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Abstract

Low-frequency oscillatory activity has been the target of extensive research both in cortical

structures and in the basal ganglia (BG), due to numerous reports of associations with brain

disorders and the normal functioning of the brain. Additionally, a plethora of evidence and

theoretical work indicates that the BG might be the locus where con�icts between prospective

actions are being resolved. Whereas a number of computational models of the BG investigate

these phenomena, these models tend to focus on intrinsic oscillatory mechanisms, neglecting

evidence that points to the cortex as the origin of this oscillatory behaviour.

In this thesis, we construct a detailed neural model of the complete BG circuit based on �ne-

tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity

between structures. To do so, we build a complete suite of computational tools for the design,

optimization and simulation of spiking neural networks. Our model successfully reproduces �ring

and oscillatory behaviour found in both the healthy and Parkinsonian BG, and it was used to

make a number of biologically-plausible predictions.

First, we investigate the in�uence of various cortical frequency bands on the intrinsic e�ective

connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. We

found that, indeed, e�ective connectivity changes dramatically for di�erent cortical frequency

bands and phase o�sets, which are able to modulate (or even block) information �ow in the three

major BG pathways. Our results indicate the existence of a multimodal gating mechanism at

the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence

for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity.

Next, we explore the relationship of wave properties of entrained cortical inputs, dopamine and

the transient e�ectiveness of the BG, when viewed as an action selection device. We found that

cortical frequency, phase, dopamine and the examined time scale, all have a very important

impact on the ability of our model to select. Our simulations resulted in a canonical pro�le

of selectivity, which we termed selectivity portraits. Taking together, our results suggest that

the cortex is the structure that determines whether action selection will be performed and what

strategy will be utilized while the role of the BG is to perform this selection. Some frequency

ranges promote the exploitation of actions of whom the outcome is known, others promote

the exploration of new actions with high uncertainty while the remaining frequencies simply

deactivate selection.

Based on this behaviour, we propose a metaphor according to which, the basal ganglia can be

viewed as the �gearbox" of the cortex. Coalitions of rhythmic cortical areas are able to switch
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between a repertoire of available BG modes which, in turn, change the course of information

�ow back to and within the cortex. In the same context, dopamine can be likened to the �control

pedals" of action selection that either stop or initiate a decision. Finally, the frequency of active

cortical areas that project to the BG acts as a gear lever, that instead of controlling the type

and direction of thrust that the throttle provides to an automobile, it dictates the extent to

which dopamine can trigger a decision, as well as what type of decision this will be.

Finally, we identify a selection cycle with a period of around 200 ms, which was used to assess the

biological plausibility of the most popular architectures in cognitive science. Using extensions of

the BG model, we further propose novel mechanisms that provide explanations for (1) the two

distinctive dynamical behaviours of neurons in globus pallidus external, and (2) the generation

of resting tremor in Parkinson's disease.

Our �ndings agree well with experimental observations, suggest new insights into the patho-

physiology of speci�c BG disorders, provide new justi�cations for oscillatory phenomena related

to decision making and rea�rm the role of the BG as the selection centre of the brain.
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1 Introduction

�This is your last chance. After this, there is no turning back. You take the blue

pill-the story ends, you wake up in your bed and believe whatever you want to believe.

You take the red pill�you stay in Wonderland, and I show you how deep the rabbit

hole goes. Remember: all I'm o�ering is the truth. Nothing more.�

� Morpheus, The Matrix

Action can be conceived as the relationship between brain-driven motor variables and their

sensory consequences, which re�ect the perceived impact of selected control policies on world

dynamics. Biological organisms employ actions in their e�ort to survive in their surrounding en-

vironments while maximizing rewards under conditions of uncertainty and incomplete knowledge

about the world. Decision making constitutes an essential skill that supports this competence,

which is realized in a wide spectrum of contexts ranging from re�exive sensory driven activities

(e.g. simple hand-reaching movements) to cognitively driven complex activities (e.g. learning

how to ride a bicycle).

The ability to make decisions regarding what to do next is a fundamental cognitive feature

and arguably one of the most substantial driving forces underlying the evolution of intelligence,

which is often treated by contemporary views as a closed-loop relationship between perception

and action.

But how is this mechanism of action selection realized in the brain? A plethora of evidence

and theoretical work indicates that the basal ganglia (BG) might be a key locus where con�icts

between prospective actions are resolved. However, a full understanding of the role of this struc-

ture in the behavioural, computational and neurobiological aspects of action selection remains,

to date, an open challenge.

1.1 An introduction to biological action selection

1.1.1 Behaviour

In cognitive psychology, the topic of action selection is mainly studied via the measurement of

reaction times (RT). The initial contributions in this study come from astronomers in the early

19th century, who tried to measure the individual di�erences in human errors when recording

the time that it took for a star to cross a particular distance (Woodworth and Schlosberg 1954;

15
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Jensen 2006). They termed this unique pattern the personal equation, whose parameters were

measured via devices called chronographs.

In recent years, a variety of experimental choice tasks have been introduced in the �eld of mental

chronometry, to study how well humans and animals select actions (Healy and Proctor 2003). In

these tasks, RT are divided into various categories including simple RT, where the participant

simply responds to a particular stimulus, choice RT, where tasks require unique responses for

every stimulus class and Go/No-Go RT, where tasks require a response to a particular stimulus

and response inhibition to others.

Another explicit measure of the e�ectiveness of action selection is the percentage of error choices

in a series of tasks. Although there is a strong variation between tasks, the accuracy in responses

is inherently linked to the time that was spent before selection (Wickelgren 1977). A person can

choose to be more prone to errors and respond rapidly, or improve their accuracy at the expense

of speed. This trade-o� between these two qualities has been studied extensively and was used

to assess optimality of decision making (Bogacz et al. 2006).

Furthermore, in the process of understanding how natural organisms select actions, a need to sep-

arate simple re�exes, object-oriented (stimulus driven) and voluntary actions emerged. Whereas

the last two types require some kind of action selection, only the last is largely dependent on

individual development and can be associated with the subjective experiences of `agency' and

`intention' (Haggard 2005, 2008).

Finally, voluntary action selection also di�ers with respect to the tactic that is employed. The

most prominent antithesis stems from the dilemma of selecting the action with the most predicted

outcome, over the exploration of an alternative, less-safe choice. From what we know, there is

no optimal solution to the problem of exploration versus exploitation that can be applied in

all domains. Nevertheless, the fast manipulation of the trade-o� between these two extremes is

critical for behavioural �exibility in dynamic environments (Cohen et al. 2007).

1.1.2 Anatomy

In mammalian brains, nearly all information signals that represent actions converge on the

primary motor cortex (M1), which is directly connected to muscles via the spinal cord (Haggard

2008). An exception to this rule are simple re�exes that are often purely spinal. Inputs to M1

can be broken down into two major pathways, depicted in Fig. 1.1. The �rst concerns signals

that originate directly from the sensory cortex and involves only neighbouring cortical areas.

Through this pathway, simple stimulus-driven actions can be quickly relayed to M1 without

signi�cant processing.
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Figure 1.1: Brain circuits for voluntary and stimulus-driven actions a: The two main pathways that lead
to the activation of the primary motor cortex (M1). In the top left panel, one key input reaches M1
from the supplementary motor area (SMA) and the preSMA, which in turn receives inputs from the
basal ganglia and the prefrontal cortex. In a second cortical network (right panel), information from
early sensory cortices (S1) is relayed to intermediate-level representations in the parietal cortex,
and from there to the lateral part of the premotor cortex, which projects in turn to M1. This
parietal�premotor circuit guides object-oriented actions, such as grasping, using current sensory
input, but also contributes to some aspects of 'voluntary' behaviour. b: Brain activity preceding
a voluntary action of the right hand. The frontopolar cortex (green) forms and deliberates long-
range plans and intentions. The pre-supplementary motor area (red) begins the preparation of
the action; together with other premotor areas, it generates the readiness potentials (red trace)
and immediately before the action takes place, M1 (blue) becomes active. Finally, neural signals
leave M1 for the spinal cord and the contralateral hand muscles. Figure and caption adopted from
Haggard 2008, with permission.
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On the other hand, a second pathway involves a wider range of structures including midbrain

areas, prefrontal areas of the cortex and the pre-supplementary motor area (preSMA). This

network is employed when a voluntary action is under consideration and plays a major role in

�binding intention and action" (Haggard 2008). Thus, this is the network that features heavily

in this thesis.

A key region of this pathway comprises a group of subcortical nuclei called the basal ganglia

(BG). These highly interconnected structures show remarkable similarities, both anatomically

and functionally, across vertebrate nervous systems (Stephenson-Jones et al. 2011). Both their

physical location and their broad bidirectional connectivity with major cortical areas, the limbic

system and the thalamus, place the BG in a key position to modulate the information �ow

between the cortex and the body. In addition, their strictly topographic organization on di�erent

scales suggests that through the BG, common modulatory operations are applied to functionally

di�erent channels of information �ow.

The above features have led to the widely held hypothesis that the BG constitute a critical

component for the action selection system of the vertebrate brain (Redgrave et al. 1999), a view

that has recently gained strong support from experimental studies (Jin et al. 2014; Friend and

Kravitz 2014).

1.1.3 Computational models

Numerous computational approaches have been proposed that try to capture various aspects

of biological action selection, a number of which are mentioned above. In statistics and game

theory, models tend to be abstract decision making techniques, at the algorithmic level, that aim

at optimal performance and social interactions. For comparison of the optimality of biologically-

inspired decision making algorithms see Bogacz et al. 2006 and for a wide range of natural action

selection models see Seth et al. 2011.

Within the context of cognitive psychology and computational neuroscience, the emphasis is

often given to less abstract implementations that can be used to explore aspects of physiology

and cognition, including models of neural circuits. Although simple selection mechanisms can

be realized using only a very small number of neural units, scaling these systems up to the size

required for a realistic number of cognitive streams of information has proved to be surpris-

ingly challenging. Gurney et al. 2001 argued that the scaling up problem can be solved by a

combination of a feedforward selection pathway and a control pathway, both of which can be

mapped to the exact internal circuit of the BG. Finally, Bogacz and Gurney 2007 showed that

this circuit implements an asymptotically optimal decision mechanism which outperforms other
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psychophysical approaches.

Basal ganglia models

Because of the aforementioned features of the BG, the last decade has seen a great deal of

interest in producing mathematical models that capture the dynamics of their circuitry. In a

review article, Frank 2011 begins the introduction by mentioning that �a Google Scholar search

for articles mentioning both `computational model' and `basal ganglia' yields 2960 matches in

the last twenty years, with 2550 of them appearing in the last decade alone, comprising more

than a ten-fold increase.� Indeed, this trend has continued since 2011 as shown in Fig. 1.2 with

more than 1400 articles being published just during 2014.

2000 2002 2004 2006 2008 2010 2012 2014

0

200

400

600

800

1000

1200

1400

1600

1800

“computational model”+“basal ganglia”

“basal ganglia”+“action selection”

N
u
m

b
e
r 

o
f 

re
s
u
lt

s
 i
n

 g
o
o
g
le

 s
c
h
o
la

r

Year

Figure 1.2: Studies with computational models of the BG. Number of results in a scholar.google.com

search per year.

In addition, the same trend can be found in both theoretical and experimental studies that relate

the BG with action selection. This is not surprising since the vast majority of computational

studies of the BG aim to provide new insights in this direction. Due to this enormous number

of models, naming all important contributions is impossible. Hence, this section is restricted to

studies that played a major role in the development of the current thesis, either because of their

novelty or relevance to the current approach.

In the former category, initial mathematical models of the BG that are based on the distinction

of competing signals include Barto 1995; Beiser et al. 1997. Most prominently, Gurney et al. 2001

developed the �rst mathematical model which is based on the action selection hypothesis. This

model was later used as the starting point for a complete implementation of the BG circuitry

in Humphries et al. 2006 based on equations of spiking neurons. Finally, Bogacz and Gurney

2007 developed an algorithmic model that maps the BG anatomy to a sequential hypothesis test
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which achieves optimal decision time, thus providing the �rst theoretical framework to explore

the relationship between the BG and action selection.

The second category of BG models comprises neural approaches that have in�uenced the current

thesis. The computational work of Gurney et al. 2001 was also used in Stewart et al. 2010, where

the equations that represent each BG nucleus were directly mapped to spiking neurons through

the neural engineering framework (Eliasmith and Anderson 2004). This model was then used

to produce results regarding the neural correlates of cognitive cycles and to complete a fully

working neural cognitive architecture.

In addition, more biologically plausible neural systems have been also proposed including studies

that focus on decision making (Bahuguna et al. 2015), the e�ects of of synaptic plasticity (Lindahl

et al. 2013), the anatomy of particular BG nuclei (Humphries et al. 2009) or the dynamics of

the complete loop that involves the thalamus and the cortex (Tomkins et al. 2013). For a full

review of other computational approaches see Helie et al. 2013; Schroll and Hamker 2013.

1.2 The unexplained relevance of oscillatory activity

Neural oscillations are ubiquitous in the brain and one of its most widely-studied phenomena

(Buzsaki 2006). In the mammalian cortex, oscillations in low-frequency ranges (< 100 Hz) have

been associated with numerous cognitive and motor functions, that range from feature bind-

ing (Eckhorn et al. 1988) and mental simulation (Brinkman et al. 2014) to movement prepa-

ration and execution (Leventhal et al. 2012). This activity has provided a fruitful framework

to study neural computation which has given rise to theories on the control of communication

between regions (Fries 2005, 2009) as well as memory formation and retrieval (Hanslmayr et al.

2012).

Additionally, low-frequency brain oscillations have been widely implicated in the process of de-

cision making (Zhang et al. 2008; Siegel et al. 2011; Brinkman et al. 2014). Cortical rhythms

mediate the processing of new information (Fries 2009), the dynamic formation of neural ensem-

bles that represent di�erent actions and the suppression of other task-irrelevant regions (Siegel

et al. 2009; Buschman et al. 2012). They are also found to encode uncertainty and in�uence the

exploration-exploitation trade-o� (Cavanagh et al. 2011).

Apart from the cortex, rhythmic activity is also a prominent feature of sub-cortical structures

such as the BG (Brittain and Brown 2014). Interestingly, experimental and theoretical studies

have provided evidence suggesting that cortical oscillations in the same low-frequency bands that

are related to decision making drive activity in the striatum and subthalamic nucleus (STN), the
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input structures of the BG (Tseng et al. 2001; Mahon et al. 2006; Litvak et al. 2011; Kim and

Kita 2013). Furthermore, it has been shown that those signals are not simply relayed through

the BG pathways but they are rather subjected to a form of internal processing, depending on

their initial frequency (Brittain and Brown 2014).

However, most of the knowledge that has been acquired so far does not come from studies on

healthy humans, due to the inability of even the most current non-invasive recording techniques

to reach sub-cortical structures. Instead, most studies are con�ned either to animal models or

human patients undergoing deep brain stimulation (DBS), a common surgical treatment of BG

diseases, which provides the opportunity to record the spiking activity of multiple structures

simultaneously.

For this reason, and due to substantial modelling challenges, oscillations are largely neglected

in current cognitive models, even in large-scale computational approaches with spiking neurons

(Eliasmith et al. 2012), despite the aforementioned evidence of their importance.

Pathological implications

Low-frequency spontaneous activity in the BG is enhanced in neurodegenerative disorders that

a�ect this region, including Parkinson's (PD) and Huntington's (HD) disease. These disorders

are often accompanied by devastating motor symptoms, such as rigidity and tremor, as well

as cognitive symptoms including impairments in decision making (Euteneuer et al. 2009) and

episodic memory loss (Montoya et al. 2006) among others.

It has been shown that DBS can stop some of these symptoms and partly restore motor and

cognitive function (Little et al. 2013; Nagel et al. 2015). In fact, these bene�ts are correlated

with the reduction of abnormal oscillatory activity brought about by DBS when applied to the

underlying brain structure (Kühn et al. 2006; Little and Brown 2014).

This e�ect, alongside the aspects of action selection discussed above, give rise to a number of

questions. First, to what extend do the oscillatory e�ects of PD and DBS in�uence BG function?

Second, is this activity generated within the BG circuit itself or is it driven by cortical regions?

Finally, are Parkinsonian tremor and rigidity directly associated with action selection at the

motor level?
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1.3 Objectives

The central aim of this work is to narrow the gap between studies with genuine interest in action

selection, the BG and cortical oscillations, relying solely on computational methods and available

data from the literature, without the need for new animal experimentation. Our approach centres

on the construction of a bottom-up model of the complete BG circuit, based on physiological

studies which can provide the means for a direct comparison with existing behavioural data.

Recently, a number of computational tools have been proposed that allow the simulation of

large-scale networks of biologically plausible spiking neurons in a feasible time scale (Fidjeland

and Shanahan 2010; Brette and Goodman 2012). The employment of these tools ful�ls the

needs of the current approach since it enables the simulation of multiple BG parallel loops in

full scale.

The next objective of this work is the investigation of whether this resulting neural model can

provide new insights into the rhythmic-based BG pathology and, in particular, into the questions

posed in the previous section.

Finally, our last objective is to release a user-friendly implementation of this novel framework and

thus create a computational platform that other scientists can use to investigate the dynamical

behaviour of the BG.

1.4 Achievements and structure of thesis

All aims described in section 1.3 were achieved within the context of this thesis. The remaining

chapters provide a full description of this work, in the form of individual sub-projects and they

are presented in chronological order. A brief overview of these results, following the structure

of the thesis, is as follows.

Chapter 2 describes the overall methodology that is used in the rest of the thesis. Initially we

developed Brain Studio, a spiking neural network editor and simulator that was designed to be

general enough to cover the complete range of simulation needs of the current thesis. Then, we

designed a novel technique to optimize biological realistic neuron models to behave like real cells

in speci�c brain regions.

Using these tools, in Chapter 3, we built a new large-scale neural model of the BG circuit. This

model was employed in Chapter 4, where we investigate the dynamical behaviour of the BG for

di�erent oscillatory inputs, and we demonstrate their internal e�ective connectivity.
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Based on the same analysis, in Chapter 5 we observed a common phenomenon in the Globus

Pallidus neurons that emerged from our model, although it was not considered in the design

phase, and we investigated its consistency with real data. Using both the above BG model,

as well as a more detailed simulation of these particular neurons, we identi�ed a biologically

plausible mechanism that might cause this e�ect in their biological counterparts.

Having established the desired level of biological plausibility in our simulations, chapter Chap-

ter 6 is focused on behavioural results. In particular, we investigated the e�ectiveness of this

circuit in selecting between salient signals and we report a number of predictions that arose from

our simulations. Most notably, we present a novel hypothesis that views the BG as the �gearbox�

of the cortex, a mechanism that provides various modes of signal selection on demand, and the

existence of a selection cycle that re-evaluates the plausibility of current cognitive architectures.

Furthermore, based on the analysis in chapters 4 and 6, we identi�ed two potential mechanisms

for the generation of Parkinsonian tremor which are brie�y presented in Chapter 7. Finally, in

Chapter 8 we provide a more extensive summary of our �ndings as well as an overview of future

directions for this research.

Relevant publications

Papers that have been already published:

� Z. Fountas, M. Shanahan, �GPU-based Fast Parameter Optimization for Phenomenolog-

ical Spiking Neural Models", IEEE International Joint Conference on Neural Networks

(IJCNN), Killarney, Ireland, 2015

� Z. Fountas, M. Shanahan, �Phase O�set Between Slow Oscillatory Cortical Inputs In�u-

ences Competition in a Model of the Basal Ganglia", IEEE International Joint Conference

on Neural Networks (IJCNN), Beijing, China, 2014.

� Z. Fountas, M. Shanahan, �A cognitive neural architecture as a robot controller." In

Biomimetic and Biohybrid Systems, pp. 371-373. Springer Berlin Heidelberg, 2013.

Papers submitted:

� Z. Fountas, M. Shanahan, �The Role of Cortical Oscillations in a Neural Model of the

Basal Ganglia", submitted to the Journal of Computational Neuroscience

Papers in preparation:

� Z. Fountas, M. Shanahan, �The �gearbox" of the cortex: How cortical oscillations shape
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selectivity in the basal ganglia.", to be submitted for journal publication.

� Z. Fountas, M. Shanahan, �The role of bursts and pauses of neurons in the globus pallidus

external", to be submitted for journal publication.

� Z. Fountas, M. Shanahan, �Two plausible sources of Parkinsonian tremor.", to be submitted

to conference proceedings.

� Z. Fountas, M. Shanahan, �Brain Studio: A practical high-performance tool to design and

simulate spiking neural networks.", to be submitted to conference proceedings.

Finally, Brain Studio is currently being o�cially used within the TIMESTORM project, a three

year EU-backed collaboration between six academic institutions across Europe (http://timestorm.eu).

The latest version of its source code is available through (http://brain-studio.org).
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2 Modelling tools

2.1 Introduction

The largest part of the methodology presented in this thesis regards the mathematical modelling

of brain structures using networks of phenomenological spiking neurons. In this type of spiking

neural networks (SNNs), the equations that model the membrane potential �uctuations of neural

cells correspond to mathematical abstractions rather than modeling individual ionic mechanisms.

The basic objective for the resulting models is to conform to the dynamical behaviour of their

real counterparts. This can be used as a proof of their biological plausibility, before these models

are employed to make new testable predictions. However, SNNs inherently entail some distinct

functional attributes that need to be carefully considered and built upon, in order to achieve

biologically meaningful simulations.

The rich dynamical behaviour of single cells in the brain can be clustered into distinct categories,

all of which can be captured by phenomenological spiking neuron models (Izhikevich 2007a),

and result in di�erent group dynamics. In addition, this computational framework enables the

investigation of known neural phenomena that have been considered important for our quest,

such as oscillatory activity, plasticity and neuromodulation. Nonetheless, the great �exibility of

these models is accompanied by a vast number of open parameters, often without physiological

meaning, that make their employment a di�cult challenge and create a need for optimization.

The amount of the available computational resources is therefore critical for both the ability

to simulate a realistic number of neuronal computational units, as well as for work which is

prerequisite for the simulation.

For these reasons, a substantial number of methods and software systems have been recently

proposed, that facilitate the design and simulation of SNNs. First, a number of software systems

aims to the optimization of single spiking neurons in order to replicate recorded electrical traces

of real cells. A review of these methods can be found in Geit et al. 2008. Despite their success,

these tools have failed to establish a globally accepted methodology, since there is no single

measure of �goodness" that accounts for all the desired features in the behaviour of a model

neuron. For instance, some optimization tools focus on capturing the exact voltage trajectories

and spike trains of biological neurons. The successful tuning of ionic-based models through this

process, can result in valuable predictions on the structure of these cells. However, this is a

di�cult, and often impossible, task for simple phenomenological models, due to their limited

state space. In contrast, these simple models can be tuned to produce the same type of dynamical
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behaviour found in their real counterparts, without a signi�cant computational cost.

Second, a wide variety of simulation environments are dedicated to the calculation of the action

potential propagation and the membrane potential dynamics of SNNs. These tools are using

typical numerical integration methods, with optimized performance for di�erent research ap-

plications. One category of tools, a characteristic example of which is the software NEURON

(Hines and Carnevale 1997), is focused on muli-compartmental neuron models and sub-cellular

processes. The tool GENESIS (Bower and Beeman 2012) (and the follow-up tool Moose) ex-

tends this concept to small-scale neural networks. On the other hand, a number of tools, such

as NeMo (Fidjeland and Shanahan 2010), Nengo 2.0 (Bekolay et al. 2013), NEST Kayraklioglu

et al. 2015 and CARLsim 3.0 (Beyeler et al. 2015), aim at simulations of large-scale networks,

by focusing on phenomenological, single-unit models of neurons, and thus reducing the level of

biological detail. Finally, the tools Brian (Goodman and Brette 2008) and �Geppetto Simulation

Engine� 2016 belong to a category where a compromise between �exibility and network size is

intended.

From the network design perspective, a number of software simulators are supplemented by em-

bedded graphical environments, that include Nengo, Geppetto and Spikestream (Gamez 2007).

However, there is currently no implementation of a simulator-independent graphical user in-

terface (GUI) that exhibits syntactic interoperability. Such an approach would be very bene-

�cial for rapid prototyping, the cross-validation of simulation results and the reuse of existing

model components. At a lower level, the vast majority of the above systems provide application

programming interfaces (APIs) and can be used as libraries of general-purpose programming

languages, such as C/C++ (NeMo and CARLsim 3.0) or Python (Brian, Nengo 2.0, NEST

and Geppetto), while others provide their own scripting languages (NEURON and GENESIS).

Unlike in the case of GUIs, the issue of compatibility that emerges from the plethora of available

APIs can be addressed by the use of simulator-independent languages, such as PyNN (Davison

et al. 2008) and neuroML (Cannon et al. 2014).

In conclusion, despite the major progress of recent years, there is still a considerable room

for improvement of the above techniques and introduction of new approaches. This de�ciency

in the existing software tools is re�ected in the requirements of this thesis, where �exibility,

computational performance, and real-time visual monitoring are all crucial factors.

Therefore, our �rst aim here is to automate and speed-up the process of designing and testing

large-scale SNNs, through a suite of new simulation tools. In particular, this suite should

provide (1) a framework for the compact representation of modular SNNs, suitable for large-scale

brain circuits and cognitive systems, (2) a generic and powerful simulator that allows the fast

implementation, visualization and real-time adjustments of SNNs, and (3) a fast optimization
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technique, which could be used in order to mimic the dynamical behaviour of speci�c neurons

in the brain, using simple phenomenological models.

In the remaining sections of this chapter, we present a number of software systems that have

been developed in order to address the above requirements. As the computational foundation of

these systems, two well-known simulators have been selected and are presented below in more

detail. These two simulators feature distinct strengths, namely speed and �exibility, which make

them to complement one another.

2.1.1 NeMo spiking neural network simulator

NeMo is a high performance spiking neural network simulator which was originally developed in

the Computational Neurodynamics lab by Fidjeland and Shanahan 2010, and has the form of a

C++ library. NeMo takes advantage of the large number of CUDA-based graphics processing

units (GPUs) of the NVidia graphics cards to provide a remarkably high memory bandwidth,

and run parallel simulations with large number of neurons and synapses in real time. In a

recent commercial of-the-shelf desktop computer, this system is able to simulate up to 500.000

Izhikevich neurons in real time, connected with 10.000 synapses each, under biologically plausible

conditions that correspond to almost 5 billion spike events per second.

Although NeMo supports the development of custom neuron models, the default numerical

integration of the neuronal di�erential equations is carried out using the Euler's method with

a step size of 0.25 milliseconds (ms). Also, the conductance delays of the synapses have a

precision of 1 ms, with a supported range from 1 to 64 ms. The default featured models include

various forms of the phenomenological integrate-and-�re neurons including the simple model

by Izhikevich 2003, as well as the analytical conductance-based model by Hodgkin and Huxley

1952. In addition, learning in NeMo is realized by means of spike-time dependent plasticity

(STDP), a form of Hebbian learning, initially introduced by Song et al. 2000. Finally, NeMo

can be used directly, as a C++ class library, but it also provides interfaces for the languages

Python, Matlab, PyNN and pure C.

The key feature of NeMo is its performance in parallelizing the propagation of synaptic events

in the network and distributing computation over the available resources (Brette and Goodman

2012). One of the major performance bottlenecks in GPU-based distributed applications is the

time required for global memory access. In the case of SNN simulators, fetches of global memory

chunks are required for each synaptic event at each timestep in order to calculate the e�ect of

this event on the post-synaptic neuron. NeMo addresses this issue by clustering synapses that

have the same source and delay, so as potential synaptic events can be fetched simultaneously.
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Despite its speed improvements over other systems, NeMo is inadequate for a large number of

applications, due to limitations in �exibility and the lack of visualization tools. The default

version of NeMo provides a �xed and limited set of neural models and a single type of synapses.

Any modi�cation to the equations of these models, or implementation of new ones, constitutes a

complicated procedure, which requires adjustments in the C++ source code and re-compilation

of the system. In addition, NeMo features a low-level API where neurons and synapses can be

only added individually, which can make the design of complicated experiments a laborious task.

For these two reasons, the implementation of a simulation with NeMo often becomes more time

consuming than using other approaches.

2.1.2 Brian simulator

Brian (Goodman and Brette 2008), and its more recent version Brian 2.0 (Stimberg et al. 2014),

is a SNN simulator based in python, that focuses on high-�exibility and rapid prototyping. To

achieve this, its API provides a concise syntax, compared to other python-based simulators, and

the ability to write new equations for neurons and synapses in standard mathematical form. In

addition, Brian features basic data recording, analysis, and plotting tools, and therefore it can

support the complete process of designing and conducting a computational experiment based

on SNNs.

The syntactic advantages of Brian can be partly attributed to the dynamic typing capabilities

of python, according to which, objects are assigned a type at the runtime. Through this feature,

the user can call the same methods to de�ne entities in a network, using di�erent types of

attributes, and the system parses any given information transparently. Furthermore, neural

populations or synapses with common characteristics can be grouped in single vectorised objects,

and processed at once. Hence, scripts written in Brian become more readable, easy to learn and

quickly extensible, while the simulated network models can incorporate a great deal of biological

detail, compared to similar software systems.

Like NeMo, Brian is an open source project that can be developed and used in almost any

platform. It only utilizes three standard python libraries, namely NumPy, Scienti�c Python

(SciPy) and Pylab/Matplotlib, and it does not require local compilation of individual compo-

nents. Finally, Brian interfaces with the language PyNN, and it can also be employed using its

simulator-independent API.

On the negative side, a signi�cant drawback of this framework is the compromise of compu-

tational e�ciency, in both memory and time. Brian has been shown to be signi�cantly slower

in execution time than other approaches, in a comparison using di�erent benchmark models
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in Bekolay et al. 2013. Due to the expensive function call overhead, it is not well-suited for

interactive, real-time simulations, such as the control of a robotic platform, or the real-time ad-

justments using a GUI. For instance, the former example would require a network update, in the

order of milliseconds, every time that the sensors of the robot receive new stimulus. Addition-

ally, as in the case of NeMo, Brian is designed for simulations of unit neurons, and the support

for multi-compartmental models is limited, while currently there is no GUI implementation

provided.

All things considered, the two simulators mentioned here address di�erent issues of SNN com-

putational modelling, and thus have little functional overlap. The employment of both systems,

for the purposes of the current thesis, establishes a good trade-o� between design and simulation

performance.

2.2 Brain studio

The �rst software tool that was developed to address the issues described in the previous section

is called Brain studio. This tool has the form of a spiking neural network editor and simulator

which focuses on cognitive architectures and large-scale neural systems. Its main aim is to pro-

vide the �rst independent graphical environment that can be used with multiple SNN simulators

simultaneously. With this approach, the user can integrate di�erent existing models that might

have been developed based on di�erent syntax, or design a new model from scratch.

Brain studio consists of two individual software layers. A GUI can be used to design and

monitor an experiment in a user-friendly manner, and a stand-alone back-end executes the

required calculations. These two parts communicate over the network via the TCP/IP protocols

(Fig. 2.1) and can be instantiated independently. The complete system is fully cross-platform

and can run in either Windows-based, Unix-based or Macintosh computer systems.

One major advantage of tool is that it allows the live monitoring and adjustments of the designed

networks during simulation. The �nal experiments are represented and archived using a simple

XML-based model description format that includes any live adjustments. Hence, saved projects

can be loaded directly by the back-end, and run without the need for visualization. In addition,

its simulation engine is modular and can be easily extended to account for any low-level neural

network simulator that provides a python application program interface (API), as well as new

visualization techniques. These features make brain studio an advantageous platform for rapid

prototyping and integration of existing network modules, written in di�erent simulators.

In order to demonstrate this extensibility, and evaluate the speed of brain studio, NeMo simulator
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Brain Studio back-end
(Python)

NeMo Brian ?

TCP/IP

Brain Studio GUI
(Qt - C++)

Figure 2.1: Hierarchical overview of brain studio's architecture. The front-end user interface communi-
cates with the selected version of the back-end via a TCP/IP connection.

was integrated, and gave the ability to this system to simulate large-scale networks in near real-

time. In the following sections, we give details regarding the structure of individual components

of brain studio, as well as its resulting simulation performance. The latest version of its source

code is available through (http://brain-studio.org).

2.2.1 Network topology and simulation structure

Network topologies in brain studio are internally represented using only two unordered lists

of entities, that include nodes and edges (Fig. 2.2.A). A node can be any group of indexed

computational units, such as equations of spiking neurons, rate-based neurons or random event

generators, which share common characteristics and connectivity. It contains statistical infor-

mation for the parameters and states of these units, as well as their number and basic graphical

properties. Each parameter or state can be de�ned either as a single number, a random variable

that follows a known distribution, or as a function of random variables.

In addition, a group of similar, directed connections between two nodes is described by an edge.

As in the previous case, edges also contain statistical information that de�nes the pattern and

the parameters of their underlying connections. The de�nition of a connectivity pattern requires

its type and the indexes of the computational units in the source and the target nodes. Finally,

the available types of patterns include all-to-all, topographic (one-to-one), and sparse connection

groups (see Fig. 2.2.B).

In order for a complete experiment to be de�ned, a third list of entities is used that represents

actions during the network simulation. Each action requires a timestamp and can refer to either

the adjustment of a parameter in a single unit or a node in the network, the stimulation of a

node, or the termination of the experiment.
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Figure 2.2: Nodes and edges in brain studio interface. A: Default representation of network topology.
Dashed lines represent topographic and green lines plastic connections. B: Available connectivity
patterns include (i) topographic (ii) all-to-all and (iii) sparse edges. C: Visualization of e�ective
connectivity between two nodes. Connection colour: transfer entropy ∈ [0,max] bits. Connection
thickness: average synaptic weight. D: Visualizations of nodes: (i) Firing rates of individual
neurons (using a cold to hot colour scale). (ii) Raster plot of neuron spikes over time. (iii)
Membrane potentials of individual neurons.

Using this approach, all entities of an experiment can be represented internally using a compact

and modular structure that includes only basic parameters and statistics. Brain studio is able

to encode and save this structure in text �les, using an XML-based format, under the extension

`.brn'. Therefore, the user is provided with two options for the access and modi�cation of

experiments, either via the high-level graphical representation of the front-end, or directly via

the automatically generated brn �les. An example experiment that illustrates the format of

these �les, for a simple network with one node and one recurrent edge, is shown below.

1 <actions >

2 <stimulate t="50" node="0" current="150" frequency="0"\>

3 <stimulate t="350" node="0" current="100" frequency="90"\>

4 <adjust t="650" node="0" parameter="sigma" value="7.0"\>

5 <stop t="1000"\>

6 </actions >

7 <nodes >

8 <Izhikevich -NeMo id="Excitatory" x="12" y="68" w="302" h="167" c="#357998">

9 <version >0.001</version >

10 <a>0.02</a>

11 <b>0.2</b>

12 <c> -65+15* RANDF()**2</c>

13 <d>8-6*RANDF()**2</d>
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14 <eval_for_each >False</eval_for_each >

15 <neurons >200</neurons >

16 <sigma >1</sigma>

17 <u>b*v</u>

18 <v> -65</v>

19 </Izhikevich -NeMo>

20 </nodes >

21 <edges >

22 <NeMoSynapticPathway -NeMo id="Excitatory -Excitatory">

23 <source >Excitatory </source >

24 <target >Excitatory </target >

25 <preFirst >0</preFirst >

26 <preLast >199</preLast >

27 <postFirst >0</postFirst >

28 <postLast >199</postLast >

29 <version >0.001</version >

30 <__connectivity >probability </__connectivity >

31 <__probability >0.1</__probability >

32 <delay >RANDI (1,60)</delay >

33 <plastic >False</plastic >

34 <weight >RANDF()</weight >

35 </NeMoSynapticPathway -NeMo>

36 </edges >

Finally, in case that a more advanced simulator is needed, brain studio has the ability to convert

brn �les either to the simulator-independent languages PyNN by Davison et al. 2008 and Neu-

roML 2.0 by Cannon et al. 2014, or to python code that is compatible with the brian simulator.

2.2.2 The front-end: Designing experiments

The �rst part of brain studio is a tool that aims to the high-level design and graphical repre-

sentation of neural networks as well as the remote monitoring of their simulation. It is written

in the programming language C++, based only on the cross-platform application framework Qt

and the C++ standard library, providing high consistency and compatibility across systems. A

real-time snapshot of this tool is shown in Fig. 2.3.

At each point of the design process the user can toggle between the default editor mode and

the real-time simulation mode. When the simulation mode is selected, the current experiment

is transferred to a connected instantiation of the back-end and a number of editing options

are disabled. The back-end is then instructed to initialize the network by generating all the

connections and allocating the necessary memory, and to �nally start the simulation.

During the simulation mode, di�erent types of two-dimensional plots can be used to visualize

the activity within nodes. These include raster plots, local �eld potential and �ring rate graphs,

among other visualizations. Examples of these plots are shown in Fig. 2.2.D and Fig. 2.3.
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Figure 2.3: Graphical user interface of brain studio in simulation mode. A snapshot taken during a real-
time simulation of a model of the basal ganglia. Left: Graphical representation of the experiment.
Right: XML representation of the experiment.

Furthermore, a number of real-time visualizations are also available for the edges, that aim

to highlight the dynamical properties of the simulation from the network perspective. The

properties that are visualized include structural links, such as the absolute number of connections

or connection weights, statistical dependencies (functional connectivity) and causal interactions

(e�ective connectivity). An example is illustrated in Fig. 2.2.C, where the thickness of the line

between two nodes represents the average weight of all individual connections and its colour

represents information �ow, calculated by means of transfer entropy.

The use of a programming language with low-level capabilities resulted in a reduced utilization

of computer resources. In addition, since the necessary computation for the network simulation

can be carried out remotely, on a separate device, brain studio front-end is able to perform

analysis of the current state of the network in real-time, and thus enable visualizations of more

advanced metrics, such as transfer entropy.

Finally, adjustments in existing nodes and edges are also supported in simulation mode. The

system records any real-time changes, such as parameter tuning or stimulation, and updates the

network accordingly. These changes can be saved as `actions' with the time of each adjustment,

relatively to the simulation, used as a timestamp.
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2.2.3 The back-end: Running experiments

The back-end is the core component of brain studio, whose main role is to execute the simulation,

independently from the user interface. Written in the programming language python, it is highly

extensible and adjustable by the user, and it is designed to operate in both mobile robotic

systems with limited resources, as well as in high-end workstations. Its two supported modes of

operation include a slave mode, where the front-end has the complete control of the simulation,

and a master mode, where brn-experiments are loaded and executed independently. When in the

master mode, connection requests by the front-end are also accepted, which can either monitor

or take control of the simulation.

The back-end also constitutes the only part of the system that holds information regarding the

currently-supported mathematical models for nodes and edges. This information is retrieved

by the front-end following the initial network handshake between the two. Hence, when a new

neuron model is added to the brain studio, the front-end is updated automatically without the

need of a new compilation. The list of the default available computational models that can be

clustered in a node contains the following:

� RateLayer-Python: Equations for a simple rate-based neuron, implemented in python.

� Input-NeMo: An empty neuron unit, without dynamics, that can be forced to spike.

� PoissonSource-NeMo: A source that generates spikes according to a Poisson process.

� Kuramoto-NeMo: Delay-coupled Kuramoto oscillators, implemented in NeMo.

� HH-NeMo: Hodgkin-Huxley equations of neuron's ionic currents implemented in NeMo.

� IF_curr_exp-NeMo: Equations of the integrate-and-�re neuron model, with conductance-

based synaptic input, implemented in NeMo.

� QIF-NeMo: Equations of the Quadratic integrate-and-�re neuron model, implemented in

NeMo.

� Izhikevich-NeMo: Equations of the Izhikevich model, implemented in NeMo.

� Izhikevich2007-NeMo: Equations of the Izhikevich model, in the form where parameters

have biophysiological meaning, implemented in NeMo.

� Izhikevich2007_TCR-NeMo: Equations of thalamo-cortical relay neurons, based on the

Izhikevich model, implemented in NeMo.

� Izhikevich2007_TI-NeMo: Equations of thalamic interneurons, based on the Izhikevich

model, implemented in NeMo.
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� IzhikevichRS-NeMo: Equations of regular spiking neurons, based on the Izhikevich model,

implemented in NeMo.

In addition, the list of the default instantiatable synaptic models that can be used as edges,

along with their parameters, includes:

� NeMoSynapticPathway-NeMo: Synapses between groups of spiking neurons implemented

in NeMo. Available parameters include weight, delay, and the existence of STDP.

� RateToSpikeConverter-Python: Equations that convert the current rate of a neuron to

spiking input, with the same �ring rate. The only available parameter is the weight of the

connection.

� SpikeToRateConverter-Python: Equations that convert the current �ring rate of a spiking

neurons to rate-based input. Parameters include the window of the measured �ring rate

and a weight.

Finally, the list of the provided models of instantiatable nodes includes a number of extra,

special cases that require further discussion. These cases regard the integration of brain-studio

with external systems and demonstrate the extensibility of its core architecture. Here, a node

represents an interface and the number of units it contains depends on the number of inputs

and outputs supported. The currently supported nodes include:

� Servomotor-output : This single-unit node controls the speed of a servo motor, via pulse

width modulation (PWM) on a digital port of the computational platform used. It can

be used only as a connection target, and requires a SpikeToRateConverter. This node has

been successfully tested on a raspberry pi computer.

� Retina-input : This node handles the raw input of a web camera, which transforms into

spikes. The received image is initially down-sampled, and then the di�erence between

frames is calculated for each pixel, and mapped into the �ring rate of a corresponding

neuron. This node can be used only as a connection source. The number of its units

represents the available pixels.

� Webots-Robot : This node provides an interface with the 3D simulated environment of

Webots, where a di�erentially-driven mobile robot is controlled. The communication is

implemented as a second TCP/IP connection. This node can be used both as a source

and a target of an edge, as it combines camera input and motor output.

� UT2004 : This node provides an interface to control an virtual agent within the 3D envi-

ronment of the video game Unreal Tournament 2004. It comprises 22 rate neurons that
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are directly connected with either an input or an output of this simulated agent. The

outputs include 13 neurons that encode exteroception, interoception and proprioception,

while the inputs include 9 neurons that encode both motor sequences as well as single

motor functions. For more details on the methodology used for this interface see Fountas

2011.

2.2.4 Extending brain studio

Brain studio can be extended in various ways. Three main categories of extensions are currently

supported including new models for nodes, new models for edges and new visualizations. The

updates in all cases can be carried out entirely by changing parts of the source code of the back-

end in python. After an update has �nished, the front-end can be automatically noti�ed by the

changes during the initial network handshake between the two parts, and the new extensions

can be displayed.

Adding new nodes A node can be added to the existing collection, in case that either a

new mathematical model, or a new interface with another software system is required. In brief

outline, this process involves, �rst, the creation of a new python class that extends the base

class Node, the speci�cation of the required `�elds' which can be used to con�gure the model,

an output array, and �nally the implementation of two methods for the model initialization and

update. The required �elds include any parameters or states of the simulated neurons that can

be edited in the front-end, as well as any group attributes, such as the number of neurons. There

is no limitation on the number of �elds that can be de�ned, as long as they belong to one of

the following supported types (bool, integer, �oat, integer list, �oat list or picklist). Using one

of the aforementioned editing options, �elds can be assigned a single value, a random variable

or a function of random variables.

Since the only point of the interaction between the new class and the rest of the simulated

network is through the input and output arrays, a new node can represent numerous types of

di�erent network components. In the case of a new mathematical model, the node can be either a

group of instances of a speci�c neuron model with common characteristics, or a complete neural

network. The second case is particularly useful when existing SNNs need to be integrated into

a larger simulation. In both cases, calculations can be performed directly in python, or using

another simulator such as NeMo or Brian.

In addition, the user can build general nodes that correspond to any models supported by a

selected simulator. For instance, the class NeuronGroup() in Brian 2.0 simulator can support
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any group of neurons, whose di�erential equations are written as a python multi-line string

using Brian's syntactic rules. In this case, the �elds of the node will contain the attributes of

the constructor of this class, along with the parameters of the neuron model.

Finally, new nodes can be added when a new interface with an external system is required.

Representative examples of this category comprise the special cases of nodes in the end of

Section 2.2.3.

Adding new edges As in the case of nodes, a new edge can either represent a new type

of connection, or an interface with an existing simulator, that can be used to instantiate any

supported types of this simulator. The necessary steps consist of the creation of a new python

class that extends the provided base class Edge, the speci�cation of the required `�elds' which

can be used to con�gure the connection, and the implementation of two methods for the model

initialization and update. However, the update function here can be neglected, if both the source

and the target nodes of the new edge are using the same simulator as a back-end. In this case,

brain studio can redirect the implementation of this connection to the underlying simulator.

Adding new visualizations This �nal type of extension concerns the development of new

methods to visualize the behaviour of nodes and edges in the network. Initially, the type of plot

that would better illustrate the desired network property needs to be de�ned. The front-end

of brain studio features a wide range of supported types, which are implemented through the

Qt library QCustomPlot by Eichhammer 2014. Then, the user can write python code that is

executed at every timestep, and performs analysis on the state of the desired network component.

The resulting information can be visualized by the front-end in real-time.

In addition, the source code of the front-end can be also altered and recompiled if better com-

putational performance is required during the analysis, or the �exibility of the back-end is not

enough. The implementation of this functionality of brain studio is still at a preliminary stage.

2.2.5 Evaluation

One of the key aims of brain studio is to maintain the low computational time that can be

achieved with low-level software systems, when simulating large-scale SNNs or networks with

other neural units. This would allow users to have a clear overview of the dynamical behaviour

of the simulated network and apply changes in real time. Its performance in achieving this aim

can be assessed by means of scalability tests, with respect to the size of the simulated network.

Such an analysis can indicate how the resource utilization of both parts of the system grows
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Figure 2.4: Performance of brain studio in simulating large-scale networks. Absolute time on the com-
putational platform used for 1 second worth of simulated time, for networks of various sizes.

with increasing load and reveal potential bottlenecks.

For this purpose, we ran a series of test simulations, using a default biologically SNN architecture

that comprises 80% excitatory Izhikevich spiking neurons and 20% inhibitory. Each neuron in

the network formed synapses with each other neuron with likelihood 0.1, and the simulated time

was set to 1 second. All excitatory neurons were stimulated with external injected current that

allowed the network to have an average �ring rate of 15 spikes/second. Thus, the only parameter

of the simulation that remained free was the total number of neurons, which was used as an

indication of the computational load of the simulation.

All simulations were executed on the same platform, which comprises an Intel i7-4790K 4.00GHz

CPU, 16GB DDR3 2333MHz RAM and a single GeForce GT 730 GPU. The operating system

was 64bit Ubuntu 14.04. The neurons of the network were de�ned using a NeMo-based node and

NeMo was set to execute calculations using the CPU of the device. Both back- and front-end

were initialized on the same platform.

Fig.2.4 illustrates that, under these conditions, the simulated SNN can scale up signi�cantly,

with a performance which is comparable to current low-level simulators. The addition of a full

raster plot to the front-end, which updates in real-time during the simulation, slowed down the

process by an acceptable order of magnitude (less than 3 times in most experiments), although

the extra amount of information that this visualization requires to be transferred from the

back-end to the front-end is signi�cantly more (approximately 153 times).

Brain studio has now become an ongoing open source project with an increasing number of
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users. Future improvements include the introduction of more advanced visualization tools, the

development of a wider variety of models for nodes and edges, and the integration of other

low-level neural simulations such as Brian.

2.3 GPU-based fast parameter optimization for

phenomenological neural models

The last signi�cant obstacle in using phenomenological models of spiking neurons for large-

scale simulations is the approximation of the optimal parameters for a type of neuron, given

the available experimental data. In this last section we illustrate a method for optimizing the

parameters of such models, based on a combination of di�erent frequency-current and voltage-

current relations of a neuron as well as known physiological properties. We also present a python

toolbox which uses the simulator NeMo and provides a fast GPU-based implementation of our

method. As a benchmark, our toolbox was used to �t Izhikevich equations to neurological

data obtained from a cat's thalamic relay cell. The resulting model was able to predict the

�ring patterns of known membrane potential traces of this neuron, although they were not

explicitly de�ned during training. A further comparison between this neuron model and a

previous approach, when both models are used in the simulation of a generic thalamic nucleus,

revealed that the distribution of neuronal avalanches is signi�cantly di�erent and conforms

better to power law-like distributions, thus increasing the likelihood of a critical regime and the

biological plausibility of the simulation.

2.3.1 Introduction

Phenomenological models of spiking neurons can be very useful in computational neuroscience,

since they provide a powerful way of capturing the dynamical behaviour of real cells and replicat-

ing their exact membrane potential traces with a reduced computational cost. For this reason,

the popularity of this approach is continuously growing, especially in large-scale networks that

include from real-time simulations of abstract models (Eliasmith et al. 2012; O'Connor et al.

2013; Gamez et al. 2013) to slower simulations of complete brain structures (Izhikevich and

Edelman 2008; Humphries et al. 2010; Fountas and Shanahan 2014). However, since a large pro-

portion of the parameters of these models do not have any biological meaning, their employment

usually requires prior �ne-tuning, to make them operate accurately in di�erent regimes.

A number of di�erent optimization methods have been proposed that may involve matching

exact membrane potential trajectories in di�erent stimulus conditions (Bhalla and Bower 1993),
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spike trains (Rossant et al. 2011), approximation of the phase plane of a neuron (Achard and

Schutter 2006), frequency-current (F-I) or voltage-current (V-I) relations (Hertäg et al. 2012)

or a combination of the above (Friedrich et al. 2014) (for a review of these methods, see Geit

et al. 2008). In addition, a variety of recently developed software tools, that aim to tune spiking

neurons, provide implementations for many of the aforementioned methods at a certain compu-

tational cost. Examples of such software systems include the software tools Neuro�tter (Geit

et al. 2008) and Optimizer (Friedrich et al. 2014) as well as tools that work at the network

level (Carlson et al. 2014).

Despite the wide range of available approaches, the literature still lacks a general methodology

and, as a result, researchers often prefer to follow the safest but remarkably time-consuming

solution of hand-tuning (Izhikevich 2007a; Prinz 2007; Booth 2014). Also, it is not yet clear

which of the neuron features that have been used for optimization are more important to capture

realistic dynamical behaviours at the network level (Li and Vu 2013).

In Hertäg et al. 2012, Hertag et al. showed that the process of �tting neuron models to frequency

current (F-I) current clamp and sub-rheobase voltage-current (V-I) data constitutes a su�cient

estimator of the �ring patterns of a real neuron. Their method, however, based on analytical

approximation of F-I/V-I curves, does not assess electrophysiological properties or statistical

variations of a neuron, two important properties for large-scale simulations.

The purpose of this work is to build a robust automatic method for parameter optimization, able

to overcome the problems posed by the previous approaches, as well as an implementation of this

method that minimizes its signi�cant computational cost. Our method, based on both global and

local optimization algorithms, combines the ideas of F-I/V-I tuning with electrophysiological and

statistical properties estimation. In addition, a new python toolbox provides a GPU-accelerated

implementation of this method, based on Fidjeland and Shanahan 2010, able to complete the

optimization process in a matter of minutes, requiring minimized user intervention.

To assess the performance of the proposed method, we examined to what extent it is able

to improve a model of a cat's thalamocortical (TC) relay cell, previously �tted to membrane

potential traces. The resulting model was a closer �t to the real cell properties than previous

approaches. We found that it was able to reproduce �ring patterns which are unique for TC

neurons (Sherman and Guillery 2006) without any relevant training. Also the employment of

this model as the building block of a general thalamic nucleus resulted in a more biologically

plausible simulation than previous optimized neurons.
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Figure 2.5: Overview of the method used to �nd the mean values of the parameter set for the targeted
neuron. Pknown: The parameters whose real values were found in NeuroElectro database. Ptune:
The parameters that need to be tuned. f(S): The �tness function.

2.3.2 Methodology

Neuron models

Our methodology can be applied to any phenomenological neuron model. The default selection

in our toolbox is the Izhikevich (Izhikevich 2003) simple model which is shown to have the

simplest possible form that is able to reproduce the majority of the computational properties of

brain cells and have indistinguishable behaviour of in vitro and in vivo recordings (Izhikevich
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2007a). The membrane potential v of this model is governed by

C
dv

dt
= k(v − vr)(v − vt)− u+ I (2.1)

du

dt
= a

(
b(v − vr)− u

)
(2.2)

where u a phenomenological recovery variable, C the membrane capacitance, vr the resting

membrane potential, vt the instantaneous threshold potential and �nally a, b and k are three

abstract parameters of the model. The neuron �res an action potential when the voltage exceeds

the threshold value vpeak and the two variables of the model reset to

v → c

u→ u+ d
(2.3)

where c and d are two further abstract parameters. Finally, I represents any input current that

can be either dendritic or synaptic. For the purpose of this optimization algorithm, we do not

model any chemical synapses and the input current of each neuron can be simply described

as I = Ispon + Iinjected, to take into account a general injected current that varies in di�erent

experiments as well as the default constant current Ispon that leads to the spontaneous activity

of the cell.

For the rest of this section we will use equations 2.1-3.3 to generate analytical solutions when

needed but a similar process can be applied to the majority of the known phenomenological

models.

Optimization algorithm

The design of an optimization algorithm for spiking neurons entails two main independent chal-

lenges (Geit et al. 2008). First is the de�nition of a function that is able to evaluate robustly the

�tness of a model to real biological data, and the second is the choice of a heuristic technique

that can use this function to search for the optimal solution in the space of available parameters.

Starting with the latter, we used a global search method to identify areas of potentially optimal

solutions and a local search method to further optimize solutions in each of these areas (Achard

and Schutter 2006). This combination of global and local search provides a balance between

exploration and exploitation (Eiben and Schippers 1998) and facilitates the avoidance of local

maxima convergence (Geit et al. 2008).

Figure 2.5 illustrates the high-level steps of the optimization method proposed. Once the �t-

ness function is de�ned based on available experimental data, an evolutionary strategy called
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covariance matrix adaptation (CMA-ES) (Hansen and Ostermeier 2001) is used to �nd areas

of interest in the large and continuous parameter space. This method is an optimized evolu-

tionary algorithm (EA) where the mutations represent real perturbations taken from a normal

distribution, adapted to the local �tness landscape. Thus, this method is particularly suitable

for ill-conditioned �tness functions, such as the multi-objective function described later in this

section.

The best unique solutions of the EA are stored in a pool that divides the parameter space

into grid cells, where each cell can contain up to one solution. This pool is updated after each

generation according to the following algorithm

function UpdatePool(S)

if Pool < PoolSize then

Add S to Pool

else if Sscore < worst(Pool)score then

for p in Pool do

if p÷GrSize = S ÷GrSize and Sscore < pscore then

Replace p with S and return

end if

end for

Replace worst(Pool) with S

end if

where S is the candidate solution, PoolSize the maximum size of the pool and GrSize a parameter

that controls the size of the area enclosed by each grid cell.

After a pre-de�ned number of generations, or if the �tness criteria are met, the EA stops and

the �nal potential solutions in the pool are returned. An exception is made for any solution Si
that Si mod GridSize ≈ 0 and ‖Si − Sj‖ < GridSize for Sj being another solution. The former

condition indicates that the grid cell occupied by Si might have a neighbour with a better �tness

score and the latter condition veri�es this assumption. Therefore, these solutions are treated as

redundant and removed from the pool.

Next, each solution in the resulting pool becomes the subject of further local optimization based

on the simplex algorithm (Nelder and Mead 1965). This method, unlike faster and more e�cient

gradient-based alternatives (Bhalla and Bower 1993), has been shown to overcome the problem

of noisy parameter spaces, and thus it is a natural choice for the purpose of this algorithm.

The �nal step of the process is to approximate the variations in the observed electrophysiological

properties of the real cell, which can be used for more realistic multi-neuron simulations. First,
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the neuron properties that are used as parameters of the model (e.g. AP threshold or resting

potential) are sampled from a normal distribution N (µi, σi) where µi is the value of the optimal

solution, σi is the standard deviation of the real recordings and i the parameter. Finally, if there

are more known properties that do not correspond to model parameters, the CMA-ES algorithm

is used again to optimize σi for the rest of the parameters. This time, the �tness function has a

single objective which is the minimization of the di�erence between the real standard deviations

and the ones sampled from 1000 instances of the model.

Derivation of initial parameters and parameter space

The initial values of the neuron parameters that need to be optimized, are sampled from a

uniform distribution U(ai, bi), where ai and bi express the logical limitations of the parameter

i. Also, parameters with values that can be obtained from experimental studies (e.g. from

the NeuroElectro database) are sampled from a normal distribution, with standard deviation

obtained from the same source.

Whenever possible, some of the parameters of the neuron model are inferred by the rest and

their values are calculated before any other step of the �tness function. This, however, depends

on the equations of the chosen neuron model that can be used to infer extra relations between

parameters. If a found relation holds for every possible value of the rest �free" parameters and

equation variables, the deduced parameter is not used in the ES chromosome. In the opposite

case, these relations impose restrictions to the parameter space but do not reduce its dimension.

Examples of such relations for the simple integrated-and-�re (IF) and the more realistic adaptive

exponential IF neuron models can be found in Hertäg et al. 2012.

For the Izhikevich model given in (2.1-3.3), the parameters b and k can be derived from the

equations

b =
1

R
+ k(vr − vt) (2.4)

Irheo = max{b(v − vr)− k(v − vr)(v − vt)} (2.5)

were R is the input resistance and Irheo the rheobase current of the cell. These relations however,

which are explained in Izhikevich 2007a, rely on the assumption that b < 0 and thus fall into

the second category of relations described above.

Also, as shown in Section 2.3.3, the default current of the neuron Ispon can be derived as the

di�erence between the model's rheobase current and the real rheobase current of the neuron

Irheo obtained from any known F-I curve (Figure 2.7.B).
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Fitness function

This is arguably the most crucial feature of the optimization method since it de�nes the criteria

by which the optimal solution will be determined. The function proposed here is based on the

approximation of F-I and V-I relations in di�erent initial conditions of the neuron as well as any

available electrophysiological parameter values. This multi-objective nature requires a careful

consideration of each of these criteria, for which a brief description is given below.

F-I curves A frequency-current (F-I) curve is used to describe relations between various am-

plitudes of injected current in a neural cell and the action potentials evoked as a response to this

current. These relations have been used for the optimization of single-point neurons and shown

to be su�cient for the reproduction of spike times in di�erent cortical cells (Hertäg et al. 2012).

The proposed algorithm here is using F-I curves in di�erent cases that include transient and

steady state curves for di�erent initial currents. Both categories are important capturing neu-

ron's behaviour. Transient relations encode information regarding the initial response of a cell

(such as rebound dynamics), while steady-state relations show the actual spike frequency and

the overall behaviour of the cell. The �tness of the individual with respect to an F-I curve fFI is

given as root-mean-square di�erence between the experimental data points and the correspond-

ing simulated neurons.

V-I curves Similarly with above, V-I relations are also divided into instantaneous and steady-

state, and they are a valuable source of information for the behaviour of the cell. Above the

spiking threshold, (dynamic) V-I curves have been shown to be a self-contained method for

accurate prediction (Badel et al. 2008). Also, at currents bellow the rheobase level, they re�ect

the sub-threshold dynamics of the cell which are not easily approximated with F-I relations.

The V-I �tness of the individual fV I can be obtained with the same methodology as above, by

simulating a number of model neurons equal to the number of real data points. In some cases,

depending on the neuron model that is used, sub-threshold V-I curves can be derived directly

form its analytical equations (See section 2.3.3).

Fitness of scalar values The �tness level of electrophysiological properties is also an impor-

tant objective of the function. Often, such properties represent crucial features of a targeted

neuron that need to be emphasised in the tuning process. Additionally, in case of an insu�cient

amount of available F-I/V-I experimental data, these properties provide a valuable alternative

for the approximation of instantaneous and steady-state dynamical phenomena.
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Some of the most important properties that have been tested with this method include the

resting potential of a neuron, action potential (AP) threshold, amplitude and width, after-

hyperpolarization amplitude and width, cell capacitance, input resistance and adaptation ratio.

The real values of these parameters can be obtained from centralized databases such as Tripathy

et al. 2014, where cross-study statistics of multiple neuron recordings can be also easily extracted.

Unlike the previous cases, the �tness formula of an individual here is using directly the real

statistics via a normalized Gaussian function. That is, if xj is the value of the parameter j of

an individual, the �tness of this parameter is given by

fsc (xj) = e
−(x−µj)

2

2σ2
j (2.6)

where µj and σj are the mean and standard deviation of the real available data for the parameter

j.

The value of σj encodes the range of accepted values and provides a good approximation of the

corresponding �tness weights. Hence, the �nal �tness function has the form

f(S) =
∑
i∈CFI

wifFI +
∑
i∈CFI

wifV I +
∑

j∈Pknown

fsc(xj) (2.7)

All weights wi, although can be de�ned by the user, are set to favour steady-state and transient

F-I curves over V-I curves as a default. The reason is that, in our experiments, the former two

cases were found to in�uence more the dynamical behaviour of a neuron, and be less likely to

over-�t.

Termination

If the algorithm does not return a satisfying solution, after the completion of the above process,

the range of the accepted values for the known neuron properties broadens (by increasing the

value of σj) and the process starts again.

In the opposite case, the algorithm has to overcome the �nal problem of over-�tting in any of the

above objectives. Frequently, the targeted neuron properties are obtained from recordings from

di�erent cells and, depending on the model used, there is no guarantee that a perfect individual

that matches parameters and all V-I and F-I curves exists. Since there is no obvious solution

to this issue, the algorithm keeps track of all unique potential solutions via the pool described

earlier in this section. Hence, after the successful termination of the process, all individuals in

the pool should be visualized (for an example see Figure 2.7) and shown to the user.
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Figure 2.6: A single neural network is initialized in every generation of the ES used and it is accommodated
equally in all (M) available GPUs of the system. As a result, the �tness function for each individual
is calculated concurrently taking advantage of NeMo's fast GPU calculation abilities.

The toolbox

As a part of this study, a new optimization toolbox was developed, based on the above method

and written in python. The most important feature of this toolbox is its high performance,

which is achieved via the underlying spiking neural network simulator, NeMo (Fidjeland and

Shanahan 2010). As seen before, NeMo is based on a C++/CUDA back-end and delivers a high

performance when simulating large-scale neural networks on graphics processing units (GPUs).

Using this framework, the calculation of the �tness function used by the above method can be

almost fully parallelized for each generation of the CMA-ES (Figure 2.6). Before the beginning

of the �rst generation, a new NeMo simulation is initialized. The network of this simulation

contains N times the neurons needed for each calculation of the �tness function, where N is the

number of individuals.

In case that the available system accommodates M GPUs instead of one, the toolbox automat-

ically generates M NeMo simulations and distributes the calculations equally.

For the implementation of the evolutionary algorithm, the python library deap (Fortin et al.

2012) was preferred, since it provides a signi�cant number of alternative algorithms that can be

also used, instead of CMA-ES, if required. Also, any local search method used in the toolbox

is implemented via the standard optimization toolbox of the python library SciPy (Jones et al.

2001�2015).

One of the major aims of this toolbox is to reduce the user intervention throughout the duration

of the optimization process. As shown in Figure 2.5, the only requirement of the method is the
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location and extraction of the F-I and V-I relations that will be used by the �tness function.

Following the same principle, the toolbox interfaces with NeuroElectro (Tripathy et al. 2014), an

online database of experimentally found electrophysiological properties, that uses text mining

to extract information from the published literature and thus updates on a daily basis. When

the user initializes an instance of the toolbox and provides the name of the targeted neuron,

every available statistic for this neuron will be downloaded, parsed and �nally used during the

optimization process.

The �rst �nalized version of the toolbox will be released in http://nemosim.sourceforge.net.

2.3.3 Evaluation

Thalamocortical relay neuron

Dynamically, thalamocortical (TC) relay cells constitute an interesting category of spiking neu-

rons since they integrate two spiking patterns with di�erent dynamical behaviours. When the

cell receives enough hyperpolarization, the existence of low-threshold activated Ca2+ current

can cause a transient depolarization and, as a result, strong bursting activity, while at less

hyperpolarized membrane potentials these neurons produce regular tonic spikes (Jahnsen and

Llinas 1984; Zhan et al. 1999). Both these modes act as mechanisms to relay information that

originates from the senses and other sub-cortical structures and is directed to the cortex. A

unique characteristic that is shared among all TC relay cells is that the activation of the Ca2+

burst has a nearly �all-or-none" appearance (Sherman and Guillery 2006). Apart from this

interesting behaviour, the fact that this neuron has been the subject of optimization with a

di�erent method (Izhikevich 2007a) as well as the availability of a substantial amount of data in

NeuroElectro database and in Zhan et al. 1999, made it a reasonable choice for the evaluation

of the proposed algorithm.

In Izhikevich 2007a, Izhikevich suggested an adjustment to the simple model for the accurate

simulation of TC relay neurons. Equation 2.2 splits into two parts depending on the level of

membrane potential in the neuron.

du

dt
=

{
a
(
b(v − (vr −m))− u

)
if v ≤ vr −m

−au otherwise
(2.8)

The new parameter m is positive in order to prohibit the activation of the Ca2+ current during

the resting state of the neuron. When the membrane potential exceeds the threshold value
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Figure 2.7: Properties of the resulting TC neuron model that arise after 400ms current stimulation and
replicate previously obtained data in Zhan et al. 1999. A: Total number of spikes for current
injections of di�erent amplitudes and two di�erent holding potentials. B: Firing frequency of the
�rst 6 spikes for the same current injections. The symbols 2 in A and B represent real recordings
and the dashed lines represent the optimized TC model in Izhikevich 2007a. C: Phase plane of the
TC model for the same run as in E (486pA). The dashed line represents the v-nullcline for zero
injected current. D: Di�erence in various electrical properties of the model compared to data in
NeuroElectro and (Zhan et al. 1999). E: Activation of the bursting mode shows the �all-or-none"
nature of the Ca2+ activated spikes. After strong hyperpolarization, the membrane potential was
stimulated with extra 240, 250 and 260pA. The traces in the middle graph are time-shifted until
the bursting pattern overlaps. The response time of the model is inversely proportional to the
amplitude of the injected current. F-G: Response of the model for two di�erent holding potentials.
The injected currents in both cases are 486, 535.5 and 700pA.

vpeak + 0.1u, the neuron �res a spike and the two variables of the model reset to

v → c− 0.1u

u→ u+ d
(2.9)
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With this adjustment, the purpose of the recovery variable u changes in order to capture

the e�ects of the low-threshold Ca2+ current. Thus, with the proper parameter �tting,

equations (2.1), (2.8) and (2.9) are able to reproduce �ring traces of TC neurons in both

modes (Izhikevich 2007a). However, it is not clear to what extent this model could be used

to populate a biologically plausible model of a thalamic nucleus.

Taking the above into account, a new optimization attempt of the TC neuron was made, using

the algorithm and the toolbox described in Section 2.3.2. The simple model was used with the

same adjustments described here, keeping only the value of parameterm = 5mV from the model

in Izhikevich 2007a.

To calculate Ispon, we assume that the membrane potential of the neuron is around the AP

threshold, where the input current of the cell will be equal to the rheobase current I = Irheo.

Since b = 0 for large membrane potentials, the system (2.1)-(2.8) behaves as a quadratic

integrate-and-�re neuron and it has two eigenvalues

λ1 = a (2.10)

λ2 =
k

C
(2v − vr − vt) (2.11)

The values of λ1,2 are always real, hence the transition from the resting state to �ring will

take place via a saddle-node bifurcation (Izhikevich 2007a). By de�nition, a condition for the

classi�cation of a bifurcation to saddle-node is the existence of two real eigenvalues one of which

must be equal to zero. Therefore, from Equation (2.11), the membrane potential close to the

rheobase will have the value vrheo = vr+vt
2 . In addition, the equilibrium points of the system can

be found from the intersection points of their two nullclines, by solving the system (2.1)-(2.8)

for dv
dt = du

dt = 0. The resulting equation is

I(v) = k(v − vr)(v − vt) (2.12)

and provides an analytical method for the calculation of all V-I relations of the neuron for

voltages between vr−m and the rheobase, as well as the transient-state V-I relations below this

interval. By applying the value of vrheo to (2.12), we can get the rheobase current of the neuron

Irheo =
k

4
(vt − vr)2 (2.13)

The di�erence in the value of the rheobase current obtained from (2.13) and the real rheobase

current, that can be found in the steady-state F-I curve in Figure 2.7.B, represents the sponta-

neous current Ispon that the neuron needs to better �t the physiological recordings. However,

because of the existence of this constant current, the parameters vr and vt do not represent the
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resting and threshold potentials any more. To change that, we can merge the current Ispon to

parameters vr, vt and m. This can be done if the equation

k(v − vr)(v − vt) + I = 0 (2.14)

has two real solutions. The solution with the lowest value represents the neuron's resting poten-

tial vnewr while the second solution represent the threshold potential vnewt . Finally, the parameter

m in equation 2.8 can be transformed to mnew = vnewr − vr +m.

The above techniques were taken into account for the calculation of the �tness function described

in methodology. After 50 generations of the evolutionary strategy, 66 signi�cantly di�erent solu-

tions were gathered and further optimized with a local search method. The resulting parameter

values of the optimal solution are Ispon = −100pA, C = 294pF , vpeak = 35mV , k = 1.2,

vr = −78.99mV , vt = −38.71mV , and m = 2.81mV while the abstract parameters a = 0.0002,

b = 20.55, c = −49.22 and d = 21.8.

Figure 2.7 illustrates the properties of the resulting neuron model and a comparison with real

data and a previously optimized set of parameters. Although the �tness function used took

into account only F-I and V-I relations as well as a few basic electrophysiological properties,

our simulations with this model matched data and features of cat's TC neurons that were never

explicitly programmed. For instance, in most cases, activation of Ca2+ current evoked almost

identical bursts, indicating the �all-or-none" behaviour of the cell.

The result of the optimization algorithm could be further improved if one additional recov-

ery variable u2 was used along with v and u. Since u is inactive in the regular spiking mode

of the neuron, the model acts as a quadratic integrate-and-�re neuron with limited dynami-

cal behaviours. Hence, with the introduction of u2, the model would be able to exhibit rich

dynamics in both modes and it might have more realistic F-I relations. However, for the pur-

pose of this study which was the evaluation of the proposed technique, the resulting TC model

needed to be comparable with previous optimized attempts, which have used only one recovery

variable (Izhikevich 2007a).

Simulation of a thalamic nucleus

For further validation of the resulting TC model, we attempted to simulate a neural ensemble,

whose neuron types and connectivity follow the general rules of a thalamic nucleus. Two versions

of this ensemble were created; the one using the current TC model and the second using the

previous approach in (Izhikevich 2007a) that was also used in the previous section. For clarity,

we will refer to these ensembles as E1 and E2 respectively.
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Figure 2.8: A:Method of avalanche size extraction. B, C: Histogram of 0.5M avalanches for the two simulated
thalamic ensembles. The dashed line represents the estimated power-law distribution for E1, with
the best �t.

In both cases, the network comprises 800 TC relay neurons and 200 thalamic interneurons, keep-

ing the balance that is usually found in experimental studies (Winer and Larue 1996; Sherman

and Guillery 2006) and used in other computational models (Izhikevich and Edelman 2008). The

synaptic input to the neurons was modelled using a typical conductance-based approach (Dayan

and Abbott 2001) with default parameters for AMPA, NMDA and GABA neurotransmitters

obtained from the same source. Each thalamic interneuron sends gabaergic connections to 25%

of all other neurons in the group, while TC neurons have only excitatory a�erents to 25% of the

interneurons. The delays of all connections were randomized uniformly from 1 to 40 ms.

Furthermore, each neuron in the network was forced to spike with a rate taken from a Poisson

distribution, and corresponds to 5 spikes/second, while TC neurons received an extra injected

current Iinj , �xed at a single value. The distribution of weights, as well as the injected current

Iinj were tuned in order to maintain a spontaneous �ring rate of approximately 20 spikes/sec-

ond (Wilson and Groves 1981).
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Two di�erent tuning scenarios were examined for more accurate comparison of the two TC

models. First, the network connectivity and input current were kept �xed for both E1 and

E2 and they were tuned to approximate the thalamic spontaneous �ring rate. In a second

experiment, connectivity remained again �xed but the injected current was tuned to make the

two nuclei �re at exactly the same spontaneous frequency. To minimize the a�ected parameters

in all cases, the inhibitory-to-excitatory weights of E2 were normalized with respect to a ratio

factor C1/C2, to eliminate the e�ect of di�erent capacitance values to the synaptic current (see

equation 2.1).

As the measure of comparison, the dynamical behaviour of E1 and E2 was assessed by means

of the neural avalanche events in each ensemble. In biological neural systems, the size of neural

avalanches over time has been found to follow a power law distribution (P (x) ∼ x−a), both in

cortical slices (Beggs and Plenz 2003) and in vivo (Petermann et al. 2009), with an exponent

a around 1.5 (Beggs and Plenz 2003). The degree of approximation of this distribution is

sometimes assumed to indicate scale-free behaviour (Petermann et al. 2009; He 2014) of the

neural system and of whether it is operating near a critical regime(Teixeira and Shanahan

2014).

The size of avalanches was measured by taking the area of neural �ring activity, sampled in 1

ms bins, that exceeds the threshold of 10 spikes/ms for a number of continuously active bins

(Figure 2.8.A). Figures 2.8.B and C illustrate the histograms of the avalanche sizes and the

corresponding best-�t power law distribution.

In both simulated experiments, a Kolmogorov-Smirno� (KS) test showed that, with p-values

0.26% and 0.007% respectively, the distributions of avalanche sizes in the two nuclei are di�erent.

By subtracting the �nal cuto� points, the result in the KS test changed to 0.42% and 0.16%,

still rejecting the null hypothesis that the two samples come from the same distribution.

The next step was to run a test to see whether the two size distributions conform to a power

law distribution. Due to the limited number of neurons in the system, these distributions loose

accuracy towards the tail and start to bend downward, exhibiting an exponential cuto� that

needs to be pruned before any �tting attempt (Figure 2.8.C).

Following the methodology in Clauset et al. 2009, the tests failed in both experiments and both

models of TC neurons. However, this can be partially justi�ed due to the rigorous nature of

this test. In both simulated experiments, the KS distance between the histogram of the current

model and the best-�t power law was found to be signi�cantly smaller (in the order of 20%

for the illustrated experiment) than the other approach. Finally, the distribution in Figure 2.8

could be also dramatically improved, perhaps in a degree above the requirements of the test,

if the connectivity of the network was optimized by using, for instance, some form of synaptic
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plasticity (Teixeira and Shanahan 2014). Nonetheless, the results here suggest that networks

using the optimized TC model in E1 are closer to a critical state, a fact that increases the

biological plausibility of the simulation.

Benchmarking

To assess the computational performance of the presented toolbox, we ran a number of simula-

tions on di�erent hardware platforms, optimizing the same neuron and recording the execution

time of each generation. In order to calculate the �tness of each individual, the equations of 100

simulated neurons were numerically calculated for 2 seconds with 0.25 ms time step. The popu-

lation of individuals was set to be 500, which corresponds to 50,000 neurons for each generation.

The average execution times are illustrated in Figure 2.9. In this �gure, initialization time refers

to all stages needed for the initialization of the optimization algorithm apart from the time

of interaction with the online database NeuroElectro. All simulations were executed on 64bit

machines with 32GB available memory and the same hard drive, while the evolutionary strategy

was forced to continue for 40 generations.

The results reveal a signi�cant speed up in GPU processing over CPU, even in the case of a

high-performance state-of-the-art CPU processor with multi-threading support. This speedup

ranges from 1.35 to 3.65 for the 8-threaded simulation based on the OpenMP API and from 2.31

to 6.25 for a single threaded simulation. Initialization times were negligible in all cases (< 12

seconds) with small increases in the case of multiple GPU simulations. These results indicate

that there is no obvious bottleneck in our implementation and that execution time depends

highly on the spiking neuron simulation platform used.
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2.3.4 Concluding Remarks

The main contributions in this part of the thesis are as follows. First, the presentation of a

fast optimization process that produces parameters and statistics for phenomenological neuron

models which can be used for large-scale biological plausible simulations. Second, a python

toolbox that implements the above process using a GPU-based high-performance spiking neural

network simulator. The low requirements of this method along with the hardware acceleration

allow the complete tuning process to be carried out in a manner of minutes and thus constitute

the key feature of the toolbox. In addition, the initialization of this algorithm is automated,

requiring a minimized user intervention. Any experimentally found neuron properties can be

located in an online database and downloaded automatically.

The third and �nal contribution is a new model of the TC relay neuron, that is shown to �t

better than a previous approach to experimental data, and to generate more realistic large-

scale simulations. The detection of statistical di�erences in networks constructed with this new

model and the previously optimized TC neuron is of high importance considering the already

high accuracy of the latter.

One of the major aims of this work is to make the optimization procedure for this type of neuron

models as automated and fast as possible. Nonetheless, the user of our toolbox still needs to

detect a number of experimentally found F-I/V-I relations, to achieve high performance. This

type of information is widely available in the literature of in-vitro cell recordings, either in the

form of a curve or, implicitly, through other experiments. This issue can be overcome in the

future, if more centralized databases for neurological data, such as NeuroElectro, arise.

We are currently extending the toolbox functionality in two ways. First, we introduce a method

where the optimization includes the detection of the simplest possible model that is able to

produce a good �t to the available data. In its current stage, this method starts to optimize a

quadratic IF neuron as described in Section 2.3.2. If no individual can be found with a good �t,

the process starts again incrementing the number of helping variables ui as described in the last

paragraph of the section 2.3.3.A. Hence, the process is likely to return a solution with a better

�t, as well as the least number of variables needed.

The second extension concerns optimization at the network level. The parameter sets currently

produced by the toolbox are accompanied by estimates of their variation, that can be used

to produce more realistic neural ensembles. Hence, based on the foundation of Carlson et al.

2014 and the processing capabilities of NeMo, we are developing a method that can optimize

the connectivity parameters between and within ensembles, as well as other important network

features, based on knowledge on their behaviour in di�erent simulation scenarios.
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3 A neural model of the basal ganglia circuitry

The basal ganglia are a group of highly interconnected nuclei, believed to resolve information

processing con�icts of the cerebral cortex. In this chapter, we describe the most complete neural

model of the motor region of this brain structure to date, integrating available neurophysiological

data from the literature. This model exhibits behaviour very similar to in vivo recordings of its

biological counterpart, both in healthy and pathological conditions. In part, it was based on well-

established models of various features of the BG nuclei, while a series of novel features was also

introduced to complete the integration. In particular, the striatum model was partially adopted

from Tomkins et al. 2013, the conductance delays between nuclei were taken from Humphries et

al. 2006 and the parameters for short-term plasticity between the BG nuclei from Lindahl et al.

2013. This chapter provides justi�cation and a full description of the mathematical models and

the rest novel design choices that were made for this simulation, as well as the tuning process

that followed.

3.1 The model

3.1.1 Anatomy

Canonical circuit The internal structure of the majority of the BG forms a single canonical

circuit (Fig. 3.1), massively replicated in di�erent scales. Macroscopically, it is part of a complex

set of parallel loops that involve the thalamus, limbic regions and almost all major regions of

the cortex including sensory, motor and associative areas (Alexander et al. 1986; Hoover and

Strick 1993). However, at the level of the BG, these loops can be further broken down into

parallel microscopic channels that involve the same canonical circuit and, with a small overlap,

maintain the anatomical division and somatotopic organization found in the cortex (Alexander

and Crutcher 1990; Humphries et al. 2006; Nambu 2011).

A widely accepted hypothesis is that these microscopic channels represent di�erent competing

�action requests� (Gurney et al. 2015) that originate from the cortex. These requests are pro-

cessed by the BG circuit, which, under some conditions (Fountas and Shanahan 2014), is able to

select the most salient (or urgent) potential action (Mink 1996; Redgrave et al. 1999; Humphries

et al. 2006).

Along these lines, the model presented here comprises six neural populations that correspond

to the four major nuclei of the biological BG and form the canonical circuit described above.
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Figure 3.1: Architecture of the system. The BG circuit as realized in the present study. Dopamine in�u-
ences both the internal behaviour of MSNs and FSIs as well as the impact of various synaptic
conductances.

These include the striatum and the subthalamic nucleus (STN), the two main input structures

in the BG, the external part of the globus pallidus (GPe), as well as the substantia nigra pars

reticulata (SNr), one of the two output structures of the BG. Furthermore, the e�ect of the

pars compacta part of the substantia nigra (SNc) is realized through the concentration of the

neurotransmitter dopamine (DA) in the di�erent parts of the network (green colour in Fig. 3.1).

The internal structure of the striatum has been modelled using three di�erent groups that

correspond to its three major neural populations. The �rst two groups constitute the two

categories of medium spiny-projection neurons (MSNs), divided based on the dominant type of

their dopamine receptors, which belong either to the D1- or D2-like families. Depending on their

category, these neurons are either enhanced (MSND1) or depressed (MSND2) by the presence of

dopamine. They have been predicted to comprise the 99% of the striatal volume (Humphries

et al. 2010), a number that was also maintained here.

Finally, the remaining 1% of the striatum is occupied by fast-spiking gabaergic interneurons

(FSIs) that are a�ected by both types of dopamine receptors and are highly interconnected with

both electrical and GABAergic synapses. Despite their small concentration, FSIs have a great

in�uence on the rest of the striatum, and it has been shown that inhibition from a single FSI
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cell is able to block action potentials in large numbers of MSNs (Koós and Tepper 1999).

To estimate the number of neurons within each nucleus, we kept the same ratios of neurons

found in rat BG (Oorschot 1996). The �nal numbers can be found in Table 3.1 and result in a

total of 9586 neurons that form the BG network. The probability for a connection between two

neurons PX−Y depends on the pre- (X) and post-synaptic (Y ) nuclei and can be found in the

same table. The values of these probabilities were inferred by the same method that was used

for the random model of striatum in Tomkins et al. 2013. For connections that involve only

striatal neurons, the required data was obtained by the spatially embedded model in Humphries

et al. 2010, while the model in Lindahl et al. 2013 was used for any other connection.

Lateral inhibition Within each nucleus in our model, there are three largely isolated sub-

groups that correspond to three microscopic channels of the BG circuit. As mentioned before,

the BG preserves the anatomical organization of their cortical inputs, thus connections between

nuclei are mainly topographic and in�uence only the same channel in the target nucleus. As

an exception, the STN glutamatergic e�erents cause di�use excitation (Mink 1996), equally dis-

tributed across adjacent channels. In addition, evidence for local axon collaterals in GPe (Sadek

et al. 2007) and SNr (Mailly et al. 2003) suggests that lateral inhibition in these structures also

spans to neighbour functional subdivisions, and thus, it is also considered di�use.

The striatum, on the other hand, has more complicated intrinsic connectivity which arises from

both its enormous size and the extensively overlapping network of axon collaterals (Wilson and

Groves 1980; Steiner and Tseng 2010). A large debate has been provoked regarding its connec-

tivity structure and computational function. The �domain� theory (Wickens 1993) suggests that

the striatum is divided into groups, or domains, of highly inter-connected neurons that form

local winner-takes-all elements, while more recent studies show that striatal lateral connectivity

is weak and sparse, and indicate that the striatal computational element should be spread across

the MSN network (Koos et al. 2004; Humphries et al. 2010).

Here we use two di�erent probability values P int and P ext that represent lateral connections

within and between striatal channels respectively, thus allowing both views of localized and

sparse connectivity to be tested. To calculate the values of these probabilities for each type

of striatal local connection we generated a spatial model of two adjacent striatal microscopic

channels and calculated the internal and external mean connection probabilities. Assuming that

all neurons of a single channel are limited within a spherical boundary, the radius of this sphere

can be found from R =
(
3V
4π

)1/3
, where V = Nch

84900mm
3 is the simulated striatal volume (since

in 1mm3 there are 84, 900 neurons (Humphries et al. 2010)) and Nch = (NMSN + NFSI)/3 is

the number of neurons within this sphere. For the values of NMSN and NFSI that are given in
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Parameter Source Parameter Source

NMSN = 2790000× 0.99/S O&H PCtx−STN = 0.03 H&T

NFSI = 2790000× 0.1/S O&H PCtx−MSN = 0.084 H&T

NGPe = 46000/S Oorschot 1996 PCtx−FSI = 0.084 **

NSTN = 13600/S Oorschot 1996 PSD1−SNr = 0.033 ***

NSNr = 26300/S Oorschot 1996 PSD2−GPe = 0.033 ***

NTi = 1000 Assumed PSTN−SNr = 0.3 ***

RGPeA = 0.0405 B&D PSTN−GPe = 0.3 ***

RGPeB = 0.85 DeLong 1972 PGPe−STN = 0.1 ***

RGPeC = 0.1095 B&D PGPe−SNr = 0.1066 ***

RRB = 0.6 Bevan et al. 2000 PGPe−GPe = 0.1 ***

RLLRS = 0.25 Bevan et al. 2000 PSNr−SNr = 0.1 Assumed

RNR = 0.15 Bevan et al. 2000 P intMSN−MSN = 0.0718 ****

S = 300 * P extMSN−MSN = 0.0082 ****

P intFSI−MSN = 0.2925 **** P intFSI−FSI = 0.5864 ****

P extFSI−MSN = 0.0314 **** P extFSI−FSI = 0.0092 ****

O&H Oorschot 1996; Humphries et al. 2009

B&D Bugaysen et al. 2010; DeLong 1972

H&T Humphries et al. 2010; Tomkins et al. 2013

* Assumed to be adequate for 3 channels

** Same as PCtx−MSN Humphries et al. 2010

*** Calculated keeping the ratios from Lindahl et al. 2013

**** Calculated using probability distributions from Humphries et al. 2010

Table 3.1: Network parameters. Nx represents the number of neurons in each nucleus x. S is a scaling
factor that determines the number of microscopic channels within the complete BG. Rx represents
the ratio of each type of neuron x within the corresponding nucleus, while Px−y is probability of
a neuron from the nucleus x to be connected to one in y.

Table 3.1, R = 205.8µm3.

The estimated probabilities, which are also shown in the same table, where found after the

calculation of the average number of contacts within and between these two adjacent areas,

using the distribution of expected number of intersections with respect to the distance between

the somas of two neurons, in Humphries et al. 2010.

In addition, the striatum was shown to be asymmetric with respect to inhibition that MSND1

and MSND2 neurons receive, both in conductance strength and number of connections. Local
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MSN collaterals have fewer and weaker connections that arrive to striatopallidal neurons than the

opposite (Taverna et al. 2008; Planert et al. 2010), while FSIs also target mostly MSND1 (Gittis

et al. 2010) neurons. This strong inhibition of the direct pathway compensates for the over-

excitement of these cells via D1 receptor activation, and thus brings more balance to the intrinsic

activity of the striatum.

To account for the e�ect of the above asymmetries, the probabilities in Table 3.1 change to

PD2−D1 = PMSN−MSN ∗W , PD1−D2 = PMSN−MSN ∗ (2 −W ), PFSI−D1 = PFSI−MSN ∗W
and PFSI−D2 = PFSI−MSN ∗ (2−W ), where W de�nes the trade-o� of inhibition between the

direct and indirect striatal neurons. The default value used is W = 1.5 which is consistent

with previous studies (Taverna et al. 2008; Gittis et al. 2010; Bahuguna et al. 2015). Finally,

changes in maximum conductances G of collateral MSN connections were inferred from Taverna

et al. 2008. For recurrent MSND1 connections G = 1.2 ∗ GSD−SD and for MSND2 to MSND1

connections G = 0.4 ∗GSD−SD.

3.1.2 Mathematical models

Neuron dynamics The electrical activity of individual cells of the BG was simulated using

the single-compartmental �simple model" that was proposed by Izhikevich 2003; Izhikevich

2007a. In this phenomenological model, the membrane potential v of the neuron is governed by

the equation

C
dv

dt
= k(v − vr)(v − vt)− u+ I + CN (0, σ2) (3.1)

where I is the dendritic and synaptic current, C the membrane capacitance of the cell body,

vr the resting membrane potential, vt the instantaneous threshold potential, k an abstract

parameter and u is an abstract recovery variable with

du

dt
= a

(
b(v − vr)− u

)
(3.2)

In this equation, a and b are two additional abstract parameters of the model. Finally, the

neuron is said to �re a spike when its membrane potential exceeds the threshold value vpeak. In

this case, the variables of the model reset to general cation currents

v → c

u→ u+ d
(3.3)

where c and d are further abstract parameters.
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If tuned properly, this model is able to display the known types of dynamical behaviour of

all cortical and sub-cortical neural cells, and to quantitatively reproduce their sub-threshold,

spiking, and bursting activity in response to pulses of DC current (Izhikevich 2007a). In addition,

the recovery variable in (3.2) could be tuned to represent a speci�c mechanism of an ion channel

such as the calcium-activated potassium channels in STN neurons (Hallworth et al. 2003) as will

be shown in section STN model.

The equations 3.1 and 3.2 can be reduced to a simpler form, originally presented in Izhikevich

2003 and widely used, which contains only two independent parameters. However, the choice of

the current extended form is considered more appropriate for this study, since the majority of the

parameters and the variables here acquire biophysical meaning, which simpli�es the complexity

of calculations and tuning. For example, electric potentials, such as v, are represented inmV olts

and the input current I in pAmperes.

Heterogeneity of the neurons in the network is achieved by the stochastic perturbation of the

capacitance C of each neuron by a small random factor, sampled from a Gaussian distribution

with mean Cµ and standard deviation 0.1 × Cµ. In addition, every neuron includes a general

Gaussian noise factor N (0, σ2), added to its membrane potential, with a constant standard

deviation (σ in equation 3.1), which depends on the type of the neuron. This term represents

the e�ect of external a�erents that are not part of the this model and are considered stable

during our simulations.

Synaptic dynamics Neurons in the network are connected with up to three di�erent cat-

egories of synapses, depending on their position and type. A synapse can be either simple

chemical, chemical plastic or electrical. The simple case of a static chemical synapse is im-

plemented with a standard conductance-based model (Dayan and Abbott 2001) with di�erent

parameter values for di�erent neurotransmitters and connectivity. At any given point of time t,

the current of each synapse can be described with

Isij(t) =

{
Gije

−(t−(ti+λ))/τs(Es − vj) if t ≥ (ti + λ)

0 if t < (ti + λ)
(3.4)

where ti is the time of last �ring of neuron i, λ is the delay of the synapse, Gij is the maximum

conductance of the synapse, i.e. the weight of this connection, s is the type of the synaptic

receptor, Es is the synaptic reversal potential and τs the synaptic decay time constant. At the

arrival time (ti +λ), a new spike propagates to the post-synaptic neuron j, the synaptic current

jumps to the value gij and �nally decays exponentially with rate τ .

The e�ect of di�erent pairings of neurotransmitter and postsynaptic receptor can be expressed
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by means of combinations of (Es, τs), with the latter representing the duration of a neurotrans-

mitter re-uptake and dispersal. The dominant excitatory neurotransmitter in this simulation

is glutamate, which corresponds to AMPA and NMDA postsynaptic receptors, while the corre-

sponding inhibitory neurotransmitter, γ-Aminobutyric acid, is thought to bind to GABAA re-

ceptors. Following the methodology in Humphries et al. 2006, the inhibitory receptors GABAB
are not explicitly simulated, since they mainly evoke intracellular signal transduction in the

post-synaptic neuron instead of generating current (Bormann 1988).

Furthermore, certain types of synapses in the network are thought to be plastic (see Fig. 3.1),

in order to simulate the e�ect of short-term facilitation and depression found in real BG con-

nectivity (Connelly et al. 2010; Sims et al. 2008; Atherton et al. 2013), but not simulated until

recently (Lindahl et al. 2013). In particular, striatal gabaergic e�erents to GPe and SNr have

been shown to be facilitated in periods of MSN bursts (Sims et al. 2008; Connelly et al. 2010;

Kim and Kita 2013), while GPe-SNr synapses have the opposite e�ect (Connelly et al. 2010).

The remaining SNr a�erents that originate from STN have been predicted in Lindahl et al. 2013

to also be depressing, a mechanism that was later found to be regulated by GABAB receptors

(Dvorzhak et al. 2013). Finally, short-term e�ects of plasticity have been reported to exist be-

tween more structures in the BG but in some cases without a clear facilitating or depressing

pattern (e.g. GP-GP recurrent synapses (Sims et al. 2008)) and in other cases very slowly ac-

tivated (e.g. GPe-STN synapses (Atherton et al. 2013)). Hence, these chemical synapses have

been treated as �xed.

In the case of a plastic synapse, two extra variables, u+s and x−s , are used to calculate the level

of facilitation and depression respectively (Markram et al. 1998). Their dynamics are governed

by

τd
dx−s
dt

= 1− x−s (3.5)

τf
du+s
dt

= U − u+s (3.6)

where τf and τd de�ne the exponential decay time constant, and the abstract parameter U ∈ [0, 1]

controls the amount of synaptic facilitation. At the time t = ti + λ of a postsynaptic event, the

two plasticity variables update to

x−s ← x−s ∗ (1− u+s ) (3.7)

u+s ← u+s + U ∗ (1− u+s ) (3.8)

with 0 < U < 1, and the �nal synaptic current that arrives at the postsynaptic neuron is given
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Figure 3.2: E�ect of short-term plasticity in synaptic conductances. Ratio between steady-state con-
ductance G and the initial value G0 for di�erent pre-synaptic spike frequencies, and for all plastic
connections of the BG circuit.

as

Isij(ti + λ) = u+s x
−
s gij(Es − vj) (3.9)

The values for the parameters U , τrec and τfac can be found in Lindahl et al. 2013. Although

the model of plasticity used in this study was more complex than equations (3.5-3.9) , our

synaptic models resulted to almost identical relations between synaptic IPSP amplitudes and

spike frequencies as in Lindahl et al. 2013 (See 3.2).

Finally, when two neurons i and j of the network have a direct electrical connection, or gap

junction, they both receive an extra current

Igapij = ggap(vgap − vi/j) (3.10)

where ggap is the conductance (weight) of the gap junction and vgap represents the potential

of an extra mutual compartment at the point of the interaction (Tomkins et al. 2013). This

potential links the two neurons via the equation

τgap
dvgap
dt

= vi + vj − 2vgap (3.11)

and provides a force that decreases the di�erence between the neuron voltages with rate τgap.

All things considered, the total input I that a neuron receives via equation (3.1) has the general

form

I = Iampa +B(v)Inmda + Igaba + Igap + Ispon (3.12)

where Ix =
∑

i I
x
ij is the sum of all synapses of type x, B(v) = 1

1.0+0.28∗e−0.062v is the voltage-
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dependent magnesium plug in the NMDA receptors (Tomkins et al. 2013) and Ispon is an extra

spontaneous current that is used to �t each neuron model to both in vitro and in vivo neuro-

physiological recordings.

Neuromodulation Neurons in the BG receive dopamine from the SNc which can a�ect the

impact of the synaptic current of certain neurons as well as the internal dynamical behaviour

of others. The neurons and synapses that are a�ected by dopamine are depicted in Fig. 3.1.

Although the level of dopamine is considered to have a single �xed value throughout the system,

we have used two variables d1 = d2 that correspond to the D1- and D2-like receptor families

respectively, and in�uence the system di�erently.

To account for the dopaminergic e�ects, the synaptic input (3.12) as well as the neuron equa-

tions (3.1-3.2) change according to the Table 3.2.

MSND1 vr ← vr(1 + β1d1) β1 = 0.0289

d← d(1− β2d1) β2 = 0.331

Inmda(1 + β3d1) + Iampa + Igaba β3 = 0.5

MSND2 k ← k(1− β1d2) β1 = 0.032

Iampa(1− β2d2) + Inmda + Igaba β2 = 0.3

FSI vr ← vr(1 + β1d1) β1 = 0.1

Iampa + Igaba(1− β2d2) β2 = 0.625

STN (Iampa + Inmda)(1− β1d2) + Igaba(1− β2d2) β1,2 = 0.5

GPe (Iampa + Inmda)(1− β1d2) + Igaba(1− β2d2) β1,2 = 0.5

Equations and parameters are taken from Humphries et al. 2006 and Tomkins et al. 2013.

Table 3.2: Neuron equations and synaptic input with dopamine.

Cortical input The BG receive their main input from pyramidal glutamatergic projections

from layer V of di�erent areas of the cortex as well as the Thalamus (Steiner and Tseng 2010).

Since the circuitry modelled here captures connectivity principles existing in most of the BG

parallel layers (Alexander et al. 1986), the main focus of the cortical simulation lies on the

oscillatory nature of these inputs rather than region-dependent characteristics. Hence, thalamic

input is omitted and cortical a�erents are represented by abstract isolated neural ensembles Ti,
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each realized through 1000 inhomogeneous poison event generators with rate parameter

λi(t) = Aicos(2πfit+ φi) + F sponi (3.13)

where fi is the frequency, Ai is the amplitude, φi ∈ [0, 2π) the phase and F sponi the tonic

spontaneous �ring rate of the oscillatory ensemble Ti. Each of these ensembles is considered to

project a�erent axons in a single channel (with the same index i) of the BG circuitry, without

a�ecting the rest of the cortical activity.

Base �ring rate of a tonically-active cortical ensemble is thought to have a mean value of 3

spikes/sec, equal to the tonic non-oscillating spontaneous activity F̄ sponi , while an ensemble with

phasic activation oscillates with amplitude Ai = 7 spikes/sec and thus peaks at F sponi +Ai = 10

spikes/sec.

This behaviour is consistent with recordings in corticostriatal pyramidal cells of motor (Turner

and DeLong 2000; Bauswein et al. 1989) and sensory (Belforte et al. 2010; Reed et al. 2010)

cortices, two of the regions that are greatly involved in sending excitatory inputs to the BG.

3.1.3 Neural parameter estimation

Phenomenological spiking neuron models o�er a computationally cheap and powerful method

for neural simulations, whose accuracy, however, depends on the quality of �ne-tuning of the

model's parameters. This process can be very di�cult for models that contain a large number

of parameters that need to be adjusted or for real neurons with a large repertoire of behaviours

that need to be replicated, and for this reason various methods have been proposed (for a review

see Geit et al. 2008). To �ne-tune the neurons in GPe, STN and SNr, we employed a hybrid

method, presented in Fountas and Shanahan 2015 and in Chapter 2, that combines a global

and a local optimization algorithm to create models that approximate the neural behaviour

recorded in empirical studies. In particular, as an objective function, we took into account the

major electrophysiological properties of these neurons (e.g. the action potential amplitude and

width, the resting and threshold potentials, the rheobase current, etc), as well as their steady-

state frequency-current (F-I) and voltage-current (V-I) relations. The resulting models closely

reproduce the rich dynamical behaviour of the neurons located in the BG nuclei, as shown in

detail below.

GPe model Although GPe neurons in primates have been shown to exhibit two spiking pat-

terns (HFP and LFB neurons (DeLong 1972)), it is not yet clear whether the same classi�cation

holds for their electrophysiological properties, due to the lack of intracellular recordings in pri-
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mate GPe (Bugaysen et al. 2010). This problem can be bypassed by studying the rodent globus

pallidus (GP), which is believed to be homologous to the primate and human GPe (Gerfen and

Wilson 1996) with retained �ring patterns (Benhamou et al. 2012). In Bugaysen et al. 2010,

GP neurons were examined intracellularly, in order to draw conclusions about the analogous

structure in primates, and a di�erent three-fold classi�cation of the GPe neurons was proposed

(Cooper and Stanford 2000; Bugaysen et al. 2010). In this work, we followed the same approach

and we created three di�erent models of GPe neurons that correspond to the three di�erent

types of GP neurons in Bugaysen et al. 2010.

GPe

Parameter Type A Type B Type C source

vr (mV) -50.7 -53 -54 Taken from Bugaysen et al. 2010

vt (mV) -42 -44 -43 Taken from Bugaysen et al. 2010

vpeak (mV) 38 25.0 34.5 Taken from Bugaysen et al. 2010

Cfig (pF) 55 68 57 Tuned manually

Csim (pF) 70± 16.5 68± 16.4 65± 16 Optimized

a 0.29 0.0045 0.42 -�-

b 4.26 3.895 7 -�-

c (mV) -57.4 -58.36 -52 -�-

d 110 0.353 166 -�-

k 0.06 0.943 0.099 -�-

Ivitro (pA) 107 52 187.5 -�-

Ivivo (pA) 167 64 237.5 Tuned manually

σ (mV) 3 3 3 -�-

Table 3.3: GPe and SNr neuron parameters.

Table 3.3 includes all intrinsic parameters and Fig. 3.3 illustrates the basic properties of the three

resulting neuron models that show distinct electrophysiological characteristics and match to the

literature. From a behavioural perspective, all GPe neurons have similar rheobase currents but

only type B neurons are able to evoke rebound �ring (Fig. 3.3.E). Furthermore, the �ring rate of

type B neurons increases almost linearly with increasing input rate, while types A and C peak

at around 10 and 14 spikes/sec respectively.

Interestingly, the behaviour of type B neurons closely resembles the HFP cells in GPe while the

other two types behave very similarly to LFB cells. Taking this into account, in this study we

consider GP neurons of type B as HFP neurons found in primates and neurons of types A and C

as LFB. Hence, to determine the percentage of each type of neurons in our modelled GPe, we kept

the ratio of HFP:LFB found in DeLong 1972 (NHFP = 85% and NLFB = 15%). In addition, to
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Figure 3.3: Properties of the BG tuned neurons. A: Steady-state F-I curves of the tuned models (solid
lines). Bi-iii: V-I curves of the same neurons. In both cases, the coloured dots represent real in
vitro recordings. STN: Real F-I data obtained from Hallworth et al. 2003 and V-I data provided
by Daisuke Kase and Keiji Imoto via email correspondence. GPe: Real data of the three neuron
types retrieved from rat slices in Bugaysen et al. 2010. SNr: Real recordings were extracted
from Richards et al. 1997 and are compatible with later observed slope (12.8 +−1.13 spikes/sec
per 100 pA) in Rohrbacher et al. 2000, while the neuron's rheobase current was taken from
Atherton and Bevan 2005 and it is around −65 pA. C: Better �t of RB neurons to the real F-I
curve is achieved by applying constant Gaussian noise with σ = 1.5 mV. D: Responses of STN
neurons to hyperpolarizing current steps of −100, −200 and −400 pA. E: Responses of GPe
neurons to hyperpolarizing current reveals rebound behaviour in GPeB cells. F: Neuron response
for hyperpolarizing current −0.6 nA matches recordings in Nakanishi et al. 1997. G: Phase portait
of the SNr neuron in (F). H: Box plot of the AHP amplitudes for varying capacitance C, along
with the real mean and std for each neuron type retrieved from the same study.

further break down LFB neurons into types A and C, we used an approximation based on the

number of neurons examined in Bugaysen et al. 2010, where n = 14/76 and n = 38/76 for type

A and C neurons respectively. The �nal ratios of GPe neurons are given in Table 3.1.
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SNr model GABAergic SNr neurons show relatively simple, agile behaviour, that can be

captured by a single set of parameters. They are able to spontaneously �re high-frequency

spikes that quickly turn into bursts or silence via either excitation or inhibition respectively, by

the three basic BG pathways (For review see Zhou and Lee 2011). This behaviour is facilitated

by their ability to emit rebound spikes (Nakanishi et al. 1997) whose intensity changes with

respect to the level of hyperpolarization. However, these cells are not able to directly in�uence

the internal dynamics of the BG since they project only to the thalamus and dopaminergic

neurons.

The majority of the electro-physiological data used for tuning the SNr neurons here were ex-

tracted from a study in rat's SNr (Richards et al. 1997) which served as the basis of our model.

Thus, data from other experimental studies were selected only if consistent with the former. The

parameters of the resulting model are shown in Table 3.4 and its �nal behaviour is illustrated

in Fig. 3.3.

SNr

Parameter source

vr (mV) -64.58 The value from Tateno and Robinson 2011 ±5

vt (mV) -51.8 Taken from Richards et al. 1997

vpeak (mV) 9.8 Calculated from Richards et al. 1997

Cfig (pF) 172.1 Tuned manually

Csim (pF) 200± 44.5 Optimized

a 0.113 -�-

b 11.057 -�-

c (mV) -62.7 -�-

d 138.4 -�-

k 0.7836 -�-

Ivitro (pA) 150 -�-

Ivivo (pA) 235 Tuned manually

σ (mV) 5 -�-

Table 3.4: GPe and SNr neuron parameters.

STN model Neurons in STN can be categorized according to their response after long hy-

perpolarization, since they exhibit three distinctively di�erent behaviours (Bevan et al. 2000;

Bevan, Magill, Hallworth, et al. 2002; Hallworth et al. 2003). The majority type of neurons

elicits short rebound bursts (RB), as a response to pallidal GABAA inhibition (Bevan et al.

2000), while a quarter of the STN neurons respond with long-lasting rebound spikes (LLRS) at
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lower �ring rates (Bevan, Magill, Hallworth, et al. 2002). Finally, a small amount of neurons do

not produce any rebound e�ect and thus can be called no-rebound (NR) neurons.

When depolarized above the rheobase level, STN neurons exhibit a more homogeneous be-

haviour, with a sigmoid F-I relation (Bevan and Wilson 1999; Hallworth et al. 2003) and they

are able to �re at high �ring rates of more than 100 spikes/sec (Hallworth et al. 2003). Their

distinct patterns of rebound response, as well as the sigmoid shape of their F-I relation, are

mainly regulated by calcium via voltage-gated calcium channels (Ca2+) that activate in low

thresholds (Bevan and Wilson 1999; Bevan et al. 2000; Bevan, Magill, Hallworth, et al. 2002),

as well as a type of Ca2+-activated K+ ion channels (SK KCa channels) (Hallworth et al. 2003).

Our approach here was to model the three di�erent STN types with di�erent sets of equations

and to introduce one additional recovery variable (u2) to Izhikevich equations, as suggested in

Izhikevich 2007a and Fountas and Shanahan 2015, to account for the e�ects of the aforemen-

tioned ionic mechanisms, without losing the basic repertoire of dynamical behaviours that are

supported with the basic recovery variable u = u1.

With the addition of u2, equations (3.1- 3.3) change to

C
dv

dt
=k(v − vr)(v − vt)− u1 − w2 · u2 + I + CN (0, σ2) (3.14)

du1
dt

=a1
(
b1(v − vr)− u1

)
(3.15)

du2
dt

=a2
(
Gb2(v − vr2)− u2

)
(3.16)

For NR neurons G is set to be equal to 1, while for RB and LLRS neurons G = H(vr2−v) is the

heaviside step function. This makes vr2 to act as a threshold below which, the recovery variable

u2 activates, causing rebound responses.

Furthermore, when v ≥ vpeak + Uu2, the model variables reset to

v = c− Uu2 (3.17)

u1 = u1 + d1 (3.18)

u2 = u2 + d2 (3.19)

revealing two more mechanisms of the new recovery variable.

Besides hyperpolarization, calcium-related ion channels also activate after the rising phase of

APs, in�uencing their shape, as well as the F-I relation of the neuron, therefore d2 6= 0. One

of their e�ects, particularly visible during rebound bursts (Hallworth et al. 2003), is to decrease

69



3 A neural model of the basal ganglia circuitry

the size of the APs. In the equations above, this e�ect is controlled by the term U . Since d2 6= 0,

the value of u2 can increase dramatically at high �ring rates, causing the AP height to converge

to a zero value. Hence, to avoid this phenomenon, we set

U =
1

w1|u2|+ 1
w1

(3.20)

which minimizes the impact of u2 to the AP size when |u2| >> 0.

Parameter RB LLRS NR source

vr(mV ) -56.2 -56.2 -58.5 Loucif et al. 2008

vt(mV ) -41.4 -50 -43.75 Beurrier et al. 1999

vpeak(mV ) 15.4 15.4 15.4 Beurrier et al. 1999

Csim(pF ) 23± 6.4 40± 8.8 30± 8.4 Optimized

Cfig(pF ) 23 40 23 -�-

a1 0.021 0.05 0.44 -�-

b1 4 0.2 -1.35 -�-

c(mV ) -47.7 -60 -52.34 -�-

d1 17.1 1 17.65 -�-

a2 0.123 0.001 0.32 -�-

b2 0.015 0.3 3.13 -�-

d2 -68.4 10 92 -�-

vr2 (mV) -60 -60 -43.2 -�-

k 0.439 0.3 0.105 -�-

w1 0.1 0.01 0.001 -�-

w2 0 0 1 -�-

Ivitro (pA) 56.1 25 -1 -�-

Ivivo (pA) 56.1 8 -18 Tuned manually

σ (mV) 0.5 0.5 0.5 -�-

Table 3.5: STN neuron parameters.

Like in the case of GPe neurons, to determine the ratios of each type of neurons in our modelled

STN, we used a rough approximation based on the number of neurons examined in Bevan et al.

2000. In this study, 17 out of 20 neurons were found to elicit rebound bursts, 5 of which had

a long duration and thus can be considered as LLRS neurons. The �nal ratios of STN neurons

are given in Table 3.1.

The parameters of the �nal optimized models are shown in Table 3.5 and their properties are

illustrated in Fig. 3.3, where the strengths and weaknesses of each model are clear. While all
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neurons reproduce the rebound activity of their corresponding biological counterparts, only RB

neurons were successfully tuned to follow the sigmoid pattern of the STN F-I relations. However,

this was adequate to prevail the behaviour of the STN nucleus, since these neurons constitute

its vast majority.

All things considered, neuron optimization was conducted successfully for the purposes of this

study, resulting to models with realistic dynamical behaviour and electrophysiological properties.

However, for a more accurate result, that focuses on the complex dynamics of individual neurons

in STN, further work is required. This would involve optimization based on broader criteria,

such as the distinction between transient and steady-state F-I and V-I relations, which was

however impossible here, due to the lack of consistent electrophysiological data.

3.1.4 Connectivity estimation

The transmission delays of impulses across the synapses of our system were taken from

Humphries et al. 2006, and their values are shown in Table 3.6. In this section, we present

the methodology we used, in the form of an algorithm, to estimate the maximum synaptic con-

ductances Gi of the network, as well as two neural parameters (the external spontaneous current

Ispon = Ivivo and noise σ) based on information about the BG connectivity and �ring rate taken

from the literature.

The initial value of the noise factor σ needed to be increased signi�cantly for neurons in the

MSN, FSI and STN, in order to simulate the e�ect of the di�erent inputs to the BG from external

structures that are not modelled here (e.g. other areas of the cortex). Also, a similar increase

was necessary for GPe and SNr neurons, to account for inputs from other areas of STN which

might correspond to di�erent tonically-active microscopic channels. Finally, the spontaneous

current Ivivo was also altered for each BG nucleus, in order to approximate their basal �ring

rates, when all synaptic inputs are blocked.

This process consisted of the following steps, that are specialized for each a�erent structure and

aim to approximate results of empirical experiments.

NMDA:AMPA ratios Initially, the ratio of the two neurotransmitters used to model the

glutamatergic synapses of our model needed to be determined for all excitatory synapses shown

in Fig. 3.1. As discussed in Humphries et al. 2010 and Tomkins et al. 2013, it has been shown

that FSI neurons receive only AMPA excitatory input from the cortex. Götz et al. Götz et al.

1997 investigated the e�ect of AMPA and NMDA receptors in the rest of the glutamate-based

synapses of the BG and found that they both play an important role in the excitation of the BG
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Connection λ (ms) G (nS) G0 (nS) E (mV) τ (ms) Neurotransmitter

Ctx → MSN 10 0.6 - 0 * 6 M&T ampa

×0.5 M - 0 * 160 M&T nmda

Ctx → FSI 10 0.55 - 0 M&T 6 M&T ampa

Ctx → STN 2.5 0.388 - 0 * 2 * ampa

×0.6 G - 0 * 100 * nmda

STN → SNr 1.5 14 ** 49.5 0 * 2 * ampa

×0.42 G 20.8 0 * 100 * nmda

STN → GPe 2 1.447 - 0 * 2 * ampa

×0.36 G - 0 * 100 * nmda

SD1 → SNr 4 4.5 156.3 -80 * 5.2 C&L gabaa

SD2 → GPe 5 5.435 21.6 -65 L 6 L gabaa

GPe → STN 4 0.518 - -84 B&L 8 B&L gabaa

GPe → SNr 3 93 603.9 -80 * 2.1 C&L gabaa

GPe→ GPe 1 0.765 - -65 L 5 L gabaa

SNr→ SNr 1 0.2 - -80 * 3 * gabaa

MSN→ MSN 1 0.75 K&T - -60 M&T 4 M&T gabaa

FSI→ FSI 1 1.1 G&T - -60 M&T 4 M&T gabaa

FSI → MSN 1 3.75 T - -60 M&T 4 M&T gabaa

M: Moyer et al. 2007, G: Götz et al. 1997, K: Koos et al. 2004, T: Tomkins et al. 2013,

B: Baufreton et al. 2005, L: Lindahl et al. 2013, C: Connelly et al. 2010

* General value for this parameter Dayan and Abbott 2001.

** Local optimization.

Values of G without explanation were obtained with manual optimization.

Table 3.6: Synaptic parameters.

neurons. To approximate the NMDA:AMPA conductance ratios, we considered the ratios of the

peak current for each type of receptor, which was obtained in Götz et al. 1997 using glutamate

in nucleated patches of BG cells. The �nal values for each ratio are given in Table 3.6. Hence, to

estimate connectivity weights of the excitatory synapses we tuned only one conductance (AMPA)

which was used to infer the corresponding NMDA values.

Striatum This was the �rst structure whose connectivity was tuned, since its activity does not

depend on any other BG nuclei according to our model's architecture. The dominant striatal

cell, the MSN, �res at 0.01 − 2.0 spikes/sec in basal tonic mode and 17 − 48 spikes/sec in
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periods of high activation or bursting (Miller et al. 2008; Lindahl et al. 2013). Also, in vivo

mouse recordings have found that the basal �ring rate FSIs in the striatum is between 10− 15

spikes/sec while it increases up to 60− 80 spikes/sec during behavioral tasks (Berke et al. 2004;

Berke 2008).

To tune our striatal neurons, we employed only the model of striatum, striatal a�erents and

internal striatal connectivity, we initially set all cortical �ring rates to be 3 spikes/sec and then

we changed T1 to 10 spikes/sec to account for tonic and bursting modes respectively. The

parameters that were tuned are σmsn, σfsi, Gctx−msn and Gctx−fsi.

STN The basal �ring rate of STN is around 10 spikes/sec and increases 100% without the

in�uence of GPe (Farries et al. 2010). In periods of high activation, STN neurons show mixed

dynamical behaviour and �re at around 30−50 spikes/sec (Schmidt et al. 2013). Hence, to tune

the network properties of STN, we followed the next two steps:

1. Similarly to the previous case, we used only the model of STN and tuned parameters

related to cortical a�erent axons (Gctx−stn, σstn and Pctx−stn) in order to make it �re at

around 20 spikes/sec in tonic mode (without GPe inhibition) and around 40 spikes/sec in

periods of high activation.

2. We then forced GPe to �re at 30 spikes/sec (by using a poisson process instead of the

neuron equations) and tuned Ggpe−stn to make STN �re at around 10 spikes/sec.

An adequate result was achieved by setting the conductance strength of the cortico-striatal

a�erents, for both AMPA and NMDA receptors to 0.25 nS, decreasing the STN noise to σstn =

0.5 mV and setting Pctx−stn = 3% which results to 30 spikes/sec arriving to each STN neuron

in the tonic mode and 100 spikes/sec in periods of high activation.

GPe Recordings of the GPe have shown that its basal �ring rate is around 30 spikes/sec

(Lindahl et al. 2013). After STN lesions, GPe's activity decreases 50% (Féger and Robledo 1991)

while it increases 55% without striatal inhibition and local collaterals (Celada et al. 1999). The

parameters that in�uence the basal �ring rates and connections between STN and GPe and need

to be tuned are Ivivo−gpe, Gstn−gpe, Gmsn−gpe, Ggpe−gpe and σgpe. The �rst parameter has been

already optimized in order to make each type of GPe neurons to be close to the critical state

between their two �ring modes (see Neural parameter estimation). Since the remaining four-

dimensional parameter space is complex for hand-tuning, we employed the classical Nelder-Mead

method for local search (Nelder and Mead 1965), with the following �tness function:

1. Use GPe (without the Striatum and local collaterals) and force STN to �re at 10 spikes/sec.
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Return |FR(GPe)− 46.5|.

2. Turn the striatum and local GPe collaterals on and return |FR(GPe)− 30|.

3. Turn STN o� and return |FR(GPe)− 15|.

SNr Di�erent reports show SNr to �re at rates between 22 − 29 spikes/sec, when the BG

operate normally (STN at 10, the striatum around 1 and the GPe around 30 spikes/sec) (Zahr

et al. 2004; Walters et al. 2007; Gernert et al. 2004; Lindahl et al. 2013). Also, without the

in�uence of the GPe, SNr is shown to increase its �ring rate more than 300% (Celada et al. 1999;

Lindahl et al. 2013), while without STN, the �ring rate is decreased 50% (Féger and Robledo

1991).

To approximate the e�ect of the incoming synapses to SNr, we used again the local search

method described above, in the parameter space {Ivivo−snr, Gstn−snr, Gsnr−snr, Gmsn−snr}.
The �tness function in this case includes the following steps:

1. Turn o� GPe, and reduce maximum conductance of STN-SNr connections to Gstn−snr/2.

Return |FR(SNr)− 76.5|.

2. Turn o� STN and force GPe to �re at 15 spikes/sec. Return |FR(SNr)− 12, 5|.

The two-fold reduction of STN maximum conductances was necessary to simulate the e�ect of

the depressive STN synapses to SNr (Moran et al. 2011), since its �ring rate will be increased

100% without the in�uence of GPe. As the �nal step, using the whole BG model, we hand-tuned

Ggpe−snr such that SNr �res at around 25.5 spikes/sec, which is the average value of the di�erent

�ndings.

Short-term plasticity The above procedure results in a static model of the BG connectivity,

where the strength of all synapses remains �xed for the whole duration of a simulation. Its

behaviour represents the steady-state tonic mode of the BG circuit, where synaptic conductances

G have already been modulated with respect to the tonic �ring rate of the pre-synaptic neuclei.

To �nd the initial conductance of each synapse G0, we need to calculate the degree by which

it changes in tonic mode. If STFX(f) encodes the conductance change due to short-term

facilitation for a nucleus X and �ring rate f , and STDX(f) the corresponding relation for

depression, then the current synaptic conductance can be found as GX0 (f) = GX/STFX(f) or

GX0 (f) = GX/STDX(f) · U for facilitating or depressing synapses respectively. Hence, from

3.2: STFSD1(1.1) = 1.5, STFSD2(1.1) = 1.05, STDGPe(30) = 0.154 and STDSTN (10) = 0.283.

The �nal conductances G0 are given in Table 3.6.
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In conclusion, estimating connectivity between and within the BG nuclei comprises a semi-

automated procedure that resulted in a model with realistic �ring rates in both tonic mode

and during periods of high cortical activation (Fig. 3.4.A-B). This procedure should be followed

again, in case that a di�erent number of channels or neurons within a channel is chosen.

3.2 Resulting behaviour

Our optimization process resulted in eight new spiking models of BG neurons, based on the

phenomenological Izhikevich equations (Izhikevich 2003), that were integrated into a large-scale

model of the BG canonical circuit. This was successfully tuned to reproduce the �ring patterns

observed in biological BG neurons, both measured in brain slices as well as in in vivo behavioural

studies. Fig. 3.1 shows the internal structure of the model, with emphasis on the synaptic types

between the BG nuclei. The spontaneous �ring rates of all optimized types of neurons, when

their synaptic input current is zero, are compared with real data in Fig. 3.4.A.

The optimization of the connectivity between BG nuclei was achieved based on two di�erent

functional scenarios that resulted in the �ring rates illustrated in Fig.3.4.C, which will be termed

as tonic and phasic modes throughout this document. In the tonic mode, the model received

the same cortical input in all microscopic channels, which had a low mean �ring rate of 3

spikes/sec and represented the default tonically-active state of the BG neurons and microscopic

channels. Additionally, the phasic mode was accompanied by a higher level of stimulation in a

single channel, via a �xed 10 spikes/sec-activation of the corresponding cortical ensemble (see

Fig. 3.5). This enhanced cortical input was able to cause transient e�ects in the BG network,

such as short-lasting bursts in the input structures of the circuit or transient local silence in the

GPe and SNr, and represented the scenario that this part of the BG circuitry is highly engaged

in a motor or cognitive task.

In both modes, the model produced behaviour which agrees well with the current literature.

The phasic cortical stimulation of a single channel was enough to drop the �ring rate of SNr

to almost 0 spikes/sec, while activity in neighbouring channels decreased to only around 29%.

This behaviour has been associated with decision making (Redgrave et al. 1999; Humphries et al.

2006; Gurney et al. 2015), since it allows the BG circuitry to selectively halt inhibition of the

area in the thalamus that is targeted by the a�ected microscopic channel.

In additional experiments, the cortical input that the model received had an oscillatory be-

haviour, as described in methodology, with a mutual amplitude across the cortical spike gener-

ators of the same channel and a �xed frequency, picked randomly from 0 to 100Hz. In the case

of a phasic channel, the amplitude of the oscillations was 10 spikes/sec while the amplitude in
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tonic channels was again 3 spikes/sec. Although this type of phasic input caused almost identical

changes to the �ring rates of the STN and GPe, compared to the initial experiments where each

channel had a �xed �ring rate, it had a strong in�uence on the activity of SNr, as well as some

small in�uence on the striatum (see statistical tests in Fig.3.4.C). In particular, the SNr �ring

rate varied greatly for di�erent cortical frequencies, between 0.13 and 23.71 spikes/sec compared

to 0.07−1.25 spikes/sec in the static case, with a standard deviation of 6.33 spikes/sec. A Spear-

man's rank-order correlation coe�cient test between the cortical frequency and the �ring rate

of SNr resulted in ρ = −0.882 and p-value < 10−40, indicating a nearly monotonic relationship.

However, despite the fact that SNr showed such a di�erent behaviour in the same channel, the

�ring rates of the neighbouring channels were indistinguishable in both cases (p-value of T-test:

∼ 0.569).

Finally, when given strong cortical stimulation, the model produced symmetric activity in both

groups of MSN neurons, at around 30 spikes/sec. This was a result of the �ne balance between

MSND1 excitation, which is potentiated by dopamine, and connectivity asymmetries in local

inhibition favouring MSND2 neurons. Further simulations revealed the existence of a transition

threshold at around 9.5 spikes/sec of cortical stimulation, above which, the �ring rate of MSND2

neurons exceeds MSND1, supporting the recently-proposed hypothesis of a decision threshold

between the direct and indirect pathways in the striatum (Bahuguna et al. 2015).

Fig. 3.4.B illustrates this transition of the dominating neuron type, as well as the e�ect of

dopamine in MSND1 neurons that resulted in the modulation of the former. In low dopamine

conditions (0%), this decision threshold shifts to around 3 spikes/sec of cortical stimulation while

for high dopamine (90%), it exceeds 18 spikes/sec, an unrealistically high rate for corticostriatal

neurons during behaviour (Turner and DeLong 2000).
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ganglia function

4.1 Introduction

Rhythmic activity is one of the most widely-studied phenomena in the brain (Buzsaki 2006). In

the mammalian cortex, oscillations in low-frequency ranges (< 100 Hz) have been associated with

numerous cognitive and motor functions, that vary from feature binding (Eckhorn et al. 1988)

and mental simulation (Brinkman et al. 2014) to movement preparation and execution (Leventhal

et al. 2012). This cortical feature provides a fruitful framework to study neural computation and

has given rise to theories that account for the control of communication between regions (Fries

2005, 2009) as well as memory formation and retrieval (Hanslmayr et al. 2012).

Oscillatory phenomena are not only prevalent in the cortex but also a prominent feature of other

sub-cortical structures. In the BG, low-frequency oscillations are ubiquitous during spontaneous

activity, and further enhanced in neurodegenerative disorders that a�ect this region, such as

Parkinson's (PD) or Huntington's (HD) disease. Although the cortex and the BG are largely

interconnected, both functionally and structurally, it is still unclear which elements of this rich

oscillatory behaviour are generated in the cortex and processed in the BG, or vice versa.

Experimental and theoretical studies have provided initial evidence suggesting that BG activity

at some speci�c frequency bands is driven by areas of the cortex (Litvak et al. 2011; Brittain

and Brown 2014), and that those signals are not simply relayed through the BG pathways

but they are rather subjected to some sort of internal processing, depending on their initial

frequency (Brittain and Brown 2014). However, most of the knowledge that has been acquired

so far does not emanate from studies on healthy humans, due to the inability of the most current

non-invasive recording techniques to be applied in sub-cortical structures. Instead, most studies

are con�ned either to animal models or human patients that undergo deep brain stimulation

(DBS), a common surgical treatment of BG diseases, that provides the opportunity to record

the spiking activity of multiple structures simultaneously.

In addition, although a substantial number of computational models have been proposed, (see

Chapter 1), the topic of cortical oscillations is largely neglected by the majority of the cur-

rent approaches which, depending on their level of detail, focus either on inter- or intra-nuclei

interactions and locally generated rhythms.

The purpose of this chapter is to redress this imbalance and foreground the theme of cortical
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oscillations by means of the biologically plausible neural model presented in Chapter 3. Using

this model, we carried out an analysis on the relationship between cortical frequency, level of

dopamine, locally generated oscillations and the information �ow between the BG structures.

We found that the e�ective connectivity between the BG structures, and by extension the BG

function, is completely controlled by the frequency and phase of cortical oscillations. Via this

mechanism, cortical signals can be relayed, blocked or transformed depending on which BG

pathway remains open in each frequency range. Furthermore, we predict that exaggerated beta

band activity, a typical symptom in PD (Brown et al. 2001; Brittain and Brown 2014), originates

in the subthalamic nucleus (STN) on account of single neuron dynamics of this structure, but

it is entrained by the cortex. Next, the literature related to low-frequency bands is reviewed

and compared against our results, and cognitive mechanisms related to each band are proposed.

Finally, we point out the great impact of the phase o�set between cortical oscillators to the

interaction between the STN and the globus pallidus external (GPe), and its role in modulating

the BG output.

Our results suggest that the BG can be viewed as the �gear box� of the cortex. Di�erent

rhythmic cortical areas are able to switch between a repertoire of available BG modes which, in

turn, change the course of information �ow back to and within the cortex.

4.2 Results

4.2.1 Dopaminergic modulation of intrinsically-induced beta oscillations in

the GPe-STN loop

One major and well-studied feature of the BG function is the existence of strong, intrinsically-

generated, oscillatory activity that originates from recurrent connections between the STN and

GPe (Plenz and Kital 1999; Bevan, Magill, Terman, et al. 2002). The next step of this work was

to investigate the oscillatory behaviour generated within our model, before moving to cortical

oscillations, in order to assess the extent to which it agrees with the literature. To calculate

the power spectra of the di�erent BG structures we employed the multitaper method (Mitra

and Pesaran 1999), applied on 1ms-binned, mean-centred and Gaussian-smoothed spike trains,

which o�ers good frequency speci�city and is able to detect low-frequency signals, better than

other typical methods (Vugt et al. 2007).

Without any �uctuations of the �ring rate of the input ensembles, the model was able to gen-

erate beta oscillations internally, mainly visible in STN and GPe, whose peak frequency varied

depending on the activation of each channel. When the stimulation was limited at the tonic
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power spectrum for random dopamine levels between 0 and 1 (n = 4000). Down: Spearman's
rank correlation coe�cient (ρ) and the slope of best-�t regression line between frequency power
and DA levels measured in the above runs. The black lines indicate areas where p-value is less
than 0.05. C: Mean power of the four interesting frequency bands for di�erent plausible dopamine
levels, during the phasic state of a microscopic channel in STN. D: Average cross-correlation
between all neurons of the STN for di�erent levels of dopamine, when BG stimulation is applied
transiently (solid line), or over a long time period (dashed line), after the subtraction of the same
statistic produced by surrogate data. E: Average power spectrum of a phasic STN channel under
healthy and PD conditions. In all cases, the shaded areas or lines represent standard deviation.

levels, the STN displayed strong lower-beta oscillations with a sharp peak at 18−20Hz while the

GPe showed a weaker peak at the same frequencies (Fig. 4.1.B). An increase of the input �ring

rate to 10 spikes/sec, enough to cause silence in GPe and SNr, diminished the di�erence between

areas of low frequency bands in STN, which remained, however, highly active (Fig. 4.1.A).

Furthermore, the level of dopamine in the neuron equations of the network was found to modulate

these low-frequency oscillations in di�erent ways. In a phasic STN channel, dopamine above

the normal levels (d1,2 > 0.3) was able to suppress the power of oscillations lower than 20Hz

(Fig. 4.1.C) and strongly amplify the upper-beta band (23− 30Hz), resulting in a clear peak at

28 − 30Hz. On the other hand, low dopamine caused an ampli�cation of the lower-beta band,

almost linearly proportional to the level of reduction, from 0% to 30%, without any signi�cant

e�ects on the other frequency bands.

Finally, in tonic activation of a BG channel, high levels of dopamine caused a slight shift in the
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peak beta frequency in STN and abolished any indication of enhanced beta activity in GPe. As

in the case of a phasic channel, these oscillatory e�ects were more noticeable for dopamine values

signi�cantly higher than the net concentration. This dopamine increase is expected in healthy

brains, where the level of dopamine can be boosted by phasic release during behaviour (Jenkinson

and Brown 2011).

Interestingly, similar oscillatory patterns have been found in clinical recordings of PD patients,

during �on-� and �o�-medication� periods (López-Azcárate et al. 2010). To simulate the `o�'

Parkinsonian BG state more accurately, we assumed complete dopamine depletion (d1,2 = 0),

as well as an increase of the cortical impact to the striatum and STN. Although PD does not

in�uence the �ring rate of the majority of biological corticostriatal neurons, low dopaminergic

transmission has been shown to cause high levels of cross-correlated activity between the cortex

and the striatum (Costa et al. 2006) and hyperactivity in STN (Bergman et al. 1994; Steigerwald

et al. 2008). Hence, to capture this e�ect here, we tested two di�erent adjustments to the

model, a 20% increase of the cortical �ring rate, as well as a 10% increase of the conductance

of the synapses that originate from the cortical ensembles. Both simulations resulted in almost

identical changes in STN behaviour, that agree well with the literature (Bergman et al. 1994;

López-Azcárate et al. 2010). These comprise a substantial increase of the power of lower-beta

oscillations, shown in Fig. 4.1.E, a 20% drop of low-gamma and upper-beta oscillations, and a

20% increase of the overall STN �ring rate.

The excessively rhythmic behaviour of the phasic STN is particularly interesting, as its neurons

remained uncoupled without the inhibition of GPe (most GPe neurons connected to a phasic

STN channel remain silent), leading to the conclusion that the emergent oscillatory patterns are

a result of membrane potential dynamics of the STN neurons.

In pursuit of this idea, we conducted a statistical analysis comparing the interspike intervals

(ISIs) of the three simulated neuron types in STN, in order to evaluate the behaviour of its

individual cells. The coe�cient of variation (CV) of ISIs was used to measure irregular �rings,

while bursting activity was measured by means of the asynchrony index (AI), the ratio of the

mode to the mean ISI (Gernert et al. 1999). Small values of AI< 1 indicate a large portion of

short ISIs compared to the mean �ring rate.

Fig.4.2 illustrates that, indeed, excessive beta activity observed in the Parkinsonian `o�' state

is orchestrated by rhythmic bursts, produced by the rebound-bursting (RB) STN neurons. Al-

though the rest of the neurons in the STN exhibited highly regular behaviour that did not

change during the `o�' state (CV= 8.9% ± 0.02, AI≈ 1 ± 0.05), the �ring patterns of RB neu-

rons were less regular (CV= 37% ± 0.08, AI= 0.89 ± 0.3), and switched to rhythmic bursts

(CV= 50.2%± 0.08, AI= 0.69± 0.2) with a clear frequency peak at 20Hz.
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Figure 4.2: Firing patterns of the three types of STN neurons. A: Two recorded examples of STN neurons
show irregular (left) and regular (right) �ring patterns, as well as the behaviour of the same neurons
during the Parkinsonian `o�' state. B-D: ISI distributions of STN neuron types, superimposed on
stacked histograms. The shadow represents the changes in the total STN distribution during the
`o�' state. LLRS: Long-lasting rebound spiking neuron, NR: No-rebound neuron.

Furthermore, we observed that tonic activation of GPe was able to drive STN neurons into a

synchronous state that was sustained for approximately 400 ms, following the stimulation of the

underlying BG channel. Fig. 4.1.D shows that this synchronization in phasic STN channels was

in�uenced by dopamine, in an inversely-proportional manner. This behaviour is not surprising,

since the lack of dopamine was shown to cause increases in the same frequency bands both

in GPe and STN, thus facilitating synchronization. To further con�rm this observation, we

created a number of surrogate time series of the binned spike events of each neuron, randomly

shu�ed over time (Theiler et al. 1992), which destroyed any linear correlations between spikes.

A comparison with the original time series produced by our model showed that there was close-

to-zero correlation between synchronization and dopamine in the case of the surrogate data, in

contrast to the former case, thus the null hypothesis of uncorrelated noise can be rejected.

Finally, to see if this synchronous state can be maintained when it is driven by extrinsic beta

activity, we compared the STN behaviour of the above example, as opposed to the case when

the simulated cortical ensembles oscillate at a upper-beta frequency (f = 25Hz) with a weak

amplitude of A = 6 spikes/sec, without changing the overall cortical �ring rate. As a measure

of synchrony, we extracted the instantaneous phases of each STN neuron using the Hilbert

transform across each mean-centred and Gaussian-smoothed spike train. The synchrony Φ was

then calculated as the average of 1
N

∑N
j e

iθHj (t) over time t, where N is the number of STN

neurons and θHj (t) represents the instantaneous Hilbert phase of the neuron j. This method

was selected for its tolerance to amplitude changes (Le Van Quyen et al. 2001), since cortical

oscillations at the same frequency can increase the amplitude of the STN emerging beta. After

100 simulations for di�erent initial conditions, the static case resulted in average synchrony
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Φ = 0.26 ± 0.01 in a phasic microscopic channel and 0.32 ± 0.01 in a tonic channel. This 23%

increase in the tonic case was anticipated as the GPe is active and able to provide inhibitory

feedback to the STN. On the other hand, although weak, cortical beta oscillations caused Φ to

increase even more to 0.34 ± 0.02, while keeping the GPe silent, and therefore con�rmed our

initial premise.

4.2.2 Only low cortical frequencies can be maintained throughout the BG

structure

When the BG model received oscillatory input from the simulated cortical ensembles, it exhibited

a mixed behaviour. In this experiment, a phasic BG channel was stimulated by a cortical

ensemble with frequency f1 ∈ (0, 80) Hz and amplitude A1 = 10 spikes/sec, while a second

neighbouring channel received input from a tonic ensemble with amplitude A1 = 3 spikes/sec,

frequency f2 = f1 and random relative phase φ2 ∈ [0, 2π). The aim here was to explore the ability

of the model's internal dynamics to �lter out some frequency bands while preserving others,

which would allow the discrimination between cortical frequencies that pass to the thalamus and

end up back in the cortex. The metrics used for this analysis were the power of the examined

frequency band in each nucleus and the coherence between the cortical inputs and the nuclei.

Frequency spectra were calculated using the same methodology as before, while coherence was

de�ned as the normalized cross-spectral density between the above sources.

In low frequencies, between 0 and 30 Hz, the oscillatory patterns of the cortical inputs were

largely replicated in all BG nuclei, in both the phasic and neighbouring channels. In contrast,

cortical activity at higher frequencies was preserved in the striatum but declined in subsequent

structures. This is evident in Fig. 4.3.A-B, where frequency power and coherence match for most

input frequencies. One clear reason for this decline is the blockage of the GPe and SNr activity

in the phasic channel, that occurred at high frequencies due to striatal inhibition. However, the

fact that certain frequencies also abated in STN, as well as neighbouring channels of GPe and

SNr that were not silent, points to the existence of another mechanism that �lters out frequency

bands above 30Hz.

One candidate explanation of this e�ect, which was revealed here, regards the inter-channel

competition that was evoked by the MSN collaterals and the multi-channel excitation from the

STN. In particular, neurons of the STN that correspond to the phasic channel, were able to

send EPSPs to GPe neurons of neighbouring channels, which in turn inhibited neighbouring

STN neurons and cancelled out the initial oscillatory EPSPs from the cortex. Fig. 4.3.C shows

that, without the in�uence of GPe inhibition, phasic STN neurons tended to adapt to cortical os-

cillations at frequencies 13−40 Hz with a maximum e�ectiveness, while under normal conditions,
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Figure 4.3: Cortical coherence throughout the BG. A) Cortical coherence and B) frequency spectrum and
of the BG nuclei for di�erent cortical frequencies f1. A uni�ed spectrum for all striatal populations
was included (Str), since they all exhibited very similar behaviour. C,D) Z-score transformation
of the cortical frequency f1 in the STN power spectrum of the phasic (C) and the neighbouring
(D) channels.

this frequency band shifted to 0 − 12 Hz. Neighbouring channels were not in�uenced by GPe

inhibition (Fig. 4.3.D). In a similar fashion, this self-cancelling mechanism a�ected the entire

BG circuitry via STN EPSPs, and facilitated the blockage of high-frequency cortical coherence.

Furthermore, the striatum produced harmonic oscillations (mainly in MSND1 neurons), at fre-

quencies limited to the low and gamma ranges (Fig. 4.3.B). Unlike cortical oscillations, harmon-

ics passed only to the SNr of the phasic channel via the direct pathway, which resulted in their
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strong ampli�cation. This constitutes one more BG mechanism that facilitates inhibition over

excitation, and allows inhibitory BG pathways to be more tolerant to di�erent phases than the

hyper-direct pathway.

Finally, we ran the same experiments in PD conditions to evaluate its impact on the above

mechanisms. The only noticeable e�ect was the increase of the frequency range of cortical

oscillations that can be maintained throughout the BG. The maximum frequencies increased

by 20% − 40% across all BG nuclei. This result was consistent for both frequency power and

coherence.

4.2.3 Cortical frequency de�nes the e�ective connectivity of the BG

pathways

The e�ective connectivity between the BG structures over a certain period of time can be mea-

sured by calculating the causal interactions between their corresponding spiking time series, using

a variety of statistical methods. In this work, we used pairwise transfer entropy (TE) (Schreiber

2000), a generalization of granger causality, when the Gaussianity of the time series cannot be

assumed (Barnett et al. 2009). TE between two time series X and Y at time t measures to

what extent the couple (Xt−τ , Yt−τ ) is more resourceful in forecasting Yt, than just the value of

Yt−τ (Wiener 1956). It is expressed as

TX→Y = −
∑
t

p(xt, x
(k)
t−τ , y

(l)
t−τ ) log

p(xt|x(k)t−τ , y
(l)
t−τ )

p(xt|x(k)t−τ )
(4.1)

where k, l are the lengths of the events xi ∈ X and yi ∈ Y respectively, and the time constant

τ indicates the interval between the two measurements, i.e. the time delay of the information

�ow. The choice of τ in measuring TE between neuronal ensembles is very important and

can lead to signi�cantly di�erent numbers , that might be in�uenced by the delays of di�erent

a�erent connections. A reasonable choice, which was also adopted in this work, is to calculate

the TE that arises on the timescale of the AP propagation via the chemical synapses between

the examined ensembles.

For the generation of the time series, 10 seconds worth of data was recorded, for every frequency

of cortical oscillation between 1 and 100 Hz. The amplitude of the oscillation in the examined BG

channel was set to A = 10 spikes/sec while oscillations in neighbour channels were limited to 3

spikes/sec. The phase o�set φ between cortical oscillations of this channel and other neighbours

was randomized uniformly in every run. Finally, the spiking activity of each BG nucleus was

summed for each millisecond and then low-passed using a discrete-time RC �lter (RC = 2,
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dt = 0.1).

Fig. 4.4.A illustrates the resulting spectrum of TEs between the cortex and the BG nuclei

(�rst half) and for the main pathways of the BG circuit (second half). We observed a clear

distinction between input frequency bands, giving rise to completely di�erent behaviour in the

model (Fig. 4.4.B). The greatest variation arose in low-frequency bands, between 4 and 30Hz,

under the very conditions that are necessary to allow the relay of information via the BG.

More speci�cally, during stimulation at alpha frequencies, the three major BG pathways re-

mained highly active. In the indirect pathway, striatal neurons were able to a�ect the behaviour

of the SNr via the GPe, bypassing modulation by the STN-GPe loop and, as a result, the input-

output information �ow in the BG maximized. In the lower-beta band, greater information

�ow from the cortex allowed the STN to restore the modulation of the indirect pathway, and to

maintain a higher impact than the GPe on the SNr. This balance changed again at upper-beta

frequencies, where the �ow of information via the STN and GPe was restricted to interactions

within the STN-GPe loop, and thus the SNr behaviour was dictated by the MSND1 inhibition.

In gamma frequencies, a cortical information blockade turned the STN into a local-circuit com-

ponent that a�ected the SNr only via GPe inhibition. The full indirect pathway dominated the

BG behaviour and blocked cortical information �ow.

Finally, below alpha, the impact of the GPe on the SNr was maximal at theta frequencies

(4 − 8Hz), even though the information �ow from excitatory sources towards the GPe abated

considerably. In fact, the amount of TGPe−SNr was found to have increased by 84 ± 58%

compared to the sum of TE towards the GPe, a fact that leads to the hypothesis that, under

these conditions, some of the information that arrives to the SNr is generated within the GPe.

Fig. 4.4.C summarizes the above observations and illustrates the impact of the cortical frequen-

cies on the activation of the three main BG pathways. This analysis was based on a heuristic

method, where the values of TE between the consecutively connected nodes of a pathway were

multiplied and then normalized with respect to their distribution across cortical frequencies.

Interestingly, as evidenced by this �gure, di�erent frequency bands give rise to di�erent combi-

nations of active pathways, increasing the repertoire of potential functions that the BG are able

to perform.

Furthermore, we observed that in certain low frequencies, the phase o�set φ between the two

oscillating cortical ensembles was able to change how the STN and GPe interact with their adja-

cent nuclei. In Fig. 4.4.D, di�erent phase o�sets between alpha oscillations were able to block, or

reverse the direction of information �ow between STN and GPe, which was also accompanied by

a pronounced e�ect on the pathways that include them. This was more evident when the strong

cortical signal of the phasic channel (10 spikes/sec) preceded in time the weaker (tonic) oscilla-
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Figure 4.4: E�ective connectivity of the BG model. A: Spectrum of TE for the connections of the BG
circuit. DP, IP and HDP stand for the direct, indirect and hyper-direct pathways respectively.
B: Resulting e�ective connectivity of the BG for di�erent cortical frequency ranges. Thickness
of synaptic connections represents TE (normalized across the frequency spectrum) and the solid
lines show the dominating pathways. C: Activation of the three main BG pathways for di�erent
cortical frequencies. D: TE of GPe a�erents versus e�erents, for di�erent phase o�sets φ and
alpha cortical rhythms. When 0 ≤ φ ≤ π, oscillation peaks in the phasic cortical channel precede
in time oscillation peaks in the tonic channel.

tory signal of a neighbouring channel, i.e. 0 ≤ φ ≤ π. In this case, the �ow of information was

stronger towards the STN, and the activation of the hyper-direct pathway was largely modulated

by the in�uence of GPe (Spearman's correlation between TSTN−GPe and TSTN−SNr: ρ = −0.72,

p ≈ 5 × 10−17), while in the opposite case, when −π ≤ φ ≤ 0, the prevailing direction of the
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�ow also reversed. This e�ect had signi�cant rami�cations for the balance between hyper-direct

and indirect pathways which was found to be strongly correlated with the direction of �ow be-

tween the STN and GPe (Spearman's correlation between TSTN−GPe
TGPe−STN

and TSTN−SNr
TGPe−SNr

: ρ = −0.44,

p ≈ 3× 10−05). This set of observations provides insight into the modulation mechanism of the

STN-GPe loop and indicates the importance of phase-to-phase coherence in low-frequencies.

As previously, we used surrogate data testing to con�rm that our observations were not a result

of uncorrelated noise. After randomly shu�ing the time-series of each nucleus for 1000 times, the

average TE for all connections became 2.6× 10−3 ± 8.5× 10−4, and it was similarly distributed

across di�erent frequencies. This value is considerably lower than the resulting TEs in Fig.4.4

and thus the null hypothesis can be rejected for any of the above results.

4.3 Discussion

The emerging oscillatory behaviour of the model was particularly interesting, since the tuning

process was based only on simple �ring rate rules and neuron electrophysiology, updating the

maximum synaptic conductances and the internal phenomenological parameters of the individ-

ual neurons respectively. As our simulations show, the frequency of the cortical input can be

maintained throughout the BG structures and dramatically changes the way that the BG circuit

operates. In the rest of this section, we discuss the consistency between our results and previ-

ously published experimental data and theories, and we provide a number of testable predictions

that are supported by our simulations.

4.3.1 Beta activity is locally-generated but cortically-entrained in the

Parkinsonian state

Numerous associations can be made between the oscillatory behaviour of our model and exper-

imental data both in the healthy and Parkinsonian BG. In Leventhal et al. 2012, Leventhal et

al. discovered that beta power in the cortex and the BG of healthy mice changes distinctively

during behaviour. They also measured coherence and correlation of frequency bands throughout

the BG and found that, during their behavioural experiments, coherence was maintained at both

alpha and beta frequencies but disappeared at higher frequencies. In Fig.4.3.A. we observed the

same phenomenon in our modelled BG both in a stimulated channel that was driven by phasic,

oscillatory cortical activity, as well as in neighbouring areas.

Within the microcircuit, recordings of PD patients and primate subjects show exaggerated beta

oscillations in the STN (Bergman et al. 1998; Brown et al. 2001; Hammond et al. 2007; Brittain
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and Brown 2014) that correlate with the pathological symptoms of PD (Kühn et al. 2006;

Little and Brown 2014) and exhibit high local coherence (Moran et al. 2008). Although a well

studied phenomenon, the literature provides con�icting evidence regarding the source of these

oscillations, which are thought to either be generated internally, via the STN-GPe reciprocal

coupling (Plenz and Kital 1999; Bevan, Magill, Hallworth, et al. 2002; Tachibana et al. 2011;

Pavlides et al. 2012), or within other BG nuclei, such as the striatum (McCarthy et al. 2011),

or in certain areas of the cerebral cortex (Hammond et al. 2007; Litvak et al. 2011).

One compelling hypothesis, presented in Brittain and Brown 2014, is that upper-beta oscillations

of the motor cortex entrain beta activity generated within the BG, which however peaks in

the lower-beta band, during the Parkinsonian `o�' medication state. Our results support this

hypothesis and provide a potential explanation that points to the internal dynamics of the STN

rebound bursting (RB) neurons as the source of these pathological oscillations.

In the simulated Parkinsonian state of a phasic channel in Fig. 4.1, our model indeed produced

excessive lower-beta oscillations, enhanced by both dopamine depletion and the potentiated

cortico-subthalamic projections. Despite its in�uence on beta amplitude, however, the lack

of dopamine was not su�cient to increase the average synchronization between pairs of STN

neurons, as it is found in-vivo (Moran et al. 2008), unless the STN activity was measured

transiently, right after the halt of cortical beta oscillations (Fig. 4.1.D). To solve this problem

and achieve a synchronous steady state, the model was stimulated with a weak oscillatory cortical

input in upper-beta band (25 Hz), which was found able to entrain the STN neurons and increase

the average instantaneous phase-synchronization Φ by 31%. The oscillatory behaviour that

emerged after this modi�cation closely resembles STN �eld potential recordings in the motor

BG of PD patients in López-Azcárate et al. 2010, and reveals a di�erence between the role of

lower and upper beta bands, which is consistent with the discussion in Brittain and Brown 2014.

Nevertheless, the question remains of how cortical upper-beta activity can entrain the strong

lower-beta generated within the BG network. More light can be shed at the single-unit level,

where the majority of the STN neurons showed a mixed rhythmic bursting behaviour, similar

to recordings in Steigerwald et al. 2008, with a frequency peak at around 18 Hz (Fig. 4.2.A).

In particular, we observed that, without the in�uence of the GPe, which is locally inhibited

on phasic microscopic channels, and with excessive excitation from the cortex, the rebound-

bursting STN neurons generate free and uncoupled oscillations, resulting mainly from their

internal dynamics. Since they are uncoupled, these oscillations are prone to entrainment by

external stimuli, insofar as those stimuli also oscillate at a compatible frequency, such as in the

experiment described above.

The plausibility of the �ring patterns of both the pathological and healthy simulated STN neu-
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rons can be con�rmed by a number of empirical studies. The positively skewed distribution of

the inverse ISIs of these neurons, shown in Fig. 4.2.B, agrees well with the distribution of single

neuron �ring rates, recorded in the STN of healthy monkeys (Bergman et al. 1994). After a treat-

ment with the neurotoxin MPTP, which is known to cause Parkinsonian-like symptoms (Burns

et al. 1983), the distribution of �ring rates shifted towards higher values and had a �attened

pro�le, a feature that was also captured by the simulated Parkinsonian `o�' state and illustrated

in the same �gure. Furthermore, the ratio of burst-like neurons and the distribution of mean

ISIs for each STN neuron in Fig. 4.2.D is consistent with the results of multi-electrode recordings

in human PD patients in Steigerwald et al. 2008, where the power spectra of individual STN

neurons were found to peak at 17.9± 6 Hz.

The pathological mechanism we propose here could be further investigated experimentally, with

a signal-cancellation technique either at the level of the cortex (as in Joundi et al. 2012) or

directly in the STN using, for instance, DBS electrodes. Our hypothesis predicts that, in highly

active areas, a reduction of the in�uence of cortical upper-beta activity to STN neurons will

also reduce the correlation between their spike trains, as they will lose their main source of

entrainment, but it will leave the amplitude of lower-beta almost intact.

Moreover, the behaviour of the system in the tonic state reveals the role of the GPe in the

generation and maintenance of synchrony within the STN. In Fig. 4.1.B, oscillations in STN

and GPe are highly coherent at lower-beta frequencies, a relation that is inversely proportional

to the amount of DA in the system. In the resting Parkinsonian state, characterized by zero

dopamine, enhanced cortico-subthalamic connections and tonic cortical activation, inhibitory

feedback from the GPe was able to increase the average instantaneous synchrony Φ of STN

neurons by 23% and maintain it for 400 ms after the silence of GPe. This leads to further

predictions regarding the interaction between the STN and GPe. First, in periods when the

BG input nuclei have areas that are highly active, a subgroup of GPe neurons is expected to

be silent, due to high inhibition from MSND2 neurons (Fig. 3.4). These periods of silence have

been observed before in the GPe (DeLong 1972), and have been linked to striatal inhibition (Kim

and Kita 2013), but based on our model, they should also exhibit high correlation with STN

activation. Following this vein, long periods of silence in GPe neurons lead to a halt of the

only source of inhibitory feedback to the connected STN neurons. As a result, if cortical beta is

cancelled out as proposed in section 4.2.2, highly active STN neurons are expected to become

unable to maintain any synchronous state, and have minimum correlation (as in Fig. 4.1.D), if

the duration of this activity exceeds a time threshold.

Apart from the peaks in beta band of the STN power spectrum, Lopez et al. in López-Azcárate

et al. 2010 found a second area, at very high frequencies around 350 Hz, that was evidently

high. This activity was shifted towards lower frequencies (250 Hz) without medication for the
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Parkinsonian symptoms. Although neither case has been captured by our simulations, this

was possibly due to the nature of the multitaper method used for spectral analysis, which is

insensitive to weak signals at high frequencies (Vugt et al. 2007).

Finally, one more factor that might contribute to the synchronous activity within the STN is

the complete BG-thalamo-cortical loop, which involves the hyper-direct BG pathway. Since the

STN neurons are able to generate beta patterns spontaneously, they might also be able to to

enhance beta activity throughout this loop, even in the case that GPe neurons are locally silent.

This can be tested in future work, with an extended version of our model, that also incorporates

neural populations corresponding to both thalamic and cortical areas.

4.3.2 Oscillations and the BG function

Beta oscillations are also prevalent in the healthy function of the BG and they are strongly as-

sociated with the motor system of the brain (Baker 2007; Leventhal et al. 2012; Engel and Fries

2010; Brittain and Brown 2014; Connolly et al. 2015). As in the Parkinsonian `o�' state (So-

lages et al. 2010), they show peaks in both lower and upper-beta ranges, but with a higher

median frequency (Connolly et al. 2015), since lower-beta is more sensitive to suppression by

dopamine (Brittain and Brown 2014). This feature was reproduced in our simulations, where

dopamine was able to control the level of internally-generated lower-beta and e�ectively reduce

it in exchange for upper-beta oscillations, in an almost linear manner (see Fig. 4.1.C). If this

ability to change the peak of beta activity is con�rmed experimentally, then small �uctuations

in rebound-beta that are usually present after the execution of a task (Zhang et al. 2008) or

after arti�cial modulation of dopamine (Delaville et al. 2014) could be re�ected in the level of

dopamine that changes due to a post-decision evaluation (Schultz et al. 1997).

With regard to their function, one theory proposes that beta oscillations are used to �signal

the status quo� across brain regions (Engel and Fries 2010), both at the perceptual-cognitive

and motor level, in case that its maintenance is anticipated or intended. Furthermore, a be-

havioural study with simultaneous, multiple recordings in healthy rats provides evidence that

beta oscillations in the BG are strongly related to cue utilization (Leventhal et al. 2012), and

suggests that high beta activity re�ects �a post-decision stabilized state of cortical-BG networks,

which normally reduces interference from alternative potential actions". These views can ex-

plain the rigidity and hypokinesia of PD patients who also exhibit abnormally exaggerated beta

activity, the observed beta desynchronization in movement preparation and execution (Van Elk

et al. 2010; Singh et al. 2011; Schmidt et al. 2013), as well as the beta rebound in NO-GO

decisions (Zhang et al. 2008). However, it is still unclear why these oscillations have such a

strong e�ect in maintaining the current state of the brain. One recent review suggests that beta
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oscillations regulate the information capacity of the phasic channels of the loops involving the

BG (Little and Brown 2014).

Here we propose that the BG is able to selectively gate information �ow in these channels,

via a combination of internally-generated and cortically-driven beta activities, driven by the

current level of dopamine and the cortical frequency respectively. We show that, even when

their amplitude is kept �xed, di�erent cortical beta frequencies are able to completely change

the information �ow throughout the BG. The increased �ow in low bands in Fig 4.4 is consistent

with the view in Little and Brown 2014, and provides a lower bound for the information capacity

during the beta regime. More speci�cally, towards lower beta frequencies, the communication

channels of the three major BG pathways open gradually and monotonically, with the same rate

but di�erent o�sets (Fig. 4.4.C). At 13 Hz, the lowest beta frequency, all three pathways have a

global peak, while at the highest beta (30 Hz), they are fully blocked. Hence, the frequency of

beta can be used by the cortex as a lever that adjusts the impact of the three BG pathways, and

thus plays a decisive role in the generation of movement (Redgrave et al. 1999; Schmidt et al.

2013; Calabresi et al. 2014).

Apart from beta, other frequency bands also showed unique characteristics in our simulations.

Alpha rhythms resulted in BG e�ective connectivity changes that were similar to beta, promoting

all three BG pathways but with an emphasis on the indirect pathway, and with even higher

input-output information �ow. In experimental studies, alpha activity has been also very closely

associated with beta, exhibiting desynchronization prior to movement and suppression during

movement execution (Pfurtscheller and Da Silva 1999; Brittain and Brown 2014; Tzagarakis

et al. 2015). However, these rhythms are considered to have a distinct function (Pfurtscheller

and Da Silva 1999; Moran et al. 2008; Singh et al. 2011; Litvak et al. 2011; Tzagarakis et al.

2015) and they have been mainly associated with emotional stimuli (Brücke et al. 2007), as

well as the attentional system of the brain (Jensen and Mazaheri 2010; Litvak et al. 2011;

Brittain and Brown 2014). In particular, there is cumulative evidence that strong alpha power

is able to inhibit task-irrelevant regions in the cortex and thus control information �ow (Jensen

and Mazaheri 2010; Händel et al. 2011; Brinkman et al. 2014), while it is argued that alpha

desynchronization allows the formation and retrieval of new memories (Hanslmayr et al. 2012).

Finally, alpha power cannot be signi�cantly regulated by the level of dopamine (Priori et al.

2004), a fact that shows another major di�erence in the function of these rhythms at the level of

the BG. The constant tendency of alpha to promote information �ow via the indirect pathway,

as observed in Fig. 4.4, agrees well with the above theories. This pathway has been shown

to play a critical role in proactive inhibitory control (Zandbelt and Vink 2010; Schmidt et al.

2013) and cause movement suppression (DeLong 1990; Kravitz et al. 2010; Freeze et al. 2013) by

evoking a rapid disinhibition of a subset of SNr neurons. Thus, it is likely that a local increase in
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alpha power brings the a�ected cortical region to a stable state, where the cortico-BG-thalamic

loop is active but, at the same time, restricted from accessing memory processes and with the

corresponding motor responses inhibited.

The two �nal frequency bands under consideration are theta and gamma. The coexistence of

these two bands is a well studied phenomenon in the cortex (Canolty et al. 2006), which, as

opposed to alpha and beta, promotes the formation and retrieval of episodic memories via phase-

amplitude entrainment between di�erent regions (Nyhus and Curran 2010). However, in this

study we assess theta and gamma separately to maintain consistency in our methodology and

enable the direct comparison with other frequency bands. Cortical theta (∼ 5 Hz) is involved in

various cognitive processes (Cavanagh and Frank 2014) such as memory retention, novelty de-

tection, processing of negative rewards (Van de Vijver et al. 2011) and goal maintenance (Voytek

et al. 2015). Within the BG, theta is found to increase in the rat striatum during a decision-

making task (Tort et al. 2008), while in humans, theta in STN increases during sensorimotor

con�icts (Zavala et al. 2015). Gamma, on the other hand, is mainly associated with active in-

formation processing and feature binding (Eckhorn et al. 1988; Fries 2005, 2009). Unlike alpha

and beta, it is characterized by high amplitudes during movement (Singh et al. 2011; Joundi

et al. 2012) and in combination with theta, it facilitates communication between di�erent cor-

tical areas, thus enabling high-level cognitive control such as the simultaneous maintenance of

behavioural goals (Voytek et al. 2015).

Interestingly, both gamma band and theta at 5 Hz minimized input-output information �ow

from the simulated cortical ensembles to the SNr and enabled only the indirect pathway without

any modulation from the STN-GPe loop. This similar connectivity pattern indicates that any

combination of these two rhythms, as in the aforementioned studies, will also bring the BG to the

same state. Hence, our model suggests that cortical information which has been generated and

processed via alpha/gamma rhythms is not able to circulate through the cortico-BG-thalamo-

cortical loop, without the presence of another low-frequency band.

Furthermore, in the case of gamma, the D1 striatonigral MSNs acted as an information sink,

receiving strong inputs from the cortex but with a minimal impact on the SNr, while theta

rhythms caused GPe to �re spontaneously and dominate the behaviour of the output SNr, thus

acting as an information source. This e�ect in the GPe was sensitive to the phase of theta, and

it was most prominent when the phase of the stimulated (phasic) channel followed in time the

phase of neighbouring-channel oscillations, particularly at an o�set of φ ≈ −π
2 .

All things considered, a picture emerges regarding the function of the BG during cognitive

processing at theta/gamma rhythms. Our model's behaviour in these two bands can be viewed

as a mechanism that isolates the cortex from the environment, while new information is being
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processed in multiple cortical regions. In the case of a sensorimotor con�ict, theta is increased

in the cortex, and the GPe is `instructed' to inhibit SNr in order for the con�ict to be resolved.

This behaviour is di�erent than in the case of alpha, which boosted the circulation of information

via the BG, while inhibiting relevant motor actions with the facilitation of the indirect pathway.

Hence, due to the distinction between the aforementioned bands, the cortex acquires the ability

to process information through a variety of streams, either by using intermediary subcortical

structures, or directly, across di�erent regions.

Although there is no direct connection between GPe and theta function, inhibition of this struc-

ture via deep brain stimulation (DBS) has been found to improve cognitive symptoms of Hunt-

ington's disease (Temel et al. 2006; Ligot et al. 2011; Beste et al. 2014), a condition that is

associated with episodic memory loss (Montoya et al. 2006) and increased ectopic theta (Pig-

natelli et al. 2012) (for a review see Nagel et al. 2015), among other symptoms. However, further

work is required to verify the above computational predictions, and to answer to the emerging

questions regarding the BG function. From an experimental perspective, the role of theta in the

GPe, as well as BG e�ective connectivity changes during behaviour, require extensive investi-

gation. In addition, computational modelling could shed light on the possible combinations of

the above mechanisms and the transient versus steady-state dynamics that emerge. Finally, an

interdisciplinary investigation on how the e�ects of the above pathological frequencies can be

cancelled out could potentially boost current research on adaptive DBS techniques (Little et al.

2013).

4.3.3 The STN-GPe circuit

The fact the GPe becomes silent during the phasic mode in our simulations does not contradict

with the literature. First, this behaviour re�ects to only a very small portion of GPe neurons

that are associated with the microscopic channel that exhibits a phasic response. Second, the

recordings of this work are conducted for two simulated seconds when the cortical input maintains

a steady �ring rate (either oscillatory or completely �xed). In real conditions, feedback from the

BG via the thalamus, would cause changes to the cortex after some milliseconds of the initial

GPe inhibition and the input that the BG receives would be modi�ed accordingly. In fact, it

has been shown in primate recordings (Nambu:2002; Kita et al. 2004) that GPe neurons are

inhibited transiently for approximately 25 ms after cortical stimulation.

As illustrated in Fig.4.3.C, the existence of a closed loop between STN and GPe contributes to

the maintenance of cortical frequencies in the alpha band, and their blockage in higher bands.

Without feedback inhibition, the STN-RB neurons succumb to the cortical beta rhythms, due

to their natural tendency to engage in beta activity (Fig.4.2). Then, we showed that at the same
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alpha frequencies, the direction of information �ow inside the STN-GPe loop changes depending

on the relative phase of the stimulus versus other background oscillatory activity that in�uences

neighbouring areas. Both these remarks highlight the strong functional connection between this

internal loop and cortical low oscillations.

A closer examination of the e�ect of the phase o�set φ reveals a number of modes of the STN-

GPe function, able to trigger a competition between the two involved pathways (indirect/hyper-

direct) over the range of possible values of φ. An example behaviour for alpha frequencies is

illustrated in Fig. 4.5, where both the absolute magnitude and the sign of φ ∈ [−π, π) contribute

to the outcome of this competition. While large alpha o�sets always activate the indirect and

suppress the hyper-direct pathway, values close to zero have the opposite result, notably when

the strong input signal is preceded by background oscillation in neighbouring channels. This

asymmetry cannot be observed in the direct pathway, which is not directly in�uenced by either

STN or GPe. Thus, its TE maximises monotonically and smoothly around φ = 0.

Strong signal 

precedes 

weaker

A B C

Figure 4.5: Competition of STN-/GPe-mediated pathways triggered by cortical alpha. Inner circle:
Synaptic connection that involves (A) the GPe or (B) the STN, with the maximum TE. Outer
circle: Normalized TE of the indirect (A), hyper-direct (B) and direct (C) pathways as de�ned in
Fig. 4.4.

These observations lead to a hypothesis that views the impact of the STN-GPe loop as the

result of two coexisting mechanisms. First, the rhythmic inhibition and excitation of the SNr

by these two structures may act as a force that attempts to align the phases of di�erent cortical

low-frequency signals, in order to achieve optimal communication (Fries 2005, 2009). However,

although perfect phase alignment can maximize information exchange in neural populations,

optimal behavioural performance often requires more metastable dynamics (Cagnan et al. 2015).

Hence, as an additional mechanism, the BG may be able to impose a veto on two con�icting

signals, via the excessive activation of the indirect pathway, in case that the above process results

in the wrong alignment, i.e. an amplitude di�erence that favours the leading signal. This veto

can be released if the balance of amplitudes changes, and the leading signal increases its impact

on its counterpart. This mechanism could allow the BG to function in a Hebbian fashion and
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provide the right temporal conditions for the integration of anatomically distinct signals.

The credibility of this hypothesis can be further tested by the addition of neural cortical oscil-

lators as well as a thalamic nucleus to the model presented in this study. This would allow the

reverberation of the same cortical signal through the BG and reveal the conditions under which

a coalition of cortical ensembles can be phase-coupled via the in�uence of the STN-GPe circuit.

All in all, the great variability of responses observed during our simulations highlights the ex-

tensive repertoire of BG functions. These cannot be completely captured by the analysis of this

chapter, even in the toy case of �xed dopamine and steady cortical inputs with �xed frequencies.

Nevertheless, our study showed that oscillatory frequencies and phase alignments could be the

means by which the cortex selects between these functions, and led to a number of predictions

that can be tested in future work.

==
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5 The role of bursts and pauses of neurons in

the globus pallidus externa

5.1 Introduction

Traditionally, GPe neurons in primates have been thought to consist of two types with di�erent

spiking behaviour (DeLong 1972; Bugaysen et al. 2010). One type exhibits high frequency �ring

with spontaneous pauses (HFP), while the second evokes low frequency spikes with periods of

spike bursts (LFB). However, since intracellular recordings in primate GPe cannot be obtained,

it is not yet clear whether these two distinct behaviours are the outcome of electrophysiological

properties, or di�erent network connectivity (Bugaysen et al. 2010), although recent evidence

indicates that both genetic (Mallet et al. 2016) and anatomical (Kim and Kita 2013) factors

play a role in this distinction.

To deal with this issue, computational models of the BG circuitry often consider the rat globus

pallidus (GP) as a point of reference, which is found to be homologous of the primate GPe (Gerfen

and Wilson 1996). This contrivance expands signi�cantly the range of biological data that can

be used to model GPe neurons, due to the numerous extracellular recording studies with rodents

that focus on this structure (Schwab et al. 2013).

Conveniently, two prominent populations of neurons have been also consistently identi�ed in

the GP of freely behaving rats, which share similar characteristics with the two primate GPe

types (Mallet et al. 2008; Benhamou et al. 2012). In rat brain slices, on the other hand, con�icting

evidence suggests that the distinction between GP neurons diminishes (Cooper and Stanford

2000; Mallet et al. 2012; Deister et al. 2013), thus reinforcing the view of important network-

level variations that have a great impact in spiking behaviour.

Bugaysen et al. 2010 performed analysis on intracellular parameters and �ring patterns of GP

in vitro cells and discovered three clusters of statistically di�erent cellular properties. These

three distinct neural groups exhibited di�erences in their voltage-current and frequency current

relations, as well as after-hyperpolarization, spontaneous �ring rates and action potential adap-

tation ratios, among others. The combination of two of these groups into a single super-group

allowed a better twofold classi�cation of the GP neurons, and exposed di�erences in a higher

number of cellular properties.

This chapter is focused on the investigation of how these two antithetical behaviours emerge

in the GPe, and what role they play in regulating the BG function. The main tool of this
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study is the neural model of the BG circuitry, which was presented in Chapter 3. Following the

methodology in Bugaysen et al. 2010, the neurons that compose the GPe nucleus in this model

have been �ne-tuned to correspond to the three types of GP neurons found in this experimental

study.

The �delity of spiking neurons in imitating the dynamical behaviour of biological cells o�ers a

rich ground for studying the dynamical di�erences between these neuron models, both as a part

of a network in simulated in vivo conditions, and as isolated systems. Nonetheless, simple phe-

nomenological models are often inadequate for explaining the cause of the neuron's underlying

behaviour, which might be a result of intracellular ionic mechanisms. Hence, in addition to the

above network model of single-unit spiking neurons, an ionic-based multicompartmental model

of the GPe, based on the equations by Hodgkin and Huxley 1952, was employed as a part of the

current investigation.

5.2 Modelling cortical input

In order to simulate in vivo healthy conditions in the primate GPe, the complete model of the BG

circuitry has been employed. A signi�cant di�erence between the experiments in the previous

chapters and the current methodology stems from the current need to investigate how this area

would behave within a fully operational brain, instead of under ideal oscillatory conditions. This

would allow us to compare the behaviour of the resulting computational model with data from

healthy monkeys (DeLong 1972; Bugaysen et al. 2010; Benhamou et al. 2012) and animal models

of Parkinson's disease (McConnell et al. 2012).

Hence, to model cortical stimulation to the BG input structures, a new approach was followed.

The cortex is again represented by three neural ensembles of 1000 neurons each with uncorrelated

�ring rates. However, instead of the simple oscillatory pattern described with equation (3.13),

the activity in each cortical channel is governed by a more complex spike train generator. In

particular, the spike events of each neuron i in each cortical ensemble are drawn from a doubly

stochastic Poisson process (Cox process), as in the algorithm presented in Krumin and Shoham

2009. This is a Poisson process where the parameter λi is also a stochastic process. An important

property of Cox processes is that they have the ability to preserve the correlation structure of

the nested process λi (Krumin and Shoham 2009), which in this case is also called stochastic

intensity function.

In this model, the stochastic intensity function follows a re�ected Gaussian random walk. That

is,

λi(t) ∼ N (λi(t− 1)− β, σ) (5.1)
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where β ≥ 0. If λi(t) < 0, then λi(t) = −λi(t) to satisfy the re�ection property.

The parameter β denotes the asymmetric tendency of this random walk towards low values,

which was selected to avoid extended periods of high local activity that are seldom present in

the cortex. The resulting �ring rates follow a half-normal distribution, as illustrated by the

histogram of Fig. 5.2.C. The parameters σ and β were tuned to be consistent with behavioural

recordings of corticostriatal neurons in primates (Turner and DeLong 2000), and the cortical

�ring rate restrictions described in Chapter 3. This process resulted in the values σ = 0.5 and

β = 0.05.

One major advantage of this approach is that the generated time series are highly correlated

across neural units of the same ensemble, while, due to the Markov property, any time correlation

is destroyed.

5.3 Results

5.3.1 High-frequency GPe neurons produce pauses caused by over-excitation

Although the original study by Bugaysen et al. 2010 showed that the three types of GPe neurons

that emerged (A, B and C) exhibit di�erent dynamical behaviours, our resulting models can be

better classi�ed into only two dynamically distinct subgroups that have signi�cant statistical

di�erences. The �ring patterns of these two groups agree well with the two categories of neurons

found in the primate GPe. Fig. 5.1 illustrates the basic properties of the three tuned neuron

models that show distinct electrophysiological characteristics. Neurons of type B (GPeB) can �re

at high frequency rates, with short action potential duration (APdur) and fast action potential

after-hyperpolarization (AHP). As a response to hyperpolarizing current, they generate rebound

�rings whose number increases with the intensity of the hyperpolarization. By contrast, neurons

of types A (GPeA) and C (GPeC) are limited to lower �ring rates with very long APdur. They

do not produce any rebound e�ect but they have similar AHP amplitudes to GPeB neurons.

The dynamical behaviour of the three GPe neuron types was more extensively compared by

means of the corresponding (v, u) phase plane trajectories. A sample of 50 vectors (vi, ui) was

drawn for each neuron type in a single point of the phase plane, after random perturbations

of the neuron capacitance Ci ∼ N(C, 20pF), and a two-sided T-test was applied to all pairs of

neuron types. This procedure was repeated for 1000 randomly selected points in the phase plane,

in order to examine statistical di�erences in neuronal behaviour for di�erent initial conditions.

The resulting mean p value of the test between A and B types was 0.00102, with 0.2% of the p

values above 0.01, between A and C types: 0.03195 with 10.4% of the p values above 0.01 and
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Figure 5.1: Properties of GPe neurons. A: F-I curves of the three tuned GPe models (solid lines). The
coloured dots represent real data of the corresponding GP neuron types retrieved from rat slices
in Bugaysen et al. 2010. B: Box plot of the AHP amplitudes for varying capacitance C, along
with the real mean and std for each neuron type retrieved from the same study. Ci-Ei, Cii-
Eii: The relation of the excitatory presynaptic event frequency with (i) the �ring rate and (ii)
the conductance of individual excitatory channels, averaged for 2 seconds. Ciii-Eiii: Responses
of GPe neurons to hyperpolarizing current reveals rebound behaviour in GPeB cells. F,G: V-I
curves of the same neurons. Again, the coloured dots represent real in vitro data retrieved from
the same study. Hi-ii: Responses of GPe neurons to 150 spikes/sec excitatory input for varying
maximum conductances GAMPA and GNMDA. In (ii), neurons also receive a weak negative
current Ispon = −34pA.
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between B and C types: 0.00014 with again 0.2% of the p values above 0.01. Hence, for almost

any initial condition we can reject the null hypothesis that the trajectories of GPeB neurons

are identical to other GPe neurons, while this is not always the case between GPeA and GPeC
neurons.

Furthermore, GPeA and GPeC neurons also di�ered from GPeB with regard to the �ring patterns

produced under synaptic stimulation. Whereas GPeB neurons always �re in tonic patterns,

directly proportional to the input intensity, strong activation of EPSCs in GPeA or GPeC neurons

results in irregular �ring rates or silence (see Fig. 5.1.H). This behaviour is reminiscent of neural

accommodation, an e�ect that has been frequently observed in a small percentage of GPe cells

in vitro (Kita and Kitai 1991; Cooper and Stanford 2000; Steiner and Tseng 2010). In the case of

our model, it is caused by the conductance-based nature of the glutamatergic chemical synapses.

The slow depolarization of these neurons at the initial stage of action potentials (APs) can be

easily prevented by the long-lasting NMDA receptor-evoked currents, that have an inhibitory

e�ect for positive membrane potentials, as shown in Fig. 5.1.Ci-ii and Ei-ii.

Interestingly, the two categories of �ring patterns, observed in GPeB and GPeA/C neurons re-

spectively, closely resemble the aforementioned behaviour found in primates, and thus further

investigation is required to identify potential conditions that might be important for the expres-

sion of this behaviour.

5.3.2 Bursting and pauses in GPe can be modulated by STN depression

In Kim and Kita 2013, it was proposed that the generation of pauses in HFP neurons is, in part,

a result of the enhanced inhibition during periods of MSN bursts, which is further facilitated

by short-term plasticity in these synapses. Since increased striatal activity has been repeatedly

correlated to the STN, the other major input structure of GPe, during cognitive tasks (Lev-

enthal et al. 2012; Schmidt et al. 2013), it is likely that MSN bursts are accompanied by a

similar behaviour in STN neurons that project to the same GPe channel. STN-GPe synapses

have been found to exhibit short-term plasticity in periods of high-activation which initially

is expressed with facilitation, taken over by depression after the �rst few spikes (Hanson and

Jaeger 2002). Hence, although not included in the basic version of our model, since it is still not

well understood, plasticity of these neurons might also contribute to the behaviour in GPe.

Exploring this idea, our simulations showed that both pauses and low-frequency bursts in GPe

neurons might also be signi�cantly enhanced by STN short-term depression. In Fig. 5.1.Hii,

we provided a �xed inhibitory current to the three modelled GPe types, as well as enough

excitatory synaptic input to cause silence to GPeA and GPeC neurons. Under these conditions,
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a 75% depression of the excitatory conductances for small intervals was enough to generate

pauses in GPeB neurons and to break the silence of the rest. This amount of depression would

be reasonable for extended periods of phasic STN activity, where the �ring rate of STN neurons

can be close to 40 spikes/sec (see Fig. 3.1 and STN-SNr depression in E�ect of short-term

plasticity in synaptic conductances). Further results that support our view of STN depression,

based on simulations of the complete BG model, can be found in the next session.

The fact that GPeA and GPeC showed similar dynamics contradicts, in part, with the results

in Bugaysen et al. 2010, where irregular �ring patterns were found only in GPeA neurons.

However, since GPeC neurons have shorter APs, it is possible that they might have displayed

the same e�ect if tested for higher injected currents, which would be consistent with our model's

behaviour. Following the same intuition, the authors of this study combined the parameters of

GPeA and GPeC into a single super-group and discovered that the statistical di�erences between

these neurons and GPeC increased.

5.3.3 GPe bursts and pauses emerge in normal BG function and depend on

cortical behaviour

To further examine the impact of this mechanism under normal BG conditions, we stimulated

the model with random input, using the method described in section 5.2, that resembles the

rich behaviour of the active cortex. An example of random cortical activity and the response of

the model can be seen in Fig. 5.2.A. Although we used the same 3-channel con�guration of the

model that was de�ned in Chapter 3, here the activity of each channel is statistically identical.

Nevertheless, a single microscopic channel was arbitrarily selected, while the data produced

by the other two channels were isolated from the current analysis and treated as neighbouring

activity. An example of the �ring patterns produced during 2 seconds of simulated time can be

seen in the raster plot of the same �gure. The �uctuations of the stochastic intensity function of

the selected channel, as well as the instantaneous �ring rate of the corresponding BG output, is

represented in black, in contrast with the rest of the neighbouring channels that appear in grey.

The �rst result of this simulation was the con�rmation that the GPe neurons show the same

anticipated �ring behaviour in vivo conditions, that was analysed in the previous section. During

a 30-minute simulated period, GPeB neurons showed two di�erent modes, being either active

close to their average �ring rate (∼ 30 spikes/sec) or completely silent. For a detailed distribution

of their �ring rates, see Fig 5.2.B. These periods of pauses comprised the 1.77% of their overall

activity and had a mean duration of 54+73
−16 ms. In addition, GPeA and GPeC neurons also

exhibited two modes. They remained silent, for the majority of the simulation time, with some

interruptions of activity in low �ring rates. Overall, the bursting period comprised the 4.56% of
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Figure 5.2: Response of GPe neurons for random cortical input. A: Input, driven by a Gaussian random
walk ∼ N (−0.05, 0.5), causes low-frequency bursts in GPeA and GPeC neurons and pauses in
GPeB neurons. Notice that the dominance of channel 2 in the level of the cortex results in dis-
inhibition of the thalamus by the SNr. B: Probability distribution of GPeB �ring rates and C:
cortical �ring rates in any channel. D: Firing rate of GPeB neurons when GPeA−C neurons spike.
The box plots indicate 25th/75th and 2nd/98th percentiles and the grey doted line min/max
values. GPeA and GPeC �re only when the �ring rate of GPeB is around its mean value. E:
Firing rate of the cortex (grey colour neighbouring channels, black colour current channel) when
GPeA−C neurons spike. Sample for B-E was calculated from 30 minutes worth of random input.
Only GPe recordings in channel 2 are illustrated here. The single asterisk (*) denotes statistically
di�erent means (Z-tests with p << 0.01). In E, the mean values of each channel were examined
individually and the double asterisk denotes statistical di�erence in all three pairs.
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the GPeA activity and the 44.91% for GPeC neurons. Approximately, 66% of the GPeA spikes

occurred simultaneously with GpeC spikes (simulation timestep 0.01 ms), while there was no

signi�cant correlation between pauses and bursts.

The next step was to test the impact of MSN-GPe facilitation and STN-GPe depression, as

discussed in the previous section. For the �rst case, we replaced the plastic inhibitory chemical

synapses that arrive at the GPe with static, and used the reference value of the synaptic conduc-

tance GMSN−GPe found during connectivity tuning, while for the glutamatergic synapses from

STN, we used (3.9) with the same parameters as in STN-SNr synapses. Without MSN-GPe

facilitation, we observed a 41.73% reduction of pauses in GPeB neurons (control signi�cantly

di�erent, K-S p-score: 0.0543). With the addition of STN-GPe depression, the periods of bursts

in GPeC neurons were increased by 10.11% (control signi�cantly di�erent, K-S p-score: 0.0108),

and the peak for type GPeB neurons around their average �ring rate became sharper, as shown

in Fig 5.2.B.

Furthermore, we found that, as a general rule, GPeA and GPeC neurons release spikes only

when the �ring rate of GPeB neurons is close to its average value. This window of activity,

indicated with the shadowed regions in Fig. 5.2.A, has a similar mean value for both GPeA and

GPeC neurons, but it is signi�cantly wider in the latter case. Fig. 5.2.D illustrates a statistical

sample that con�rms the above observation. This behaviour is an expected consequence of the

mechanism observed in Fig. 5.1 to limit action potentials via NMDA inhibition, and it is caused

by a combination of all synaptic inputs that arrive at these neurons. Given the almost linear

input-frequency relationship of GPeB neurons, shown in Fig. 5.1.Di, that allows these neurons

to re�ect the level of activation of GPe a�erents, it is also possible that GPeA and GPeC neurons

release spikes only during speci�c �ring regimes in preceding regions of the BG pathways.

Indeed, this relationship seems to originate from the cortex, where the distinction between the

correlation of the latter with the di�erent GPe types is less clear. While GPeA/C neurons showed

a tendency to �re in periods when the overall cortical �ring rate was close to the tonic level (3

spikes/sec), GPeB activity was more tolerant to the variability of cortical spikes that arrive in

neighbouring microscopic channels. Fig. 5.2.E illustrates that GPeB �rings required statistically

higher cortical activity to �re, although the sample distribution in all cases had a similar width.

In contrast, the activity of any of the three cortical ensembles connected to the di�erent BG

channels was found statistically indistinguishable when GPeA or GPeC neurons �re, a fact which

strengthens the view that, in the network level, these two types compose a single part of the

same mechanism.

In addition, GPeB pauses occurred while the current microscopic channel received intense bursts

of spikes from the cortex and the �ring rate of the two neighbouring channels were below tonic
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levels. More speci�cally, the cortical mean �ring rate of the ensemble connected to the same

channel was 6.54+8.3
−5 , while the neighbouring ensembles �red at 1.86+2.4

−0.6 (samples signi�cantly

di�erent, K-S p-score << 0.01).

Finally, when GPe neurons located within a single microscopic channel �re, the activity of this

channel in the level of the cortex is typically weaker than its neighbouring areas. Since only the

same channel is able to evoke striatal inhibition to GPe, this is again an expected behaviour.

However, as shown in Fig. 5.2.E, this relationship was not completely symmetric, although

both cortical channels where driven by the same Poisson rule. The sample for this �gure was

produced from a 30-minute simulation of the model with a single random synaptic and neuron

con�guration. A repetition of the experiment with di�erent random connections showed similar

asymmetries but not necessarily in the same channel. This points to the speci�c random wiring

as the source of this error and indicates its great impact, that cannot be regulated without the

application of long-term plasticity.

5.3.4 GPe silence can be caused by local neural accommodation in (post-)

synaptic sites

The long periods of silence that have been observed in some GPe neurons of our model are

caused by an e�ect which is similar to neural accommodation. The latter is a phenomenon

caused by desynchronization of the ionic processes that orchestrate an action potential. The

contribution of the various ionic channels in this phenomenon is di�cult to be analyzed with

simple point-neuron models such as the equations (3.1-3.3). These models are phenomenological

approximations of the membrane potential of real cells, and do not explicitly simulate individual

ionic currents, in contrast to the equations by Hodgkin and Huxley 1952. However, the GPeA/C
neurons of this study were able to capture electrophysiological and behavioural features of the

corresponding biological types found in Bugaysen et al. 2010, that are likely to be a result of

complex ion interactions (Fig. 5.1-5.2). This implies that the optimization process that was

employed here might have converged to a combination of parameters for the model's equations

that accounts for a similar behaviour without the existence of such an ionic mechanism. On the

other hand, as this behaviour was not part of the objective function used for optimization, it

could very well be a side-e�ect of the mathematical equations used.

To shed light on this issue, we tested how well our �ndings can be replicated using a mul-

ticompartmental model of a GPe dendritic branch, based on the ionic equations by Hodgkin

and Huxley 1952. The simulated branch has a diameter of 1µm, speci�c membrane resistivity

Ra = 1.47Ωm2, speci�c membrane capacitance CM = 0.024F/m2, and speci�c axial resistivity

RA = 1.74. These basic electrical and morphological properties of the GPe cells were optimized
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Figure 5.3: Accommodation in dendritic spikes using the Hodgkin-Huxley model A: Neural accommo-
dation in a single compartment. B: Frequency-current (F-I) and C: voltage-current (V-I) relation
of the model in (A). D: Propagation of dendritic spike in a model with 16 compartments of equal
distance.

in Hanson et al. 2004 and used in Günay et al. 2008; Hendrickson et al. 2011. The resulting

behaviour is illustrated in Fig. 5.3.

As this model indicates, the silence observed in GPeA/C neurons of our BG model can be largely

reproduced based on ionic channels and the morphology of GPe dendrites. In particular, the

local F-I relation of the multicompartmental neuron in Fig. 5.3B follows a signi�cantly similar

trajectory to the input-current relation of the models shown in Fig. 5.1Ci and 5.1Ei. This

silence is caused by excessive excitation in the stimulating area of the dendrite, which prevents

any depolarization to propagate to the rest of the dendrite (Fig. 5.3D). As a result, although

locally the membrane potential of the dendrite exhibits neural accommodation, this e�ect is

undetectable even in areas that are located within a very short distance from the stimulation

point (> 10−5m).

Additionally, as illustrated in Fig. 5.4C, our simulations show that successful action potentials

generated before the area a�ected by neural accommodation might not be able to surpass this

local spike veto and, therefore, their propagation fails. This increases signi�cantly the likelihood

of a neuron to remain silent for long time intervals in case that the blocked synaptic site is

located in a central dendritic hub.
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5.4 Discussion

5.4.1 The role of GPe bursts and pauses in BG behaviour

In this chapter we performed an analysis on the activity of the GPe neurons in our BG model.

The two distinct in vivo behaviours, observed in primate GPe neurons (DeLong 1972) and rat's

GP (Benhamou et al. 2012), emerged after tuning Izhikevich neurons to behave as GP cells

recorded in vitro in Bugaysen et al. 2010. Short-term plasticity and cortical activity were both

found to modulate this behaviour, although the role of the former was not decisive. In particular,

pauses in GPeB neurons occurred in periods of high activity in pre-synaptic cortical neurons,

combined with low activity in neighbouring cortical channels. Low frequency bursts, on the

other hand, were expressed by GPeA/C neurons and were evoked during low overall cortical

activity, especially when the instantaneous �ring rate of GPeB neurons of the same channel was

within a small range around its average value (∼ 30 spikes/sec).

The cross-correlation between LFB spikes and the �ring rate of HFP neurons could be tested in

existing in vivo recordings, such as in DeLong 1972; Bugaysen et al. 2010 or Benhamou et al.

2012. A potential con�rmation of the patterns we observed here would o�er new insights into
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the role of the GPe cells in the BG function and increase the validity of the remaining predictions

made with our model. However, even if these predictions were validated, their impact to the

normal function of the BG is still unclear. Since the LFB and HFP dichotomy is largely retained

in di�erent types of mammals, including rats and primates (Gerfen and Wilson 1996), it is highly

likely that it constitutes a fundamental mechanism underlying the functional role of GPe.

An initial aid in understanding this mechanism is o�ered by the genetic distinction between

cells that exhibit LFBs and HFPs. It has been recently found that the LFB behaviour, which

is captured with GPeA/C neurons here, is largely expressed by Arkypallidal cells in GP (Mallet

et al. 2016). These cells are anatomically unique, as they send inhibitory projections back to the

MSN neurons in the striatum (Gittis et al. 2014), instead of the STN and SNr, like the majority

of GPe neurons. Through this pathway, Mallet et al. 2016 shown that Arkypallidal neurons

are able to block any striatal activation that corresponds to the generation of a new imminent

action, and thus cause a STOP response in behavioural tasks.

Following the same line of reasoning, we argue that the function of LFB neurons may extend

beyond cancelling imminent actions, to more cases in decision making. Our results suggest

that, without the presence of salient cues, LFB neurons fall into an almost silent regime caused

by excess excitation by STN. However, cortical signals that disturb the balance between STN

excitation and striatal inhibition to GPe are able to stop this veto and evoke bursting responses

by these neurons (Fig.5.2). In fact, since strong cortical signals cause the short-term facilitation

of the MSN-GPe synapses (Sims et al. 2008), an imbalance of this sort could be theoretically

maintained until the e�ect of plasticity decays. Hence, the inhibitory feedback from LFB neurons

provides a good candidate to modulate this over-excitation and restore MSN baseline activity.

This view agrees well with the two-step model of action suppression in Mallet et al. 2016.

Although our simulations show that LFB neurons �re in response to some input disturbances,

they are completely suppressed during strong cortical input. This mechanism can provide to the

STN-SNr pathway a temporal lead to initiate a fast pause process, before GPe-STN inhibition

regulates STN activity and the indirect pathway engages in a more selective cancellation.

A more thorough theoretical investigation is required in order to understand this mechanism.

However, the current BG model does not capture the connectivity di�erences between GPe

neuron types, since the input pathways to these neurons and their lateral connections are still

partially unknown (Humphries 2014; Mallet et al. 2016).

On the other hand, the connectivity of HFP neurons, which comprise the remaining ∼ 75% of

the GPe, is richer but their main function seems more straightforward. These neurons send their

strongest topographic projections back to the STN, but they also project to the outputs of the

BG, thalamus and amygdala (Mastro et al. 2014). Hence, they are able to regulate over-activity
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of the STN via this feedback loop, and mediate the BG indirect pathway by providing inhibition

to the SNr.

Pathologically, one plausible impact of the imbalance of the LFB inputs is the disturbance of

the oscillations in the BG. Due to their narrow window of activation, these neurons create

resonances that amplify higher-level harmonic frequencies in the pathways that involve the GPe.

This concept is illustrated with a theoretical example in Fig. 5.5A.

Enhanced harmonic frequencies are present during application of deep brain stimulation (DBS)

in GPe (McConnell et al. 2012), in GPi (Singh et al. 2011), and at resting Parkinsonian tremor

frequencies in the cortex (Raethjen et al. 2009). A coherence analysis in the later study showed

non-parallel time courses for the basic and �rst harmonic frequencies, which points to the ex-

istence of di�erent origins for these two oscillations. A similar e�ect was also observed in the

current BG model, where harmonics of cortical oscillations were signi�cantly strengthened at

low frequencies in the BG nuclei without any signs of cortical coherence (see Fig. 4.3).

5.4.2 Is the silence of LFB neurons biologically plausible?

The extended periods of silence in the LFB neurons of our model were evoked due to their

selective nature, which allows spikes to occur only during a particular range of instantaneous

�ring rates in excitatory a�erents (Fig. 5.2D-E). Below this range, neurons succumb to striatal

inhibition, while for stronger excitation they exhibit neural accommodation. The main drawback

of this mechanism is that it relies on inhibition caused by NMDA currents, when the membrane

potential of these neurons exceeds the NMDA reversal potential. This is not a common e�ect
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in biological neurons and arises, in part, from the single-point nature of simple spiking neuron

models, where synaptic dynamics directly couple with neuron's soma, as discussed in Humphries,

Lepora, et al. 2009.

However, we argue that, instead of a limitation of point models, this e�ect here could capture an

existing biological process. Unlike the MSN neurons in the above study, the long and thin den-

drites of GPe neurons have high concentrations of fast voltage-gated sodium (Na+) channels at

the sites of glutaminergic synaptic inputs (Hanson et al. 2004). This clustering was shown to cre-

ate favourable conditions for spike initiation, and it was found to evoke dendritic spikes at these

sites, even in response to weak input. Hence, it is possible that, during depolarization, the slowly

decaying glutamatergic synaptic receptors at these sites, such as NMDA or namely NMDA and

metabotropic receptor 1 (mGluR1), can cause inhibition to the neuron's membrane potential,

when the latter is higher than the local equilibrium potential. In particular, after a successful

action potential, strong and long-lasting synaptic currents can maintain depolarization above

the threshold value, below which the Na+ channels reset to their open state (de-inactivation),

thus leaving the neuron unable to initiate a new spike (Fig.5.3C).

The literature o�ers a considerable amount of evidence that supports this hypothesis. The

ability of a neural cell to adjust its action potential threshold above the level of a constant

stimulus is referred to as neural accommodation. Accommodation is believed to be caused by

the combination of a premature rise of the Na+ inactivation process and an increase on the level

of potassium conductance, which raise the equilibrium of the membrane potential and make the

cell unable to �re (Hodgkin and Huxley 1952).

Within the GPe, a subset of neurons have been found to express strong neural accommodation,

both in-vitro (Nambu and Llinas 1994), and in anaesthetized animals (Kita and Kitai 1991). In

addition, a study on guinea pig brain slices showed that strong accommodation is closely related

to the type of GP neurons that exhibit silence and low-frequency bursts (Nambu and Llinas

1994).

Furthermore, inputs from the STN are closely linked to this phenomenon. Short-term exposure

to strong glutamatergic inputs can provide a long-lasting boost to the generation of neural

accommodation in GPe neurons. In particular, in-vitro stimulation of STN axons in rats revealed

that repetitive activation of their synapses generates a state of continuous depolarization to GPe

neurons, which can last for several seconds (Kaneda et al. 2007). This increase, when combined

with slow NMDA currents, could bring the membrane potential of these neurons closer to NMDA

equilibrioum potential, or above the threshold where Na+ inactivation ends.

Despite those facts, however, the majority of GPe neurons do not exhibit long periods of silence.

One plausible explanation for this is the fact that dendritic spikes cannot be initiated in all GPe
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neurons. This has been attributed to the strong variation of channel conductance densities, the

same reason that these neurons exhibit high heterogeneity of dynamical behaviour (Günay et al.

2008) and input integration (Edgerton et al. 2010).

Even if the above prediction is veri�ed, a remaining question is whether neural accommodation

in a synaptic site can in�uence spike propagation to an extend that allows it to block spikes in

the neuron's soma. GP neurons with strong accommodation have been found to stay unrespon-

sive to STN stimulation (Kita and Kitai 1991), indicating that this question deserves further

investigation. A possible explanation can be found in the same mechanism that the neurons nor-

mally use to prevent back-propagation of action potentials, namely Na+ inactivation (Fig.5.4A).

Since these voltage-gated receptors are disabled during their inactivation state, they cannot

contribute to neither active nor passive conduction (Fig.5.4B). As a result, the only available

means for excitatory signal propagation is calcium-based channels, which require however high

voltage activation and they are more uniformly distributed across GPe dendrites (Hanson and

Smith 2002).

Moreover, the mechanism observed in the GPeA/C requires these neurons to produce wide APs

that are long enough to be subject of inhibition by glutamatergic currents (Fig. 5.2). Such

widths are signi�cantly longer than observations in real GPe neurons in Bugaysen et al. 2010.

However, the stimulation in this study was based on post-synaptic current injection, and the

response of the neuron was captured at the level of the soma. Both these factors contribute

to the recording of sharper spikes and sub-threshold behaviour that is not directly coupled to

synaptic receptors. In contrast, dendritic spikes, which are evoked by synaptic stimulation, have

been shown to be longer than 30 ms in cortical pyramidal neurons in-vitro (Larkum et al. 2007),

and thus they are consistent with the our GPeA/C models. The same neurons produced somatic

spikes that were shorter than 3ms.

It is also illustrated that, in vivo, primate LFB neurons of the GPe exhibit sub-threshold oscilla-

tions closer to their AP overshot period (Bugaysen et al. 2010; Benhamou et al. 2012) (Fig. 5.5B).

This is also in line with the behaviour in Fig. 5.1.H and indicates that an analogous blocking

mechanism to the hypothesized dendritic accommodation might be present across the GPe neu-

rons membrane including their somas. Finally, GPeA/C neurons follow the same tendency of

having longer somatic AP widths than GPeB, which may be greater than 1.5ms (Kita and Kitai

1991).

Computationally, the above issue can be overcome, and the same silence can be observed in

neurons with shorter AP widths, if the STN-GPe glutamatergic synapses have a reversal potential

lower than the typical value of 0 volts which was assumed here. In biological neurons, the

variability of equilibrium potentials can be attributed to the existence of di�erent concentrations
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of voltage-gated ionic channels, a feature of GPe neurons that was explored inGünay et al. 2008.

All things considered, the models of the present study gave rise to a number of interesting

predictions regarding the neurons in the GPe, that could be tested in future work. The most

fundamental predictions indicate that the blockade of slow glutamate receptors in this nucleus,

namely NMDA and mGluR1, can reduce accommodation and increase responsiveness to STN

stimulation in-vitro, as well as reduce the silence of LFB neurons in-vivo. Additionally, we

predict that pauses in HFP neurons occur when the salience of a cortical a�erent signal exceeds a

threshold. This mechanism could potentially inhibit neibouring microscopic channels throughout

the BG-thalamo-cortical loop, in order to further boost the dominance of the most salience

channel, forming a winner-takes-all device (Redgrave et al. 1999).

A possible future direction for the network model of the GPe is the optimization of its connec-

tivity, in order to to be consistent with the recently identi�ed circuitry of 3 genetically distinct

neuron types in Gittis et al. 2014. These neuron types have been suspected to map directly

onto the LFB/HFP dichotomy (Mallet et al. 2016). According to this theory, the arkypallidal

GPe neurons correspond to LFBs and receive stronger inputs, while HFP neurons send stronger

inhibitory signals back to the STN.

Nevado-Holgado et al. 2014 used genetic algorithms to optimize a rate-based model of the BG,

and identify the GPe e�ective connectivity that �ts to electrophysiological recordings from rat

models of PD, taken from Mallet et al. 2008. This approach can be followed again, using the

large-scale neural model of the BG circuit described in Chapter 3, and used to approximate

the structural connectivity of the healthy GPe. Our model could be then employed to study

the observations in Gittis et al. 2014, according to which the two main GPe neuron types

partition into a synchronised and a desynchronised subset respectively during low-frequency

cortical oscillations.
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6 Assessing selectivity in the basal ganglia

In previous chapters, we presented a neural model of the basic BG circuit, built in a bottom-up

fashion, which was used to make predictions regarding the low-level behaviour of this brain

structure. This model was validated by means of a comparison with the �ring rate relations of

the real BG nuclei, as well as the oscillatory behaviour of the whole structure, both in healthy and

pathological conditions. Hence, having established the required level of biological realism, the

next step is to employ this model to investigate fundamental properties of biological cognition,

such as decision making.

6.1 Introduction

The physical location of the BG, as well as their broad bidirectional connectivity with major

cortical areas, the limbic system and the thalamus, place the this brain structure in a key

position to modulate the �ow of information between the cortex and the body. Despite the

great diversity of inputs and outputs, the human BG consist of the same repeating internal

circuitry (Alexander et al. 1986) which is also largely retained in most vertebrate species (Reiner

et al. 1998; Stephenson-Jones et al. 2011). This strictly topographic organization on di�erent

scales suggests that through this structure, some common modulatory operations are applied to

functionally di�erent channels of information �ow.

In the microscopic scale, the BG circuitry can be broken down into a massive number o parallel

loops (or channels) which, as suggested, represent di�erent competing information signals or

�action requests� (Humphries et al. 2006; Gurney et al. 2015). According to this popular theory,

the BG circuit is able to process those requests and �nally select the most salient (or urgent)

potential action, via the direct BG pathway, while providing inhibition to the rest competing

channels via the indirect pathway (Mink 1996; Redgrave et al. 1999).

An increasing amount of neurophysiological evidence implicates the BG to selection of voluntary

motor actions and provides indirect veri�cation of this hypothesis (Friend and Kravitz 2014).

Kravitz et al. 2010 showed that the excess activation of the direct BG pathway in freely be-

having mice, via stimulation of MSND1 neurons in the striatum, increases movement, while the

stimulation of the indirect pathway made the same animals to freeze. In addition, although both

pathways are required for healthy action selection and were found to contribute equally to the

initiation of actions in Cui et al. 2013, the indirect pathway is suppressed during the execution

of actions or action sequences (Jin et al. 2014), presumably because any behavioural con�icts
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have already been resolved during movement (Friend and Kravitz 2014).

Low-frequency brain oscillations have been widely implicated in both the function of the BG

(Brittain and Brown 2014) and the process of decision making (Zhang et al. 2008; Siegel et al.

2011; Brinkman et al. 2014). Oscillations in the cortex mediate the processing of new information

(Fries 2009), the dynamic formation of neural ensembles that represent di�erent actions and the

suppression of other task-irrelevant regions (Siegel et al. 2009; Buschman et al. 2012). The are

also found to encode uncertainty and in�uence the exploration-exploitation trade-o� (Cavanagh

et al. 2011). In addition, there is a substantial number of studies focusing on low-frequency

oscillations in the BG, as changes of this activity are connected with a number of disorders such

as PD or HD.

But are these phenomena related? Evidence suggests that oscillations in some certain bands in

the striatum and STN, the input structures of the BG, are driven by cortical regions (Tseng

et al. 2001; Mahon et al. 2006; Litvak et al. 2011; Kim and Kita 2013). Taking this into account,

in Chapter 4 we explored the impact of cortical rhythmic activity on the BG function and we

found that the former can completely shape which areas of the BG circuit are active. Yet, the

connection between the BG, cortical oscillations and decision making still remains relatively

unexplored.

In this chapter we attempt to narrow this gap by investigating whether cortical oscillations

could in�uence the ability of the BG to act as a selection device. To achieve this, we initially

de�ned a number of metrics that enable the assessment of the e�ectiveness of possible selection

mechanisms. Using the biologically plausible neural model of the BG circuitry de�ned in Chap-

ter 3, we then carried out an analysis of the relationship between cortical frequencies, dopamine

concentration and BG selectivity.

We found that the frequency and phase di�erence between oscillatory cortical areas, the level of

dopamine in the system and the examined time scale, all have a very important impact to the

ability of our model to select. Our simulations resulted in a canonical pro�le of selectivity in the

BG, which we termed selectivity portraits, that can be largely maintained in simpli�ed versions

of the model.

Using these portraits, we show that although the BG circuit can robustly and sequentially

perform selection tasks, the strongly-active cortical areas instruct the mode of this selection via

their oscillatory activity. Some frequency ranges promote the exploitation of actions of which

the outcome is known, others promote the exploration of new actions with high uncertainty,

while others simply deactivate the selection mechanism. Finally, we identi�ed a selection cycle

with a period of around 200 ms, which was used to assess the biological plausibility of the most

popular architectures in cognitive science.
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Our results agree well with experimental observations, provide new justi�cations and insights

into oscillatory phenomena related to decision making and rea�rm the role of the BG as the

selection centre of the brain.

6.2 Metrics

6.2.1 Selectivity

The view of the BG as the action selection device implies that their performance on this aspect

could be evaluated based on measurable criteria, such as signal distinction. The further sug-

gestion that the salience of an action is encoded in the local level of activity in the striatum

and STN, which is directly a�ected by cortical input, can serve as the basis of this evaluation.

Tomkins et al. 2013 de�ned selectivity in the BG as the ability of a neural mechanism to ro-

bustly distinguish competing signals. Although this de�nition is su�cient, the main focus of this

study was con�ned to the di�erence between transient and steady-state e�ects, and it produced

metrics that can not be applied in a more general case, such as the BG model of the current

study.

Our aim here is to create a metric that is aligned with the features of our model but it also

remains general enough to be used in other studies. The �rst step of this attempt is to �nd

a method to measure the distinctiveness of a single selected channel. This can be de�ned

as the ability of a channel to receive distinctively less inhibition than any other channel or,

more speci�cally, the degree to which the following conditions are ful�lled: (a) The �ring rate

of the selected channel in the level of the SNr is close to zero, which is required in order to

revoke inhibition in the thalamus, and (b) no other channel is far below tonic levels. These two

conditions can be written as

aj = 1− Fj
max{Ftonic, Fj}

, bj =
minFi 6=j

max{Ftonic,minFi 6=j}
(6.1)

where j is the examined channel, Fi is the SNr �ring rate of a channel i and Ftonic is the tonic

�ring rate of the SNr (∼ 25 spikes/sec). Since both denominators in (6.1) are upper-bounded

by the value of the corresponding numerator, the product D̄j = ajbj will always take values

between [0, 1] and re�ects the requested measure. The special case of Fj = minFi 6=j = Ftonic/2

results in D̄j = 1
4 and represents the baseline below which the channel j is indistinguishable. To
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normalize D̄j , so the baseline lies in 0, the �nal distinctiveness Dj of a channel j is given as

Dj =


1
3(4D̄j − 1) if D̄j >

1
4

4D̄j − 1 otherwise
, −1 ≤ Dj ≤ 1 (6.2)

A graphical illustration of the above can be found in Fig. 6.1A. Using this metric we can now

measure a number of properties of the BG selection mechanism. First, the e�ectiveness of the

BG in selecting the most salient cortical input can be de�ned as

E = Dk, −1 <= E <= 1 (6.3)

where k is the index of the most salient channel, i.e. the channel with the highest �ring rate at

the level of the cortex.

δ

δ

σglobal

σlocal

σlocal

σglobal

dependence: 0.74 dependence: 0.29

Ai Aii

bin size

0.25

Bi Bii

selection

Figure 6.1: Metrics for distinctiveness and dependence. Ai: A multi-channel example of SNr �ring rates
used to illustrate the concept of distinctiveness of the channel j. Aii: Space of possible values for
Dj for any di�erence δ between j and the least-inhibited alternative channel. Note that the line
Dj = δ is an upper bound to the possible values of Dj in this space. B: Example calculation of
dependence.

Furthermore, the degree of selectivity of the BG re�ects to their ability to select any channel

regardless of its salience and can be de�ned as

S = max
j
Dj , −1 <= S <= 1 (6.4)

Finally, one more useful property that can be measured using Dj is to what extent the BG is
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selecting, or exploring, alternative actions. This is given as

exploration = max
j 6=k
Dj , −1 <= exploration <= 1 (6.5)

and is de�ned as the level of exploratory behaviour of the BG mechanism, or simply exploration.

To compare this metric with terminology commonly found in the literature, the value of e�ec-

tiveness in the BG can be considered here as the level of exploitativeness, since the high salience

of the leading microscopic channel arises from a previously learnt behaviour. Hence, selectivity

can be then thought of as the union of exploration and exploitation.

To conclude, Dj can be used to measure various features of a neural-based action selection

mechanism with minimal adjustments. The only requirements are �rst, a local measurement

of the instantaneous �ring rate in the output area of a neural structure, and second, a prior

knowledge of the average tonic �ring rate in the same area. In case that the latter cannot be

obtained, the di�erence δ between the selected channel and the least-inhibited neighbouring area

(Fig. 6.1Aii) provides a good approximation of distinctiveness, especially when δ > 1
4 , and thus

it can be used instead.

Transient versus steady-state

An event processed by a selection mechanism can have both a transient and a steady-state e�ect

on a dynamical system such as the brain. Our BG model exhibited rich transient phenomena

during the �rst 500ms after the injection of a stimulus, as well as a di�erent post-transient

steady state that was maintained inde�nitely. To distinguish between these two modes, the

transient distinctiveness of a salient channel is de�ned as the maximum degree by which this

channel received less inhibition than any other neighbouring channel for a �xed short interval,

after the generation of the salient signal. That is

max
t
D[t−100ms,t]
j (6.6)

where T + 100ms < t < T + 500ms and T denotes the point on time that the stimulation

was applied. The steady-state distinctiveness, on the other hand, can be measured taking into

account the post-transient stable �ring rates in the level of the SNr.

6.2.2 Dependence

Selectivity can be a�ected by various parameters of the model or the current stimulus. Some of

these parameters can play a decisive role in determining the model's performance. The degree
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by which the BG selectivity depends on the value of a single parameter of the model can be

measured by comparing the local versus the global variation of the resulting Dj for a number of
simulation runs with random initial conditions.

For instance, in the case that selectivity is highly dependent on the value of a parameter, a

signi�cantly large sample of randomized simulation runs will result in diverse local mean values

and small local standard deviations, compared to the standard deviation of the complete sample.

An illustration of this concept is shown in Fig. 6.1Bi-ii.

This metric was used here to examine the e�ect of the phase o�set ϕ between two oscillatory

cortical inputs. In this case, local areas can be found by dividing the range of possible values

for this parameter R = [0, 2π) into a number of bins Ri = {x/x ∈ [a, a + dx), 2π · a = i · dx},
where dx is the length of each bin. Additionally, if σi is the standard deviation of selectivity

values within the bin Ri and σglobal the global standard deviation in R, the dependence of the

BG selectivity to ϕ can be de�ned as

dependence = 1− σ̄i
σglobal

, 0 <= dependence <= 1 (6.7)

For the analysis of this study we have used 30 local areas (bins) to calculate dependence, a

number which was found to provide adequate and robust results.

6.3 A reduced version of the basal ganglia model

For the experiments conducted for the most part of this chapter, the full neural model described

in Chapter 3 was used. However, this model contains a rather high number of parameters

that might in�uence its behaviour and the resulting measurements of selectivity. In order to

narrow down this space and establish the most important BG features for selectivity we de�ned

an additional, simpli�ed version of this neural model with signi�cantly less di�erences between

nuclei. This simpli�ed model was then utilized for these experiments and the results were

compared against the original model. The architecture of this model is shown in Fig. 6.2.

In this simulation, the striatum is modelled using only 600 D1-like and 600 D2-like MSNs with

the FSIs and gap junctions being neglected due to their small number. The rest neuron groups

consist of the STN, GPe and SNr, which were modeled using a single parameter, set as well as a

�xed number of 150 neurons for each group. The values for all neuron parameters can be found

in Table 6.1. The synapses between neurons in this model do not exhibit short-term plasticity.

They include AMPA, NMDA and GABA types and they are governed by the equation 3.4. They

have �xed reversal potentials E equal to 0, 0 and −80 for each neurotransmitter respectively,

118



6 Assessing selectivity in the basal ganglia
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Figure 6.2: Simpli�ed version of the basal ganglia model.

τAMPA = 2ms, τNMDA = 100ms and τgaba = 3ms, as well as a maximum conductance g = 1nS

for all connections in the system. In addition, no optimization was conducted to �t the �ring

rates of the model to the corresponding biological nuclei, as in the Section 3.1.4. Instead, the

probability for each neuron of a source nucleus to be connected to a neuron in the target nucleus

was always set to 0.25. Finally, the cortical input towards the three microscopic channels of this

model remained the same as in Section 3.1.2, in order to enable a more direct comparison with

the full version of the BG model.

6.4 Selectivity portraits

Following the methodology described in Section 6.2, we conducted a series of simulations where

the BG circuitry was called to resolve a con�ict between two salient potential actions. To

simulate this scenario, the BG model received strong cortical input in two out of their three

microscopic channels, governed by the equations described in Section 3.1.2, and background

noise of 3 spikes/sec in the third channel. These two strong inputs were oscillatory, with a single

�xed frequency f = f1 = f2, but di�erent amplitudes A1 < A2. Since the �ring rate of the

cortical ensembles that generate these inputs represents the salience of each action, the second

cortical input was always considered the most salient one or, in other words, �the right choice�.

To investigate the relation between dopamine, cortical oscillations and the e�ciency of the BG

as a selection mechanism, we varied the frequency f of the two cortical ensembles, the phase

o�set ϕ between them, and the level of dopamine d = d1 = d2 in the system. An overview of

the resulting BG behaviour can be seen in Fig. 6.3.

The coloured scatter plots of this �gure illustrate the tendency of the model to select the most

salient signal (e�ectiveness), or the alternative, less-salient signal (exploration) for any possi-

ble combination of dopamine and cortical frequency. Finally, the plots right below indicate
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Parameter MSN* STN*** GPe**** SNr****

a 0.01 0.005 0.05 0.05

b -20 88.33 2.5 3

c(mV ) -55 -65.0 -60 -65

d 91 500.0 70 200

vr(mV ) -80 -61.0 -55.1 -55.8

vt(mV ) -29.7 -64.035 -54.7 -55.2

vpeak(mV ) 40 20.0** 15 20.0

Cm(pF ) 15.2 333.33 40 80

k 1 13.33 0.706 1.731

d1 0.3** - - -

d2 0.3** 0.3** 0.3** -

Table 6.1: Neural parameters in the simpli�ed basal ganglia model. * Parameters taken from Humphries,
Lepora, et al. 2009 ** Parameters taken from Humphries et al. 2006 *** Parameters derived
from Michmizos and Nikita 2011 **** Parameters derived from Lindahl et al. 2013

the ability of the system to select any signal, as well as the degree by which ϕ a�ects these

measurements, across the same frequency spectrum. Since these �gures can expose the critical

conditions that a�ect the selection mechanism under examination, we termed them �selectivity

portraits� of the model.

In the next paragraphs, we present a number of observations which were largely based on this

�gure, and we outline the most important testable predictions that emerged, regarding the

function of the BG in the brain.

6.4.1 The combination of dopamine concentration and cortical frequency

de�nes BG e�ectiveness and exploration

Fig. 6.3 clearly indicates that both the frequency of the two oscillatory inputs as well as the level

of dopamine in the system play a crucial role in the ability of the BG to select. The responses of

the model for various values of these two parameters revealed three main areas of interest in the

frequency spectrum with completely di�erent behaviour. The �rst area includes low-frequency

oscillations, with a borderline at f = 15Hz, the second area corresponds to beta oscillations

(13 < f < 30Hz) and the third area includes all greater frequencies.

In all cases, dopamine exhibited distinct patterns with which it regulated e�ectiveness and ex-

ploration. These patterns were completely di�erent during the initial transient phase as opposed
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Figure 6.3: Selectivity portraits of the basal ganglia model. E�ectiveness (scatter plot up), exploration
(scatter plot down), selectivity (black curve) and dependence on the phase o�set ϕ (red curve)
when two inputs oscillate with amplitudes A1 = 7.5, A2 = 10 spikes/sec in (A) and A1 = 5, A2 =
10 spikes/sec in (B), in order to simulate strong and weak competition respectively. Cortical input
to the third channel has a �xed baseline �ring rate of 3 spikes/sec. E�ectiveness is calculated
for each combination of dopamine levels d and input frequencies f . The colour bars represent
the mean of a sample of 200 runs (for each point) with random ϕ ∈ [0, 2π). Selectivity curves
represent the mean (black line) and standard deviation gray area for all ϕ and d, across frequency
spectrum. Dependence was calculated for d = 0.3.
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to the �nal steady-state BG response, while they were further modi�ed depending on whether

the competition was strong or week. As a result, the model generated four unique selectivity

portraits when it dealt with each of the above cases.

More speci�cally, we found that, in our model, dopamine concentration a�ects selectivity only

in particular frequency ranges, where its role is to either trigger or block the selection process.

Notably, decisions triggered by dopamine promoted exploration over exploitation in the majority

of the simulated scenarios. An exception is the case of a strong initial lead in the salience of the

one of the competing channels before the level of the BG, showed in Fig. 6.3Bi. As the dominance

of this channel is clear, an increased level of dopamine triggers the selection of this instead of

the alternative choice. However, even if the most salient channel has already been selected

transiently, this selection can be maintained over time only if dopamine decreases (Fig. 6.3Bii).

From the perspective of the cortical behaviour, low-frequency oscillations also promoted the

selection of the least salient channel. This was achieved via the level of dopamine, which de-

termined whether a selection will be made or delayed. With this type of input, the BG model

became completely unable to maintain the �rst choice after an initial short transient.

On the other hand, beta oscillations minimized the in�uence of dopamine and brought the

system in a neutral state, where both e�ectiveness and exploration are in the borderline value 0.

Once more, this e�ect was halted in the presence of a strong di�erence between the two inputs.

Finally, gamma oscillations can clearly facilitate BG e�ectiveness. Transiently, selectivity max-

imized and the most salient channel was selected for any frequency, phase o�set and dopamine

level. In steady-state, gamma oscillations continued to support the same decision, but only if

the channel remained highly salient and the level of dopamine dropped below tonic levels.

In order to ascertain the validity of these results and rule out the possibility that other stochastic

parameters of the model had an important impact, we examined the variance of these measures

when the examined parameters were �xed. Speci�cally, we ran 100 experiments where, each time,

the level of dopamine, the input frequency and the phase o�set ϕ were kept �xed to a random

value within the biologically realistic limits but all other statistically de�ned entities in the

model were randomised. These included the synaptic indexes, neural parameter perturbations

and neuron types within a nucleus among others. This process was repeated 500 times giving

in total 500 random points in the selectivity portraits that can be used for this analysis.

As a result, the three selectivity metrics presented Fig. 6.3 were almost identical between runs.

A Shapiro-Wilk's test (Shapiro and Wilk 1965; Razali and Wah 2011) showed that the vast

majority of these data points were approximately normally distributed, with an average p value

p = 0.56 ± 0.36 that could not reject the null hypothesis of normality. The resulting standard
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deviations in each point were on average 0.114 ± 0.035 for e�ectiveness and 0.053 ± 0.032 for

exploration.

The magnitude of this variation was very small compared to the di�erences in the selectivity

process, and it was also comparable to the standard deviation of the normalized �ring rates

in the 3 channels of the SNr (0.072(±0.057) × 25 spikes/sec). Since these values are the only

parameters of D̄j , our results indicate that there is no hidden correlation in the system, and the

�uctuations of the standard deviation in selectivity plots of Fig. 6.3 were caused by dopamine

and ϕ.

6.4.2 The BG can almost always select the most salient action transiently

During the simulations that produced the selectivity portraits, the BG model exhibited a signif-

icantly more aggressive selectivity transiently, at the �rst 500 ms after the presentation of the

stimulus, as opposed to its steady-state behaviour. This is an expected range of reaction times

in psychophysical choice tasks. It is consistent with oscillatory changes in the BG (Jenkinson

and Brown 2011) and sensorimotor cortex (Leventhal et al. 2012) during animal decision mak-

ing tasks, as well as choice reaction times in mental chronometry studies in humans (Heitz and

Engle 2007; Heitz 2014; Woods et al. 2015). However, the equation (6.6) that has been used

to produce the selectivity portraits of the current model, does not fully address the dynamic

changes of selectivity. A further comparison with experimental studies, such as the above, re-

quires information regarding the onset and duration of the emerging transient peaks, as well as

any rebound e�ects. The average response of our model for the four major examined frequency

ranges is presented in Fig. 6.4.

No oscillations alpha beta gamma

0 0.4 0.8 1 0 0.4 0.8 1 0 0.4 0.8 1 0 0.4 0.8 1

Time from stimulus presentation (sec)

Exploration

E�ectiveness

Figure 6.4: Transient changes in selectivity. Two competing cortical inputs oscillate with amplitudes 7.5 /
10 spikes/sec respectively. The two coloured curves represent mean value for any level of dopamine
and o�set ϕ, and the two coloured areas smoothed standard deviation.

As in the previous section, the large variations at some frequency ranges of this �gure come from
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the di�erent values of phase o�set ϕ and the level of dopamine. For instance, beta frequencies

cause positive e�ectiveness only when dopamine is greater than 0.8. Since successful selection

cannot occur for Dj < 0, we consider the BG as able to select only in scenarios where a signi�cant

portion of our experiments had a selectivity peak above this baseline.

Right after the presentation of the stimulus the BG model did not produce any selection response

for a short period with �xed duration. Instead, the �ring rate in all SNr channels was high,

indicating an initial STOP phase. This phase had a very similar duration of 85 ± 67 ms on

average, in all frequency ranges. Next, a transient increase in e�ectiveness that peaked at

133± 155 ms on average, accompanied the initial STOP phase. Although this increase had also

a similar onset at all frequencies, its exact duration and the rebound activity varied signi�cantly

between the four frequency ranges (Average duration without oscillations: 81± 62 ms, in alpha

oscillations: 42. ± 59 ms, beta: 28 ± 46 ms and gamma: 70 ± 63 ms). Hence, our results

indicate that cortical frequency does not in�uence the reaction time of the BG, although di�erent

frequency ranges cause di�erent types of reactions.

Furthermore, the model was not able to maintain e�ectiveness above the baseline after the

�rst 500 ms. An exception to this rule was the case of alpha oscillations, where e�ectiveness

had a second sharp rebound spike, with a surprisingly similar duration and onset among runs.

Indeed, in some trials at these frequencies, selectivity was stronger in this second peak. This

bimodal distribution of maximum selectivity between trials could re�ect to a similar pattern

in behavioural tasks. The latencies of the two peaks in our simulations are consistent with

the bimodal distribution of reaction times in distinct cue choice tasks with rats (Leventhal et

al. 2012). However, the mechanism that caused this second selectivity peak is not yet fully

understood, thus further investigation is required in order to establish its biological importance.

6.4.3 Cortical oscillations with low frequencies are required for selection

change

The steady-state patterns of BG selectivity are also worth closer examination. Their function

can be plausibly linked to a number of cognitive operations related to action selection. These

include the ability of the BG to maintain a selection, for example during postural activities

(Jenkinson and Brown 2011), to easily switch the current selection to an alternative cue, or the

level of general alertness.

In Fig.6.3, it is shown that the most critical areas that a�ect e�ectiveness and exploration

are mainly located in low frequencies while gamma oscillations have no discernible e�ect. In

fact, Fig. 6.4 shows that gamma frequencies have virtually the same e�ect on selectivity as no
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oscillations.

To shed more light into the steady-state behaviour of the BG after the presentation of two

competing stimuli, Fig.6.5 illustrates the �ring rate of the BG output nucleus, the SNr, during

that period and for the complete examined frequency spectrum.
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Figure 6.5: Inhibition of the SNr microscopic channels. Up: Firing rates of the three simulated micro-
scopic channels in SNr, for various stimulation frequencies when two channels are stimulated with
maximum amplitudes A1 = 7.5 and A2 = 10 spikes/sec respectively. Down: The same �gure but
for A1 = 5 and A2 = 10 spikes/sec. Activity in channel 1 is reversely proportional to the level of
dopamine in the system.

At low oscillations, and particularly at alpha frequencies, the �ring rate of the selected micro-

scopic channel was always close to the �ring rate of tonic areas of this nucleus (25 spikes/sec).

When the di�erence between the competing signals was low, this gave a clear advantage to the

less salient channel which, under some conditions, could be directly selected. However, when

the competition was less ambiguous, the advantage of the less salient channel diminished. In

fact, during cortical oscillations at 20 Hz, the two salient channels were treated equally. They

were both inhibited to around 50% of their default tonic state and, as a result, both channels

remained ready for immediate deployment.

This speci�c beta frequency was of particular importance, since it manifested a critical state

in the model. Higher cortical frequencies favoured the most salient channel and, on average,
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they signi�cantly increased its distinctiveness, while low frequencies below 20 Hz had the exact

opposite e�ect.

Finally, gamma oscillations also showed an interesting e�ect. In experiments with low ambiguity

between competing channels and for low levels of dopamine, a selection of the highest salient

channel could be maintained. However, under high ambiguity, or when dopamine increased,

both channels remained inhibited, i.e. selected. This mechanism, which presumably allows in-

formation to �ow via the cortico-BG-thalamic loop, might keep both information channels active

until more evidence is accumulated. Cortical gamma synchronization has been widely associated

with active information processing and feature binding (Eckhorn et al. 1988; Fries 2009; Colgin

et al. 2009). Hence, the multi-selection mechanism we observed here might also contribute to

these cognitive functions, by promoting integration of multiple information channels and thus

allowing coalitions of neural ensembles to be formed.

6.4.4 Selectivity portraits are largely maintained in simpli�ed versions of

the BG model but not in the minimal model

The BG model that has been developed in this thesis has an increased degree of complication.

Although its behaviour is similar to its biological counterpart, it is not clear yet whether our

results depend on speci�c modelling features and how robust they are for small perturbations.

Here we address this by providing a classi�cation of the individual features of the model according

to their impact on selectivity portraits. To do this, we ran the same simulations shown in

Fig. 6.3 but for each set of data points created, a single parameter of the model was changed.

When necessary, the connectivity optimization presented in Section 3.1.4 was repeated, to bring

the �ring rates of the BG nuclei back to their biologically realistic ranges. The result of this

classi�cation is illustrated on Fig. 6.6.

The model variations that were chosen to be shown here are the ones that showed the highest

di�erences in either e�ectiveness or exploration. To maintain consistency with the previous

�gures, we ran simulations for both sets of amplitudes A1 = 7.5, A2 = 10 and A1 = 5, A2 = 10

spikes/sec. In all cases, the feature of the model that clearly had the strongest impact on

selectivity was the existence of plasticity in the chemical synapses. When plasticity was o�,

the conductance strength of the a�ected synapses was reverted back to the initial static state

described in Section 3.1.4, where the connectivity of the model was tuned to represent the

steady-state baseline activity of the BG nuclei. This synaptic stationarity reduced dramatically

the ability of the model to make selections at any frequency, and completely impaired its ability

to maintain selection for longer than 500 ms. See the black selectivity curves in Fig. 6.6A and

B. In contrast, the lack of lateral connectivity in the striatum had a signi�cant positive e�ect
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Figure 6.6: Comparison of selectivity portraits of reduced versions of the BG model. A: Transient
e�ectiveness and exploration for various cortical frequencies and zero phase o�set between two
cortical input signals, for di�erent versions of the BG model where a single key feature has changed.
The di�erence between the amplitudes of these signals is 2.5 spikes/sec. B: The same �gures but
steady-state e�ectiveness and exploration. C: Box plot of the mean error between the selectivity
behaviour of the default BG model and the examined reduced versions, for various initial conditions
in (B). D: The same e�ectiveness �gure for the minimal BG model.

in steady-state selectivity, but not transiently. Finally, the selectivity of the model underwent

a similar dramatic reduction with plasticity when no NMDA receptors were used in the model

(τNMDA = τAMPA), consistent both in transient and steady state.

Interestingly, variations in conductance delays in synapses between, or within, the nuclei did not

play an important role in modulating the selectivity portraits. Delays were either completely

randomized, maintaining a biologically plausible range, or altered in synapses where our initial

choice was based on evidence with con�icts among independent studies. For example, a compu-

tational model of the BG microcircuit presented in Lindahl et al. 2013 integrated data previous

studies and and concluded that the conductance delay in synapses from the STN to the GPe

is on average 5 ms, for GPe-STN also 5 ms, for STN-SNr 4.5 ms, for MSND1-SNr 7ms and for
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MSND2-GPe 7 ms. In the current thesis, these parameters were taken from Humphries et al.

2006 where their corresponding values are 2 ms, 4 ms, 1.5 ms 4 ms and 5 ms respectively. In

addition, a second example comprised changes only in the delay of the input between the cortex

and STN, which represents the extra distance that information signals have to travel to arrive

to the hyper-direct BG pathway. This is an important parameter of the model, since it is not

yet clear what cortical areas activate the same microscopic channels in the striatum and STN.

In both examples, random variations in the synaptic delays did not cause signi�cant variations

in the selectivity portraits.

Another important observation in the comparison of this section is the e�ect of the phase o�set ϕ

on selectivity during low-oscillations. Fig. 6.6A and B include curves of average selectivity over

various initial conditions, but with ϕ always being �xed at zero. We chose to show these curves

in order to highlight the great impact of the phase o�set at low frequencies, which remained

consistent among the most versions of the model. As an exemption, when no slowly-decaying

synapses are used (τNMDA = τAMPA), this e�ect disappears.

Finally, Fig. 6.6D illustrates that the minimal version of the BG model that is described in

Section 6.3 produced a completely di�erent behaviour. This can be attributed to a wide range

of di�erences between the two models including the number of neurons and membrane potential

dynamics. Yet, even under these simpli�cations, cortical oscillations at 20 Hz remained the most

critical borderline in selectivity portraits that divides the frequency spectrum into two bands

with antithetical behaviour (Fig. 6.3.Aii and Bii).

Taking everything into account, our results indicate the important hazards of oversimpli�cation

in computational modelling based on spiking neurons, since the latter do not always fall into

the same level of biological abstraction.

6.4.5 The e�ect of the phase o�set between low-frequency cortical inputs on

selectivity portraits

So far, we showed that the combination of cortical frequency with the level of dopamine in

the system de�nes how e�ective the BG circuitry is in discriminating incoming cortical infor-

mation signals. Oscillators of various frequencies emerge constantly in the cortex, made by

task-dependent coalitions of neural areas, or ensembles (Buschman et al. 2012; Akam and Kull-

mann 2010). These �exible neural populations are transiently being engaged (or coupled) and

disengaged (or decoupled) in a metastable manner (Tognoli and Kelso 2014), distinguishable by

their di�erent relative phases. Evidence indicates that by staying out of phase, these ensembles

maintain representations of di�erent entities in working memory (Siegel et al. 2009).
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Hence, it is likely that cortical groups that project to di�erent microscopic channels in the

level of the BG are phase-locked with a non-zero phase o�set, which plays an important role

in maintaining the identity of the potential action that is currently represented. Furthermore,

since evidence points to the beta frequencies as the main range that mediates the formation of

new ensembles (Buschman et al. 2012), it is particularly important to assess the BG behaviour

in this range.

In our simulations, we found that the phase o�set ϕ between coherent cortical signals with

di�erent amplitudes can have a strong in�uence on the e�ectiveness of the BG, at certain low

frequencies, while in gamma band this e�ect disappears (Fig. 6.7A). Indeed, the strongest e�ect

was clearly located in the beta range, where the BG e�ectiveness was signi�cantly enhanced

when the phase of the one input signal preceded in time the phase of the second, with a small

o�set around π
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Figure 6.7: The ubiquitous e�ect of the phase o�set ϕ at beta frequencies. A: BG e�ectiveness as a
function of the frequency of two oscillatory cortical groups for A2 −A1 = 2.5 spikes/sec and the
phase o�set ϕ between them. B: The same �gure for the minimal model presented in Section 6.3.
C: BG e�ectiveness versus ϕ at theta frequencies. D: BG e�ectiveness versus ϕ at gamma
frequencies.

Surprisingly, the sensitivity of the BG to di�erent phase o�sets during beta oscillations was

largely preserved in all versions of our computational model including the minimal version de-

scribed in Section 6.3. Fig. 6.7A illustrates this similarity which is even more prominent, since

the two models produced di�erent selectivity portraits, as a result of their numerous di�erences.
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The relationship between phase and the BG function was investigated experimentally by Cagnan

et al. 2015, who showed that neural synchrony increased in the Parkinsonian BG for certain phase

di�erences between beta oscillations in STN and GPe. Fig.4.3 shows that, above the alpha range,

most GPe neurons that are part of a phasic microscopic BG channel remain largely silent during

this phasic process. Hence, the remaining GPe neurons are vulnerable to entrainment by weaker

cortical inputs. As cortical beta oscillations were also shown to maintain coherence throughout

the BG circuit, it is likely that the phase di�erence that Cagnan and her colleagues observed in

this study re�ected speci�c phase alignments of two competing cortical populations.

6.4.6 Selecting the most salient input does not require coherence between

competitor populations.

Our results highlighted the impact of the frequency and phase of cortical ensembles that project

to the BG. In order to draw conclusions regarding the phase di�erence between competing

populations, we con�ned our simulations to populations of equal frequencies. However, EEG

studies show that several di�erent bands can coexist in the same or di�erent regions of the cortex

and interact with each other (Buzsáki and Draguhn 2004). Hence, to explore the dynamics of

BG selectivity that emerge during a combination of two stimuli with non-equal frequencies we

ran another set of simulations for frequencies 0 < f1, f2 < 50 Hz and random o�set ϕ. The

resulting portraits are given in Fig. 6.8.

Despite the fact that our BG model contains various synaptic pathways that connect the two

neighbouring channels, the SNr activity of each channel was immune to frequency changes in the

other (Fig. 6.8B). Changes in e�ectiveness and exploration were both largely dominated by the

frequency f2 of the strongest input, and across the f2 spectrum they followed a pattern similar

to the portraits in Fig. 6.3. The oscillation of the weak channel was able to `bend' this pattern

only at beta frequencies, where e�ectiveness was enhanced.

6.5 Behavioural predictions

6.5.1 Evidence for the existence of a long selection cycle that can be used

for evidence accumulation

It is assumed by a variety of models that cognitive operations in the brain require a �xed duration

(Anderson et al. 1998; Stewart and Eliasmith 2009; Madl et al. 2011), which is often referred to

as a cognitive cycle. Studies have implicated the BG as the central cognitive coordinator which
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works in a serial manner with a cycle of 50ms (Anderson et al. 2004; Stewart and Eliasmith

2009).

In order to investigate the contribution of our model to this hypothesis, we simulated a two

choice task experiment, following the methodology in Tomkins et al. 2013. The BG model was

stimulated with tonic input of 3 spikes/sec for 1 second in order to converge to an �inactive�

steady-state where no selection is being made (Fig. 6.9). Then, a ramping increase, which lasted

for 50 ms, changed the cortical �ring rate of the one channel to 10 spikes/sec (channel 2 ). A

second neighbouring channel received the same increase for the �rst 25 ms of the ramping time,

but it decayed back to its tonic �ring rate after another 25 ms (channel 1 ). The cortical activity

in these two channels represented the urgency for two competing actions, which in the latter

less-salient case was suppressed after some initial evidence accumulation.

Although the model of the striatum that has been used in this thesis is based on the neuron

equations presented in Tomkins et al. 2013, we observed a consistent bimodal selectivity pattern

that was di�erent from the results in this study. Since our model does not include any feedback

connections from other nuclei to the striatum, this di�erence can be only attributed to the asym-

metric inhibition between MSND1 and MSND2 neurons which was examined in Section 3.1.1,

but it was not taken into account in Tomkins et al. 2013.
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The response of the SNr, the BG output nucleus, to this stimulation comprised a sequence of

events. The �rst event occurred after 50 ms from the presentation of the stimuli in channels 1

and 2. Initially, a rapid increase in SNr �ring rate was evoked, which was proportional to the

intensity of the stimulus in each channel. This increase maximized after approximately 50 more

ms, to be followed by a complete shut down of the selected channel, for the rest of the duration

that the stimulus was presented.

The timing of this sequence of events was very similar to the experiment in Section 6.4.2 where

the salience of the second action remained �xed during stimulation. This e�ect was shown to be

robust and not in�uenced by the oscillatory patterns of the cortical input, therefore indicating

the existence of a series of cognitive operations that take place during the selection process.

As shown in Fig. 6.9, after approximately 75 ms from the stimulation onset, channel 1 ceased

to in�uence the outcome of the selection. But was channel 2 already selected at this particular

point of time? Since the SNr does not stop its inhibitory e�ect to the thalamus before 200ms

have passed, it is possible that a large portion of this time is used to accumulate information

related to this selection. The fact that extra inhibition is provided to the phasic channels in the

thalamus via the SNr, agrees well to this hypothesis.

To investigate these questions, as well as the tolerance of the time interval that is required for a

successful selection, a new set of experiments was conducted. After the initial 50 ms ramp period,

channel 2 received a �xed (non-oscillatory) input that had a random duration between 1 and 750

ms, while channel 1 received the same ramped input as before. In all runs, the distinctiveness

Dj of the three simulated channels was recorded across time, in order to see when the maximum

point of e�ective selection can be reached in each case. The results are presented in Fig. 6.10.
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Interestingly, we found that the BG model can discriminate between phasically and tonically-

active channels only when the stimulus is presented for more than 140 ms (black dashed line in

Fig. 6.10A and B). Longer stimuli are adequate to initiate this selection process, which normally

lasts approximately 200 ms (yellow dashed line in Fig. 6.10A). Therefore, the inhibition of the

selected channel in the level of the SNr is always preceded by excess excitation when a successful

selection is performed.

This long interval, during which some information channels in the thalamus are completely shut

by SNr inhibition (Fig.6.9A), could allow a mental deliberation process to be performed in the

cortex, while the latter remains partly isolated from the environment. If during this process a

channel looses its salience, as in the case of channel 1 in Fig. 6.9, its SNr activity will return to a

neutral state, thus avoiding any interference with the �nal selection. Additionally, if no channel

is able to maintain strong cortical activity, the process of selection will be cancelled and the

excess excitation in the SNr will again prevent the inhibition of the thalamus. These features

make the observed behaviour a good candidate mechanism for serial action selection.

Furthermore, the model exhibited a strong rebound e�ect after phasic cortical stimulation

stopped. Within the range of 0 to 110 ms after stimulation, which is represented by a gray

zone in Fig. 6.10A, the SNr inhibition of the most salient channel remained suspended. In fact,

after approximately 50 ms the distinctiveness of the stimulated channel peaked again, as the

neighbouring microscopic channels regained activity (Fig. 6.10C). This post-stimulation increase

in selectivity was strongly facilitated by the rebound behaviour of the direct pathway, via excita-

tion of MSN neurons in the striatum. As shown in Fig. 6.9B, the MSNd1 sub-population exhibits

a sharp increase in their �ring rate, which is inversely proportional to the rate of MSNd2 neurons

of the same channel. Since MSNs do not evoke rebound spikes when stimulated in vitro (Venance

and Glowinski 2003), this activity can only be due to the fast decrease of local inhibition and
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the asymmetric connectivity between the two types of MSN neurons.

Although striatal lateral inhibition is crucial for the observed pattern of prolonged selectivity,

it is not the only mechanism that causes rebound responses. Fig. 6.11 illustrates the response

of the BG model for stimulus of various duration, when the simulated microscopic channels are

connected with weak local striatal connections, to cover the possibility that these channels are

physically located far from each other in the level of the striatum.
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Figure 6.11: BG response for stimulus of varying duration in non-neighbouring channels. A,B: The
same as in Fig. 6.10 in a variation of the BG model for weak striatal lateral inhibition that
represents longer distance between channels.

In this case, the model required shorter presentation of the stimulus in order for a selection to be

performed (around 100 ms). However, after stimulation stoped, it underwent a refractory period

of approximately 200 ms (gray area in Fig. 6.11A), after which e�ectiveness peaked again. The

fact that the duration of this period matches the initial time that the model needs to execute a

selection provides additional indications of a selection cycle, which can be initiated after major

changes to the input that the model receives. Although the existence of a cycle is consistent with

all data presented in this section, a refractory period was not observable when strong competition

took place within the striatum. A possible reason is that as the BG become more e�ective in

distinguishing between channels, they are able to maintain a ready-to-select state, rather than

initiating a new cycle, since the winning channel is already inhibiting the surrounding areas.

Finally, in order to conclude that the series of events which led to selection in our experiments

constitute a cycle, the ability of the model to maintain e�ectiveness sequentially needs to be

established. The steady-state selectivity portraits presented in Fig. 6.3 demonstrate that a single

selection can not be maintained for many cycles of a duration longer than 70 ms (lower than

beta frequencies), even if it is signi�cantly more salient than an alternative choice.

Hence, to test if such a selection cycle can be repeated inde�nitely, we ran an experiment where

the three channels of the BG are stimulated sequentially for a �xed period T per single cycle. We
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found that the BG was able to distinguish the most salient channel via excitation in the SNr when

T > 30ms. However, the second phase of the selection process, where a selection is executed via

inhibition of the corresponding SNr channel, could not be achieved when T < 140ms. A cycle

of 200 ms was able to maintain inhibition to the SNr for approximately 50 ms. These results

match with the model's behaviour in Fig. 6.11 and verify that the above selection process can

be sequenced.

Cognitive architectures

Although recent cognitive models are consistent with various experimental studies, a strict def-

inition of the timing of a cognitive cycle is a challenging task. For this reason, cognitive ar-

chitectures do not currently agree on a common timing model that accounts for perception,

cognition and action selection (Madl et al. 2011). As mentioned before, the BG are considered

to be a fundamental element of this triad (Anderson et al. 2004), which makes the model that is

described in this thesis a useful source of information for this quest. Even with an ideal design,

however, a BG model is inadequate for capturing the timing of a complete cognitive cycle, since a

signi�cantly wider range of brain structures are typically involved in this process. Alternatively,

the current model can be used to impose a number of biological restrictions and to establish

whether the current cognitive models can be supported by the BG dynamics (Fig. 6.12A).
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Figure 6.12: Timing of action selection in popular cognitive architectures. A: The three fundamental
processes in a cognitive system, mapped to the activity of the BG model. The distance d ≥ 0
to show that selection has not occurred before the onset of this process. B: Distribution of
durations in each cycle that selectivity is above the threshold 0.22. The black dots represent
expected duration while the box plots show the results of our simulations. C: SNr �ring rates
when the BG is stimulated sequentially, with timing that matches three characteristic examples
of cognitive architectures. The black lines represent areas where BG selectivity is above the
threshold. The three coloured curves represent di�erent microscopic channels.
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An important restriction implied by our simulations is that a cognitive cycle should be at least

200 ms, which is the time it takes for the BG to complete a selection cycle spontaneously,

measured from the onset of cortical stimulation. Although it is not clear to what extend the

perception process can overlap with the activation of the cortical areas that project to the BG

directly, it is safe to assume that there is a minimal overlap, given the hierarchical structure of

information processing in the cortex (Felleman and Van Essen 1991). Hence, if no parallelism

between di�erent cycles is assumed, our model suggests that a biologically plausible borderline

range for the period of a cognitive cycle is from 200 ms to 200 ms plus the time duration

required for perception. This restriction contradicts the majority of the currently proposed

cognitive architectures, whose timing assumptions can be found in Madl et al. 2011 and are

summarised below.

One of the most popular models examined here is called Adaptive Control of Thought-Rational

model (ACT-R). Originally introduced by Anderson 1993, ACT-R is a modular and symbolic

system which proposes that human knowledge comprises declarative memory chunks, and proce-

dural rules. The brain is thought to be coordinated based on these rules via a central production

unit, which was later associated with the function of the BG (Anderson et al. 2004). ACT-R

assumes that the time of the human perception is approximately 85 ms, while 100 more mil-

liseconds are required for the rest cognitive operations before selection. These intervals can be

further broken down into 50 ms cycles of production rules, which correspond to information

travelling through the BG-thalamo-cortical loop. Finally, since action selection is realized as a

production rule cycle, it also lasts for 50 ms and, as a result, the time that remains for the BG

to process input and execute a selection is 150 ms.

While this duration is shorter than the current predictions, the 50 ms cycle of ACT-R is, to some

extend, consistent with our model's behaviour. Fig. 6.9 illustrates that all signi�cant events in

SNr activity that led to selection occurred in 50 ms intervals. Although the means of selection

in the BG is typically hypothesized to be inhibition, excess SNr excitation discriminated the

most salient microscopic channel prior to inhibition. This behaviour contradicts previous BG

models and indicates that a selection is initially made in the �rst 100 ms, while other necessary

operations take place until the selection is executed at approximately 200 ms from the stimulus

onset.

A second model examined here is called Executive Process/Integrative Control (EPIC) (Meyer

and Kieras 1997). The architecture and core assumptions of this model are very similar to

ACT-R. The main di�erence in timing between these two models can be found in perception,

which in EPIC is thought to last for 50 ms. Hence, the same con�ict between ACT-R and our

results applies also to this model.
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Another in�uential approach was proposed by Franklin et al. 2005 and is called Learning In-

telligent Distribution Agent (LIDA). LIDA is based on Bernard Baars' model of consciousness

named global workspace theory, according to which, conscious cognitive content is broadcasted

to all active brain processes via a globally available workspace (see the theatre metaphor in

Baars 1997). LIDA assumes that perception takes 80-100 ms, the rest (unconscious) processing

before action selection takes approximately 100-200 ms, while the action selection sub-process

takes 60-110ms (Madl et al. 2011). The predicted timing of a cognitive cycle proposed here falls

within the limits of this theory although, on average, the duration of non-perception processes

is 35 ms longer than predicted.

Finally, the Model Human Processor (MHP), proposed by Card et al. 1983, is based on the same

division of the mind as perceptual, cognitive and motor subsystems (or processors), which are

partially coupled and have di�erent durations. A number of studies have concluded that the

cycle time for the perceptual processor in young adults is on average 100 ms with a range between

50 - 200 ms depending on the task, for the cognitive processor 70 ms with a range between 25-170

ms and for the motor processor 70 ms with a range between 30-100 ms. For a review on this

topic, as well as the time changes in older adults see Jastrzembski and Charness 2007. Again,

most of the range of estimated time for cognition and action selection is inconsistent with our

results, which ideally require at least 140 ms for the stimulus to be projected to the BG and 60

additional milliseconds for action selection.

One issue that was not taken into account in this analysis is a potential parallelism of di�erent

cognitive cycles. Although this is a common limitation among the majority of the above models,

it is known that the brain can process di�erent tasks using some form of parallelism. Experiments

with two di�erent choice tasks performed on a single trial, have highlighted that the processing

required for these tasks can overlap, but the reaction time of the second task will depend on the

duration of the overlap (Telford 1931). This phenomenon, known as the psychological refractory

period, is often attributed to the existence of a central bottleneck in the �ow of information,

that allows parallelism in perception and action execution but not during the time when the

action is being selected (Pashler 1998). As shown previously in this section, our BG model could

support such parallel operations which can reduce the period of a cycle down to 140 ms, the

time required for stimulus presentation. Thus, given the complex dynamics of decision making

which are highlighted with this paradigm, further analysis is required to assess the plausibility

of the above cognitive models.

In an additional experiment, the three channels of the BG were stimulated sequentially as before,

for a cycle T equal to the proposed period of each cognitive model. Stimulation was applied only

in the time interval between perception and action selection, to keep consistency between the

models. The response of the model was timed, in order to investigate whether it will maintain a
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selection for the duration assumed by each model (Fig. 6.12A). To measure selectivity, we used

the metric S which is de�ned in (6.4) and the model was considered to be actively selecting when

S > 0.22. A comparison between original estimations of selection and the resulting durations

that the SNr selected channel remained inhibited can be found in Fig. 6.12B.

The plausibility of LIDA was enhanced as the BG model was able to achieve the highest levels of

selectivity in all trials, under these time restrictions. The timing of LIDA was also a close match,

with almost all trials resulting in durations within the estimated range. Fig. 6.12C illustrates

the average �ring rate of the BG output during the trials and allows the comparison between

models. Furthermore, the time restrictions of ACT-R and EPIC also allowed the BG model

to exceed the threshold of selectivity. However, EPIC was a better match temporally, causing

inhibition to the selected channel for 41± 28 ms, and also achieved higher selectivity scores.

On the other hand, when the BG model was stimulated with the temporal restrictions of MHP,

action selection did not occur at all (Fig. 6.12C). This indicates that despite the fact that this

cognitive model is able to �t to experimental data with a high degree of accuracy (Jastrzembski

and Charness 2007), its underlying theory may require adjustments to be biologically consistent.

6.5.2 Low-frequency oscillations facilitate the resolution of ambiguity

Fig. 6.13 illustrates in more detail the impact of di�erent cortical frequencies for any amplitude

di�erence between stimuli, which represents all possible stages of a single selection. The one

extreme case of A1 = A2 = 10 spikes/sec corresponds to two equally silent inputs, while the

combination of A1 = 3 and A2 = 10 spikes/sec re�ects the case that only one input has remained

above the baseline. According to the selectivity portraits and this �gure, at the beginning of

a selection and when the correct choice is ambiguous, the BG are able to start exploring the

most salient input only when the cortex does not oscillate at low frequencies, or during the

combination of high beta and dopamine.

On the other hand, if a selection task requires a longer interaction with the BG, low oscillations

can maintain e�ectiveness near the baseline (Fig. 6.13B), possibly securing extra time for evi-

dence accumulation. Also, an increased level of dopamine in this case has the opposite e�ect.

Interestingly, the system is unable to achieve a high e�ectiveness score after the initial transient

period, even in the case of a clear winner. This indicates that either decision making in this

case is achieved on another brain region, or that long interactions for single cognitive tasks are

simply not possible. If the former hypothesis is true, low-oscillatory input to the BG could

facilitate selection by maintaining a neutral state among phasically-active inputs. Finally, it is

worth noting that the gamma band had the same impact with no oscillations in all simulated
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scenarios.

All in all, the non-linear behaviour of the BG e�ectiveness that is illustrated in this �gure, during

the transition from ambiguity to certainty, shows the complexity of this circuit, when stimulated

with low-frequency oscillations. However, the predictive power of our model is limited by the

lack of other important brain regions, which makes di�cult to draw conclusions that re�ect

complete behaviours.

6.6 Discussion

6.6.1 The gear box metaphor

This resulting selectivity portraits of our model constitute an interesting �nding as they indicate

that the cortex is actually the structure that determines whether an action selection will be

performed, while the BG just execute this selection. Following the gearbox metaphor from

Chapter 4, dopamine can be likened to the �control pedals� of action selection that either stop

or initiate a decision. In the same context, the frequency of cortical oscillations acts as a gear

lever, that instead of controlling the type and direction of thrust that the throttle provides to
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an automobile, it dictates to what extent dopamine can trigger a decision, as well as what type

of decision this would be.

This framework provides justi�cation to a number of experimental �ndings. Cortical beta is

found to increase when a postural challenge is anticipated (Androulidakis et al. 2007). Since

cortical beta can bring the BG in an neutral state that cancels out e�ectiveness and exploration,

it can be viewed as a frequency that causes a temporary deactivation of the action selection

system when the current action needs to be maintained. In addition, the transient e�ects

of selectivity agree well with the duration of increases in extracellular dopamine after SNc

discharges in vivo recordings of the rat striatum in Dugast et al. 1994; Chergui et al. 1994.

A single discharge increases dopamine for approximately 200 ms while an SNc burst causes an

increase that lasts about 500 − 600 ms. During this interval, our model can almost always

select the most salient action (see results) and it can be signi�cantly bene�ted by an increase in

dopamine. However, the same selection can be maintained after this interval only if the level of

dopamine decreases (Fig. 6.3Bii).

6.6.2 Psychophysical studies

Our model's predictions are also consistent with a wide range of experimental studies on mental

chronometry. Although reaction times (RT) of young adults in simple tasks are in the order

of 190 − 220 ms (Laming 1968), these reactions can be simply stimulus-driven (Haggard 2008)

and thus, they may bypass the action selection system of the brain. In contrast, when di�erent

responses are required depending on the class of the stimulus, choice reaction times (CRT) are

found to be signi�cantly longer, on average 500 ms in two-choice tasks (Woods et al. 2015),

between 390 − 470 ms when the subjects aim for high speed, between 450 − 610 ms when the

aim is high accuracy (Ratcli� 2002) and at a minimum of 200 ms (Heitz and Engle 2007) below

which, responses are random.

By subtracting the average RT that is required by an individual to perform a simple task from

the CRT of a speci�c choice task, we can estimate the time that is spent for the cognitive

processing of the choices. This is found to vary signi�cantly across di�erent age groups, with

an average range between 200 − 400 ms and minimum at approximately 150 ms (Woods et al.

2015). The latency of our BG model is comparable with the lower values in the range of central

processing times found in this study. This is an acceptable result given that the simulated task

that was performed here constitutes arguably one of the simplest possible selection scenarios,

and that the pathway of voluntary actions that involves the BG may also comprise a number of

regions, as reviewed in Haggard 2008, that are not simulated here.
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Furthermore, a range of studies links the duration of stimulus presentation with choice task

performance in mammals. In Gold and Shadlen 2003, monkeys were presented with visual cues

of varying duration, and their accuracy on a two choice task was recorded. When the stimulus

was clear, their performance increased almost linearly from near-random in viewing time of 100

ms, up to 200 ms and then there was a minimal improvement. In a GO odor task with rats,

Zariwala et al. 2013 showed that performance decreases to near random if the odor sample is

presented for 100 ms or less, unless the subjects were anticipating the identity of the stimuli or

the time of the response.

6.6.3 Alpha and theta oscillations act as a BG mechanism to reset selection

and explore alternative actions

In the literature, there is cumulative evidence that strong alpha power is able to inhibit task-

irrelevant regions in the cortex and thus control information �ow (Händel et al. 2011; Buschman

et al. 2012; Brinkman et al. 2014). This theory, which is known as gating by inhibition (Jensen

and Mazaheri 2010), proposes that strong alpha activity is caused by GABAergic interneurons,

which silence neuronal �ring by providing a pulsed inhibition. Although a recent MEG study

provides initial evidence that links gamma peaks to alpha troughs in the temporal cortex (Bonne-

fond and Jensen 2015), a number of important questions still remain unanswered. For example,

it is not yet clear to what extend the phase-amplitude coupling that was observed in this study

was a result of local GABAergic inhibition, or other brain regions, and whether this mechanism

can operate in the same spatial scale that is required to inhibit complete neural ensembles.

Based on our simulations, we propose that alpha-induced inhibition of neural populations is

mediated by the selection circuit of the BG. In particular, we found that alpha and theta

cortical frequencies stop the selection of the strongest input completely and instead promote

the selection of less salient areas. This exploratory behaviour was independent of amplitude

di�erence between the two inputs, occurred transiently and remained active, even after a long

exposure to the stimuli (see selectivity portrait in Fig. 6.3). In addition, the robustness of this

e�ect to di�erent background frequencies was established in Fig. 6.8D. When the most salient

input was oscillating at alpha rhythms with frequency around 10 Hz, a second weak oscillatory

input was always favoured, especially when its frequency was not in the beta range.

This view of cortical alpha is consistent with a number of experimental studies. Horschig et al.

2015 recently showed that e�ective connectivity from the cortex to the nucleus accumbens, a part

of the striatum, increases during alpha oscillations, and reverses during theta. Also, Buschman

et al. 2012 presented evidence where beta synchronization in the prefrontal cortex mediated

the formation of neural ensembles that represented procedural rules, while alpha synchrony
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increased in the ensembles that represented alternative rules. This led the authors to suggest that

"beta-frequency synchrony selects the relevant rule ensemble, while alpha-frequency synchrony

deselects a stronger, but currently irrelevant, ensemble".

While alpha importance has been already discussed, the role of theta is less clear. Interestingly,

the period of a theta cycle (150 − 250 ms) �ts well to the timing of an action selection cycle

discussed in Section 6.5.1, and it is within the limits of the full cycle of the majority of the

proposed cognitive models. However, in our simulations, providing strong stimulation the model

for less than 140 ms did not evoke a selection unless multiple inputs were presented sequentially.

Could this be an indication that cortical theta brings the BG to its extreme limit of time

e�ciency, below which no selection can be achieved? In behavioural experiments, theta is found

to increase in the rat striatum during a decision-making task (Tort et al. 2008), while in humans,

theta in STN increases during sensorimotor con�icts (Zavala et al. 2015).

6.6.4 Cortical frequency is a better predictor of the exploration-exploitation

trade-o� than dopamine

It has been suggested that tonic dopamine levels in the striatum encode the degree of which the

brain selects the action with the most predicted outcome, over the exploration of an alternative

less-safe choice, by modulating activation of the direct and indirect BG pathways (Humphries

et al. 2012). Fast manipulation of the trade-o� between exploration and exploitation is critical

for behavioural �exibility in dynamic environments (Cohen et al. 2007). This hypothesis is

supported by evidence with genetically modi�ed mice, where increased dopamine levels resulted

in selections that were less in�uenced by the potential cost of each choice (Beeler et al. 2010).

Here, the ratio between exploration and exploitation can be estimated via the ratio between

distinctiveness of the most salient microscopic BC channel and distinctiveness of the rest active

channels, that is, the ratio between e�ectiveness and exploration as de�ned in (6.3) and (6.5).

As shown in Fig. 6.3, we found that cortical rhythms play a more decisive role in this trade-o�

than the level of dopamine, although the combination of both cortical frequency and dopamine

was crucial for the �nal selection. Whereas alpha and theta frequencies clearly promoted explo-

ration over exploitation, unless uncertainty is very low, and the lack of them had the opposite

e�ect, the level of dopamine could be largely viewed as an extra boost that triggers the selected

action. In particular, during cortical beta oscillations of approximately 20 Hz, the system was

in a critical state below which exploration was favoured over exploitation. However, at this very

critical point and under high uncertainty, the level of dopamine was the decisive factor of the

trade-o�.
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This complex interaction of dopamine with action selection justi�es the lack of a widely ac-

cepted model, despite the fact that dopamine is evidently implicated in both exploration and

exploitation (Kayser et al. 2015). On the other hand, cortical oscillations have also started to

receive some attention on this topic. Cavanagh et al. 2011 found a strong correlation between

theta oscillations in frontal regions and uncertainty-driven exploration. This led the authors to

the hypothesis that frontal areas of the cortex take over action selection from the BG in tasks

with high uncertainty. Our results however show that the BG could potentially cope the need

for exploratory behaviour, in case that frontal areas `request' it due to the detection of high

uncertainty.
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7 Two possible sources of Parkinsonian tremor

7.1 Introduction

In the previous chapters we showed that the BG circuitry can implement robust signal selection

while the level of dopamine in the system has a crucial e�ect on this ability. We also showed

that when dopamine is close to zero, the oscillatory activity in our neural model undergoes the

same changes as observed in patients of PD, a fact that supports the biological plausibility of

our methodology.

Apart from oscillatory e�ects, the impairment of the dopaminergic system in PD is accompanied

by a substantial variety of devastating psychiatric, cognitive and motor symptoms including

depression, psychosis and hallucinations (Chaudhuri and Schapira 2009), dementia, attention

de�cit and impairment of habitual control (Redgrave et al. 2010), as well as muscle rigidity,

bradykinesia and tremor typically in a frequency between 4-6 Hz (Jankovic 2008) respectively.

For a full review of non-motor symptoms in PD see Chaudhuri et al. 2014. Finally, as expected,

PD has also an important impact on the process of action selection, with a characteristic loss of

risk evaluation abilities (Kobayakawa et al. 2008) and a tendency to re-select motor programs

that have been recently utilized (Helmich et al. 2009).

Despite this great variety of symptoms, the vast majority of current treatments and ongoing

research focuses on the mechanisms of motor symptoms, such as tremor or rigidity, partly

because they are more consistent and easier to measure (Chaudhuri and Schapira 2009).

A wide range of theories have been proposed in order to assess how tremor emerges in these

conditions and identify the locus where it is generated. These theories implicate the thalamus

(Llinas 1988; Magnin et al. 2000), the STN-GPe loop in the BG (Terman et al. 2002), the

complete BG-thalamo-cortical circuit (Lenz et al. 1993) or the combination of both the BG and

the cerebello-thalamo-cortical loop (Cagnan et al. 2014; Rubchinsky et al. 2007).

In this chapter we explore whether Parkinsonian tremor could be, in part, a result of the de-

terioration of the BG contribution to action selection. Under this hypothesis, PD tremor is

viewed as the sequential alternation of the motor action selected by the BG circuit. Using our

neural model described in Chapter 3, an extension of this model that accounts for the complete

BG-thalamo-cortical loop and a more abstract mathematical approach, we present two possible

sources of this pathological activity and we show that both can be supported computationally.

In the �rst proposal, PD tremor is realized based on the activity in a single microscopic BG
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channel and, in particular, via the interactions between cortical input and STN at beta fre-

quencies (single-channelled model). In the second proposal, the generation of tremor requires

the rhythmic interaction between two channels, with theta frequencies and particular phase

o�sets (two-channelled model). We further show that this activity can be minimized with the

application of the two most typical treatments of parkinsonian motor symptoms, the increase of

dopamine concentration and DBS.

These mechanisms do not contradict with each other. Instead, they could coexist and harmonize

together, in order to produce an enhanced tremor-like e�ect. A wide range of extensions can be

proposed for this work, a number of which is summarized in the �nal conclusions of this thesis.

7.2 Methods

7.2.1 The full cortico-BG loop

The main pathway that connects the BG back to the cortex contains thalamic regions, that

receive inhibition from the SNr and they send feedback excitation directly to the cortex. This

creates a loop via which, the BG output controls the amount of excitation that the cortex

receives. According to the action selection hypothesis (Redgrave et al. 1999), this loop is used

by the BG to select the cortical regions that will maintain a high activation while this activation

re�ects the salience of the corresponding action.
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Figure 7.1: Model architecture and visualization of the single-channelled hypothesis. A: Schema of
the complete BG-thalamo-cortical loop including rate-based and spiking-based neurons, as well
as stochastic processes. B: Hypothetical model that shows the coupling between structures that
generate oscillations. C: The predictive dynamics of the proposed mechanism in (B) realized with
one Kuramoto oscillator for each structure. The three fast waves represent the phases of the three
oscillators and the red slow wave shows the theta frequency that emerges from this interaction.

However, it is not yet clear whether the cortical neurons that are connected and stimulate a

145



7 Two possible sources of Parkinsonian tremor

microscopic channel in the BG are the same neurons that receive input back from the thalamus

(Sherman and Guillery 2013). Therefore, more importantly, it is not clear to what extent the

initial cortical frequency that was projected to the BG input structures can be in�uenced by

BG oscillations.

This problem needs to be either resolved or bypassed in order to model the bidirectional interac-

tions between the BG and the cortex. Within the computational framework of this thesis, this is

approached by connecting the BG output with the simulated cortical ensembles via a number of

rate-based neurons, which represent all intermediate structures that this signal travels through

(Fig. 7.1).

In particular, the current architecture integrates the neural BG model described in Chapter 3

with three groups of doubly stochastic Poisson processes (Cox process), de�ned as in the sec-

tion 5.2. Each group contains 1000 processes and corresponds to a neural ensemble of 1000

neurons that is connected to the BG microscopic channel i and oscillates at a �xed frequency

fi. To achieve this, the lambda parameters of all processes within a group have a common value

λi, which follows the equation

λi(t) = Ai
(
1 + cos(2πtfi + φi)

)
(7.1)

Here, Ai represents the oscillation amplitude that re�ects the salience of this ensemble and

φi ∈ [0, 2π) its absolute phase. To allow the BG circuit to control all saliences in a closed-loop

fashion, this amplitude is connected to the channel i with the equations

Ai = F ctxbase + Ei (7.2)

and
dEi
dt

=
Ei
τctx

(7.3)

where FXbase denotes the baseline spontaneous �ring rate of the structure X, Ei is the extra

(task-dependent) excitation in the current ensemble and τctx is the decay time of Ei. The SNr

output can in�uence the excitation of the cortex when

Ei <
max{−F ctxbase, F snrbase − F snri }

F snrbase

Emax (7.4)

in which case the value on the right side of the inequality (7.4) is assigned to Ei. Here, FXi
is the average �ring rate of the current microscopic channel i in structure X and Emax is the

maximum increase in cortical �ring rate during a salient episode. Finally, if (7.4) is not true, Ei
converges to 0.
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In this study, we set F ctxbase = 3 spikes/sec and F ctxbase +Emax = 10 spikes/sec to be the minimum

and maximum �ring rates of the cortical ensembles respectively. Therefore, when the �ring rate

of an SNr channel is in the baseline, the corresponding cortical ensemble will have a �ring rate

of 3 spikes/sec. When a channel is selected, it will �re at 10 spikes/sec and when the �ring

rate of SNr increases beyond the baseline, the cortex will approach a silent mode. Finally a

delay dsnr−ctx is introduced to model the latency before information arrives back to the cortex.

This includes synaptic delays from the SNr to the thalamus, from the thalamus to cortical

areas and from the thalamic targets in the cortex to the corresponding initial ensembles. After

experimentation, we set the default value dsnr−ctx = 50 ms in our simulations, but the model

also exhibited similar oscillatory behaviour for values dsnr−ctx = 200, 70, 30 or 20 ms.

The bene�t of this hybrid approach over a fully spiking model is twofold. First, it allows the BG

to interact with cortical channels in real time while ensuring that the main cortical frequency

f ctxi , which is under examination, will not shift during the simulation. Second, the complete

knowledge of the connectivity pattern between the thalamus and the cortical ensembles that

activate the BG is not necessary, as the only parameter that is in�uenced by this is dsnr−ctx. On

the other hand, the main disadvantage is that information signals encoded in individual spike

trains cannot be tracked outside of the BG circuit. This level of analysis is not, however, within

the scope of the current study.

Modelling motor output

To model the �nal action that will be executed we need to transform the output of the BG model

into a command. To do this, we inherit an interpretation of the BG output from Humphries

et al. 2012, according to which, activity of the BG in the level of the SNr can be viewed as a

probability distribution function of the prospective actions. Hence, to make the �nal selection

we randomly draw a sample where each channel j has probability to be selected

Pj =
FSNrbase − FSNrj

FSNrbase

(7.5)

A selection is repeated every 200 ms which is the time of a selection cycle found in Chapter 6.

7.2.2 The oscillator model

Our simulations with our neural model of the BG show that a type of STN neurons behave

like oscillators which are coupled only implicitly via cortical input (Fig.7.1B). To simulate this

interaction we used a simple oscillator model proposed by Kuramoto 1984, a mathematical
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abstraction that has been commonly applied to explore the dynamics of neural synchroniza-

tion (Shanahan 2010b; Cabral et al. 2014). In a system of N Kuramoto oscillators, the phase θi
of oscillator i is governed by

dθi
dt

= ωi +
1

N

N∑
j=1

Ki,j sin (θj − θi − α) (7.6)

where ωi is the natural frequency of the oscillator, α is a constant phase lag and Ki,j is the

coupling strength from oscillator j to oscillator i. Our model's topology comprised 100 oscillators

that represent a cortical ensemble and are coupled with Kctx = 0.5 and have the tendency to

oscillate on average at ωctx = 20 Hz. In addition, 50 more oscillators constitute neurons in

the STN, their natural frequency is ωstn = 25 Hz and they are coupled with the �rst group

with strength Kctx−stn = 1. Finally, a readout neuron is connected with both cortical and STN

populations, with weights 1 and −1 respectively, in order to capture excitation and inhibition

to the SNr via the direct and hyper-direct pathways.

7.2.3 Modelling deep brain stimulation

Deep brain stimulation (DBS) is a standard invasive technique used to treat tremor in PD.

Typically, either the thalamus or STN is stimulated with extra pulsatile current. To have a

signi�cant e�ect in the STN, the frequency of these pulses needs to be greater than 100 Hz with

an optimal performance at approximately 130 Hz (Moro et al. 2002).

In this work, the impact of DBS in the STN is modelled by means of an extra rhythmic unit in

the network that sends an pulsatile amount of voltage to all simulated neurons of the STN via

a synapse. This amount is added to the membrane potential v after every event. Its amplitude

during one simulation timestep can be calculated by taking into account the width of a pulse in

a typical DBS device and the actual voltage amplitude (60µs and 3 V respectively in Moro et al.

2002). This simple technique allows us to test various scenarios, such as DBS with low-frequency

pulses or feedback (Little et al. 2013).

Finally, in the oscillator model, DBS is realized via an extra Kuramoto oscillator with frequency

ωdbs = 130 Hz, that is coupled directly to the STN population.
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7.3 The single-channelled model

It is shown that oscillatory activity in the Parkinsonian BG at certain frequency bands is largely

driven by the cortex (Litvak et al. 2011; Brittain and Brown 2014). However, despite the

metastable formation of di�erent oscillatory ensembles in the cortex and the fast changes of the

dominant frequency bands, PD tremor is characterized by limited frequency tolerance (Brittain

et al. 2015), which is uncorrelated with the cognitive state of the patient. This consistency in

frequency, along with the strong therapeutic abilities of DBS when applied in the BG nuclei,

point to the intrinsic interactions between these nuclei as a likely source of this type of tremor.

Studies with organotypic cultures have shown that STN and GPe have, indeed, an intrinsic

tendency towards rhythmic activity under low dopamine conditions (Plenz and Kital 1999),

without though exhibiting the same frequencies found in Parkinsonian BG. In Chapter 4 we

showed that this exaggerated activity in the beta range and it can be generated locally, via a

subset of STN neurons that evoke rhythmic bursts under dopamine depletion (Fig.4.1.D and

Fig.4.2). However, it relies on cortical input to become synchronous, as the STN lacks strong

lateral connectivity. Furthermore, this entrainment by cortical oscillations is problematic since

the latter activity peaks in slightly higher beta frequencies.

Here we test the hypothesis that the interaction between low STN beta and high cortical beta can

generate tremor-frequency oscillations in the SNr, which can then be transformed into sequential

and repetitive motor actions. This concept is depicted in Fig.7.1B and C.

Another prediction that was made in Chapter 3 states that the majority of GPe neurons, con-

nected with a phasically active area of the BG circuit, should be silent (Fig. 3.4). This can be

used by the current investigation to simplify the BG circuit down to the parts that are involved

in a phasic reaction. This simpli�ed network can be viewed in Fig.7.1B and includes only the

direct and hyper-direct BG pathways. By simulating this circuit using the modelling approaches

discussed in methodology, we can acquire an estimation of the impact of this frequency mismatch

between the two active pathways.

7.3.1 Experiment with coupled oscillators

Initially, the mechanism described by the single-channelled hypothesis was replicated using the

network of Kuramoto oscillators presented in section 7.2.2. As expected, the readout neuron

that represents the EPSP which arrives to the SNr from the two oscillating pathways produced

oscillations with tremor-like frequencies, similar to Fig. 7.1C. Indeed, we found that the power of

5 Hz oscillations was almost linearly proportional to the level of average instantaneous synchrony
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between the STN oscillators and it increased signi�cantly even for small levels of synchrony

(Fig. 7.3A).
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Synchronization between oscillators was achieved with two approaches. For all data points in

Fig. 7.3A, the coupling strength between oscillators in the cortex and STN was kept �xed for

each oscillator at Kctx−stn ∼ N (0.5, 1) while the STN phase lags αj varied between 0 and 2π.

In contrast, the data points in Fig. 7.3B and C were produced for varying Kctx−stn between 0

and 4 and �xed αj ∼ U(0, π). These changes in coupling strength represent di�erent salience

levels that might be caused either by increased cortico-subthalamic conductances or by increased

cortical �ring rate.

Under these conditions, we found that our model produces maximum tremor-like frequencies

when Kctx−stn ≈ 1.5 and that it stops this activity for values greater than 2.5, although syn-

chrony continues to increase until Kctx−stn ≈ 3.5. Between these values, due to the strong

impact of the cortical oscillators on STN, the frequency of the later shifts towards 20 Hz and

thus the e�ect that causes theta stops.
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E�ect of DBS and levodopa treatments

If intrinsic low-beta oscillations in the pathological STN are necessary for the generation of

tremor, a disturbance of this activity should lead to detectable motor improvements. DBS in

STN causes such a disturbance by forcing all local neurons to spike at very fast frequencies and

thus braking their natural frequency.

To investigate whether this hypothesis can be veri�ed with the Kuramoto model, the e�ect

of DBS was simulated with a single extra oscillator connected to the STN. The impact of

the possible parameter values for this oscillators, namely frequency ωdbs and coupling strength

Kdbs,stn, was explored. After a brute-force search, we found that the value Kdbs,stn = 0.015

maximizes the ability of the DBS oscillator to reduce tremor-like activity in the SNr readout.

One signi�cant limitation of this approach of modelling the e�ect of DBS is that it can only be

accurate in high frequencies. Real DBS devices provide a pulse wave with a very short width

of approximately 60µS and a very large amplitude of around 3 Volts (Moro et al. 2002). In

contrast, the oscillators in our model are constantly coupled and provide a force that drives the

STN frequency towards ωdbs. Fig. 7.3D veri�es this limitation and shows that DBS evokes a

constant synchronous state for ωdbs < 90Hz. However, synchrony in the STN falls for faster

DBS frequencies, and the system exhibits behaviour that resembles the e�ect of the real DBS

treatment.

As illustrated by Fig. 7.3E, the impact of the DBS oscillator under these conditions was to inhibit

tremor-like (theta) activity over any other slow oscillations at the level of the SNr input. This

was evident only in the range of approximately ωdbs ∈ (95Hz, 150Hz), which is consistent with

the frequencies used in real DBS electrodes (Moro et al. 2002; Eusebio et al. 2008) stimulating

the STN.

Furthermore, motor symptoms of PD have been also commonly treated with chemicals that

arti�cially restore dopamine e�ects in synaptic sights, such as the precursor compound levodopa.

In the context of the single-channelled model, the bene�t of this medication is clear as it would

stop the oscillatory bursts in STN RB neurons and thus it would block STN beta. To model this

e�ect with Kuramoto oscillators we introduce a random variation in the natural frequency of STN

oscillators ωstn ∼ N (19Hz, σDA), where σDA is proportional to the level of activated dopamine

receptors in the STN. As expected, Fig. 7.3F-G show that σDA is inversely proportional to the

level of synchrony in the STN and the power of tremor-like frequencies in the SNr.
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7.3.2 The thalamo-BG-cortical loop experiment

Our experiments in Chapter 4 showed that when isolated, the BG model does not reproduce

the strong theta activity in the BG that indicates PD tremor, even when the cortex oscillates

at beta frequencies. However, theta activity was greater in the SNr than in any other structure

in the simulation, when cortical inputs had a frequency between 15 and 25Hz (Fig.4.3B), which

suggests a tendency of the system towards theta rhythms. A promising way of enhancing this

tendency is the simulation of the complete BG-thalamo-cortical loop, which can provide feedback

activation to the same microscopic channels and thus may cause the domination of tremor-like

oscillations.

This theory is, in fact, consistent with one the most recent and appealing hypotheses regarding

the generation of Parkinsonian tremor called the dimmer-switch model (Helmich et al. 2012).

This framework was initially based on correlations between functional magnetic resonance imag-

ing and tremor recordings and predicts that whereas the BG network is the locus where the

frequency of the tremor is generated, the thalamocortical circuit controls the amplitude of the

tremor oscillation via the cerebellum.

To explore the potential of this small tendency towards tremor that was observed in our initial

BG model, we employed the extended neural model described in section 7.2.1 and we ran a

series of simulations where f1 = f2 = 25 Hz, dopamine was disabled and the cortico-striatal and

cortico-subthalamic connections were strengthened, to model the `o�' medication Parkinsonian

state. Finally, to trigger the selection of a single channel, we kept the oscillation amplitudes

A1, A3 of the cortical ensembles connected to channels 1 and 3 respectively �xed for the �rst

1000 ms of the simulation. This disabled competition for channel 2 which was always selected by

the system. The resulting oscillatory patterns in the level of the SNr are illustrated in Fig.7.3.

In all cases, slow frequencies were greatly enhanced in the SNr population of the winning channel,

compared to beta oscillations which the cortical ensembles were forced to perform. Indeed, a

clear peak of this activity was within the theta band. By increasing the level of dopamine to

normal levels, to simulate the e�ect of a treatment with levodopa, low-frequency activity was

reduced in all microscopic channels and no selection was maintained. This was an expected

reaction of the system, since dopamine was found in Chapter 6 to reduce long periods of high

e�ectiveness.

On the other hand, the addition of the simulated electrode that provides an 130 Hz positive

voltage pulse to the STN evoked a di�erent e�ect. The pulse width of this electrode was tuned

to be 0.005 Volts, which produces only a 10% increase to the �ring rate of the STN. The main

outcome was an increase of the overall power in the SNr frequency spectrum, with an extra
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Figure 7.3: Oscillations in the full-loop model. A: Frequency spectrum of the SNr during the three simu-
lated PD states in the microscopic channel that has been selected by the BG. The solid lines show
average and the areas standard deviation over 50 simulations. B: Same as (A) in a neighbouring
channel. C,D: The e�ect of DBS in (A) and (B) respectively, when the y axis is scaled to allow
the comparison of relative power. E: Steady-state e�ectiveness of the BG mechanism in the same
three samples. F: Raster plot of the SNr during the PD 'o�' state.

enhancement of the STN-generated low beta band but without the expected negative e�ect on

the theta band.

However, DBS had a positive e�ect to the ability of the system to select the channel that was

stimulated �rst. Fig.7.3E illustrates that DBS improved the steady-state e�ectiveness recorded

in the SNr, with half of the simulated experiments evoking long-lasting selection episodes above

the baseline of e�ectiveness. This is particularly interesting as steady-state positive e�ectiveness

could not be achieved at low frequencies with the healthy version of our BG model, according

to the selectivity portraits in Fig.6.3.

Finally, we found that the parameter that plays the most substantial role in BG selectivity and

the interaction between neighbouring BG channels is the baseline activation of the corresponding

cortical ensembles. To produce the SNr raster plot in Fig.7.3F, F ctxbase was increased from 3

spikes/sec to 6 spikes/sec in both channels 1 and 2. Although the channel that was stimulated

�rst was initially selected, a gradual entrainment of the neighbouring free channel at tremor-like
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theta frequencies was always evident.

7.4 The two-channelled model

The previous section was focused on a mechanism for tremor generation which is based on

the interaction between the cortex and the BG in a single microscopic channel. Although

our simulations produced the same tremor-like oscillations, and well-known treatments of PD

were shown to reduce this activity, it is still unclear how these oscillations could be translated

into sequential motor movements. Taking into account the main hypothesis that has been

adopted by the current thesis, which views the BG as the locus of selection between prospective

motor actions, a simple interpretation of PD tremor is the sequential alternation of the selection

between di�erent motor programs, caused by a BG malfunction.

Our BG model is consistent with this behaviour. In the section 6.5.1 of the previous chapter

we found that a cortical signal can be selected, if the emitting ensembles drive the BG input

structures for at least 100 ms, while the complete process of selection requires approximately

200 ms. We also found that this selection process can be partially serialized, in the sense that

a number of steps of the selection process can occur in parallel. In this chapter, running the

same experiment under PD conditions, we con�rmed that the Parkinsonian BG can perform

alternating selections e�ectively when both stimulation and selection time are set to 100 ms.

This timing agrees well with the frequency of PD tremor (∼ 5 Hz).

However, this view of tremor requires more than one competing channels to be selected se-

quentially, a premise that cannot be ful�lled by the current experimental setup used for the

�single-channel" model. In Fig.7.3F, it was shown that, in the Parkinsonian `o�' medication

state, when strong theta activity is generated in a salient BG channel, neighbouring channels

become entrained and produce the same oscillatory pro�le with zero phase o�set. Hence, as all

phasic channels have the same behaviour, no single selection can be e�ectively made, a state

that can be more associated with other PD motor symptoms such as akinesia and rigidity.

In the human brain, this spontaneous multi-channel entrainment could be avoided if strongly-

active cortical ensembles become phase-locked at theta, via a mechanism outside the BG. Al-

though uncoupled, cortical theta has been found to be strong during periods of con�ict in action

selection (Cohen and Donner 2013). In addition, theta phase locking has been observed be-

tween numerous brain structures during decision making, including the striatum, the STN, the

hippocampus and various frontal areas of the cortex in animal models (Tort et al. 2008) and

humans (Zavala et al. 2015; Voytek et al. 2015). These precise theta alignments have been shown

to drive higher frequency bands in the cortex and they are thought to enable the simultaneous
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maintenance of multiple prospective behaviours (Voytek et al. 2015).Finally, recordings from

patients with PD have highlighted high theta coherence between the thalamus and the cortex

(Sarnthein and Jeanmonod 2007).

Our simulations also highlight the need for theta phase-locking in the level of the cortex. We

found that, at certain frequencies, the phase o�set between di�erent cortical sources has a great

impact on the ability of the BG to select a single channel. An example for the theta band is

illustrated in Fig.7.4.A and B.
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Figure 7.4: The phase o�set between two channels could cause PD tremor. A: E�ective channel
selection in the minimal model of section 6.3, for cortical frequency at 5 Hz when the most
salient channel precedes in time neighbouring channels. B: The opposite phase o�set φ causes
the sequential alternation of the selection. C: SNr frequency spectrum in the model of the full
BG-thalamo-cortical loop. DBS can limit theta oscillations only in particular values of φ.

To explore how our �full-loop" system would react to an external theta phase-locking mechanism

we changed equation (7.1) to

λi(t) = Ai

(
(1−B)

(
1 + cos(2πtf lowi + φlowi )

)
+B

(
1 + cos(2πtfi + φi)

))
(7.7)

in order to account for two frequencies simultaneously. Hence, we set fi = 25 Hz, f lowi = 5

Hz and B = 0.7, while the value of φlowi remained a free parameter, as it controls the phase

di�erence between the phase-locked cortical signals. Using di�erent values for φlowi , we found that

the impact of DBS on inhibiting theta activity, as well as BG selectivity, changes completely

for di�erent theta phase o�sets. When a large o�set can be maintained between competing

microscopic channels, DBS is able to enhance activity in higher frequency bands, thus minimizing

the e�ect of theta. However, when theta oscillations are aligned between channels, DBS shows

no discrimination between frequency bands.
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Taking everything into account, we propose that theta activity in the BG can be initially gener-

ated by the interaction between exaggerated STN low beta and healthy cortical high beta. This

activity can be phase locked via mechanisms outside the BG network, and in certain phase align-

ments it can cause the sequential alternation of the currently selected action, which is perceived

as tremor. We call this hypothesis the �two-channelled model" since it requires the interaction

between at least two BG microscopic channels that represent di�erent motor programs. Our

hypothesis could be tested in patients of PD that undergo DBS treatment, if their cortex was

stimulated using non-invasive techniques, such as transcranial direct current stimulation, at the

same theta frequency and an opposite phase to the current theta activity recorded by the DBS

electrodes.
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8.1 Summary of contributions

The contributions of the current thesis take us a step closer to understanding how action selection

is realized in the mammalian brain and how it is a�ected by oscillatory behaviour, as well

as relevant pathological conditions. They also include tools that can be used for the further

investigation of these topics.

Computational tools and new methods The �rst main contribution of this work is a new

detailed neural model of the BG canonical circuit, described in Chapter 3, which can be used

as the means for both producing and testing hypotheses related to the BG function. Due to

the great interest in this brain region, there are a growing number of computational modelling

approaches in the literature (Fig.1.2). For reviews see Schroll and Hamker 2013; Helie et al. 2013.

However, to my knowledge, there has so far been no large-scale neural model of the complete

BG circuitry, that integrates so many features of the BG physiology and produces biologically

plausible behaviour. The current BG model was further expanded in Chapter 7 to account for

interactions of the complete thalamocortical loop.

Additionally, two software tools, that facilitate the design and simulation of any SNN models,

were presented. The �rst, brain studio (http://brain-studio.org), is a complete graphical envi-

ronment that provides methods to (1) design experiments with neural networks, (2) represent

experiments in a compact manner, (3) simulate large-scale networks using all available resources

on a computer, (4) observe and (5) analyse simulations in real time, both locally and remotely.

The second tool allows the fast parameter optimization of spiking neuron models and outputs

the best �t to available electrophysiological data. This tool is based on a novel hybrid method

for neural optimization. It automatically interfaces with online databases of experimental data

and it requires minimal user intervention for the complete tuning process. When used with an

NVIDIA graphics card, the speed performance of this tool can be further increased, as both

central and graphics processing units can be employed at the same time.

Finally, a number of novel metrics were presented, which can be used to assess the ability of a

neural mechanism to dynamically select between competing signals. Apart from unidimensional

e�ectiveness, these metrics can be used to estimate the underlying trade o� between exploration

and exploitation.
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Predictions for the healthy BG The �ndings presented in Chapters 4-6 made a number

of direct and indirect predictions regarding the BG function that can be tested experimentally.

The former category includes the e�ective connectivity map of the BG circuit, based on transfer

entropy analysis, for the complete spectrum of cortical frequencies, as well as the transient and

steady-state selectivity portraits that are produced for various initial conditions.

Interestingly, this analysis indicates that, whereas the BG can provide the locus for the selection

between information channels representing actions, the cortex is the structure that determines

whether a selection will be executed, and what strategy will be followed (e.g. exploration versus

exploitation). This behaviour led me to propose that the BG acts as a gearbox of information

processing in the cortex, whose level corresponds to the function of cortical oscillations and the

throttle is re�ected by the level of the neurotransmitter dopamine.

The results of this thesis also predict that, at certain frequencies, the phase o�set between com-

peting cortical inputs in�uences both e�ective connectivity and selectivity in the BG (Fountas

and Shanahan 2014), a behaviour which was later found in human patients of PD (Cagnan et al.

2015).

Furthermore, a consistent duration that the BG circuit requires to maximize its e�ectiveness in

selection was identi�ed. This selection cycle has a period of approximately 200 ms, and can be

used to estimate the duration of a complete cognitive cycle. As an application of this �nding,

the current model was used to assess the biological plausibility of the most popular architectures

in cognitive science, some of which were found to be inconsistent with the current results.

On a lower level, it was predicted that the silence that has been observed in GPe neurons results

from neural accommodation in speci�c post-synaptic dendritic sites, with increased concentra-

tion of fast voltage-sodium (Na+) channels. This can be veri�ed if the in-vivo blockade of slow

glutamate receptors in GPe, namely NMDA and mGluR1, can reduce the silent episodes of these

neurons, and increase their responsiveness to STN input. Finally, it was predicted that short

pauses in high-frequency neurons occur when the salience of a cortical a�erent signal exceeds a

threshold. This mechanism could potentially inhibit neighbouring microscopic channels through-

out the BG-thalamo-cortical loop, in order to further boost the dominance of the most salient

channel, forming a winner-takes-all device (Redgrave et al. 1999). Evidence here could come

from GPe recordings during a choice task, where the salience of an action can be controlled and

quanti�ed over time. If activity in both GPe and STN is recorded simultaneously, STN phasic

episodes are expected to exhibit high correlation with GPe pauses.

Predictions for the pathological BG By simulating the changes of PD in the examined

region, i.e. reduced dopamine concentration and enhanced cortical excitation, the e�ects of this
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condition on the BG behaviour were explored. The conducted simulations con�rm a compelling

hypothesis according to which, beta oscillations of the motor cortex entrain pathological beta

activity generated within the BG, which however peaks at lower frequencies than the former

(Brittain and Brown 2014). The results of this thesis also provide a potential explanation that

points to the dynamics of individual STN neurons as the source of these pathological oscillations.

Continuing in this vein, two potential mechanisms were identi�ed, which could either trigger or

facilitate the generation of tremor in PD and emerge in the BG model's behaviour. According to

the one-channelled model, tremor-like theta frequencies are generated by the joint e�ect of STN

low-beta and cortical high-beta oscillations on the output of the BG. This activity is translated

into tremor through the impact of the BG to the thalamus. The two-channelled model, on the

other hand, presupposes that two competing inputs already oscillate at theta frequencies with

a large phase o�set. Under these conditions, the results of the current thesis showed that both

inputs can be selected sequentially, thus causing tremor via the alternation of the currently

selected motor program.

8.2 Applications and future directions

8.2.1 The BG model

One of the major aims of the model presented in Chapter 3 is to be general enough to cover

a wide range of modelling challenges. For this reason, the list of possible future directions has

become too extensive to be detailed in this section and thus, only a number of key areas will be

highlighted.

Model improvements Possible improvements of the model include the addition of the pars

compacta part of substantia nigra. These neurons could govern the release and re-uptake of

dopamine in the system, using the model proposed in Best et al. 2009. In addition, the dynamic

changes in dopamine concentration could be combined with long-term adjustments to the con-

ductance of the plastic cortico-striatal synapses. This can be achieved through the integration

of the current system with the model of reward-modulated spiking-timing-dependent plasticity

(STDP) proposed by Izhikevich 2007b. This extended version of the model of this thesis could

then be used in a wider range of studies, including reinforcement learning (Chorley and Seth

2011) and time perception (Buhusi and Meck 2005).
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Open Basal Ganglia An important reason for the continuous presentation of new models of

this brain region in the literature is the ever-increasing growth of our knowledge of connectivity

and electrophysiology. Hence, the community of BG computational modellers could be signif-

icantly bene�ted by an evolving and open access approach, where new data is automatically

integrated to previously acquired knowledge.

The source code of the model implementation that has been employed in the current thesis was

designed to require minimal recon�guration for any changes in experimental data. Thus, it could

also be used as the basis of an online platform with the above characteristics. This platform

could include a database that stores related experimental data and a number of optimization

scripts that automatically tune the model based on the selected data and features. These scripts

could be largely based on the methods described in sections 2.3 and 3.1.4, that account for neural

parameter and connectivity estimations respectively.

Finally, the user of this online platform would be able to select from a minimal spiking model

of the BG circuit, such as the one described in section 6.3, up to the version that includes the

most recent additions, and download a python script based on brian simulator or a node for

brain studio.

8.2.2 Action selection

Validation of the impact of the phase o�set on action selection It has been shown

that phase-locking in the high beta band is used to distinguish between neural ensembles that

represent di�erent context-dependent stimulus-response rules in the prefrontal and anterior cin-

gulate cortex of monkeys (Buschman et al. 2012). In this experiment, the subjects were trained

to perform two di�erent rule-based tasks. Both cues were presented simultaneously and the

subjects were asked to perform only one of the two tasks per round, ignoring the second cue.

The data obtained by this experiment could be used to explore the relation between behavioural

reaction times and phase o�sets between the two oscillatory ensembles. The BG model predicts

that certain o�sets should result in di�erent levels of e�ectiveness in action selection which might

be re�ected in longer reaction times or lower performance in the task.

Psychophysical study To con�rm the predictions regarding the role of cortical oscillations

in action selection a series of additional experiments could be performed in healthy humans. In

the �rst experiment, subjects would be asked to perform a GO/NO-GO task while they receive

transcranial direct current stimulation (tDCS) at various low frequencies in their motor cortex.

The BG model predicts that at certain frequencies, a selection will be more di�cult as the cortex
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instructs the BG to activate a non-selective mode. In a second variation, the same experimental

set up from Buschman et al. 2012 could be followed, along with the application of tDCS in areas

of the prefrontal cortex, in order to enforce a particular frequency and phase alignment. Again,

the BG model predicts that the subject's responses would be very di�erent depending on the

frequency that interferes with the formation of rule-speci�c ensembles.

Computational study on action selection in the metastable brain Metastability is an

important property of brain dynamics that supports human cognition. It quanti�es how well

the brain is able to form dynamic coalitions of functional units, which cooperate and coordinate

in order to process information from the outside world (Tognoli and Kelso 2014). Researchers in

the computational neurodynamics group of Imperial College London have developed a mathe-

matical model that can simulate, to some extent, this cognitive feature (Bhowmik and Shanahan

2013). This model consists of a number of spiking neuron groups that form a population of cou-

pled oscillators and represent ensembles across the cortex. It has been used to investigate the

structural requirements for maximal metastability in the brain.

Is metastability an important property for e�ective action selection in the central nervous sys-

tem? What other dynamics emerge through the cooperation of coalitions of neural oscillators,

in order to secure their selection via the competition in the BG? What is the role of long and

short-term plasticity and reward-related neurotransmitters in this process? The integration of

this model with the BG model described in the current thesis would result in a mathematical

tool that can be used to explore these questions.

8.2.3 Cognitive architectures

Global workspace theory Global workspace is a popular theory that describes how the

interplay between multiple parallel processes can generate a serial procession of conscious states.

According to this theory, active brain processes operate in parallel and compete to gain access to

a global workspace in order to broadcast their messages back to the rest of the active processes

(Baars 1997).

The realization of the global workspace theory via metastable dynamics in the brain has been

the subject of inderdeciplinary investigation (Werner 2007; Shanahan 2010a; Vá²a et al. 2015).

The integration of the metastable oscillators model and the current BG model described before

could provide valuable insights into how the underlying selection mechanism could facilitate

competition and broadcast, the two necessary ingredients of global workspace theory.
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Towards a biological model of re-evaluation based on inner rehearsal Shanahan 2006

presented a biologically plausible architecture that combines the concept of global workspace

theory, with those of imagination and emotion. According to this proposal, a�ective action

selection triggers a mechanism of inner rehearsal of the outcome of di�erent prospective actions

which, in turn, in�uences the salience of these actions.

The modelling work of this thesis, in combination with the extension discussed in the previous

paragraph and a model of reward-modulated STDP (Izhikevich 2007b), provide the necessary

building blocks for a low-level implementation of this architecture, using spiking neurons. The

dynamical behaviour of this model could be compared with real brain recordings and provide

valuable insights into how these phenomena occur in the human brain.

8.2.4 Parkinsonian tremor

Adaptive deep brain stimulation (aDBS) is a recently proposed treatment for the symptoms of

PD. It has been shown to improve the e�ect of classical DBS on a variety of symptoms including

tremor. However, the key characteristic of this technique is that the level of improvement

depends largely on the feedback signal that is provided to the stimulation algorithm (Beudel

and Brown 2016).

The current results indicate that one factor of tremor generation in PD is the interaction between

cortical high-beta and the intrinsically-generated STN low-beta oscillations. Hence, based on

this hypothesis, it was predicted that the application of oscillatory aDBS in the STN, where the

feedback cancels out low-beta oscillations in the STN and it is applied only when this activity

occurs, will show improvements over the classical �xed DBS. Since this technique would be

based on more targeted stimulation and reduce the duration of DBS, it may also result on the

improvement of related side e�ects, such as problems in gait and speech.

Finally, the e�ect of aDBS, as well as any new invasive techniques for tremor suppression, could

be simulated using either the BG model of Chapter 3, or the extended model of the BG-thalamo-

cortical loop in Chapter 7. This method would allow an initial evaluation of proposed surgical

treatments, without animal experimentation.
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