT )q−n−1,m (6.20)

where ζm is a unit quaternion designed to be normal to the plane that contains qn,m and

ζ2m = −1. Therefore, the evolution of the mth harmonic component of the three-phase

power signal can be modeled as

⎡
⎢⎣ϕn+1,m

q+n+1,m

q−n+1,m

⎤
⎥⎦

︸ ︷︷ ︸
xn+1,m

=

⎡
⎢⎣ ϕn,m

ϕn,mq+n,m

ϕ∗
n,mq−n,m

⎤
⎥⎦

︸ ︷︷ ︸
fn,m(xn,m)

+νn,m (6.21)

where xn,m = [ϕn+1,m, q+n+1,m, q−n+1,m]T and fn,m(·) are the state vector and state evolu-

tion function of the mth harmonic component at time instant n, while νn,m denotes the

state evolution noise. In this setting, if the fundamental system frequency, f , is known,

the mth harmonic component of the three-phase power signal can be tracked using the

constrained Kalman filter in Algorithm 10, where the transform

⎡
⎢⎣e

ζm2mπfΔT

q+n+1,m

q−n+1,m

⎤
⎥⎦

︸ ︷︷ ︸
x′
n,m

=

⎡
⎢⎣κ 0 0

0 1 0

0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
Tn,m

⎡
⎢⎣ ϕn,m

q+n+1,m

q−n+1,m

⎤
⎥⎦

︸ ︷︷ ︸
xn,m

(6.22)
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with

κ =
eζm2mπfΔT

ϕn,m
and ζm =

�(ϕn,m)

|�(ϕn,m)|
is used to constrain the state vector estimates to those with phase incrementing elements

at m times the fundamental frequency of the system, while Aa
n,m is the Jacobian matrix

of fn,m and q̂a
n =

∑
∀mHax̂a′

n,n−1,m gives the estimate of the augmented observation

vector, qa
n, that accounts for the main component of the signal, that is m = 1, and

harmonic components for which x̂a′
n,n−1 is available2.

Algorithm 10. Quaternion Harmonic Estimator (QHE)

Initialize with:

x̂a′
0|0,m = E[xa′

0,m]

M̂a′
0|0,m = E

[
(xa′

0,m − E[x′a
0,m])(x′a

0,m − E[xa′
0,m])H

]
Model update:

x̂a
n|n−1,m = fn,m(x̂a′

n−1|n−1,m)

M̂a
n|n−1,m = Aa

n,mM̂a′
n−1|n−1,mAaH

n,m +Cνa
n,m

Measurement update:

M̂a−1

n|n,m = M̂a−1

n|n−1,m +HaHC
−1

ωa
n,m

Ha

Ga
n,m = M̂a

n|n,mHaHC
−1

ωa
n,m

x̂a
n|n,m = x̂a

n|n−1,m +Ga
n,m

(
qa
n −
∑
∀m

Hax̂a
n|n−1,m

)

Implement constraint transform as given in (6.22):

x̂a′
n|n,m = Ta

n,mx̂a
n|n,m

Update the augmented covariance matrix of the error :

M̂a′
n|n,m = Ta

n,mM̂a
n|n,mTaH

n,m

Now, the harmonic components of the three-phase power signal can be dealt with

through cooperation between a number of AQKFs, one of which estimates the fun-

damental frequency of the system whereas the other AQKFs use the estimates of the

fundamental system frequency to calculate the mth harmonic component of the sig-

nal, which is in turn utilized to cancel the effect of the mth harmonic component in

the observation of the AQKF that is estimating the fundamental system frequency of

the three-phase power system. In Figure 6.4 a schematic of the proposed method is

2It is important to note that if estimates of the state vector of the mth harmonic component of the
three-phase power signal is at hand; then, its voltage phasors can also be obtained through implementing
the QAPE developed in Section 6.4.
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shown, where the modified quaternion frequency estimator (MQFE) estimates the main

frequency of the systems whereas the quaternion harmonic estimator (QHE) estimates

the mth harmonic component of the signal. In addition, a schematic illustrating the

operations of the MQFE is shown in Figure 6.5, where the harmonic components of the

signal for which estimates of their state vectors, x̂a′
n|n,m, are obtained through the QHE

are adaptively canceled in the observed three-phase power signal by deducting the term

‘
∑

∀mHax̂a′
n|n−1,m’ from the observational signal before implanting the QFE that was

developed in Section 6.3 for adaptive frequency estimation.

Figure 6.4: Schematic of the proposed technique for dealing with harmonics showing
the QFE that estimates the main frequency of the system and the QHE that estimate
the mth harmonic component of the signal and its contribution.

Figure 6.5: Schematic of the operations of the modified quaternion frequency estima-
tor (MQFE). The harmonic components of the signal for which estimates of their state
vectors, x̂a′

n|n,m, are available through the QHEs are used to adaptively cancel their

effect in the observational signal by deducting the term ‘
∑

∀m Hax̂a′
n|n−1,m’ from the

observational signal before implementing the QFE for frequency estimation.
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6.7 Simulations

In this section, the performance of the developed QFE is assessed and benchmarked

against those of its strictly linear and widely-linear complex-valued counterparts in a

number of experiments involving practical power grid scenarios using both synthetically

generated data and real-world data recordings. In all experiments the sampling fre-

quency was fs = 1 kHz and the voltage measurements were considered to be corrupted

by white Gaussian noise with SNR of 40 dB.

6.7.1 Synthetically generated data

In the first experiment, the three-phase system was considered to be initially operating

at its nominal frequency of 50 Hz and in a balanced fashion, then the system suffered

a fault characterized by an 80% drop in the amplitude of va,n and 20 degree shifts

in the phases of vb,n and vc,n; in addition, the frequency of the system experienced a

step jump of 2 Hz. The fault lasted for a short duration and the system returned to

balanced operating conditions and its nominal frequency once more. The estimates of

the system frequency obtained through implementing the CNLFE, CWLFE and QFE

are shown in Figure 6.6. Observe that all of the algorithms could accurately estimate

the system frequency with the QFE achieving a lower steady-state variance than its

complex-valued counterparts. Moreover, a closer examination of the transient behavior

of the CNLFE, CWLFE and QFE is made in Figure 6.7. Notice that both when the

three-phase system was starting to experience the fault and was recovering from the

fault, the QFE outperformed the CWLFE in terms of convergence rate. Furthermore,

the estimates of the system voltage phasors of the three-phase power system obtained

trough implementing the QAPE, developed in Section 6.4, are shown in Figure 6.8.

Notice that the developed algorithm accurately tracks the voltage phasors of the system.

Figure 6.6: Frequency estimation for a three-phase power system experiencing a short
fault and a 2 Hz jump in frequency from 0.667 to 1.334 seconds. The performance of
the QFE is shown along side those obtained by implementing CWLFE and CNLFE.
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Figure 6.7: Transient behavior of the QFE, CNLFE and CWLFE when the three-phase
power system experiences a fault and a 2 Hz step jump in frequency: a) fault starting,
b) fault ending.

Figure 6.8: Voltage phasor estimation for a three-phase system experiencing a short
voltage sag from 0.667 to 1.334 seconds implementing the QAPE. The amplitude of the
voltage phasors are shown in the top graph and the phase angles of the voltage phasors
are shown in the bottom graph.

In the second experiment, a three-phase system operating under unbalanced con-

ditions caused by an 80% drop in the amplitude of va,n and a 20 degree shift in the

phases of vb,n and vc,n (as shown in Figure 6.2), which experiences a rising (cf. falling)

frequency due to mismatch between power generation and consumption 0.5 seconds af-

ter the simulation starts was considered. Figure 6.9 shows the estimates of the system

frequency obtained through implementing the developed QFE. Observe that the QFE

accurately tracked the system frequency phasors both when it was constant and when

it was changing. In addition, the estimates of the system voltage phasors are shown in
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Figure 6.10. Note that the proposed QAPE was able to accurately track the voltage

phasors of the three-phase power system both when the system frequency was constant

and when the system frequency was changing.

Figure 6.9: Frequency estimation for an unbalanced three-phase power system experi-
encing changing frequency at the rate of 10 Hz/s employing the QFE.

Figure 6.10: Voltage phasor estimation for an unbalanced three-phase system with
changing frequency through implementing the newly developed QAPE. The amplitude
of the voltage phasors are shown in the top graph and the phase angles of the voltage
phasors are shown in the bottom graph.

In the third experiment, the effect of harmonics on the performance of the QFE was

considered. This was performed through the addition of a balanced 10% third harmonic

component to the unbalanced three-phase system used in the previous experiment at

t = 0.5 s. The estimates of the system frequency obtained through the QFE using

the framework developed in Section 6.6 are shown in Figure 6.11. In addition, voltage

phasors estimates of the main frequency component of the three-phase power system
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obtained through the QAPE are shown in Figure 6.11. Notice that the proposed algo-

rithm accurately estimated the system frequency and its voltage phasors regardless of

the presence of the harmonic component.

Figure 6.11: Frequency estimation for a three-phase system operating under unbalance
conditions in addition to suffering from a 10% third harmonic from t = 0.5 s onwards.

Figure 6.12: Voltage phasor estimation for a three-phase system operating under un-
balanced conditions in addition to suffering from a 10% third harmonic from t = 0.5 s
onwards. The amplitude of the voltage phasors are shown in the top graph and the
phase angles of the voltage phasors are shown in the bottom graph.

The steady-state MSE performance of the newly developed QFE, for various SNR

values and for both a balanced and the unbalanced three-phase system shown in Fig-

ure 6.2, is shown alongside the MSE performance of the CLFE, CWLFE, and CNLFE

in Figure 6.13. Notice that the QFE achieves a smaller steady-state MSE than that of

its complex-valued counterparts.
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Figure 6.13: Steady-state MSE performance analysis for SNR ranging from 30 dB to
60 dB: a) balanced three-phase system, b) unbalanced three-phase system.

The steady-state bias performance of the newly developed QFE for various SNR

values is now investigated. In Figure 6.14, the steady-state bias performance of the

QFE is compared to that of the CNLFE, CWLFE and the CLFE for both a balanced

three-phase system and the unbalanced three-phase system characterized in Figure 6.2.

Observe that the developed QFE achieves a lower bias than the CWLFE and CLFE.

Figure 6.14: Steady-state bias performance analysis for SNR ranging from 30 dB to
60 dB: a) balanced three-phase system, b) unbalanced three-phase system.

6.7.2 Real-world data

The performance of the developed QFE is now assessed during a voltage sag using real-

world data. The recorded data and the performance of the QFE is shown in Figure 6.15,

where the frequency estimates obtained through the CWLFE are provided for compar-

ison. Notice the QFE showed outstanding performance both during nominal operating

conditions and during the voltage sag. Furthermore, The performance of the proposed
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QAPE is shown in Figure 6.16, where the root mean square (RMS) of the voltage phasors

are displayed as base-line truth.

Figure 6.15: Frequency estimation using real-world data recording during a voltage sag:
a) system voltages, b) estimates of the system frequency obtained through implementing
the QFE and CWLFE.

Figure 6.16: Voltage phasor estimation using real-world data recording during a voltage
sag implementing the QAPE. The amplitude of the voltage phasors are shown in the
top graph and the phase angles of the voltage phasors are shown in the bottom graph.
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6.8 Conclusion

A novel algorithm has been developed for joint estimation of the fundamental frequency

and voltage phasors of three-phase power systems. The proposed algorithm exploits

the multidimensional nature of quaternions to make possible the full characterization of

three-phase power systems in the three-dimensional domain where they naturally reside

and eliminates the need for using the Clarke transform, allowing the components of the

designed quaternion-valued state space vector to be used for joint adaptive estimation of

the system frequency and voltage phasors. The performance of the proposed algorithm

has been assessed in a number of scenarios using both synthetically generated and real-

world data, where it has shown outstanding performance and outperformed its complex-

valued counterparts.



Chapter 7

A Distributed Quaternion

Kalman Filter

7.1 Overview

Most of the research surrounding adaptive distributed signal processing is conducted

in the real and complex domains, whereas in many real-world applications the data

sources are three-dimensional by nature, offering an opportunity for quaternions in terms

of convenience of representation and mathematical tractability. In this chapter, we

expand the concept of distributed Kalman filtering to the quaternion domain in order

to develop a robust distributed quaternion Kalman filtering algorithm for data fusion

over sensor networks dealing with three-dimensional data. For rigor, the mean and mean

square behavior of the algorithm is analyzed. Finally, the developed algorithm is used to

estimate the main system frequency in power distribution networks and for collaborative

target tracking.

7.2 Introduction

In recent years, sensor networks have been used in a variety of applications, such as

collaborative target tracking, distributed fault detection, control of unmanned aerial

vehicles, and automated vehicle guidance technology [124–134]. In these applications,

algorithms based on Kalman filtering have proven to be advantageous offering better

accuracy and faster convergence rates due to their underlying state space model that

accounts for observational noise. In addition, owing to the low implementation cost

and computational efficiency that distributed estimation and tracking techniques offer,

as compared to their centralized counterparts, distributed signal processing algorithms,

112
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have proven to be suitable for real-time implementation, computationally efficient, scal-

able with the size of the network, and robust to link failure [130–132].

In light of the advantages that quaternion-valued signal processing algorithms of-

fer, we expand the framework of quaternion-valued Kalman filtering to the distributed

setting in order to develop a truly distributed quaternion Kalman filter applicable for

frequency estimation in three-phase power distribution networks and collaborative tar-

get tracking, where quaternions offer the dimensionality necessary to model such signals

directly in the multi-dimensional domain that they originate from. The distributed

quaternion Kalman filter is developed through decomposing the operations of the cen-

tralized quaternion Kalman filter in such a fashion that they can be performed locally

by the individual nodes (sensors) of the network.

The performance analysis of the developed algorithm shows that it operates in an

unbiased fashion. Moreover, in order to establish the effects of correlated observation

noise in the network on the performance of the developed algorithm and quantify its

mean square performance, a recursive expression for the augmented covariance matrix of

the estimation error at each node is derived. The performance of the derived distributed

quaternion Kalman filter is illustrated in smart grid applications for estimating the

fundamental frequency of three-phase power distribution networks and for collaborative

target tracking in a bearings-only scenario, where each sensor in the network can only

observe the bearings of the target.

7.3 The distributed quaternion Kalman filter

Consider a set of sensors denoted by N that are interconnected in a network and let

the neighborhood of a node to be the subset of nodes that communicate with the

node, including self-communication. Organizing all observations made by different nodes

throughout the network in the column vector

ya
col,n = [yaT

1,n, . . . ,y
aT
|N |,n]

T

where ya
m,n represents the augmented observation vector at node m at time n and |N |

denotes the number of nodes in the network, allows the augmented state vector sequence

to be estimated by the centralized augmented quaternion Kalman filter (CAQKF) given

in Algorithm 11, where

Ha
col,n = [HaT

1,n, . . . ,H
aT
|N |,n]

T

is the column block matrix of the augmented observation functions with Ha
m,n repre-

senting the observation function at node m and at time instant n, while Cωa
col,n

is the
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augmented covariance matrix of the column vector of the combined augmented obser-

vational noises given by

ωa
col,n = [ωaT

1,n, . . . ,ω
aT
|N |,n]

T

with ωa
m,n denoting the observational noise at node m and at time instant n, whereas

Aa
n represents the augmented state evolution function time instant n.

Algorithm 11 . Centralized Augmented Quaternion Kalman Filter
(CAQKF)

Initialize with:

x̂a
0|0 = E[xa

0]

M̂a
0|0 = E

[
(xa

0 − E[xa
0])(x

a
0 − E[xa

0])
H
]

Model update:

x̂a
n|n−1 = Aa

nx̂
a
n−1|n−1

M̂a
n|n−1 = Aa

nM̂
a
n−1|n−1A

aH
n +Cνa

n

Measurement update:

M̂a−1

n|n = M̂a−1

n|n−1 +HaH
col,nC

−1

ωa
col,n

Ha
col,n

Ga
n = M̂a

n|nH
aH
col,nC

−1

ωa
col,n

x̂a
n|n = x̂a

n|n−1 +Ga
n

(
ya
col,n −Ha

col,nx̂
a
n|n−1

)

Although the CAQKF is optimal in the sense that it incorporates all the available

information in the network, its operation requires inversions of large matrices and trans-

fer of all observation vectors to the central node, which burdens the central node with

communication traffic and heavy computations. However, assuming that the observa-

tional noise at one node is uncorrelated with the observational noise at other nodes in

the network, leads to a block diagonal Cωa
col,n

and therefore the a posteriori augmented

state vector estimate can be expressed as

x̂a
n|n = x̂a

n|n−1 +
∑
∀l∈N

M̂a
n|nH

aH
l,n C

−1

ωa
l,n

(
ya
l,n −Ha

l,nx̂
a
n|n−1

)
. (7.1)

Furthermore, the a posteriori augmented state vector estimate in (7.1) can be alterna-

tively calculated by the summation

x̂a
n|n =

1

|N |
∑
∀l∈N

φa
l,n (7.2)

where

φa
l,n = x̂a

n|n−1 + |N |M̂a
n|nH

aH
l,n C

−1

ωa
l,n

(
ya
l,n −Ha

l,nx̂
a
n|n−1

)
. (7.3)
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From the CAQKF, in the formulation presented in Algorithm 11, assuming uncorrelated

observation noise throughout the network we have

M̂a−1

n|n = M̂a−1

n|n−1 +
∑
∀l∈N

HaH
l,n C

−1

ωa
l,n
Ha

l,n. (7.4)

Now, substituting (7.4) into (7.3) yields

φa
l,n = x̂a

n|n−1 +Ga
l,n

(
ya
l,n −Ha

l,nx̂
a
n|n−1

)
(7.5)

where Ga
l,n is given by

Ga
l,n =

(
M̂a−1

n|n−1 +
∑

∀m∈N
HaH

m,nC
−1

ωa
m,n

Ha
m,n

)−1

HaH
l,n |N |C−1

ωa
l,n
. (7.6)

Note that, with the assumption that the network is connected1, Ga
l,n in the formu-

lation given in (7.6) can be obtained in a distributed fashion through the summation

of local parameters HaH
m,nC

−1

ωa
m,n

Ha
m,n; in addition, taking into account that x̂a

n|n can be

obtained by averaging local estimates, φa
l,n, allows the operations of the CAQKF to be

approximated in a distributed fashion through implementing the distributed augmented

quaternion Kalman filter (DAQKF) in Algorithm 12, where Nl denotes the set of nodes

in the neighborhood of node l. The DAQKF implemented at a node is optimal in the

neighborhood of that node in the scene that it operates akin to a CAQKF that combines

all the information available to the nodes in its neighborhood.

7.4 Performance analysis

In order to analyze the mean and mean square performance of the developed algorithm,

in this section, the error of the augmented state vector estimates is expressed in a

recursive manner. The difference between the true augmented state vector and the

local estimate at node l and at time instant n is given by εal,n = xa
n − φa

l,n which can

alternatively be expressed as

εal,n = xa
n − x̂a

l,n|n−1 −Ga
l,n

(
ya
l,n −Ha

l,nx̂
a
l,n|n−1

)
. (7.7)

Replacing ya
l,n = Ha

l,nx
a
n + ωa

l,n and εal,n|n−1 = xa
n − x̂a

l,n|n−1 into the expression in

(7.7) yields

εal,n =
(
I−Ga

l,nH
a
l,n

)
εal,n|n−1 −Ga

l,nω
a
l,n. (7.8)

1A network is referred to as connected if there exists a path between any two given nodes in the
network.
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Algorithm 12 . Distributed Augmented Quaternion Kalman Filter
(DAQKF)

For node l = {1, · · · , |N |}:
Initialize with:

x̂a
l,0|0 = E[xa

0]

M̂a
l,0|0 = E

[
(xa

0 − E[xa
0])(x

a
0 − E[xa

0])
H
]

Model update:

x̂a
l,n|n−1 = Aa

nx̂
a
l,n−1|n−1

M̂a
l,n|n−1 = Aa

nM̂
a
l,n−1|n−1A

aH
n +Cνa

n

Measurement update:

M̂a−1

l,n|n = M̂a−1

l,n|n−1 +
∑

∀m∈Nl

(
HaH

m,nC
−1

ωa
m,n

Ha
m,n

)
Ga

l,n = M̂a
l,n|nH

aH
l,n |Nl|C−1

ωa
l,n

φa
l,n = x̂a

l,n|n−1 +Ga
l,n

(
ya
l,n −Ha

l,nx̂
a
l,n|n−1

)
Information sharing :

1. Share φa
l,n with neighboring nodes.

2. ShareHaH
l,n C

−1

ωa
l,n
Ha

l,n with neighboring nodes, only if it has changed

compared to the previous time instant.

Estimate fusion :

x̂a
l,n|n =

1

|Nl|
∑

∀m∈Nl

φa
m,n

Furthermore, substituting

εal,n|n−1 =xa
n − x̂a

l,n|n−1 = Aa
nx

a
n−1 + νa

l,n −Aa
nx̂

a
l,n−1|n−1

=Aa
n

(
xa
n−1 − x̂a

l,n−1|n−1︸ ︷︷ ︸
εa
l,n−1|n−1

)
+ νa

l,n

into the expression in (7.8) gives

εal,n =
(
I−Ga

l,nH
a
l,n

)
Aa

nε
a
l,n−1|n−1 +

(
I−Ga

l,nH
a
l,n

)
νa
l,n −Ga

l,nω
a
l,n. (7.9)
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Now, consider the difference between the true augmented state vector and its esti-

mate obtained at node l, given by

εal,n|n = xa
l,n − 1

|Nl|
∑

∀m∈Nl

φa
m,n =

1

|Nl|
∑

∀m∈Nl

εam,n|n (7.10)

where replacing (7.9) into (7.10) gives a recursive expression for the augmented state

vector estimation error as

εal,n|n =
1

|Nl|
∑

∀m∈Nl

(
I−Ga

m,nH
a
m,n

)
Aa

nε
a
m,n−1|n−1

+
1

|Nl|
∑

∀m∈Nl

(
I−Ga

m,nH
a
m,n

)
νa
m,n − 1

|Nl|
∑

∀m∈Nl

Ga
m,nω

a
m,n.

(7.11)

From Algorithm 12, we can now substitute

Ga
m,nH

a
m,n = M̂a

m,n|nH
aH
m,n|Nm|C−1

ωa
m,n

Ha
m,n︸ ︷︷ ︸

Pm,n

into (7.11) to yield

εal,n|n =
1

|Nl|
∑

∀m∈Nl

(
I− M̂a

m,n|nPm,n

)
Aa

nε
a
m,n−1|n−1

+
1

|Nl|
∑

∀m∈Nl

(
I− M̂a

m,nPm,n

)
νa
m,n − 1

|Nl|
∑

∀m∈Nl

Ga
m,nω

a
m,n.

(7.12)

7.4.1 Mean error behavior

Taking the statistical expectation of the expression in (7.12) allows the mean error

behavior of the DAQKF to be formulated as

E[εal,n|n] =
1

|Nl|
∑

∀m∈Nl

(
I− M̂a

m,n|nPm,n

)
Aa

nE[εam,n−1|n−1]

+
1

|Nl|
∑

∀m∈Nl

(
I− M̂a

m,nPm,n

)
E[νa

m,n]−
1

|Nl|
∑

∀m∈Nl

Ga
m,nE[ωa

m,n]

where considering that νa
m,n and ωa

m,n are quaternion-valued zero-mean Gaussian ran-

dom vectors results in

E[εal,n|n] =
1

|Nl|
∑

∀m∈Nl

(
I− M̂a

m,nPm,n

)
Aa

nE[εam,n−1|n−1]. (7.13)

Therefore, given that ∀m ∈ N : x̂a
m,0|0 = E[xa

0], the expression in (7.13) indicates that

the DAQKF operates in an unbiased fashion.
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7.4.2 Local mean square error behavior

Given the error of the augmented state vector estimates in the formulation in (7.12),

the augmented covariance matrix of the augmented state vector estimates at node l and

time instant n can be expressed as

Cεa
l,n|n = E

[
εal,n|nε

aH
l,n|n
]
= Sl,nEn−1S

H
l,n +Rl,nVnR

H
l,n +Ql,nWnQ

H
l,n (7.14)

where the expressions

En =E

[[
εaT1,n|n, . . . , ε

aT
|N |,n|n

]T [
εaT1,n|n, . . . , ε

aT
|N |,n|n

]∗]

Wn =E

[[
ωaT

1,n, . . . ,ω
aT
|N |,n

]T [
ωaT

1,n, . . . ,ω
aT
|N |,n

]∗]

represent respectively the state estimation error and the observation noise cross-covariances

between all nodes in the network, whereas

Vn = E

[[
νaT
1,n, . . . ,ν

aT
|N |,n

]T [
νaT
1,n, . . . ,ν

aT
|N |,n

]∗]
=

⎡
⎢⎢⎣
Cνa

n
· · · Cνa

n

...
. . .

...

Cνa
n

· · · Cνa
n

⎤
⎥⎥⎦

while

Sl,n =
1

|Nl|

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αl,1A
aH
n

(
I− M̂a

1,n|nP1,n

)H
αl,2A

aH
n

(
I− M̂a

2,n|nP2,n

)H
...

αl,|N |AaH
n

(
I− M̂a

|N |,n|nP|N |,n
)H

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

H

Rl,n =
1

|Nl|

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αl,1

(
I− M̂a

1,n|nP1,n

)H
αl,2

(
I− M̂a

2,n|nP2,n

)H
...

αl,|N |
(
I− M̂a

|N |,n|nP|N |,n
)H

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

H

Ql,n =
1

|Nl|
[
αl,1G

a
1,n, α1,2G

a
2,n, · · · , α1,|N |Ga

|N |,n
]

with

αl,m =

{
1, if m ∈ Nl

0, otherwise.
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Therefore, from the following standard assumptions in steady-state Kalman filtering

analysis [130, 135]:

1. the state evolution function and observation functions for all the nodes in the

sensor network are time invariant, i.e.

Aa
n → Aa and ∀l ∈ N : Ha

l,n → Ha
l as n → ∞

2. the state evolution and observation noises are stationary, i.e. the covariance ma-

trices Vn, and Wn become time invariant, or equivalently

Vn → V and Wn → W as n → ∞

3. the matrix pairs ∀l ∈ N : {Aa,Ha
l,n} are detectable and the matrix pair {Aa,C

1
2
νa}

is stabilizable

it follows that for all nodes in the network, M̂a
l,n|n becomes time invariant resulting in the

matrices {Sl,n,Rl,n,Ql,n} also becoming time invariant and therefore Cεa
l,n|n converges.

Finally, from Algorithm 12 and the expression in (7.14), notice that the correlation

between the observational noise at different nodes in the network does not have an effect

on Sl,n, Rl,n, and Ql,n; in addition, Tr(Cεa
l,n|n) is linearly dependent on Tr(Ql,nWnQ

H
l,n).

Hence, for a constant value of Tr(Wn), Tr(Cεa
l,n|n) is minimized (cf. maximized) when

the observational noises at different nodes are uncorrelated (cf. fully correlated).

7.4.3 Global mean square error behavior

From the recursive expression of the augmented state vector estimation error given in

(7.12), the state vector estimation error augmented cross-covariance between all nodes

of the network, En, can be formulated in a recursive fashion as

En = SnEn−1SH
n +RnVnRH

n +QnWnQH
n (7.15)

where

Sn =

⎡
⎢⎢⎣

S1,n

...

S|N |,n

⎤
⎥⎥⎦ , Rn =

⎡
⎢⎢⎣

R1,n

...

R|N |,n

⎤
⎥⎥⎦ , and Qn =

⎡
⎢⎢⎣

Q1,n

...

Q|N |,n

⎤
⎥⎥⎦ .

Then, if convergence conditions in Section 7.4.2 are satisfied, i.e. Vn → V and Wn → W,

as a result of local convergence, matrices {Sn,Rn,Qn} become time invariant, that is

lim
n→∞Sn = S, lim

n→∞Rn = R, and lim
n→∞Qn = Q
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and En in (7.15) converges, that is, En → E as n → ∞. Therefore, the expression in

(7.15) simplifies to a quaternion-valued discrete time Lyanpunov equation given by

E = SESH +RVRH +QWQH . (7.16)

Invoking the duality between R and H established using the expressions in (2.8) and

through decomposing the quaternion-valued matrices in (7.16) into their real-valued

components, the closed form solution to the equation in (7.16) can be obtained as

Vec(EHR) =
(
I − SHR ⊗ SHR

)−1
Vec
(
AHR

)
(7.17)

where A = RVRH +QWQH and I is an identity matrix with the same number of rows

as SHR ⊗ SHR, while

EHR =

⎡
⎢⎢⎢⎢⎣
Er −Ei −Ej −Ek
Ei Er −Ek Ej
Ej Ek Er −Ei
Ek −Ej Ei Er

⎤
⎥⎥⎥⎥⎦

with SHR and AHR defined analogously.

7.5 Confidence measure

Note that the DAQKF, in the formulation presented in Algorithm 12, assumes that

all the nodes in the network are estimating the same augmented state vector sequence;

however, in many applications this assumption may not hold true. For example, in a

three-phase power distribution network faults can change their characteristics as they

propagate throughout the network due to the presents of fault mitigation devices, such

as compensators. Therefore, in these applications, it becomes necessary for a node to

identify other nodes in its neighborhood that are estimating the same augmented state

vector sequence. To this end, based on the results of the performance analysis presented

in Section 7.4, we introduce a confidence measure that allows each node to decide weather

or not the local augmented state vector estimate from a given neighboring node offers a

valid update for its own augmented state vector estimate.

Let xa
l,n and xa

m,n denote respectively the augmented state vectors of nodes l and m

at time instant n. Considering that εal,n|n−1 = xa
l,n− x̂a

l,n|n−1; from Algorithm 12, εal,n|n−1

is a zero-mean quaternion-valued Gaussian random vector with the augmented covari-

ance matrix M̂a
l,n|n−1. Therefore, from (7.11) and considering that ωa

l,n is a quaternion-

valued zero-mean Gaussian random vector, εal,n = xa
l,n − φa

l,n will also be a zero-mean

quaternion-valued random vector, the augmented covariance matrix of which is given by

Cεal,n
=
(
I−Ga

l,nH
a
l,n

)
M̂a

l,n|n−1

(
I−Ga

l,nH
a
l,n

)H
+Ga

l,nCωa
l,n
GaH

l,n . (7.18)
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A measure of difference between the observation at node m and its predicted value

given the local estimate at node l can now be defined as

ra(l,m) =Ha
m,nφ

a
l,n − ya

m,n

=Ha
m,n

(
φa
l,n − xa

m,n

)− ωa
l,n

=Ha
m,nΔxa

(l,m)n
−Ha

m,nε
a
l,n − ωa

l,n

(7.19)

where Δxa(l,m)n
denotes the difference between the augmented state vectors at nodes l

and m at time instant n. In addition, from the expression in (7.19), note that ra(l,m) is

also a quaternion-valued Gaussian random vector with the augmented covariance matrix

Cra
(l,m)

= Ha
m,nCεal,n

HaH
m,n +Cωa

l,n
(7.20)

and mean vector Ha
m,nΔxa

(l,m)n
, where Cεal,n

is given in (7.18). In cases where nodes

l and m are estimating the same augmented state vector sequence; Δxa
(l,m)n

= 0 and

hence Ha
m,nΔxa

(l,m)n
= 0. Therefore, the Mahalanobis distance d = raH(l,m)C

−1

ra
(l,m)

ra(l,m)

can be used as a confidence measure to indicate if ra(l,m) is an outlier (cf. not an outlier)

for a zero-mean quaternion-valued distribution with the augmented covariance matrix

Cra
(l,m)

indicating that the local estimate at node l offers an invalid (cf. valid) update

for the augmented state vector estimates at node m given the measurement ya
m,n.

7.6 Simulations

In this section, first the steady-state MSE performance of the developed DAQKF is

examined through a generic distributed Kalman filtering example, where the goal it to

validate the performance analysis in Section 7.4. Then, the newly developed DAQKF, is

applied for frequency estimation in power grids, where nodes in the power distribution

network that are operating under similar conditions cooperate to improve their estimate

of the system frequency. In addition, the DAQKF is applied for collaborative target

tracking, where each node in the network can only observe the bearings of the target

and the DAQKF is exploited to force a consensus on the state of the target that accounts

for observations at all the nodes in the network. Note that unless stated otherwise, the

network of 20 nodes shown in Figure 7.1 was used for simulations.

In all simulations, akin to current real and complex-valued distributed Kalman fil-

tering approaches [127, 128, 130, 131], the assumption was made that communication

between the nodes is immediate (without time delay). In particular, in the case of fre-

quency estimation in power distribution networks, the additional assumption was made

that the phase shifts between the observed signal at different locations are negligible, a

reasonable assumption as usually sensors are distributed over a small area, for example

a micro-grid.
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Figure 7.1: The network of 20 nodes used for simulations. Nodes are marked by red
“*” and connections are shown with blue lines.

7.6.1 Steady-state performance evaluation

In order to validate the theoretical analysis in Section 7.4, the dynamic system charac-

terized through the following state space equations

∀l ∈ N :

⎧⎪⎪⎨
⎪⎪⎩

xn =

[
1 1

0 1

]
xn−1 +

[
0.5

1

]
νn

yl,n =
[
1 0

]
xn + ωl,n

(7.21)

was considered, where νn is a unit variance quaternion-valued zero-mean Gaussian

second-order proper (circular) noise and ωl,n are improper quaternion-valued zero-mean

Gaussian noise with the following second-order statistics

Cωl,n
= 0.0325, Rωl,nω

i∗
l,n

= −0.0075, R
ωl,nω

j∗
l,n

= −0.0075, and Rωl,nω
k∗
l,n

= −0.0075.

The developed DAQKF was implemented over the network in Figure 7.1 to track the

state vector through observations given in (7.21). The steady-state MSE performance

of all nodes in the network obtained through simulations and the theoretical framework

in Section 7.4 are shown along side the steady-state MSE performance of the CAQKF

in Figure 7.2. Note that the DAQKF achieved an MSE performance close to that of

the centralized approach obtained through implementing the CAQKF. In addition, the

steady-state MSE obtained through simulations followed those obtained through the

theoretical framework in Section 7.4, which verifies the work in that section.
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Figure 7.2: The steady-state MSE performance of all nodes in the network implementing
the DAQKF and CAQKF.

7.6.2 Smart grid

In the first set of simulations, the three-phase system was considered to be initially

operating at its nominal frequency of 50 Hz in a balanced fashion. Then, the system

suffered a fault resulting in unbalanced operating conditions characterized by an 80%

drop in the amplitude of va,n and 20 degree shifts in the phases of vb,n and vc,n; further-

more, the frequency of the system experienced a step jump of 0.5 Hz. The fault lasted

for a short duration and the system returned to its balanced operating condition and

its nominal frequency. In Figure 7.3, the estimates of the system frequency obtained

through the QFE, that was developed in Chapter 6, implemented using the newly devel-

oped DAQKF and the traditional AQKF are shown alongside each other. Note that the

estimates of the system frequency obtained through implementing the QFE using the

DAQKF have significantly lower steady-state variance as compared to those obtained

through implementing the QFE using the AQKF.

Figure 7.3: Frequency estimation using the QFE implemented through the newly de-
veloped DAQKF and the traditional AQKF. The estimate of the system frequency
obtained through implementing the QFE by the DAQKF are given in blue and the
estimates obtained through implementing the QFE by the AQKF are given in red.
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In the second set of simulations, the three-phase system experienced a rising (cf.

falling) frequency at the rate of 1 Hz/s due to a mismatch between power generation

and consumption. In addition, it was assumed that the three-phase system was operating

under the same unbalanced conditions characterized in the first simulation. The esti-

mates of the system frequency obtained through the QFE implimented using the DAQKF

and AQKF are shown in Figure 7.4. Observe that the QFE implemented through the

newly developed DAQKF accurately tracked the system frequency and achieved a lower

steady-state variance as compared to the QFE implemented through the AQKF due to

cooperation between nodes in the network.

Figure 7.4: Frequency estimation for an unbalanced three-phase system with changing
frequency at the rate of 1 Hz/s. The estimate of the system frequency obtained using the
QFE implemented through the newly developed DAQKF are in blue and the estimates
obtained using the QFE implemented through the AQKF are given in red.

In the third set of simulations, frequency estimation using real-world data recorded

from two neighboring nodes in a power distribution network was considered. The

recorded data are shown in Figure 7.5, where both nodes suffered a fault 0.1 second

after recording started, although Node-2 recovered, Node-1 continued to operate in an

unbalanced fashion. The estimates of the system frequency both when the proposed

confidence measure was in use and when the proposed confidence measure was ignored

are shown in Figure 7.6. Observe that the developed method was able to detect that

the nodes are operating under different circumstances and isolated their local estimators

preventing bias in the estimated frequency.
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Figure 7.5: Voltage recordings from two neighboring nodes in a real-world power dis-
tribution network.

Figure 7.6: Frequency estimation in a power distribution network using real-world data
from two neighboring nodes. The estimates obtained using the QFE implemented the
AQKF and the DAQKF, both when the proposed confidence measure was in use and
when it was ignored, are shown.

The MSE performance of the QFE, implemented through both the AQKF and the

newly developed DAQKF, is compared to that of its complex-valued counterparts the

CLFE and the CWLFE (see Section 5.3) in Figure 7.7. Notice that the quaternion

frequency estimator not only outperformed its linear and widely-linear complex-valued

counterparts, but also the unbalanced operating conditions had no significant affect on

the performance of the quaternion frequency estimator, a desirable characteristic for fre-

quency estimators in three-phase systems. In addition, employing the developed DAQKF

for implementing the QFE resulted in a further reduction of the MSE as compared to

the case where the QFE was implemented using the AQKF.
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Figure 7.7: MSE performance of the QFE implemented through both the AQKF, QFE-
AQKF, and the developed DAQKF, QFE-DAQKF, are compared to its complex-valued
counterparts: a) balanced three-phase system, b) unbalanced three-phase system char-
acterized by an 80% drop in the amplitude of va,n and 20 degree shifts in the phases of
vb,n and vc,n.

7.6.3 Collaborative target tracking

In this section, we consider the problem of tracking the position of a maneuvering target

where the sensors can only measure the bearings of the target. Commonly referred to

as bearings-only tracking, this problem is often encountered in passive radar or sonar

tracking applications. Since none of the nodes have access to the range of the target,

arriving at a unique solution using only the information available to one node is not

possible. A solution to this problem is given in [87] using a quaternion Kalman filter

that combines the observations of two sensors in order to locate the target through tri-

angulation; however, the results are computationally expensive and are not expandable

for implementation over sensor networks.

Taking into account that the developed DAQKF operates akin to a CAQKF that

has access to observations from its neighboring nodes, in the solution designed here,

the proposed DAQKF is implemented in the sensor network where the diffusion of local

estimates is exploited to force the nodes to consent to a unique solution, based on

observations of all nodes in the network. The state vector of such a distributed Kalman

filter is given by

xn =

[
ixn + jyn + kzn

iẋn + jẏn + kżn

]

with {xn, yn, zn} and {ẋn, ẏn, żn} denoting the location and speed of the target on the

X, Y , and Z axis. The augmented state evolution function is a block diagonal matrix,
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Aa
n = block-diag(A), with A given by

A =

[
1 ΔT

0 1

]

where ΔT denotes the sampling interval. The state involution noise is in the form

νa
n = Baηa

n

where Ba = block-col(B) is a block column matrix with

B =

[
1
2 (ΔT )2

ΔT

]

while ηa
n is a general zero-mean quaternion-valued Gaussian noise. The bearings of the

target as measured at sensor l in the network now becomes

yl,n =
ixn + jyn + kzn − Lsl

|ixn + jyn + kzn − Lsl |
+ ωl,n

where Lsl denotes the location of sensor l, while ωl,n represents the observational noise.

Finally, it is important to note that since three-dimensional data has been modeled

as pure quaternion signals, the state evolution and observation noise sequences are aslo

pure quaternions and hence improper quaternion-valued random variables, which further

emphasizes the importance of considering the state evolution and observation functions

in their augmented formulation in these applications.

The network shown in Figure 7.1 with its nodes distributed uniformly inside a

24× 24× 24 cube was used to track a target moving inside the cube through bearings-

only measurements. The sampling interval was set to ΔT = 0.04 s, whereas ηn was a

zero-mean quaternion-valued Gaussian noise with the following statistics

Cνn = 10, Rνnνi∗n = −3.3, R
νnν

j∗
n

= −3.3, and Rνnνk∗n
= −3.3.

while the observational noise for node all nodes the network was selected as a zero-mean

quaternion-valued Gaussian noise with Cωl,n
= 0.0001 and pseudo-covariances given by

Rωl,nω
i∗
l,n

= −0.000033, R
ωl,nω

j∗
l,n

= −0.000033, and Rωl,nω
k∗
l,n

= −0.000033.

The estimate of the location of the target at a node in the network is shown in Figure 7.8.

Note that the proposed algorithm accurately tracks the location of the target.
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Figure 7.8: Collaborative target tracking using bearings-only measurements. Position
of the target and its estimates on the X, Y , and Z axis are shown in the top three
graphs, while the bottom graph shows the location of the target and its estimate in the
three-dimensional space.

7.7 Conclusion

A distributed quaternion Kalman filter has been developed for distributed sequential

state estimation in sensor networks. This has been achieved through decomposing the

operations of the centralized quaternion Kalman filter in such a fashion that they can

be performed by individual nodes in the network so that the final state vector estimate
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can be obtained by averaging local estimates calculated at each node. The proposed

algorithm differs from existing diffusion Kalman filtering techniques in that it does not

require mixing coefficients for averaging local estimates and that the proposed algorithm

takes into account the effect of diffusing local estimates on the a posteriori estimate of the

augmented covariance matrix of the state vector estimation error. The performance of

the developed algorithm has been analyzed and a recursive expression for the estimation

error has been derived. Finally, the developed algorithm has been used for estimating the

fundamental frequency of three-phase power distribution networks and for collaborative

target tracking where each sensor can only observe the bearings of the target.



Chapter 8

The Augmented Quaternion

Characteristic Function and

Filtering of Quaternion Stable

Random Signals

8.1 Overview

In recent years, quaternion-valued signal processing has proven to be advantageous in

a number of engineering applications. However, these applications have also revealed

that in many scenarios, in order to accurately model the underlying physical signal,

it is important to include heavy tailed non-Gaussian elements. Classified using their

characteristic functions, α-stable random processes, that indeed include the Gaussian

case, have proven to be a useful tool in statistical modeling of heavy tailed random signals

due to their stable property and the generalized central limit theorem. In this chapter,

we first investigate the properties of the characteristic functions of quaternion-valued

random variables, such as the link between the characteristic function and circularity;

then, the adaptive filtering of elliptically-contoured quaternion-valued stable random

processes is considered where a quaternion-valued particle filtering algorithm is proposed.

8.2 Introduction

In most applications assuming a Gaussian model for the signal is justifiable as it often

leads to computationally efficient and analytically tractable signal processing algorithms.

However, there are many applications ranging from finance to engineering where the ob-

served data and/or noise exhibits sharp spikes and therefore their resulting distribution

130
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does not decay as fast as the Gaussian case [136–139]. In these applications, outliers

cannot be dealt with as mistakes, since they constitute an integral part of the signal. For

modeling these types of signals, random processes with stable distributions that admit a

generalized version of the central limit theorem have proven to be a useful tool [138, 139].

A real-valued random vector, X, is defined as α-stable if and only if for any m > 2

there exists α ∈ (0, 2] such that

X(1) + · · ·+X(m) = m1/αX (8.1)

where {X(1), . . . ,X(m)} are independent copes of X and their summation is equivalent in

distribution to that of m1/αX [138]. In the real-valued univariate case, α-stable random

variables admit characteristic functions in the form of [138]

ΦX(s) = E
[
eζsx
]
= eζas−γ|s|α(1−ηβsign(s)f(s,α))

where

f(s, α) =

{
tan(απ/2) α �= 1
2
π log(|s|) α = 1

and sign(s) =

⎧⎪⎨
⎪⎩

1 s > 0

0 s = 0

−1 s < 0

whereas ζ2 = −1, while γ > 0, 0 < α ≤ 2, and −1 < β < 1. With regards to real-valued

univariate random variables the following remarks can be made [137–139]:

1. As the parameter γ increases the distribution of X becomes increasingly dispersed.

This is akin to the effect of variance on Gaussian random variables; indeed, when

α = 2 the random variable X is Gaussian and its variance is given by 2γ.

2. The parameter β controls the skewness of the distribution of X, where β = 0

provides for a symmetric distribution about the center a, whereas β > 0 (cf.

β < 0) result in a random variable that is skewed to the right (cf. left) with the

direction of skewness reversed for the special case of α = 1.

3. The shift parameter, a, shifts the distribution of the random variable to the right

(cf. left) if a > 0 (cf. a < 0) akin to the effect of mean in Gaussian random

variables; indeed, for the case that α > 1 and β = 0, then, a is the mean of the

random variable.

4. The parameter, α, is referred to as the characteristic exponent and controls the

heaviness of the tails of the density function. A small positive value of α indicates

severe impulsiveness, and thus tails are heavier, while a value of α close to 2

indicates more Gaussian type behavior. A value of α = 1 (cf. α = 2) corresponds

to the Cauchy (cf. Gaussian) distribution.
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The so-called stable property of α-stable random variables and the generalized cen-

tral limit theorem, which states that if a limit exists for a sum of independent identi-

cally distributed (i.i.d) random variables, then this limit must be a stable distribution,

makes α-stable random variable the ideal candidate for modeling heavy tailed random

processes, where mostly symmetric α-stable (SαS) random variables have become pop-

ular [138, 140, 141] due to the fact that their characteristic function simplifies into

ΦX(s) = E
[
eζsx
]
= e−γ|s|α . (8.2)

Notice that the characteristic function in (8.2) only has well defined derivatives of all

orders at s = 0 when α = 2; therefore, from the class of stable random variables only

the Gaussian case has mean, variance, and higher-order statistical moments, whereas

in general, α-stable random variables, excluding the Gaussian case, only have moments

of order less that α [137]. Thus, signal processing techniques based on minimizing the

second-oder moment of an error measure, such as the LMS and NLMS algorithms, do

not fair well when applied to the generality of α-stable random variables. To this end,

extensions based on adaptively minimizing the pth order moments of a given error mea-

sure, with p ≤ α, have become popular due to their computational efficiency [142–144].

However, the main drawback of these techniques is lack of a convergence bound on

their adaptation gain. Although rigorous convergence analysis for steepest-decent algo-

rithms employing first, second, and forth order of the absolute error measure exist [145];

these results were obtained under the assumption that the signals of interest have finite

variances and are not expandable to the case of stable random signals.

In the real-valued univariate case, stable distributions are now mostly accessible

as there are reliable techniques to compute their densities, distribution functions, and

estimate their parameters based on empirical characteristic functions and fractional

moments [138, 146]. However, due to the complicated dependence structure of their

components, the body of work regarding stable complex and quaternion-valued random

signals is limited. In this chapter, characteristic functions of quaternion-valued random

variables are considered from a geometric point of view, their link to statistical moments,

and the design of elliptical quaternion-valued random variables. Then, adaptive filtering

of elliptically distributed quaternion-valued stable random signals is investigated, where

a quaternion-valued particle filtering algorithm is proposed.

8.3 Characteristic functions of quaternion-valued random

variables

With the exception of some special cases, such as the Cauchy and Gaussian distribu-

tions, in general, a closed form expression for the pdf of stable random variables dose not
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exist, resulting in stable random variables being classified using their characteristic func-

tions. Therefore, statistical analysis of quaternion-valued random variables is considered

through the application of their characteristic functions. In this section, characteristic

functions of quaternion-valued random variables are considered and their link to sta-

tistical moments of quaternion-valued random variables is investigated. Moreover, the

results are exploited for the design of circular quaternion-valued random variables.

8.3.1 The augmented quaternion characteristic function

Consider the quaternion-valued random vector Q where the joint statistical information

of the real-valued components ofQ can fully be describe through their joint characteristic

function given by

ΦQ(sr, si, sj , sk) = E
[
eζ(s

T
r qr+sTi qi+sTj qj+sTk qk)

]
(8.3)

with ζ ∈ H such that ζ2 = −1. Now, following the same approach as the HR-calculus

and through exploiting the transformation in (2.8) the characteristic function in (8.3)

can be expressed directly in the quaternion domain as

ΦQa(sa) = E
[
e(

ζ
4
saHqa)

]
(8.4)

where s = sr + isi + jsj + ksk. Note that in (8.4) the quaternion random vector must

be used in its augmented form and therefore the expression in (8.4) is referred to as the

augmented quaternion characteristic function (AQCF).

8.3.2 Geometric interpretation of the AQCF

Considering the expressions in (2.8) it can be shown that saHqa has vanishing imaginary

components1; therefore, the transformation e(
ζ
4
saHqa), for a given value of s ∈ H

N , maps

the quaternion random vector onto the perimeter of a unit circle in the 1-ζ plane of HN

that is centered around the origin and hereafter is referred to as “the unit circle”. Thus,

if the quaternion random vector, Q , has a positive mass at q, in the distribution of the

random variable e(
ζ
4
saHqa), this mass will appear at an angle of 1

4s
aHqa from the real

axis on the perimeter of the unit circle in the 1-ζ plane. This is equivalent to taking

the distribution of the real-valued random variable 1
4s

aHqa and warping it around the

unit circle in the 1-ζ plane; hence, E[e(
ζ
4
saHqa)] will represent the center of mass of such

a “warped-around” distribution. Regarding the geometric interpretation of the AQCF

the following five notable remarks can be made:

1Note that saHqa =
(
sHq

)
+

(
sHq

)i
+

(
sHq

)j
+

(
sHq

)k
= 4�(sHq) ∈ R
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1. Note that as a result of the transform e(
ζ
4
saHqa) being bounded, lying on or within

the unit circle, the AQCF is guaranteed to exist for all values of s ∈ H
N regardless

of the distribution of Q .

2. Note that if the quaternion random vector has a symmetric distribution2; then, its

corresponding AQCF will have a vanishing imaginary component as the center of

mass of its corresponding warped-around distribution will only lie on the real line.

Following the same logic, if the distribution of a given quaternion random variable

is symmetric along a line, its corresponding AQCF will have vanishing imaginary

component along the same line.

3. In the degenerate case where all the weight of Q is concentrated at one point, the

center of mass for e(
ζ
4
saHqa) lies exclusively on the perimeter of the unit circle. In

this case, the AQCF is given by ΦQa(sa) = cos(14s
aHqa) + ζsin(14s

aHqa) that rep-

resents a periodic function, where the principal direction of periodicity is parallel

to the mean vector; however, it is important to note that a random quaternion

variable with a purely periodic AQCF is not necessarily degenerate.

4. Considering that a quaternion random vector Q� with mean vector � can be

decomposed into Q� = Q + � where Q is a zero-mean random vector; therefore,

the AQCF of Q� is given by ΦQa
�
(sa) = e(

ζ
4
saH�a)ΦQa(sa) which in essence is

the AQCF of Q modulated by e(
ζ
4
saH�a), the AQCF of the degenerate quaternion

random vector with all its mass concentrated at �.

5. Considering the inherent duality between the AQCF and the joint characteristic

function of its real-valued components, established in (8.3) and (8.4), it can be

traced that |ΦQa | → 0 as ‖sa‖2 → ∞.

6. At sa = 0 we have saHqa = 0 resulting in ΦQa(0) = E[e(0)] = 1 regardless of the

distribution of Q .

In order to clarify the above mentioned remarks, the real and imaginary components

of the AQCF of the degenerate distribution PQa(q = 4√
3
(1 + i + k)) = 1 is shown in

Figure 8.1. Note that both the real and imaginary components are periodic with their

principal direction of periodicity along a vector passing through the origin and 1+ i+k;

hence, there are no changes in the AQCF with respect to changes on j-axis. The AQCF

of a non-circular quaternion Gaussian random variable is shown in Figure 8.2 and the

AQCF of the same non-circular quaternion Gaussian random variable with � = 1+ i+k

added as mean is shown in Figure 8.3, where the modulations introduced as a result of

the mean can clearly be observed; in addition, the AQCF of the zero-mean quaternion

Gaussian random variable has a vanishing imaginary component as its distribution is

symmetric whereas the introduction of a mean results in an imaginary component that

2A random quaternion variable is referred to as symmetric if its distribution is symmetric along any
straight line passing through the origin.
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has the same amplitude envelop as the real component, but is modulated by a wave that

is π/2 out of phase with that modulating the real component.

Figure 8.1: Heat map of the AQCF of the degenerate distribution PQa(q = 4√
3
(1 +

i+ k)) = 1 showing variations of the AQCF in six orthogonal planes of H: a) the real
component of the AQCF, b) the imaginary component of the AQCF.

8.3.3 The relation between the AQCF and statistical moments

Consider the AQCF in the formulation given in (8.4), where replacing the exponential

with its power series representation yields

ΦQa(sa) = E
[
e(

ζ
4
saHqa)

]
=E

[ ∞∑
m=0

ζm
(
saHqa

)m
(4m)m!

]

=1 + E

[
ζ
saHqa

4

]
− E

[(
saHqa

)2
32

]
− E

[
ζ

(
saHqa

)3
384

]
· · ·
(8.5)
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Figure 8.2: Heat map of the AQCF of a zero-mean non-circular quaternion-valued
Gaussian distribution showing the real component of the variations of the AQCF in six
orthogonal planes of H. Note that the AQCF of this random variable has a vanishing
imaginary component.

Figure 8.3: Heat map of the AQCF of a non-zero-mean non-circular quaternion-valued
Gaussian distribution showing variations of the AQCF in six orthogonal planes of H:
a) the real component of the of the AQCF, b) the imaginary component of the AQCF.
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The HR-calculus can now be employed to calculate the first-order derivatives of ΦQa ,

where from the expression in (8.5) we have

∂ΦQa(sa)

∂s∗ζ1
=
∂ΦQa(sa)

∂saHqa

∂saHqa

∂s∗ζ1
= E

[ ∞∑
m=0

ζm+1
(
saHqa

)m
(4m+1)m!

qζ1

]

=E

[
ζ
qζ1

4

]
− E

[
saHqa

16
qζ1

]
− E

[
ζ

(
saHqa

)2
128

qζ1

]
· · ·

(8.6)

with ζ1 ∈ {1, i, j, k} and when evaluated at sa = 0 gives

∂ΦQa(sa)

∂s∗ζ1

∣∣∣∣
sa=0

= E

[
ζ
qζ1

4

]

which is the involution of the mean of the random variable Q around ζ1 multiplied by

ζ/4; therefore, we have

E [q] =

(
4

ζ

∂ΦQa(sa)

∂s∗ζ1

∣∣∣∣
sa=0

)ζ1

.

In addition, in a similar manner, it can be shown that

∂ΦQa(sa)

∂sζ1

∣∣∣∣
sa=0

=
1

2
E

[
ζ
q∗ζ1

4

]
and E [q] =

(
8

ζ

∂ΦQa(sa)

∂sζ1

∣∣∣∣
sa=0

)∗ζ1
.

The second-order derivatives of ΦQa can be expressed as

∂2ΦQa(sa)

∂s∗ζ1∂s∗ζ2
=

∂

∂s∗ζ1

(
∂ΦQa(sa)

∂s∗ζ2

)
=

∂

∂saHqa

(
∂ΦQa(sa)

∂saHqa

∂saHqa

∂s∗ζ2

)
∂saHqa

∂s∗ζ1
(8.7)

where ζ1, ζ2 ∈ {1, i, j, k} and upon replacing (8.6) into (8.7) gives

∂2ΦQa(sa)

∂s∗ζ1∂s∗ζ2
= E

[ ∞∑
m=0

−ζm
(
saHqa

)m
(4m+2)m!

qζ2qζT1

]

that when evaluated at sa = 0 yields

∂2ΦQa(sa)

∂s∗ζ1∂s∗ζ2

∣∣∣∣
sa=0

=
−1

16
E
[
qζ2qζ1T

]

which is the cross-correlation between qζ1 and qζ2 multiplied by (ζ/4)2. Therefore, fol-

lowing the same procedure, the augmented covariance matrix of Q can now be expressed

as
∂2ΦQa(sa)

∂sa∂s∗a

∣∣∣∣
sa=0

=
1

32
E
[
qaqaH

]
=

1

32
Cqa . (8.8)

Note that all higher order statistics of Q can be found analogously.
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8.3.4 The relation between the AQCF and circularity

Consider a quaternion-valued random vector, Q , with i.i.d components, where from (8.4)

and (8.3) it is straightforward to show

ΦQa(sa) = ΦQr
(sr)ΦQi

(si)ΦQj
(sj)ΦQk

(sk)

moreover, making the assumption that ΦQa(sa) = g(d), where g(·) : R → C and

d =
√

sTr Grsr + sTi Gisi + sTj Gjsj + sTkGksk (8.9)

results in
∂g(d)

∂sr
=

∂g(d)

∂d

∂d

∂sr
=

∂ΦQr
(sr)

∂sr
ΦQi

(si)ΦQj
(sj)ΦQk

(sk). (8.10)

Through straightforward mathematical manipulations the expression in (8.10) gives

∂g(d)

∂d

Grsr
d

=
∂ΦQr

(sr)

∂sr
ΦQi

(si)ΦQj
(sj)ΦQk

(sk) (8.11)

where making the assumption that Gr is positive definite and dividing both sides of the

expression in (8.11) by g(d) yields

∂g(d)

∂d

1

dg(d)
=

sTr
sTr Grsr

∂ΦQr
(sr)

∂sr
· (8.12)

Note that the right hand side of the equation in (8.12) is only dependent on sr whereas

its left hand side is dependent on d, a function of {sr, si, sj , sk}; therefore, the right

hand side of the equation in (8.12) can only be a constant resulting in

∂g(d)

∂d

1

g(d)
=

∂ln (g(d))

∂d
=

(
sTr

sTr Grsr

∂ΦQr
(sr)

∂sr

)
︸ ︷︷ ︸

κ

d (8.13)

where solving the differential equation in (8.13) gives3

g(d) = e(
κ
2
d2). (8.14)

Note that the AQCF given in (8.14) is of a form consistent only with the AQCF of

quaternion-valued Gaussian variables. Indeed in Appendix D, it is shown that assuming

the pdf of Q exists and has i.i.d real-valued components the resulting distribution will

be circular if and only if the real-valued components of Q are Gaussian random variables

with the same diagonal covariance matrices. Furthermore, notice that the derivatives of

the AQCF with respect to the real component were used here; however, the same results

3Note that the boundary conditions of the differential equation in (8.13) are set by the fact that for
a general quaternion-valued random vector, Q , we have ΦQa(sa)|sa=0 = 1.
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can be obtained by employing the derivatives of the AQCF with respect to any of the

real-valued components of the quaternion-valued random vector.

8.3.5 The design of quaternion circular random variables

In order to provide a better insight into circular quaternion-valued random variables

and to obtain tools for simulations, a procedure for generating circular quaternion-

valued random variables is presented in this section. For the sake of simplicity the work

is limited to the univariate case; however, the framework can easily be expanded for

generating quaternion-valued random vectors.

Consider a quaternion-valued random variable of the form Q = RU where R is a

real-valued non-negative random variable and U is quaternion-valued random variable

with uniform distribution on the surface of the unit hypersphere in H that is independent

of R. The AQCF of Q can now be expressed as

ΦQa(sa) = E
[
e

ζ
4
saHqa

]
= E

[
e

ζ
4
rsaHua

]
=

∫ ∞

0

∮
U
e

ζ
4
rsaHua

dFUa(ua)dFR(r) (8.15)

where the symbol “
∮
U” denotes the integral on the unit hypersphere in H, while FUa(ua)

and FR(r) represent the cumulative distribution function (cdf) of U and R. Since R and

U are independent, the expression in (8.15) yields

ΦQa(sa) =

∫ ∞

0
ΦUa(rsa)dFR(r)

furthermore, U is a quaternion-valued circular random variable and therefore its AQCF

takes the form ΦU a(rsa) = φ(r|s|) where φ(·) : R → R, resulting in

ΦQa(sa) =

∫ ∞

0
φ(r|s|)dFR(r). (8.16)

Therefore, circular quaternion random variables with AQCF of the form in (8.16) are at

hand. In addition, note that the AQCF of Q, as expressed in (8.16), is only a function of

|s| indicating that quaternion-valued circular random variables have circular symmetric

AQCFs.

8.3.6 The HC interpretation and ζ-circularity

In some scenarios it becomes useful to consider a quaternion q ∈ H as the combination

of two complex numbers whereby

q =
(
qr + iqi︸ ︷︷ ︸
z1∈C

)
+
(
qj + iqk︸ ︷︷ ︸

z2∈C

)
j
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which is referred to as the Cayley-Dickson presentation [99, 102]. The joint augmented

complex characteristic function of Z1 and Z2 is now given by

ΦZa
1 ,Z

a
2
(sa1, s

a
2) = E

[
e(

i
2(s

aH
1 za1+saH2 za2))

]
where {za1, za1, sa1, sa1} ∈ C

2. After some mathematical manipulations, the AQCF of

Q1-i = Z1 + Z2j can be formulated as

ΦQa
1-i
(sa) = E

[
e(

i
4(s

aH
1-i q

a
1-i))
]

where sa1-i = B[s1, s2, s
∗
1, s

∗
2]
T , qa

1-i = B[z1, z2, z
∗
1 , z

∗
2 ]

T , and

B =

⎡
⎢⎢⎢⎢⎣
1 0 0 j

1 0 0 −j

0 1 −j 0

0 1 j 0

⎤
⎥⎥⎥⎥⎦ with

1

2
BH = B−1.

Now consider a quaternion random variable such that Q1-i = Z1U1-j , where Z1 is a

random complex variable in the 1-i plane and U1-j is a uniform distribution on the unit

circle in the 1-j plane. Note that since U1-j is uniformly distributed on the unit circle in

the 1-j plane, the distribution of Q1-i will be invariant under rotations along the j-axis.

After some mathematical manipulation the AQCF of Q1-i can be formulated as

ΦQa
1-i
(sa) = E

[
e(

i
4(s

aH
1-i q

a
1-i))
]
= E

[
e(iξ)
]

(8.17)

where
ξ =� (s∗1q1 + s∗2q2)

=�
(
s∗1z1u1-jr + s∗2z1u1-jj

)
=(s1rz1r + s1iz1i)︸ ︷︷ ︸

sr

u1-jr + (s2rz1r + s2iz1i)︸ ︷︷ ︸
sj

u1-jj

(8.18)

with s = sr+sjj. Furthermore, assuming Z1 and U1-j are independent allows the AQCF

of Q1-i as given in (8.17) to be rearranged into

ΦQa
1-i
(sa) = E

[
e(i�(s∗u1-j))

]
= E

[
ΦU a

1-j
(sa)
]
= E [φ (|s|)] . (8.19)

where |s| can be expressed as

|s| =
√

�2 (s1z∗1) + �2 (s2z∗1). (8.20)
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Therefore, if the quaternion random variable is j-circular its AQCF will take the form

presented in (8.19). In addition, for such random variables, we have

∀θ ∈ [0, 2π) : ΦQa
1-i
(sa) =E

[
e(ζ�(s∗q))

]
= E

[
e(ζ�(s∗qejθ))

]
=E
[
e(ζ�(sz1u1-je

jθ))
]
= E

[
e(ζ�(s∗e−jθz1q))

]
=E
[
e(ζ�((se

jθ)∗))z1q))
]
= ΦQa

1-i
(s′a)

with s′ = sejθ. Therefore, ΦQa
1-i
(sa) is invariant under rotations along the j-axis4. Note

that samples of an j-circular random variable can be generated by multiplying random

samples of z1 with cos(θ) + jsin(θ) where θ ∼ U [0, 2π). Moreover, in this work, the

quaternion domain is split into two complex pains along side the j-axis, similar results

can be obtained by splitting the quaternion domain along side any of the imaginary axis

or indeed along any line in the quaternion domain.

8.4 Quaternion-valued stable random variables

Considering the definition given in (8.1) and by extension, here we define a quaternion-

valued random variable as α-stable if its real-valued components are jointly α-stable and

therefore it is straightforward to show that such a quaternion-valued random variable

also admits the stable property in (8.1). Furthermore, if a quaternion-valued random

variable, Q is α-stable and has a symmetric elliptical distribution; then, from classical

results in [138], the joint characteristic function of its real-valued components takes the

form

ΦQ(sr, si, sj , sk) = e−(
1
2
[sr,si,sj ,sk]Σ[sr,si,sj ,sk]

T )
α
2

(8.21)

whereΣ is a semi positive definite matrix dictating the elliptical shape of the distribution

and hereafter is referred to as the covariation matrix. Note that for the case that α = 2

the characteristic function in (8.21) is that of a multivariate Gaussian distribution with

Σ denoting its covariance matrix. In addition, using the transformation in (2.8) it is

trivial to show that the AQCF of quaternion-valued α-stable random variables with

symmetric elliptical distributions takes the form

ΦQ = e−(
1
32

saHΣQasa)
α
2

(8.22)

where

ΣQa =
1

16

⎡
⎢⎢⎢⎢⎣
I iI jI kI

I iI −jI −kI

I −iI jI −kI

I −iI −jI kI

⎤
⎥⎥⎥⎥⎦
H

Σ

⎡
⎢⎢⎢⎢⎣
I iI jI kI

I iI −jI −kI

I −iI jI −kI

I −iI −jI kI

⎤
⎥⎥⎥⎥⎦ .

4Note the same conclusion can be drawn from the expression in (8.20) and (8.19).
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Once again, note that for the special case α = 2 the AQCF given in (8.22) is that

of a zero-mean quaternion-valued Gaussian distribution with the augmented covariance

matrix ΣQa .

Hereafter, in order to allow for mathematically tractable solutions, we focus on the

case of quaternion-valued α-stable random variables with symmetric elliptical distribu-

tions, hereafter referred to as quaternion α-stable random variables for brevity. This

class of stable random variables admit the following5:

• Let G be a zero-mean quaternion-valued Gaussian random vector with augmented

covariance matrix ΣGa and A a univariate real-valued positive random variable

such that ΦA(s) = E[esa] = e−|s|α/2
; then, the AQCF of the random variable

Q =
√
AG is given by

ΦQa(sa) =E
[
eζs

aH(
√
aqa)|a

]
= E

[
E
[
eηs

aH(
√
aqa)|a

] ]
=e−(

1
32

ΘQa)
α/2

with ΘQa = saHΣGasa.

(8.23)

The expression in (8.23) implies that each quaternion α-stable random variable is

composed of a zero-mean quaternion-valued Gaussian random variable that dic-

tates its covariation matrix and a real-valued α/2-stable random variable that

dictates the α parameter. Furthermore, note that in the case where the underly-

ing zero-man quaternion-valued Gaussian random variable is circular; then, ΣGa

is diagonal and the distribution of Q will be circular as well, while the real-valued

components of Q are identically distributed, but not independent, which confirms

the results in Section 8.3.4.

• Note that for a quaternion-valued α-stable random variable its AQCF in the for-

mulation given in (8.22) is non-differentiable at sa = 0 for α ≤ 1 and only has

finite first-order derivativeness at sa = 0 for 1 < α ≤ 2; therefore, α = 2 is the

only case where such random variables have closed form second-order statistics

that are obtainable through the framework set in Section 8.3.3. This comprises

the performance of conventional adaptive filtering algorithms that are based on

second-order statistics. This, issue is addressed in the next section.

8.5 Adaptive filtering

Consider the problem of finding the optimal widely-linear mapping that relates the

quaternion-valued random variables xa and ya, which can be formulated as

ya = Waxa. (8.24)

5Most of the proofs have been omitted as they closely follow those of the real-valued vector case
presented in [138].
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In the case where {xa,ya} are zero-mean and jointly Gaussian, multiplying both sides

by xaH yields

yaxaH = WaxaxaH (8.25)

where the optimal solution in the MMSE sense referred to as the Wiener solution (see

Chapter 2 and [71]) can now be obtained through taking the statistical expectation of

the expression in (8.25) which gives

Wa
opt = E

[
yaxaH

] (
E
[
xaxaH

])−1
. (8.26)

However, the solution given in (8.26) is only optimal for the Gaussian case and cannot be

generalized for the entire quaternion-valued α-stable random variables. In this section,

the optimal filtering solution for the generality of quaternion-valued α-stable random

variables is derived and then adaptive solutions are investigated.

8.5.1 The optimal filtering solution

Given the widely-linear mapping in (8.24) and considering xa and ya to be quaternion-

valued α-stable random variables with symmetric elliptical distributions6; their joint

AQCF can be expressed as

ΦY a,X a(say, s
a
x) = E

[
e

ζ
4(s

aH
y ya+saHx xa)

]
(8.27)

where upon replacing ya = Waxa in (8.27) we have

ΦY a,X a(say, s
a
x) = E

[
e

ζ
4(s

aH
y Waxa+saHx xa)

]
= E

[
e

ζ
4((s

aH
y Wa+saHx )xa)

]
. (8.28)

Now, considering the formulation in (8.22) for the AQCF of such random variables, the

joint AQCF of xa and ya is given by

ΦY a,X a(say, s
a
x) = ΦX(sayW

a + sax) = e−(
1
2
ΘYa,Xa)

α
2

(8.29)

where

ΘY a,X a =
(
saHy Wa + saHx

)
ΣXa

(
WaHsay + sax

)
=saHy WaΣXaWaH︸ ︷︷ ︸

ΣYa

say + saHy WaΣX a︸ ︷︷ ︸
ΣYaXa

sax + saHx ΣXaWaH︸ ︷︷ ︸
ΣXaYa

say + saHx ΣX asaHx .

=
[
saHy saHx

] [ ΣY a ΣY aX a

ΣX aY a ΣX a

]
︸ ︷︷ ︸

ΣYa,Xa

[
say

sax

]
.

(8.30)

6In incidences where the filtering of α-stable random variables is considered it is implicitly implied
that α > 1, so that conditional exceptions E[y|x] exist and are finite.
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From the expression in (8.30), note that ΣY a,X a is in fact the Hessian matrix ofΘY a,X a ;

therefore, the optimal filtering solution can be expressed as

Wa
opt = ΣX aY a (ΣX a)−1

where ΣX aY a and ΣX a are elements of the Hessian matrix of

ΘY a,X a =

(
− 32ln

(
ΦY a,X a(say, s

a
x)
)) 2

α

.

In most cases, however, applying block based estimators for finding the optimal fil-

tering solution is computationally complex and rather inadequate when dealing with

non-stationary signals. Thus, adaptive approaches are required.

8.5.2 Steepest-descent algorithms

Although ΘY a,X a can be evaluated from empirical estimation of ΦY a,X a using sam-

ples of the signal; however, obtaining the Hessian matrix of ΘY a,X a through numerical

methods is computationally inefficient. Moreover, applying block based estimators is

rather inadequate specially when dealing with non-stationary signals. Therefore, follow-

ing the approaches in [142–144], an adaptive approach is next investigated. To this end,

consider the widely-linear mapping in (8.24) in its adaptive formulation, given by

ŷn = hT
nxn + gT

nx
i
n + uT

nx
j
n + vT

nx
k
n = waT

n xa
n

the coefficients of which are updated at each time instant in a steepest-descent fashion

minimizing the cost function J = E [|y − ŷ|p] = E [|ε|p] in its instantaneous form given

by

Jn = |εn|P = (εnε
∗
n)

p
2

where εn = yn − ŷn and 1 < p < α. The gradients of Jn can be calculated through the

HR-calculus and is given by

∇wa∗
n
Jn = ∇wa∗

n
(εnε

∗
n)

p
2 = −3

4

p

2
|εn|p−2εnx

a∗
n .

Therefore the update of the weight vector can be expressed as

wa
n+1 = wa

n + μ|εn|p−2εnx
a∗
n (8.31)

where μ ∈ R
+ represents an adaptation gain.

Considering the wight error given by εan = wa
opt − wa

n and the update equation in

(8.31), the evolution of the weight vector error can be expressed as

εan+1 = εan − μ|εn|p−2εnx
a∗
n
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where replacing εn = ŷn − yn = εaTn xa
n and after some mathematical manipulations we

have

εan+1 = εan
(
I− μ|εn|p−2xa

nx
aH
n

)
. (8.32)

The expression in (8.32) gives the mapping of the weight vector error from one time

instant to the next; therefore, for the weight vector to converge the transform has to be

a contracting one, which gives a bound for the adaptation gain as

μ ≤ 1

|εn|p−2Tr(xa
nx

aH
n )

· (8.33)

Note that for the special case where α = 2 and p = 2, the update equation in (8.31)

simplifies to that of the WL-QLMS; in addition, selecting μ = Tr(xa
nx

aH
n ) results in the

normalized WL-QLMS algorithm. However, regarding the general case where 1 < α ≤ 2

the following statements can be made:

• The condition p > 1 ensures the cost function Jn = |εn|p is convex and differen-

tiable for all values of εn.

• If the input and output of the filter are jointly α-stable; then, ε is a quaternion-

valued α-stable variable with α-stable real-valued components. Furthermore,

J = E [|ε|p] = E
[(
ε2r + ε2i + ε2j + ε2k

) p
2

]
≤ E [|εr|p] +E [|εi|p] +E [|εj |p] +E [|εk|p] .

Therefore, the condition p ≤ α will ensure that E [|εr|p], E [|εi|p], E [|εj |p], and
E [|εk|p] exist and hence the cost function is bounded.

• Since εn = εaTn xa
n, for a given weight vector error at time instant n, sharp increases

in ‖xa
n‖2 will result in a rise in |εn| and a fall in |εn|p−2; thus, the presence of the

term |εn|p−2 in the weight vector update equation in (8.31) helps to regulate the

adaptation step-size when dealing with heavy tails. This is shown in Figure 8.4,

where the WL-QLMS, normalized WL-QLMS, and a steepest descent algorithm

with p = 1.1 are implemented to estimate the weight vector of an autoregressive

process of length 4 that is driven by a proper quaternion-valued 1.9-stable noise.
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Figure 8.4: Estimation of the weight vector of an autoregressive process of length 4
that is driven by a proper quaternion-valued 1.9-stable noise: a) amplitude of the
autoregressive process, b) weight vector estimation error.

8.5.3 The augmented quaternion particle filter

Although the steepest-decent approach is a computationally effective method for pro-

cessing α-stable random signals; however, lack of convergence bounds, limits their use.

In order to present an inclusive framework for processing α-stable random signals the

augmented quaternion particle filter is next derived. To this end, consider the general

widely-linear state space model given by

xa
n =Aa

nx
a
n−1 + νa

n

ya
n =Ha

nx
a
n + ωa

n

where xa
n and ya

n are the augmented state and observations at time instant n, while νa
n

and ωa
n represent the state evolution and observation noise.

Taking the conventional particle filtering approach [147, 148], the AQCF of the state

vector sequence xa
0:n = {xa

0, . . . ,x
a
n} conditional on the observation sequence ya

1:n =
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{ya
1 , . . . ,y

a
n} can be expressed as

ΦX a
0:n|Y a

1:n
(sa) =

∫
DXa

0:n

e
ζ
4
saHxa

0:nPX a
0:n

(xa
0:n|ya

1:n)dx
a
0:n

≈ 1∑M
m=1w

{m}
n

M∑
m=1

w{m}
n e

ζ
4
saHxa{m}

0:n

where PX a
0:n

(xa
0:n|ya

1:n) denotes the probability of the augmented state vector sequence

xa
0:n, conditional to the augmented observation sequence ya

1:n, whereas DX a
0:n

denotes

the domain of X a
0:n, while x

a{m}
0:n and w

{m}
n are independent particles drawn from the dis-

tribution of X a
0:n, or its importance function P(xa

0:n|ya
1:n), and their associated weights

given by

w{m}
n ∝ PX a

0:n
(xa

0:n)PY a
1:n|X a

0:n
(ya

1:n|xa
0:n)

P(xa
0:n|ya

1:n)
· (8.34)

Assuming that the current state is independent from future observations and that

the importance function is selected to be factorisable so that

P(xa
0:n+1|ya

1:n+1) = P(xa
0:n|ya

1:n)P(xa
n+1|xa

0:n,y
a
1:n+1)

allows the weights to be updated sequentially as

w
{m}
n+1 ∝

PY a
col,n+1|X a

n+1
(ya

col,n+1|xa
n+1)PX a

n+1|X a
n
(xa

n+1|xa
n)

P(xa
n+1|xa

0:n,y
a
1:n+1)

w{m}
n (8.35)

where distribution PX a
n+1|X a

n
(xa

n+1|xa
n) is determined by the state evolution function.

Furthermore, if the distribution of X a
0:n is approximated to be elliptically contoured,

it can be fully described through the mean estimate given by

E[xa
0:n] ≈

1∑M
m=1w

{m}
n

M∑
m=1

w{m}
n xa{m}

0:n (8.36)

and covariation matrix estimate that is calculable from the widely-linear regression

saHΣXa
0:n

sa =
(
−32ln

(
Φ̂X a

0:n
(sa)
)) 2

α
(8.37)

where

Φ̂X a
0:n

(sa) =
1∑M

m=1w
{m}
n

M∑
m=1

w{m}
n e

ζ
4

(
saH

(
x
a{m}
0:n −E[xa

0:n]
))
.

In addition, it can be shown that the AQCF of the state vector at two consecutive time

instances are related according to

ΦX a
n+1

(sa) =E
[
e

ζ
4(s

aHAa
nx

a
n+saHνa

n)
]
= ΦX a

n
(AaH

n sa)Φνa
n

=e(
ζ
4
saHAa

nE[xa
n])e−(

1
32

saHAa
nΣXa

n
AaH

n sa)e−(
1
32

saHΣνa
n
sa).
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Therefore, the covariation matrix of Xa
n can be found through the widely-linear regres-

sion

saHΣX a
n+1

sa =
((

saHAa
nΣX a

n
AaH

n sa
)α/2

+
(
saHΣνa

n
sa
)α/2)2/α

while E[xa
n+1] = Aa

nE[xa
n]. This allows to propagate the state vector statistics without

the need to manipulate large number of particles. The operations of such an particle

filtering algorithm are summarized in Algorithm 13.

Algorithm 13. Augmented Quaternion Particle Filter (AQPF)

Initialize:

Draw samples xa{m}
0 and assign weights w

{m}
0 using P(xa

0).

At each time instant :

1. Sample from the importance density P(xa
0:n−1|ya

1:n−1) and assign
weights through (8.34).

2. Track samples through the state evaluation function.

3. Reassign weights through (8.35).

4. Approximate the distribution of X a
0:n with that of an elliptically

contoured α-stable distribution with mean and covariation matrix
given in (8.36) and (8.37).

5. Draw particles from a quaternion-valued elliptically contoured α-
stable distribution with the mean and covariation matrix calcu-
lated in the previous step to be propagated to the next stage.

As an example, consider the quaternion-valued dynamic system characterized in

discrete time through the state space equations

xn =

[
1 1

0 1

]
xn−1 +

[
0.5

1

]
νn

yn =
[
1 0

]
xn + ωn

where νn is a zero-mean unit variance second-order proper Gaussian noise, while ωn is

a zero-mean elliptically distributed 1.5-stable noise with the covariation matrix

Σωa =

⎡
⎢⎢⎢⎢⎣
13 3 3 3

3 13 3 3

3 3 13 3

3 3 3 13

⎤
⎥⎥⎥⎥⎦ .
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The AQPF was implemented in order to track the state vector. The estimates of the state

vector element that is observed through the observation function is shown in Figure 8.5,

while the estimates of the state vector element that is not observable are shown in

Figure 8.6. Note that despite the presence of a heavy-tailed 1.5-stable observation noise,

the AQPF was able to track the state vector.

Figure 8.5: State vector estimation in presence of 1.5-stable observation noise. The
estimates of the state vector element that is observed through the observation function
are shown.

Figure 8.6: State vector estimation in presence of 1.5-stable observation noise. The
estimates of the state vector element that is not observable through the observation
function are shown.
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8.6 Conclusion

The augmented quaternion characteristic function was revised and its properties from

a geometric point of view and its link to statistical moments were investigated. In

addition, adaptive filtering of quaternion-valued α-stable random variables with sym-

metric elliptical distributions was considered. The contributions of this chapter can be

summarized as follows:

• The link between the AQCF and different types of circularity was investigated

establishing a structure for the AQCF of circular and ζ-circular quaternion-valued

random variables and a framework for sample generation. furthermore, it was

established that for the case of quaternion-valued random variables with i.i.d com-

ponents, circularity happens only in the Gaussian case.

• The statistical manipulation of quaternion-valued α-stable random variables was

considered, where an optimal filtering solution was derived through the use of the

AQCF. In addition, adaptive filtering of quaternion-valued α-stable random signals

was investigated, where the augmented quaternion particle filter was introduced

for sequential state estimation of quaternion-valued α-stable signals.



Chapter 9

Conclusion

9.1 Conclusion and contributions

Motivated by the recent developments in quaternion-valued signal processing and their

natural ability to model three-dimensional rotations; in this thesis, quaternion-valued

signal processing algorithms dealing with the notion of phase and frequency in the

quaternion domain with practical applications in smart grids, target tracking, and track-

ing the rotations of objects in the three-dimensional space were developed. The use of

quaternions in these applications where the underlying signal is three-dimensional by

nature, has allowed for the derivation of signal processing algorithms that in addition

to having a rigorous physical interpretation, can account for all the information in the

signal and outperform their complex or real-valued counterparts. The contributions of

this thesis are summarized in the following:

1. Although widely-linear adaptive filters are optimal for the generality of quaternion-

valued signals, they can be simplified into strictly linear adaptive filters in cases

where the signal is proper, significantly reducing computational complexity. To

this end, a novel real-time tracker of quaternion impropriety was developed which

allows to identify the degree of impropriety of a signal in real-time, so that the in-

stances when a non-stationary signal changes its statistic can be identified and an

estimator that best suits the signal can be selected. The work includes comprehen-

sive theoretical analysis of the mean and mean-square behavior of the impropriety

tracker, which are verified through simulations.

2. Adaptive phase-only estimation of quaternion-valued signals was considered and

a class of quaternion phase estimators was developed. This was achieved through

updating the weights of the adaptive filter at each time instant according to a

cost function of the phase error in a steepest-descent fashion. The performance of

the algorithms was analyzed, and a geometrical interpretation of the operations of
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the proposed algorithms was presented. The developed phase-only estimator was

used in a number of practical applications for estimating rotations in the three-

dimensional space, where it showed superior performance as compared to that of

real-valued quadrivariate algorithms based on the application of rotation matrices.

3. A widely-linear complex-valued frequency estimator for three-phase power sys-

tems that can outperform its complex-valued counterparts in addition to having

consistent performance under both nominal and fault conditions was developed.

For rigor, the performance of the developed frequency estimator was quantified

and compared to that of its counterparts. Finally, the analysis was confirmed

through simulations on both synthetic data and real-world data recordings, where

the developed frequency estimator showed outstanding performance.

4. Quaternions were used for frequency estimation in three-phase power systems,

where the multidimensional nature of quaternions allowed a state space model

for the three-phase power signal to be developed that incorporates voltage mea-

surements from all phases of the power system without the need for using the

Clarke transform. In addition, the state space model was designed such that its

elements could be applied for the estimation of the system voltage phasors. The

performance of the developed frequency estimator was quantified and compared to

that of traditional frequency estimators established on complex-valued algorithms

through simulations, where it was shown to achieve a lower steady-state mean

square error.

5. A fully distributed sequential state estimator for quaternion-valued signals was

developed. This was achieved through decomposing the operations of the central-

ized quaternion Kalman filter in such a fashion that they can be performed in a

distributed manner. The performance of the developed algorithm was analyzed

establishing a recursive expression for the estimation error. The developed algo-

rithm was implemented for estimating the fundamental frequency of three-phase

power distribution networks and for collaborative target tracking.

6. Having established that quaternion-valued random variables with i.i.d compo-

nents, circularity happens only in the Gaussian case, a structure for the augmented

quaternion characteristic function of circular and ζ-circular quaternion-valued ran-

dom variables and a framework for generating samples from such distributions was

established. In addition, statistics of quaternion-valued α-stable random variable

was considered, leading to an expression for the optimal filtering solution when

dealing with zero-mean elliptically contoured α-stable random signals with α > 1.

Furthermore, adaptive filtering of quaternion-valued α-stable random variables

was investigated and the augmented quaternion particle filter was introduced for

adaptive filtering of non-Gaussian quaternion-valued signals.
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9.2 Future work

The research into quaternion-valued signal processing has brought to light a number of

new directions that are worth pursuing. These directions are as follows:

1. Fly-by-Wire Systems: The introduction of automated flight control systems has

made possible aircraft designs that sacrifice aerodynamic stability in order to in-

corporate stealth technology into their shape and/or operate more efficiently. One

of the most important tasks of such systems is to track and control the pitch, roll,

and yaw angles of the aircraft in real-time. Given the natural ability of quater-

nions to model rotations, the opportunity arises to develop a rigorous integrated

quaternion-value flight control system.

2. Power System Analysis: For more than 50 years three-phase power systems have

been analyzed through complex-valued mathematical techniques; however, this is

a compromised approach as complex numbers lack the dimensionality necessary

to represent three-phase power signals. Therefore, the opportunity arises to de-

velop a quaternion-valued framework for modeling the power grid and analyzing

its performance.

3. Distributed Filtering of α-Stable Random Signals: The particle filter is the only

adaptive filtering algorithm applicable to the generality of α-stable random sig-

nals; however, its computational burden remains as its major drawback when it

comes to real-time implementation. Given the popularity that sensor networks

and distributed signal processing has gained, distributing the computational load

of the particle filter among agents of a network can be seen as a practical technique

for addressing the computational complexity of particle filters.



Bibliography

[1] S. Haykin, Adaptive filter theory. Prentice Hall, 1996.

[2] P. S. R. Diniz, Adaptive filtering: Algorithms and practical implementation.

Springer, 2008.

[3] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and adaptive signal

processing: Spectral estimation, signal modeling, adaptive filtering, and array pro-

cessing. Artech House, 2005.

[4] R. L. Plackett, “Some theorems in least squares,” Biometrika, vol. 37, no. 1/2, pp.

149–157, Jun 1950.

[5] L. Ljung, M. Morf, and D. Falconer, “Fast calculation of gain matrices for recur-

sive estimation schemes,” International Journal of Control, vol. 27, no. 1, pp. 1–19,

1978.

[6] M. Morf, T. Kailath, and L. Ljung, “Fast algorithms for recursive identification,”

In Proceedings of IEEE Conference on Decision and Control including the 15th

Symposium on Adaptive Processes, pp. 916–921, December 1976.

[7] S. Qiao, “Fast adaptive RLS algorithms: A generalized inverse approach and anal-

ysis,” IEEE Transactions on Signal Processing, vol. 39, no. 6, pp. 1455–1459, June

1991.

[8] D. T. M. Slock, L. Chisci, H. Lev-Ari, and T. Kailath,, “Modular and numeri-

cally stable fast transversal filters for multichannel and multiexperiment RLS,”

IEEE transacions on Signal Processing, vol. 40, no. 4, pp. 784–802, April 1992.

[9] B. Widrow and M. E. Hoff Jr, “Adaptive switching circuits,” IRE WESCON

Convention Record, Part 4, pp. 96–104, August 1960.

[10] B. Widrow and S. D. Stearns, Adaptive signal processing. Prentice Hall, 1985.

[11] W. P. Ang and B. Farhang-Boroujeny, “A new class of gradient adaptive step-size

LMS algorithms,” IEEE Transactions on Signal Processing, vol. 49, no. 4, April

2001.

154



Bibliography 155

[12] J. Nagumo and A. Noda, “A learning method for system identification,” IEEE

Transactions on Automatic Control, vol. 12, no. 3, pp. 282–287, June 1967.

[13] D. P. Mandic, “A generalized normalized gradient descent algorithm,” IEEE Signal

Processing Letters, vol. 11, no. 2, pp. 115–118, February 2004.

[14] S. C. Douglas, “Generalized gradient adaptive step sizes for stochastic gradient

adaptive filters,” In Proceesings of IEEE International Conference on Acoustics,

Speech, and Signal Processing, vol. 2, pp. 1396–1399, 1995.

[15] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

Transactions of the ASME Journal of Basic Engineering, vol. 82, Series D, pp.

35–45, 1960.

[16] M. S. Grewal and A. P. Andrews, “Applications of Kalman filtering in aerospace

1960 to the present [historical perspectives],” IEEE Control systems, vol. 30, no. 3,

pp. 69–78, June 2010.

[17] S. Schmidt, “Application of state-space methods to navigation problems,” Ad-

vanced Control Systems, vol. 3, pp. 293–340, 1966.

[18] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation,” Pro-

ceedings of IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[19] M. S. Grewal and A. P. Andrews, Kalman filtering: Theory and practice using

MATLAB. Wiley, 2015.

[20] Y. M. Tang and J. A. Borrie, “Missile guidance based on Kalman filter estimation

of target maneuver,” IEEE Transactions on Aerospace and Electronic Systems, vol.

AES-20, no. 6, pp. 736–741, November 1984.

[21] N. F. Palumbo, G. A. Harrison, R. A. Blauwkamp, and J. K. Marquart, “Guid-

ance filter fundamentals,” Johns Hopkins APL Technical Digest, vol. 29, no. 1,

2010.

[22] D. Lautier, A. Javaheri, and A. Galli, “Filtering in finance,” Wilmott Magazine,

no. 5, pp. 67–83, 2003.

[23] A. Sinha, T. Kirubarajan, and Y. Bar-Shalom, “Application of the Kalman-Levy

filter for tracking maneuvering targets,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 43, no. 3, pp. 1099–1107, July 2007.

[24] S. Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Transactions on

Industrial Electronics, vol. 59, no. 11, pp. 4409–4420, November 2012.

[25] T. Y. Al-Naffouri, “An EM-based forward-backward Kalman filter for the estima-

tion of time-variant channels in OFDM,” IEEE Transactions on Signal Processing,

vol. 55, no. 7, pp. 3924–3930, July 2007.



Bibliography 156

[26] S. Liu and Z. Tian, “A Kalman-PDA approach to soft-decision equalization for

frequency-selective MIMO channels,” IEEE Transactions on Signal Processing,

vol. 53, no. 10, pp. 3819–3830, October 2005.

[27] S. Haykin, Ed., Kalman filtering and neural networks. John Wiley & Sons, 2001.

[28] H. Hefies, “The effect of erroneous models on the Kalm filter response,” IEEE

Transactions on Automated Control, vol. AC-11, no. 3, pp. 541–543, July 1966.

[29] R. K. Mehra, “On the identification of variances and adaptive Kalman filtering,”

IEEE Transactions on Automatic Control, vol. 15, no. 2, pp. 175–184, April 1970.

[30] L. W. Nelson and E. Stear, “The simultaneous on-line estimation of parameters

and states in linear systems,” IEEE Transactions on Automatic Control, vol. 21,

no. 1, pp. 94–98, February 1976.

[31] E. A. Wan and A. T. Nelson, “Dual Kalman filtering methods for nonlinear pre-

diction, smoothing and estimation,” in Advances in Neural Information Processing

Systems 9, M. Mozer, M. Jordan, and T. Petsche, Eds. MIT Press, 1997, pp.

793–799.

[32] A. T. Nelson, “Nonlinear estimation and modeling of noisy time series by dual

Kalman filtering methods,” Ph.D. dissertation, Oregon Graduate Institute of Sci-

ence and Technology, 2000.

[33] D. P. Mandic and V. S. L. Goh, Complex valued nonlinear adaptive filters: Non-

circularity, widely linear and neural models. Wielly, 2009.

[34] R. P. Feynmn, R. B. Leighton, and M. Sands, The Feynman lectures on physics.

Basic Books, 2013, vol. 1 and 2, originally published in 1964.

[35] A. C. Phillips, Introduction to quantum mechanics. Wielly, 2003.

[36] R. P. Feynmn, R. B. Leighton, and M. Sands, The Feynman lectures on physics.

Addison-Wesley, 2006, vol. 3, originally published in 1965.

[37] A. B. Carlson, P. B. Crilly, and J. C. Rutledge, Communication systems: An In-

troduction to signals and noise in electrical communications, 4th ed. McGraw-Hill,

2002.

[38] C. A. Desoer and E. H. Kuh, Basic circuit theory. McGraw-Hill, 2009, vol. 2.

[39] B. Widrow, J. McCool, and M. Ball, “The complex LMS algorithm,” Proceedings

of the IEEE, vol. 63, no. 4, pp. 719–720, April 1975.

[40] B. Farhang-Boroujeny, Adaptive filters: Theory and applications. Wiley, 1998.



Bibliography 157

[41] Y. Bar-Ness and F. Haber, “Interference canceler array with reference generat-

ing loop,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-21,

no. 5, pp. 654–662, September 1985.

[42] S. S. Narayan, “Frequency domain least-mean-square algorithm,” Proceedings of

the IEEE, vol. 69, no. 1, pp. 124–126, January 1981.

[43] P. J. Schreier and L. L. Scharf, “Second-order analysis of improper complex ran-

dom vectors and processes,” IEEE Transactions on Signal Processing, vol. 51,

no. 3, pp. 714–725, March 2003.

[44] T. Adali, P. J. Schreier, and L. L. Scharf, “Complex-valued signal processing:

The proper way to deal with impropriety,” IEEE Transactions on Signal Pro-

cessing, vol. 59, no. 11, pp. 5101–5125, November 2011.

[45] S. Javidi, M. Pedzisz, S. L. Goh, and D. P. Mandic, “The augmented complex

least mean square algorithm,” In Proceedings of The 1st IARP Workshop on Cog-

nitive Information Processing, pp. 54–57, 2008.

[46] D. P. Mandic, S. Javidi, V. S. L. Goh, A. Kuh, and K. Aihara, “Complex-valued

prediction of wind profile using augmented complex statistics,” Renewable En-

ergy, vol. 43, no. 1, pp. 196–201, 2007.

[47] D. H. Brandwood, “A complex gradient operator and its application in adaptive

array theory,” IEE Proceedings: Communications, Radar, and Signal Processing,

vol. 130, no. 1, pp. 11–16, February 1983.

[48] W. Wirtinger, “Zur formalen theorie der funktionen von mehr komplexen

veränderlichen,” Mathematische Annalen, vol. 97, pp. 357–375, December 1927,

published in German.

[49] F. D. Neeser and J. L. Massey, “Proper complex random processes with applica-

tions to information theory,” IEEE Transactions on Information Theory, vol. 39,

no. 4, pp. 1293–1302, July 1993.

[50] V. S. L. Goh and D. P. Mandic, “An augmented extended Kalman filter algo-

rithm for complex-valued recurrent neural networks,” In Proceedings of IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp.

V561–V564, May 2006.

[51] D. H. Dini and D. P. Mandic, “Class of widely linear complex Kalman filters,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 5, pp.

775–786, May 2012.

[52] D. H. Dini, D. P. Mandic, and S. J. Julier, “A widely linear complex unscented

Kalman filter,” IEEE Signal Processing Letters, vol. 18, no. 11, pp. 623–626,

November 2011.



Bibliography 158

[53] E. Clarke, Circuit analysis of AC power systems. John Wiley & Sons, 1943.

[54] Y. Xia, S. C. Douglas and D. P. Mandic, “Adaptive frequency estimation in

smart grid applications: Exploiting noncircularity and widely linear adaptive esti-

mators,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 44–54, September

2012.

[55] S. Kanna, S. P . Talebi, and D. P. Mandic, “Diffusion widely linear adaptive esti-

mation of system frequency in distributed power grids,” IEEE International En-

ergy Conference, pp. 772–778, 2014.

[56] Y. Xia and D. P. Mandic, “A widely linear least mean phase algorithm for adap-

tive frequency estimation of unbalanced power systems,” International Journal of

Electrical Power & Energy Systems, vol. 54, pp. 367–375, 2014.

[57] Y. Xia, S. C. Douglas, and D. P. Mandic, “Widely linear adaptive frequency

estimation in three-phase power systems under unbalanced voltage sag conditions,”

In Proceedings of International Joint Conference on Neural Networks, pp. 1700–

1705, July 2011.

[58] D. H. Dini, Y. Xia, S. C. Douglas, and D. P. Mandic, “Widely linear state space

models for frequency estimation in unbalanced three-phase systems,” IEEE Sensor

Array and Multichannel Signal Processing Workshop, pp. 9–12, June 2012.

[59] W. R. Hamilton, Elements of quaternions. Longmans & Co., 1866.

[60] J. B. Kuipers, Quaternions and rotation sequences: A primer with applications to

orbits, aerospace and virtual reality. Princeton University Press, August 2002.

[61] K. W. Spring, “Euler parameters and the use of quaternion algebra in the manip-

ulation of finite rotations: A review,” Mechanism and Machine Theory, vol. 21,

no. 5, pp. 365–373, 1986.

[62] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear attitude esti-

mation methods,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 1,

pp. 12–28, January 2007.

[63] X. Yun, M. Lizarraga, E. R. Bachmann, and R. B. McGhee, “An improved

quaternion-based Kalman filter for real-time tracking of rigid body orientation,”

In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems, vol. 2, pp. 1074–1079, October 2003.

[64] J. Lee and S. Y. Shin, “General construction of time-domain filters for orientation

data,” IEEE Transactions on Visualization and Computer Graphics, vol. 8, no. 2,

pp. 119–128, April 2002.



Bibliography 159

[65] S. J. Sangwine, “Fourier transforms of colour images using quaternion, or hy-

percomplex, numbers,” IEEE Electronic Letters, vol. 32, no. 21, pp. 1979–1980,

October 1996.

[66] S. C. Pei and C. M. Cheng, “Color image processing by using binary quaternion-

moment-preserving thresholding technique,” IEEE Transactions on Image Pro-

cessing, vol. 8, no. 5, pp. 614–628, May 1999.

[67] T. A. Ell and S. J. Sangwine, “Hypercomplex Fourier transforms of color images,”

IEEE Transactions on Image Processing, vol. 16, no. 1, pp. 22–35, January 2007.

[68] S. Miron, N. Le Bihan, and J. I. Mars, “Quaternion-MUSIC for vector-sensor ar-

ray processing,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1218–

1229, April 2006.

[69] D. P. Mandic, C. Jahanchahi, and C. C. Took, “A quaternion gradient operator

and its applications,” IEEE Signal Processing Letters, vol. 18, no. 1, pp. 47–50,

January 2011.

[70] C. C. Took and D. P. Mandic, “A quaternion widely linear adaptive filter,” IEEE

Transactions on Signal Processing, vol. 58, no. 8, pp. 4427–4431, August 2010.

[71] C. C. Took and D. P. Mandic, “Augmented second-order statistics of quaternion

random signals,” Signal Processing, vol. 91, no. 2, pp. 214–224, 2011.

[72] S. Said, N. Le Bihan, and S. J. Sangwine, “Fast complexified quaternion Fourier

transform,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1522–

1531, April 2008.

[73] N. Le Bihan, S. J. Sangwine, and T. A. Ell, “Instantaneous frequency and ampli-

tude of orthocomplex modulated signals based on quaternion fourier transform,”

Signal Processing, vol. 94, pp. 308–318, 2014.

[74] F. A. Tobar and D. P. Mandic, “Quaternion reproducing kernel Hilbert spaces:

Existence and uniqueness conditions,” IEEE Transactions on Information Theory,

vol. 60, no. 9, pp. 5736–5749.

[75] C. C. Took, G. Strbac, K. Aihara, and D. P. Mandic, “Quaternion valued short-

term joint forecasting of three-dimensional wind and atmospheric parameters,”

Renewable Energy, vol. 36, no. 6, pp. 1754–1760, June 2011.

[76] D. H. Dini, C. Jahanchahi, and D. P. Mandic, “Kalman filtering for widely linear

complex and quaternion valued bearings only tracking,” IET Signal Processing,

vol. 6, no. 5, pp. 435–445, July 2012.

[77] J. Via, D. Ramirez, and I. Santamaria, “Properness and widely linear processing

of quaternion random vectors,” IEEE Transactions on Information Theory, vol. 56,

no. 7, pp. 3502–3515, July 2010.



Bibliography 160

[78] J. Via, D. Ramirez, I. Santamaria, and L. Vielva, “Widely and semi-widely linear

processing of quaternion vectors,” In Proceeidngs of IEEE International Confrence

on Acoustics, Speech, and Signal Processing, pp. 3946–3949, March 2010.

[79] C. Jahanchahi, C. C. Took, and D. P. Mandic, “On HR-calculus, quaternion val-

ued stochastic gradient, and adaptive three dimensional wind forecasting,” Inter-

national Joint Conference on Neural Networks, pp. 1–5, July 2010.

[80] E. Kreyszic, H. Kreyszic, and E. J. Norminton, Advanced engineering mathmat-

ics, 10th ed. John Wiley & Sons, 2010.

[81] K. Kreutz–Delgado, The complex gradient operator and the CR-calculus. Univer-

sity of California, San Diego, Technical Report, 2006.

[82] B. icinbono and P. Chevalier, “Widely linear estimation with complex data,” IEEE

Tansactions on Signal Processing, vol. 43, no. 8, pp. 2030–2033, August 1995.

[83] P. O. Amblard, M. Gaeta, and J. L. Lacoume, “Statistics for complex variables

and signals — part I: Variables,” Signal Processing, vol. 53, no. 1, pp. 1–13,

1996.

[84] T. A. Ell and S. J. Sangwine, “Quaternion involutions and anti-involutions,” Com-

puters & Mathematics with Applications, vol. 53, no. 1, pp. 137–143, 2007.

[85] C. Jahanchahi, “Quaternion valued adaptive signal processing,” Ph.D. disserta-

tion, Imperial College London, 2013.

[86] K. Shoemake, “Animating rotation with quaternion curves,” SIGGRAPH Com-

puter Graphics, vol. 19, no. 3, pp. 245–254, July 1985.

[87] C. Jahanchahi and D. P. Mandic, “A class of quaternion Kalman filters,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 25, no. 3, pp. 533–

544, March 2014.

[88] C. C. Took and D. P. Mandic, “The quaternion LMS algorithm for adaptive filter-

ing of hypercomplex processes,” IEEE Transactions on Signal Processing, vol. 57,

no. 4, pp. 1316–1327, April 2009.

[89] D. Choukroun, I. Bar-Itzhack, and Y. Oshman, “Novel quaternion Kalman fil-

ter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 1,

pp. 174–190, January 2006.

[90] J. Marins, X. Yun, E. Bachmann, R. McGhee, and M. Zyda, “An extended

Kalman filter for quaternion-based orientation estimation using MARG sensors,”

In Proceedings of International Conference on Intelligent Robots and Systems,

vol. 4, pp. 2003–2011, 2001.



Bibliography 161

[91] X. Yun and E. R. Bachmann, “Design, implementation, and experimental re-

sults of a quaternion-based Kalman filter for human body motion tracking,” IEEE

Transactions on Robotics, vol. 22, no. 6, pp. 1216–1227, December 2006.

[92] A. M. Sabatini, “Quaternion-based extended Kalman filter for determining ori-

entation by inertial and magnetic sensing,” IEEE Transactions on Biomedical

Engineering, vol. 53, no. 7, pp. 1346–1356, July 2006.

[93] E. Ollila, “On the circularity of a complex random variable,” IEEE Signal Pro-

cessing Letters, vol. 15, pp. 841–844, 2008.

[94] S. Kanna, S. C. Douglas, and D. P. Mandic, “A real time tracker of complex cir-

cularity,” In Proceedings of IEEE Sensor Array and Multichannel Signal Process-

ing Workshop, pp. 129–132, June 2014.

[95] P. O. Amblard, M. Gaeta, and J. L. Lacoume, “Statistics for complex variables

and signals — part II: Signals,” Signal Processing, vol. 53, no. 1, pp. 15–25,

1996.

[96] N. N. Vakhania, “Random vectors with values in the quaternion hilbert spaces,”

Theory of Probability and Its Applications, vol. 43, no. 1, pp. 99–115, 1999.

[97] P. O. Amblard and N. L. Bihan, “On quaternion valued random variables,” In

Proceedings of International Conference on Mathematics in Signal processing, pp.

23–26, 2006.

[98] J. Via, D. P. Palomar, and L. Vielva, “Generalized likelihood ratios for testing the

properness of quaternion Gaussian vectors,” IEEE Transactions on Signal Process-

ing, vol. 59, no. 4, pp. 1356–1370, April 2011.

[99] S. Javidi, C. C. Took, and D. P. Mandic, “Fast independent component analysis

algorithm for quaternion valued signals,” IEEE Transactions on Neural Networks,

vol. 22, no. 12, pp. 1967–1978, December 2011.

[100] C. C. Took, C. Jahanchahi, and D. P. Mandic, “A unifying framework for the

analysis of quaternion valued adaptive filters,” In Proceedings of Forty Fifth Asilo-

mar Conference on Signals, Systems, and Computers, pp. 1771–1774, November

2011.

[101] S. M. Alamouti, “A simple transmit diversity technique for wireless communica-

tions,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp.

1451–1458, October 1998.

[102] J. Via, D. P. Palomar, L. Vielva, and I. Santamaria, “Quaternion ICA from

second-order statistics,” IEEE Transactions on Signal Processing, vol. 59, no. 4,

pp. 1586–1600, April 2011.



Bibliography 162

[103] P. J. Schreier, L. L. Scharf, and A. Hanssen, “A generalized likelihood ratio test

for impropriety of complex signals,” IEEE Signal Processing Letters, vol. 13, pp.

433–436, July 2006.

[104] A. Tarighat and A. H. Sayed, “Least mean-phase adaptive filters with application

to communications systems,” IEEE Signal Processing Letters, vol. 11, no. 2, pp.

220–223, February 2004.

[105] S. C. Douglas and D. P. Mandic, “The least-mean-magnitude-phase algorithm with

applications to communications systems,” In Proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing, pp. 4152–4155, May 2011.

[106] A. Baggini, Handbook of power quality. John Wiley & Sons, 2008.

[107] R. K. Varma, R. M. Mathur, G. J. Rogers, and P. Kundur, “Modeling effects of

system frequency variation in long-term stability studies,” IEEE Transactions on

Power Systems, vol. 11, no. 2, pp. 827–832, May 1996.

[108] M. H. J. Bollen, “Voltage sags in three-phase systems,” IEEE Power Engineering

Review, vol. 21, no. 9, pp. 8–15, September 2001.

[109] S. Chung, “A phase tracking system for three phase utility interface inverters,”

IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 431–438, May 2000.

[110] H. Karimi, M. Karimi-Ghartemani, and M. R. Iravani, “Estimation of frequency

and its rate of change for applications in power systems,” IEEE Transactions on

Power Delivery, vol. 19, no. 2, pp. 472–480, April 2004.

[111] V. V. Terzija, “Improved recursive Newton-type algorithm for frequency and spec-

tra estimation in power systems,” IEEE Transaction on Instrumentation and Mea-

surement, vol. 52, no. 5, pp. 1654–1659, October 2003.

[112] V. V. Terzija, B. N. Djuric, and B. D. Kovacevic, “Voltage phasor and local sys-

tem frequency estimation using Newton type algorithm,” IEEE Transactions on

Power Delivery, vol. 9, no. 3, pp. 1368–1374, July 1994.

[113] A. Abdollahi and F. Matinfar, “Frequency estimation: A least-squares new ap-

proach,” IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 790–798, April

2011.

[114] A. K. Pradhan, A. Routray, and A. Basak, “Power system frequency estimation

using least mean square technique,” IEEE Transactions on Power Delivery, vol. 20,

no. 3, pp. 1812–1816, July 2005.

[115] T. Lobos and J. Rezmer, “Real-time determination of power system frequency,”

IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 4, pp. 877–

881, August 1997.



Bibliography 163

[116] M. Mojiri, D. Yazdani, and A. Bakhshai, “Robust adaptive frequency estimation

of three-phase power systems,” IEEE Transactions on Instrumentation and Mea-

surement, vol. 59, no. 7, pp. 1793–1802, July 2010.

[117] P. K. Dash, R. K. Jena, G. Panda, and A. Routray, “An extended complex

Kalman filter for frequency measurement of distorted signals,” IEEE Transac-

tions on Instrumentation and Measurement, vol. 49, no. 4, pp. 746–753, August

2000.

[118] A. Routray, A. K. Pradhan, K. P. Rao, “A novel Kalman filter for frequency esti-

mation of distorted signals in power systems,” IEEE Transactions on Instrumen-

tation and Measurement, vol. 51, no. 3, pp. 469–479, June 2002.

[119] P. K. Dash, A. K. Pradhan, and G. Panda, “Frequency estimation of distorted

power system signals using extended complex Kalman filter,” IEEE Transactions

on Power Delivery, vol. 14, no. 3, pp. 761–766, July 1999.

[120] H. S. Song and K. Nam, “Instantaneous phase-angle estimation algorithm under

unbalanced voltage-sag conditions,” IEE Proceedings - Generation,Transmission

and Distribution, vol. 147, no. 6, pp. 409–415, November 2000.

[121] Y. Xia and D. P. Mandic, “Widely linear adaptive frequency estimation of unbal-

anced three-phase power systems,” IEEE Transactions on Instrumentation and

Measurement, vol. 61, no. 1, pp. 74–83, Jan 2012.

[122] D. H. Dini and D. P. Mandic, “Widely linear modeling for frequency estimation in

unbalanced three-phase power systems,” IEEE Transactions on Instrumentation

and Measurement, vol. 62, no. 2, pp. 353–363, February 2013.

[123] J. Arrillaga and N. R. Watson, Power system harmonics, 2nd ed. Wiley, 2003.

[124] R. Olfati-Saber, “Distributed tracking for mobile sensor networks with

information-driven mobility,” In Proceeding of The American Control Conference,

pp. 4604–4612, July 2007.

[125] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with

switching topology and time-delays,” IEEE Transactions on Automatic Control,

vol. 49, no. 9, pp. 1520–1533, September 2004.

[126] E. Franco, R. Olfati-Saber, T. Parisini, and M. M. Polycarpou, “Distributed

fault diagnosis using sensor networks and consensus-based filters,” In Proceedings

of IEEE Conference on Decision & Control, pp. 386–391, December 2006.

[127] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and the-

ory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, March

2006.



Bibliography 164

[128] R. Olfati-Saber and P. Jalalkamali, “Coupled distributed estimation and control

for mobile sensor networks,” IEEE Transactions on Automatic Control, vol. 57,

no. 10, pp. 2609–2614, Oct 2012.

[129] F. Cattivelli and A. H. Sayed, “Distributed nonlinear Kalman filtering with appli-

cations to wireless localization,” In Proceeding of IEEE International Conference

on Acoustics, Speech, and Signal Processing, pp. 3522–3525, March 2010.

[130] F. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed Kalman filter-

ing and smoothing,” IEEE Transactions on Automatic Control, vol. 55, no. 9, pp.

2069–2084, September 2010.

[131] A. H. Sayed, “Adaptation, learning, and optimization over networks,” Foundations

and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–801, 2014.

[132] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed esti-

mation,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1035–1048,

March 2010.

[133] C. Jianshu and A. H. Sayed, “Diffusion adaptation strategies for distributed op-

timization and learning over networks,” IEEE Transactions on Signal Processing,

vol. 60, no. 8, pp. 4289–4305, August 2012.

[134] P. Braca, P. Willett, K. Le Page, S. Marano, and V. Matta, “Bayesian tracking

in underwater wireless sensor networks with port-starboard ambiguity,” vol. 62,

no. 7, pp. 1864–1878, April 2014.

[135] T Kailath, A. H. Sayed, and B. Hassibi, Linear estimation. Prentice Hall, 2000.

[136] X. Shen, H. Zhang, Y. Xu, and S. Meng, “Observation of alpha-stable noise in the

laser gyroscope data,” IEEE Sensors Journal, vol. 16, no. 7, pp. 1998–2003, April

2016.

[137] M. Shao and C. L. Nikias, “Signal processing with fractional lower order mo-

ments: Stable processes and their applications,” In Proceedings of The IEEE,

vol. 81, no. 7, pp. 986–1010, 1993.

[138] G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random processes:

Stochastic models with infinite variance. Chapman & Hall, 1994.

[139] V. V. Uchaikin and V. M. Zolotarev, Chance and stability: Stable distributions

and their applications. Walter de Gruyter, 1999.

[140] J. S. Bodenschatz, “Symmetric alpha-stable filter theory,” In Proceedings of IEEE

International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp.

1945–1948, 1997.



Bibliography 165

[141] J. P. Nolan and D Ojeda-Revah, “Linear and nonlinear regression with stable er-

rors,” Journal of Econometrics, vol. 172, no. 2, pp. 186–194, February 2013.

[142] G. Aydin, O. Arika, and A. E. Cetin, “Robust adaptive filtering algorithms for α-

stable random processes,” IEEE Transactions on Circuits and Systems II: Analog

and Digital Signal Processing.

[143] O. Arikan, A. E. Cetin, and E. Erzin, “Adaptive filtering for non-gaussian stable

processes,” IEEE Signal Processing Letters, vol. 1, no. 11, pp. 163–165, November

1994.

[144] E. Masry, “Alpha-stable signals and adaptive filtering,” IEEE Transactions on

Signal Processing, vol. 48, no. 11, pp. 3011–3016, November 2000.

[145] R. Sharma, W. A. Sethares, and J. A. Bucklew, “Asymptotic analysis of stochas-

tic gradient-based adaptive filtering algorithms with general cost functions,” IEEE

Transactions on Signal Processing, vol. 44, p. 2186–2194, 1996.

[146] I. A. Koutrouvelis, “An iterative procedure for the estimation of the parameters

of stable laws,” Communications in Statistics: Simulation and Computation, vol.

IO, no. 1, pp. 17–28, 1981.

[147] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman filter: Particle

filters for tracking applications. Artech House, 2004.

[148] D. H. Dini, P. M. Djuric, and D. P. Mandic, “The augmented complex particle fil-

ter,” IEEE Transactions on Signal Processing, vol. 61, no. 17, pp. 4341–4346,

September 2013.

[149] A. Papoulis, Probability, random variables, and stochastic processes, 3rd ed.

McGraw-Hill, 1991.



Appendix A

Proof of Equation 3.13

Given a quaternion-valued zero-mean Gaussian random variable q = qr+ iqi+ jqj +kqk;

then, Rqqi∗ can be expressed as

Rqqi∗ = E[qqi∗] =E[qrqr] + E[qiqi]− E[qjqj ]− E[qkqk]

+ 2j (E[qrqj ]− E[qiqk]) + 2k (E[qrqk] + E[qjqi])

=Cqr + Cqi − Cqj − Cqk

+ 2j
(
Rqrqj −Rqiqk

)
+ 2k

(
Rqrqk +Rqjqi

)
.

(A.1)

Moreover, from the expression in (A.1) we have

|Rqqi∗ |2 =C2
qr + C2

qi + C2
qj + C2

qk
+ 2CqrCqi + 2CqjCqk

− 2CqrCqj − 2CqrCqk − 2CqkCqj − 2CqiCqk

+ 4R2
qrqj + 4R2

qiqk
− 8RqrqjRqiqk

+ 4R2
qrqk

+ 4R2
qiqj + 8RqrqkRqiqk .

(A.2)

Furthermore, the expression for |Rqqj∗ |2 and |Rqqk∗ |2 can be formulated in an analogous

manner as
|Rqqj∗ |2 =C2

qr + C2
qi + C2

qj + C2
qk

− 2CqrCqi + 2CqrCqj

− 2CqrCqk − 2CqiCqj + 2CqiCqk − 2CqjCqk

+ 4R2
qrqi + 4R2

qjqk
+ 8RqrqiRqjqk

+ 4R2
qrqk

+ 4R2
qiqj − 8RqrqkRqiqj

(A.3)

|Rqqk∗ |2 =C2
qr + C2

qi + C2
qj + C2

qk
− 2CqrCqi − 2CqrCqj

+ 2CqrCqk + 2CqiCqj − 2CqiCqk − 2CqjCqk

+ 4R2
qrqi + 4R2

qkqj
− 8RqrqiRqkqj

+ 4R2
qrqk

+ 4R2
qrqj + 8RqiqkRqrqj .

(A.4)
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In addition, taking into account that Cq = E[qq∗] = Cqr + Cqi + Cqj + Cqk , we have

|Cq|2 =
(
C2
qr + C2

qi + C2
qj + C2

qk

)
+ 2
(
CqrCqi + CqrCqj + CqrCqk + CqiCqj + CqjCqk

)
.

(A.5)

On the other hand E
[
|qq∗|2

]
= E

[∣∣∣q2r + q2i + q2j + q2k

∣∣∣2], which after some tedious

mathematical manipulations can be simplified to give

E
[
|qq∗|2

]
=3
(
C2
qr + C2

qi + C2
qj + C2

qk

)
+ 4
(
R2

qrqi +R2
qrqj +R2

qrqk
+R2

qiqj +R2
qjqk

)
− 2
(
CqrCqi + CqrCqj + CqrCqk + CqiCqj + CqjCqk

)
.

(A.6)

Now from comparing the expressions in (A.2), (A.3), (A.4), and (A.5) with the expression

in(A.6) it becomes clear that

E
[
|qq∗|2

]
=

3|Cq|2 + |Rqqi |2 + |Rqqj |2 + |Rqqk |2
2

=
C2
qn

2

(
3 + |ρi|2 + |ρj |2 + |ρk|2

)
.



Appendix B

Implementation of the

Quaternion Hilbert Transform

A general ellipse in the i-j plane is given by

qn = iAcos (2πfΔTn+ φ1) + jBsin (2πfΔTn+ φ2)

where {A,B} ∈ R are arbitrary amplitudes and {φ1, φ2} ∈ [0, 2π) are arbitrary phases.

The Hilbert transform of qn with respect to the imaginary unit k is given by

Hk(qn) = iAksin (2πfΔTn+ ϕ1)− jBkcos (2πfΔTn+ ϕ2) .

Using simple mathematical manipulations the following signal is constructed

Sn = qn +Hk(qn) =
(
iAekϕ1 − jBekϕ2

)
ek2πfΔTn.

It can be shown that
Sn+1

Sn
= ek2πfΔT . (B.1)

The proof for the case of Hilbert transforms with respect to i and j-axis follows similarly.

Notice that it was assumed that the amplitude of Sn does not change significantly over

one time interval; thus, in (B.1) Sn and Sn+1 can be normalized. For the purpose of

simulations, the Hilbert transform was implemented using a finite impulse response filter

with 30 taps.
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Appendix C

Deterministic Relation Between

Voltage Phasors and the State

Space Elements of the QFE

Without loss of generality phase “a” is selected as the reference for the phasor angles,

i.e. it was assumed that φa,n = 0, which yields

ΛI,n = iVa,n + jVb,ncos(φb,n +
4π

3
) + kVc,ncos(φc,n +

4π

3
)

ΛQ,n = jVb,nsin(φb,n +
2π

3
) + kVc,nsin(φc,n +

4π

3
).

(C.1)

From the expression in (C.1), notice that multiplying qn by va,n gives

qnva,n =
1

2
ΛI,nVa,n +

1

2
ΛI,nVa,ncos(4πfΔTn)− 1

2
ΛQ,nVa,nsin(4πfΔTn). (C.2)

Thus, ΛI,nVa,n can be calculated by passing qnva,n, as expressed in (C.2), through a low

pass filter (LPF) which can be expressed as

2qnva,n → LPF → κn = ΛI,nVa,n

It was assumed that φa,n = 0; therefore, it follows that

ΛI,n =
κn√−i�i(κn)

· (C.3)

Taking into account the expression in (6.9) and applying tedious mathematical ma-

nipulations it can be shown that

q+n =(
ΛI,n

2
− ΛQ,n

2ζ

)
e(ζ2πfΔTn) and q−n =

(ΛI,n

2
+

ΛQ,n

2ζ

)
e−(ζ2πfΔTn). (C.4)
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From the expressions in (C.4) we have

|q+n |2 − |q−n |2 = |ΛI,n||ΛQ,n|�(λI,nλQ,nζ)

where λI,n = ΛI,n/|ΛI,n| and λQ,n = ΛQ,n/|ΛQ,n|. Considering that ζ in normal to λI,n

and λQ,n yields

λI,nλQ,nζ = (λI,n · λQ,n)ζ︸ ︷︷ ︸
pure quaternion

− (λI,n × λQ,n)ζ︸ ︷︷ ︸
sin(φI,Q)

where φI,Q is the angle between ΛI,n and ΛQ,n; therefore,

|q+n |2 − |q−n |2 = −|ΛI,n||ΛQ,n|sin(φI,Q). (C.5)

Furthermore, using analytical geometry it can be show that

ΛI,n × ΛQ,n =− |ΛI,n||ΛQ,n|sin(φI,Q)ζ

=iVb,nVc,nsin(
2π

3
+ φc,n − φb,n)

− jVa,nVc,nsin(
4π

3
+ φc,n)

+ kVa,nVb,nsin(
2π

3
− φb,n)

(C.6)

and therefore replacing (C.5) into (C.6) yields

ΛQ,n =i�k

((|q+n |2 − |q−n |2
)
ζ

)(
1√−i�i(κn)

)

− i�j

((|q+n |2 − |q−n |2)ζ
)(

1√−i�i(κn)

) (C.7)

where ζ can be obtained through �(ϕn)/|�(ϕn)|.



Appendix D

The Relation Between the PDF

and Circularity

Although the approach based on the AQCF presented in Section 8.3.4 is general, as

the AQCF is guaranteed to exist for all quaternion-valued random variables and the

AQCF of SαS random variables confined to the format given in Section 8.4, for the sake

completeness, akin to approaches to symmetricity in R [149], the relation between the

pdf of quaternion-valued random variables and circularity is investigated in the sequel.

Consider a quaternion-valued random vector, Q , with i.i.d components, the pdf of

which exits and can be expressed as

PQa(qa) = PQr
(qr)PQi

(qi)PQj
(qj)PQk

(qk) = f(l)

where l is given by

l =
√

qT
r Grqr + qT

i Giqi + qT
j Gjqj + qT

kGkqk (D.1)

and f(·) : R → R. Making the assumption that f(·) and PQr
are differentiable yields

∂f(l)

∂qr
=

∂f(l)

∂l

∂l

∂qr
=

∂PQr
(qr)

∂qr
PQi

(qi)PQj
(qj)PQk

(qk). (D.2)

Through straightforward mathematical manipulations the expression in (D.2) gives

∂f(l)

∂l

Grqr

l
=

∂PQr
(qr)

∂qr
PQi

(qi)PQj
(qj)PQk

(qk). (D.3)

Now, making the assumption that G is positive definite and dividing both sides of the

expression in (D.3) by f(l) yields

∂f(l)

∂l

1

lf(l)
=

qT
r

qT
r Grqr

∂PQr
(qr)

∂qr
· (D.4)
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Note that the right hand side of the equation in (D.4) is only dependent on qr whereas

its left hand side is dependent on l, a function of {qr, qi, qj , qk}; therefore, the right

hand side of the equation in (D.4) must be a constant resulting in

∂f(l)

∂l

1

f(l)
=

∂ln (f(l))

∂l
=

(
qT
r

qT
r Grqr

∂PQr(qr)

∂qr

)
︸ ︷︷ ︸

γ

l (D.5)

where solving the differential equation in (D.5) gives

f(d) = ae
γ
2
l2 (D.6)

with a ∈ R
+ selected such that ∫

Da
Q

PQa(qa)dqa = 1 (D.7)

where DQa is the entire domain of Q , in order to grantee that the expression in (D.6) is

a pdf. Substituting (D.1) into (D.6), using the transform in (2.8), and selecting a such

that the condition in (D.7) is satisfied yields

f(d) =
e

−1
2
qaHGqa

(π2/4)N
√

det(G) (D.8)

where G is a 4N × 4N block diagonal matrix given by

G =

⎡
⎢⎢⎢⎢⎣
G 0 0 0

0 G 0 0

0 0 G 0

0 0 0 G

⎤
⎥⎥⎥⎥⎦ where G =

1

γ

(
G−1

r +G−1
i +G−1

j +G−1
k

)−1
.

Note that the distribution in (D.8) is a Gaussian distribution with augmented covariance

matrix G−1. In addition, if Gr = Gi = Gj = Gk = ϑI, where ϑ ∈ R
+, in the

expression in (D.8), f(d) will simplify into a circular Gaussian distribution. Therefore,

if the components of Q are i.i.d, the resulting distribution is circular if and only if

the real-valued components of Q are Gaussian random vectors with the same diagonal

covariance matrices.


