

Augustine Onubeze

Developing a Wireless Heart Rate Monitor

with MAX30100 and nRF51822

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

31 October 2016

Author

Title

Number of pages

Date

Augustine Onubeze

Developing a Wireless Heart Rate Monitor with MAX30100

and nRF51822

42 pages

5 May 2010
Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Embedded Software Engineering

Instructor Kimmo Sauren, Principal Lecturer

The purpose of this project was to develop a wireless heart rate monitor based on
the principle of photoplethysmography and using the Bluetooth Low Energy (BLE)
technology for wireless transfer. The emphasis here was not on the hardware
prototype but mainly on the software that drives the sensor and a compatible client
mobile application.

The mobile client application is an Android application developed for smart phones
powered by Android version 4.4.3 or higher. It enables the Android device to
communicate with the sensor to recieve PPG data, process, store and display
results. In this project, the mobile device used during the development and testing
was an LG Nexus 5 smart phone.

The heart rate monitor developed in this project has two main units, the sensor unit,
and the mobile client application. The sensor unit consists of two main components:
a heart rate sensor integrated circuit (IC), max30100, which is a complete pulse
oximeter and heart-rate sensor solution from Maxim Integrated, and a BLE chip,
nRF51822, which is a multiprotocol system on chip for Bluetooth smart and 2.4 GHz
ultra low-power wireless applications from Nordic Semiconductors. Both components
work as a unit to collect photoplethysmograph (PPG) samples and stream them
through an emulated UART/Serial port over BLE to a connected mobile device.

The result of this project includes a laboratory setup for a finger-based heart rate
sensor, a firmware for the sensor, and an Android mobile application that works with
the sensor. The sensor setup could be further developed into a finger wearable heart
rate monitor prototype that can run the same firmware using MAX30100 and
nRF51822. With some modifications in the firmware and the client application, the
result of this project could also be further developed into a prototype of an oximeter
that would also measure blood oxygen saturation.

Keywords BLE, oxygen saturation, photoplethysmography, MAX30100,

nRF51822, Android, UART service, oximeter, ultra low power,

wearable

Contents

1. Introduction 1

2. Principles and Technologies 2

 2.1. Photoplethysmography 2

 2.2. Bluetooth Low Energy 3

 2.3. Android System 7

3. Materials 11

 3.1. nRF51822 11

 3.2. Max30100 13

 3.3. LG Nexus 5 14

4. Methods 16

 4.1. Sensor unit 16

 4.2. Android Mobile Client Application 27

5. Results 35

6. Evaluation 39

7. Conclusion 40

References 41

1

1 Introduction

The development of wearable technologies and Bluetooth low energy (BLE) aka

Bluetooth smart has brought various innovations in health care and monitoring. Certain

health monitoring and measurement devices such as Electrocardiography (ECG)

devices, oximeters, and heart rate monitors, used to be confined mainly in the intensive

care units of hospitals and clinics, and in some specialized hospital wards and

laboratories. These devices are usually complex, expensive and largely nonportable.

With the advent of wearables and BLE, monitoring and measurement of some vital

signs in the body could be done in the comfort of one's bedroom, in the gym while

working out, or even by athletes in the field while training.

Various sensors for monitoring and measuring some vital signs are incorporated into

wearable devices that are very portable, can operate with very low energy, are

affordable, and very easy to use. Some of these wearables are self-contained or stand-

alone, having a in-built processing and control unit, and a display unit, while some

others depend on smart phones for control, processing and output (display) and mostly

utilize BLE for data communication with mobile devices.

The aim of this project was to develop a photoplethysmography-based heart-rate

monitor that would communicate wirelessly with Android-powered smart devices to

measure PPG and heart rate from a subject's finger. It would use max30100, a pulse

oximeter and heart-rate sensor solution from Maxim Integerated, as the sensor IC;

nRF51822, a BLE chip from Nordic Semiconductors; and the Android platform, for

wireless control, processing and display.

2

2 Principles and Technologies

2.1 Photoplethysmography

Plethysmography refers to the measurement of changes in the volume of an organ of

the body. These changes are usually due to changes in the blood flow to and from the

organ, but could also be due to changes in the air flow. Photoplethysmography (PPG),

therefore, is a form of plethysmography that uses optics to measure changes in the

blood volume in the microvascular bed of body tissue. It is a non-invasive, simple and

affordable technique of detecting the changes in the amount of blood in a body tissue.

[1, 2.]

In PPG, a well perfused surface of the skin is illuminated by light from a light-emitting-

diode (LED) preferably, infra red or red LED. The light transmitted or reflected by the

skin surface, collected by means of a photodiode is then used to determine changes in

blood volume. The photodiode is placed either on the other side of the skin surface to

detect the transmitted light, or on the same side as the light source to detect the

transmitted light.

Figure 1: Operation of the pulse oximeter utilizing PPG to measure blood oxygen

saturation. Copied from Omar and Armin [2, 160].

Figure 1 above shows the operation of a pulse oximeter. On the left is a depiction of

transmission pulse oximetry and on the right is a depiction of reflection pulse oximetry.

As shown in the figure, both the LED and the photodetector are placed on the same

side of the finger in the reflection pulse oximetry while the LED and the photodetector

are placed on the opposite sides of the finger in the transmission pulse oximetry. The

PPG waveform consists of two components, the pulsatile AC component, which is

attributed to the cardiac synchronous changes in the arterial blood volume per heart

3

beat, and the slowly varying or relatively constant DC component, which is attributed to

respiration, sympathetic nervous system activity and thermoregulation [3].

Figure 2: Light absorption by different tissues showing the PPG waveform based on

arterial blood absortion at the top [2, 160].

Figure 2 above shows the PPG waveform with its AC and DC components. While the

AC component represents variable arterial blood absorption, the DC component

represents relatively constant blood absorption by the arteries, veins, tissues and

bones. These two components are relevant for determining the amount of oxygen in the

blood but only the AC component is needed for calculating the heart rate, where each

spike in the wave represents a single heart beat. PPG is applied in the development of

various commercially available health monitoring and measuring devices such as

oximeter, for measuring blood oxygen saturation, heart rate meter for heart rate

measurement, and blood pressure monitor.[3]

2.2 Bluetooth Low Energy

Bluetooth low energy (BLE), also known as Bluetooth Smart, is a wireless personal area

network technology designed and marketed by Bluetooth Special Interest Group. It is

part of the Bluetooth Core Specification from Bluetooth version 4.0 onwards built for the

Internet of Things (IoT) and widely known for its ultra-low power consumption and low

cost.[22]

4

Originally introduced by Nokia in 2006 with the brand name Wibree, BLE was

developed as a solution to some scenarios that were not addressed by other wireless

technologies. In their bid to address these scenarios, Nokia's researchers developed a

wireless technology adapted from the Bluetooth standard, which is much more power-

efficient and cost-effective, and yet not very different from the Bluetooth technology.

Wibree was later included in the Bluetooth specification as a Bluetooth ultra-low-power

technology and subsequently integrated with version 4.0 of the Bluetooth Core

Specification in 2010. [4]

Key Features

The most outstanding feature of BLE is its ultra-low peak, average and idle mode power

consumption. With this feature, it is possible to power a BLE device with a single

standard coin cell battery for years. Other key features of BLE include:

• Standardized application development architecture which helps reduce the cost

of development and operation.

• Interoperability across multiple vendors.

• Enhanced range

• Robust, secure and efficient.

The BLE technology creates the possibility of enhancing the most basic electronic

devices like toothbrushes, toys, or key rings with the Bluetooth wireless technology,

and incorporating new functionalities into devices that are already Bluetooth-enabled.

[5]

BLE Operation

The BLE radio operates in the 2.4 GHz ISM band split into 40 channels separated by 2

MHz. Three of the channels are for advertising while the rest (37) are used as data

channels. To combat interference and fading, BLE employs a frequency hopping

transceiver, and uses a shaped, binary frequency modulation to minimize transceiver

complexity. With a symbol rate of 1 megasymbol per second, it supports a bit rate of up

to 1 megabit per second. Data is transmitted between BLE devices in packets

positioned in time units known as events, which can either be Advertising or

Connection event. Devices that transmit advertising packets are known as advertisers

while those that receive advertising packets with no intention of connecting to the

advertiser are known as scanners. [6, 20.]

5

Figure 3: Advertising Events. Copied from Bluetooth SIG [6, 21].

Figure 4: Connection Events. Copied from Bluetooth SIG [6, 21].

When there is the need for a connection between two BLE devices, one of the devices,

known as the initiator, initiates the connection by making a connection request to the

other which plays the role of the advertiser. Once a connection is established, the

initiator becomes the master while the advertiser becomes the slave in what is known

as a piconet. Data packets are transmitted between two connected BLE devices within

the connection events. The master initiates a connection event and can end it at any

time.[6, 20.] Figure 3 shows advertising events which occur at a specified interval

called an advertisement interval. Figure 4, on the hand, shows connection events and

the transition from advertising to connection. An advertiser stops advertising once a

connection has been initiated.

BLE Application Architecture

In BLE, as well as other Bluetooth versions, application interoperability is realized using

what is referred to as profiles. BLE profiles define the functions and features of each

layer in the stack, the vertical communication between the layers in a device, the

6

horizontal communication between specific layers of different devices, data formats,

and application behaviors. [6, 93.]

Generic Access Profile

All BLE devices implement a base profile known as the Generic Access Profile (GAP),

which defines the basic requirements of a BLE device such as the Physical Layer, Link

Layer, L2CAP, Security Manager, Attribute Protocol (ATT) and Generic Attribute Profile

(GATT). GAP, in BLE, defines four specific roles: Broadcaster role for transmitter only

applications, Observer role for receiver only applications, Peripheral role for less

complex devices supporting only single connection, and Central role for devices that

initiate all connections and can support multiple connections and more complex

functions. Any BLE device can support multiple roles as long as its underlying

controller supports them. However, only one role may be supported at any given time.

[6, 93.]

Generic Attribute Profile

Generic Attribute Profile (GATT) defines how profile and user data are exchanged over

a BLE connection. It also provides a framework that serves as a reference for all GAT-

based profiles, defined for specific use cases, and ensures interoperability between

devices from different manufacturers. GATT defines two roles: Client and Server roles.

The client sends requests to a server and in turn receives responses from it. The

server, on the other hand, receives clients' requests and responds to them. [6, 93.]

GATT Profile specifies a hierarchical structure for data exchanged over BLE. In this

structure, a profile is at the topmost level of the hierarchy. A profile is made up of one

or more conceptually related services required to realize a use case. A service consists

of one or more characteristics or references to other services. A characteristic serves

as a container for user data and can also contain information about the data known as

descriptors. [6, 95-97.]

7

Figure 5: GATT-Based Profile Hierarchy. Copied from Bluetooth SIG [6, 96.]

Figure 5 describes the Generic Attribute Profile hierarchical organisation. From the

figure, a profile is the highest in the hierarchy, and consists of one or more services.

Each service has at least one characteristic and each characteristic has properties,

descriptors and holds a value.

2.3 Android System

Android is an open-source software stack based on the Linux kernel that ships with

operating system, middleware, native mobile applications, as well as sets of API

libraries for third party applications development [7]. It was primarily designed for

touchscreen mobile devices like smartphones and tablets but has, over the years,

yielded some variants designed to power televisions, digital cameras, auto multimedia

systems, notebooks, and game consoles. Android system was originally developed by

Android, Inc., a Carlifornian based start-up founded in October 2003, which was later

acquired by Google in 2005. Android was launched, in November 2007, as the first

product of a consortium of technology companies led by Google called Open Handset

Alliance (OHA) whose main goal was to develop open standards for mobile devices.

Further development of Android eventually became the responsibility of OHA. [7]

8

Basic Features

A number of basic but very significant features of Android make it stand out among

other mobile platforms. These features made Android the fastest growing mobile

platform since it was launched. Thanks to these features, Android has the largest

market share in the smartphone OS market. As of June 2016, Android's market share

based on worldwide smartphone sales to end users is set at 85.2%. iOS, which is the

second largest has only 13.8%. [8] Some of these features include open, equal status

for all applications, seamless connectivity between applications, fast and easy

application development.

Android was developed in such a way as to give developers the full advantage of the

power of any mobile device. An Android developer can incorporate a device’s core

functionality such as taking pictures, video recording, text messaging, and making

calls, into his/her own application to create very compelling mobile applications for

richer and more cohesive experiences for users. Android is also open source, which

means that it could be further customized by device manufacturers or even technology-

minded users to suit varied needs and requirements. [9]

There is no difference between a phone's core applications and other third-party

applications. They all share the same status and can be substituted one for the other

based on the user's preferences. For instance, users can substitute Android's own

camera application with another third-party camera application developed for Android

phones. In other words, Android gives users the opportunity to fully tailor their mobile

phones to suit their interests. [9]

Android makes it easy to build new and innovative applications that can easily connect

or communicate with other applications to achieve richer and more relevant user

experience. It enables developers to build applications that dismantle the barrier

between applications. For instance, with Android, it is possible to develop an

application that updates the user's contacts with data from the web, or an application

that presents users with various services they can access based on their location. [9]

Android ships with a very rich tool-set, useful libraries, tutorials, and examples that can

be used to develop a fully working application with little or no experience within a very

short time. With the tool-set and and documentation that Android provides, it is easy to

9

learn Android application development for beginners without experience, and even

much easier for application developers coming from other platforms. [9]

Architecture

Android OS software stack is basically composed of four layers which include the Linux

kernel, Libraries, Application Framework, and Applications. As we can see in figure 6,

which describes the anatomy of the Android software stack, the lowest layer, the Linux

kernel, is the closest to the hardware and consists of the various peripheral drivers and

power management software, while the topmost layer, Android applications, is the

closest to the user and consists of both native and third party Android applications with

which the user interacts with the Android device. [11]

Figure 6: Android Software Stack. Copied from Smieh [10].

Linux Kernel

Linux kernel lies at the bottom of the stack providing a level of abstraction from the

hardware. As presented in the figure above, it contains all the essential hardware

drivers like USB driver, Audio drivers, and Bluetooth Driver. Among other functions, the

10

kernel is responsible for preemptive multitasking and low-level core system services

such as memory, process and power management. It also provides a network stack.

[11]

Libraries

Directly above the Linux kernel is a set of C/C++ libraries also referred to as native

libraries. These fulfill a wide and diverse range of functions such as 2D and 3D

graphics drawing, Secure Sockets Layer (SSL) communication, and SQLite database

management, typically assessed through Java-based Android core library Application

Programming Interfaces (API), or the Android Native Development Kit (NDK). [12]

Also at this layer is the Android Runtime Environment consisting of the Core Libraries

and Dalvik Virtual Machine. The Core Libraries enable developers to write Android

applications using the standard Java programming language. The Dalvik Virtual

Machine is a kind of Java Virtual Machine specially designed and optimized for

Android, which provides an environment for Android applications to run, enabling each

application to run in its own process and with its own virtual machine instance. [11]

Application Framework

The Application framework sits at the third layer of the stack just above the Libraries. It

provides various higher-level services to applications in the form of Java classes [10]

implementing the concept that Android applications are built from reusable,

interchangeable and replaceable components. Some of the Application Framework

services include: Activity manager, which controls application lifecycle and activity

stack, Content Providers, which enables applications to publish and share data with

other applications, Package Manager, which enables applications to access information

about other applications installed on a device, etc. [12]

Applications

Applications are located at the topmost layer of the stack. They include both the native

Android applications that ship with a particular Android implementation and all other

third-party applications that were either developed by the device manufacturer or

installed by the user.

11

3 Materials

The main materials used in this project include nRF51822 system-on-chip (SoC) from

Nordic Semiconductors, which served as the controller and BLE communication unit,

MAX30100 from Maxim Integrated, which served as the sensor unit, and an LG Nexus

5 smart phone powered by Android Lollipop 5.1, which runs the mobile application

client to the sensor. These will be briefly discussed here along the line of what they are,

what they offer and their suitability for the project.

3.1 nRF51822

nRF51822 belongs to the nRF51 Series from Nordic Semiconductors, which is a family

of multi-protocol Soc devices for wireless applications distinguished by their high

flexibility and ultra-low power consumption. It is designed ideally for BLE and 2.4GHz

ultra low-power wireless applications and supports both BLE and a proprietary Nordic

2.4 GHz protocol stack, Gazell. It also has a built-in set of analog and digital

peripherals that can work together through what is known as the Programmable

Peripheral Interconnect (PPI) system without the intervention of CPU. Its ultra-compact

form factor makes it possible for it to be used in really small smart sensor applications.

It is also available in a bigger 6X6 mm 48-pin QFN packages. Nordic Semiconductor

provides its BLE protocol stack as a pre-compiled, pre-linked binary files called

SoftDevices. [13] Figure 7 below is a schematic of nRF51822 chip showing both the

general purpose input-output pins and special purpose pins with their numbers and

names.

Figure 7 Schematic of nRF51x22 chip showing its pinouts. Copied from Nordic

Semiconductor [14, 79].

12

In this project, an evaluation board for nRF51822, nRF51822-EK, was used for easy

access to the chips periherals and for easy and fast application development. As

shown in figure 8 below, the board comes with a programmer for the chip's

programming, an antenna, some push buttons, current measurement pins, a mini usb

for power supply and programming, some LEDs and other components.

Figure 8: Schematic of nRF51822 Evaluation Kit. Copied from Nordic Semiconductor

[15,7].

Main Features

nRF51822 is a highly flexible 2.4 GHz multi-protocol complete system on chip device. It

comes with a 32-bit ARM Cortex M0 CPU core and either 256kB flash + 32kB RAM or

128kB flash + 16kB RAM. It is thread safe and run-time protected, and is equipped with

a well-designed event-driven API. [15]

For data transmission, nRF51822 provides three different data rates 2 Mbps, 1 Mbps,

and 250 kbps for different application purposes. It has an output power of up to +4 dBm

in all modes and up to -93 dBm RX sensitivity while in BLE mode. With an advanced

power management scheme, which enables each system block to independently

control its own clock and to be powered on or off independently, and a Programmable

Peripheral Interconnect (PPI) system, which enables autonomous interactions among

peripherals independent of the procesor, it greatly minimizes power consumption. [15]

Suitablility for Project

In the first place, nRF51822 is suitable for this project because it is a BLE chip, and

one of the requirements for the project is a BLE chip for ultra-low power wireless

13

communication. Any BLE chip, therefore, would be suitable for this project given this

first reason. However, in addition to the features discussed earlier, this chip's suitability

for the project was due to its availability in a very compact form factor that suited the

purposes of the project, the rich application development support and tools provided by

the manufacturer, and a relatively large and very active development community

formed around it, which helps to make application development easier and faster.

3.2 MAX30100

MAX30100 is a pulse oximeter and heart-rate sensor integrated circuit (IC) for

wearable health monitoring systems or devices. It detects pulse oximetry and heart rate

signals with a combination of two LEDs (red and infra red), a photodetector, optimized

optics, and low-noise analog signal processing techniques. It can operate from either

1.8V or 3.3V power supplies and can be powered down programatically by software

with negligible standby current, thereby presenting the possibility of leaving the power

supply connected all the time. It is typically used in fitness assistant devices, medical

monitoring devices and wearable devices. [16, 1.] Figure 9 below shows the pin

configuration of MAX30100 and the top and bottom views of the chip. The LEDs (red

and infra red) are located on top while the pins are located at the bottom.

Figure 9: MAX30100. On the left is the Pin Configuration Diagram. Copied from MAX

30100 data sheet [16, 8] and on the right is the top and bottom of MAX 30100. Copied

from Mouser Electronics [19].

Main Features [16, 1]

MAX30100 is a complete pulse oximeter and heart-rate sensor solution on a single die.

With its LEDs (red and infra red), photo sensor and high-performance Analog Front-

14

End all integrated in a single chip, it is very simple and convenient to use. Its form

factor, 5.6mm x 2.8mm x 1.2mm 14-Pin Optically Enhanced System-in-Package ,

makes it suitable for wearable devices. [16, 1]. For efficient power management and

savings, it has programmable sample rate and LED current , and ultra-low shutdown

current (typically 0.7µA). Other important features include high Signal to Noise Ratio

(SNR), integrated ambient light cancellation, and high sample rate capability.

Suitability for Project

At the beginning of this project, MAX30100 was about the only heart-rate monitor

sensor solution I could access that offered an integrated LED, photodetector and signal

filtering and processing units, all in a single die. This made it preferable among other

similar sensors available. Furthermore, it comes in a relatively small form packaging

and promises a high signal to noise ratio(SNR) which is very important for clear and

more reliable signal. All this, together with all the other features listed above, formed

the basis for its suitability for the project.

3.3 Nexus 5

Nexus 5 is an Android-powered smartphone manufactured by LG Electronics for

Google. It is co-developed with and marketed by Google Inc. as part of its Nexus line of

flagship devices. Nexus 5 and its other siblings in the Nexus family are considered the

original Android phones and they get their relevant Android updates before every other

Android powered smart phones. It was the launch device for Android 4.4 “KitKat”,

which offered a refreshed interface, performance improvements, increased Google

Now integration, better battery life and other features. [17]

Main Features

Nexus 5 is relatively high-end Android smart phone with 4.95 inches touchscreen

display of 1080 x 1920 pixels resolution (445 pixels per inch), a 2.26GHz quad-core

Qualcomm Snapdragon 800 chipset, 2GB RAM, 16GB internal storage, and powered

by Android Lollipop 5.1. Other features include 8/1.3 megapixel rear/front cameras and

a number of sensors: Compass/Magnetometer, Proximity sensor, Accelerometer,

Ambient light sensor, Gyroscope, Barometer. For connectivity, it is equipped with Wi-Fi,

GPS, Bluetooth 4.0, NFC, Micor-Sim, 3G, 4G/LTE, GSM/CDMA.[17]

15

Suitabilitity for Project

This mobile device is suitable for the project simply because its version of Android, 5.1,

supports BLE in the central role and provides APIs that applications can use to

discover devices, query for services, and read/write characteristics. Since built-in

platform support for BLE in the central role was introduced in Android version 4.3 Jelly

Bean, it means that any Android mobile device powered by Android version 4.3 or

higher would equally be suitable for this project.

16

4 Methods

4.1 Sensor Unit

The development of the sensor unit was done in three major steps. The first step was

the preparation of the hardware setup, which included designing and building a break-

out board for max30100 and connecting the appropriate pins from nRF51 evaluation

board to max30100 board with jumper wires. The second step was to setup the

development environment for firmware development. The step was the actual

implementation of the firmware.

Preparing the Hardware setup for the Sensor

The heart-rate sensor IC used in this project, max30100, comes in a very small form

(5.6mm x 2.8mm x 1.2mm) and therefore needs at least a break-out board to make it

usable for development process. It also requires some pull-up resistors and capacitors

to work properly. So the first task was to make a break-out board based on the

specifications provided in the chip's data sheet as shown in figure 11 below.

Figure 11: MAX30100 Schematic of a typical application circuit [16, 26].

Figure 11 shows the schematic of a typical application circuit for MAX 30100. The

break-out board was made based on this schematic with the resistors and capacitors

connected to the specified pins. Figure 12 below shows the break-out board with the

sensor IC attached to it, which would be referred to as sensor IC board henceforth.

17

Figure 12: Break-out board with sensor IC (MAX30100) attached.

In the break-out board, the pins are attached in a way that they could be easily

reachable without hindering easy access to the sensor. In this project, the sensor was

intended for finger-based heart-rate measurement, so there is enough room for the

finger to be placed on top of the sensor.

The next step was to connect the sensor IC to the controller and to voltage supply. The

controller, nRF51 evaluation board, unlike the sensor IC, has everything needed for it

to operate installed on the board. The connection was done according to figure 13.

Figure 13: Connection setup for sensor IC and controller

As shown in figure 13, the nRF51 evaluation board, which serves as the controller

board, is powered through a mini USB connector. This connector also serves as the

programming point for the BLE chip nRF51822. In the course of this project, the sensor

is powered from a PC from which it is also programmed for the sake of convenience.

The sensor IC board gets its power both from the controller board and an external

voltage supply. For easy description of the connected pins and the connections in the

sensor connection setup, the schematic of sensor IC board and the pin headers of the

controller board are shown figures 14 and 15 below.

18

Figure 14: Schematic of the sensor IC board

Figure 15: Pin headers of the controller board. Copied from Nordic Semiconductor

[15,18].

In the sensor connection setup, pin SV2.5(red and infra red LEDs power supply pin) of

the sensor IC board, is connected to pin P3.10 (vcc) of the controller board for 3V

voltage supply to the LEDs; pin SV1.1 (Power Ground of the LEDs) of the sensor IC

board is connected to pin P4.9 (Ground) of the controller board; pin SV2.1 of the

sensor IC board is connected to pin P5.10 of the controller board for 3V voltage supply

to the serial clock line (SCL), the serial data line (SDA) and the interrupt (INT) pins via

4.7k pull-up resistors; pins SV2.4 (Analog Power Supply input) and SV2.2 (Analog

Ground) are connected to an external voltage supply for 1.8V input voltage.

Communication between the sensor IC (slave) and the controller (master) is via a 2-

wire (I2C) which requires a serial clock line that drives the communication, and the

serial data line that carries the data to be transfered. So pin SV1.5 (SCL) of the sensor

IC board is connected to pin P6.1 (SCL) of the controller board for serial clock

19

communication and pin SV1.4 (SDA) of the sensor IC board is connected to pin P6.2

(SDA) of the controller board for serial data transfer. Pin SV2.3 (INT) of the sensor IC

board is connected to pin P3.8 (INT) of the controller board for active low interrupt

operation.

Firmware Application Development Environment Setup

The first step in the firmware development was to set up the development environment.

A Linux machine running Ubuntu version 14.04 was used for the application

development and the source code was written with vim text editor, which was already

installed on the machine. The tools required to develop applications for nRF51822

were downloaded and installed: gcc cross compiler for ARM processors (gcc-arm-

none-eabi), required to compile the source code written for nRF51822 on a Linux

machine; Jlink GDBServer, required to program the chip; nRF51822 SDK with

compatible softdevice, which provided the API for nRF51822 application development.

With these tools downloaded, installed and configured, the environment was fully set

up for the firmware application development.

Firmware Implementation

The basic logic of the firmware is found in the main routine :

int main(void){

 twi_master_init(); init_sensor();

 ble_stack_init(); timers_init();

 gpio_init(); gap_params_init();

 services_init(); advertising_init();

 conn_params_init(); sec_params_init();

 advertising_start();

 while(true){

 power_manage();

 }

}

Listing 1. Main function of the firmware.

20

As listing 1 shows, the function starts with initializing the various relevant software and

hardware components both in the sensor IC board and the controller board and then

starts the BLE advertisement, after which it enters a forever loop in which the function

power_manage() is called, which basically waits for an event to occur. The events

could be any of the BLE events registered to be handled, an event that announces that

data is ready to be read from the sensor IC, depicted by the INT pin being pulled low,

or a power down or system error event which causes a shutdown or deep sleep, as the

case may be. The first function in the main routine initializes the controller board

(master) for I2C transactions.

bool twi_master_init(void) {

 TWI_SDA_STANDARD0_NODRIVE1();

 TWI_SCL_STANDARD0_NODRIVE1();

 TWI_SCL_HIGH(); TWI_SCL_OUTPUT();

 TWI_SDA_HIGH(); TWI_SDA_OUTPUT();

 return twi_master_clear_bus();

}

Listing 2. Initialize I2C master. Copied from Nordic Semiconductor nRF51 SDK [21].

Listing 2 basically sets the SCL and SDA pins on the controller board to high,

configures them as output and clears any data in the bus. The SCL and SDA are

considered active when low and inactive when high, hence they are set to high at

initialization. The second initialization function init_sensor(), initializes the sensor IC

board with initial configuration parameters.

static void init_sensor(){

 config.spo2_config = (SPO2_HI_RES_EN | SPO2_SR_100);

 config.mode_config = HR_ONLY_EN;

 config.led_config = (RED_PA_50_0 | IR_PA_50_0);

 initial_config(config);

}

Listing 3. Initialize sensor function

The sensor IC chip could be configured to operate either in heart-rate only mode or in

Blood Oxygen Saturation (SPO2) mode. The LED pulse width, LED current level, ADC

resolution and Sample Rate of the sensor IC could also be configured. [16,15-17] In

21

listing 3 above, the mode is set to heart-rate only mode, the LED pulse width is set to

1.6ms, the current levels of the infra red and red LEDs are set to 50.0mA, and the ADC

resolution is set to 100 samples per second. These settings could also be modified

according to application needs. However, in this project, the initial settings remained

unchanged. The next function, ble_stack_init(), initializes the BLE stack, which is called

softdevice in Nordic Semiconductor's terms.

static void ble_stack_init(void){

 uint32_t err_code;

 SOFTDEVICE_HANDLER_INIT(NRF_CLOCK_LFCLKSRC_XTAL_20_PPM,

 false);

 err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch);

 APP_ERROR_CHECK(err_code);

 err_code = softdevice_sys_evt_handler_set(sys_evt_dispatch);

 APP_ERROR_CHECK(err_code);

}

Listing 4. BLE stack initialization function. Copied from Nordic Semiconductor nRF51

SDK [21].

Listing 4 uses the softdevice API to set event handlers for BLE events and system

events, passing them over to the stack so that it knows how to handle such events.

The next function, timers_init(), initializes the timers needed for the application:

static void timers_init(void){

 APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER_MAX_TIMERS,

 APP_TIMER_OP_QUEUE_SIZE, false);

}

Listing 5. Initialize timers function. Copied from Nordic Semiconductor nRF51 SDK [21].

Listing 5 calls SDK wrapper function for a softdevice API to initialize the only timer used

in this application, setting the value of the RTC prescaler register (first parameter) to 0,

the maximum number of simultaneously created timers (second parameter) to 3 and

the size of timer operation queues (third parameter) to 4.

The next function, gpio_init(), initializes the gpio pins:

22

static void gpio_init(void){

 simple_uart_config(RTS_PIN_NUMBER, TX_PIN_NUMBER,

 CTS_PIN_NUMBER, RX_PIN_NUMBER, HWFC);

 NRF_GPIO->PIN_CNF[INTERRUPT_PIN] =

 (GPIO_PIN_CNF_SENSE_Low << GPIO_PIN_CNF_SENSE_Pos)

 |(GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)

 |(NRF_GPIO_PIN_NOPULL << GPIO_PIN_CNF_PULL_Pos)

 |(GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)

 |(GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos);

 NVIC_EnableIRQ(GPIOTE_IRQn);

 NRF_GPIOTE->INTENSET = GPIOTE_INTENSET_PORT_Set <<

 GPIOTE_INTENSET_PORT_Pos;

 sd_nvic_SetPriority(GPIOTE_IRQn, NRF_APP_PRIORITY_LOW);

}

Listing 6. Function for Initializing GPIO pins.

Listing 6 uses the SDK library functions and the softdevice API to configure the UART

pins for debugging purposes and one GPIO pin, Pin 7, as the INT pin for GPIO

interrupt. This pin is connected to the INT pin of the sensor IC board so that it triggers

an interrupt when it is pulled low, indicating data ready to be read from the sensor IC

board. When this interrupt happens, the interrupt handler is called to handle the

interrupt:
void GPIOTE_IRQHandler(void){

 if ((NRF_GPIOTE->EVENTS_PORT != 0)){

 NRF_GPIOTE->EVENTS_PORT = 0;

 }

 int_status = get_interrupt_status();

 if((int_status & HR_RDY) == HR_RDY){

 if(read_max30100_data(DEVICE_ADDRESS, FIFO_DATA_REG,

 data, SIZE_OF_SAMPLE)){

 format_max30100_sample();send_string(sample);

 }

 }

}

Listing 7. GPIOTE interrupt handler.

23

Listing 7 clears the event that triggered the gpiote interrupt and gets the interrupt

status. If the status indicates that heart-rate data is ready, the function reads the heart-

rate data from the sensor IC, formats and forwards them to a connected client device.

The next function, gap_params_init(), initializes the BLE gap parameters:

static void gap_params_init(void){

 BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

 sd_ble_gap_device_name_set(&sec_mode,

 (const uint8_t *)DEVICE_NAME,

 strlen(DEVICE_NAME));

 sd_ble_gap_appearance_set(

 BLE_APPEARANCE_GENERIC_HEART_RATE_SENSOR);

 memset(&gap_conn_params, 0, sizeof(gap_conn_params));

 gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;

 gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;

 gap_conn_params.slave_latency = SLAVE_LATENCY;

 gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;

 sd_ble_gap_ppcp_set(&gap_conn_params);

}

Listing 8. Function to initialize GAP paremeters.

Listing 8 uses the softdevice API and the SDK library functions to set the device name

(a string defined by the programmer to identify the device), the device's category

(selected from a list defined in the SDK), connection parameters (min connection

interval, max connection interval, slave latency and connection supervision timeout).

The connection interval is the time between two connection events and must be

between 7.5 milliseconds and 4 seconds. Data transfer between two connected BLE

devices is done within a connection. The minimum and maximum intervals in this

project were set to 7.5 milliseconds and 4 seconds respectively. Slave latency refers to

the number of times the slave or peripheral device can neglect requests from the

master or central device. This was set to 0 in this project. The connection supervision

timeout refers to the timeout from the last data exchange till a link is considered lost.

This was set to 4 seconds in this project. [20]

24

The next initialization function is services_init(). This function initializes the BLE

services that the sensor provides:

static void services_init(void){

 memset(&nus_init, 0, sizeof(nus_init));

 nus_init.data_handler = nus_data_handler;

 err_code = ble_nus_init(&m_nus, &nus_init);

}

Listing 9. Function to initialization services.

Listing 9 initializes the only service utilized in the firmware, the Nordic UART service

(NUS), which is a custom BLE service developed by Nordic Semiconductor to emulate

serial UART over BLE. It basically defines the needed variables, allocates some

memory to the initialization data, sets the event handler and then calls an SDK library

function, which does the actual initialization. The NUS has two characteristics: TX for

data transfer and RX for data reception. These two characteristics are the interfaces

between the sensor and a connected client for data communication. In this project, the

TX was set to send data as notification to the connected mobile client, which has

registered for notification on TX characteristic. The RX was configured with read and

write permission such that a connected mobile client can write some value to it, which

is in turn read by the sensor. This value could be a command or some other

information.

The next function is the advertising_init(), which initializes the advertisement

parameters and sets advertisement data.

static void advertising_init(void){

 uint8_t flags =

 BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;

 ble_uuid_t adv_uuids[] =

 {

 {BLE_UUID_NUS_SERVICE, m_nus.uuid_type}

 };

 memset(&advdata, 0, sizeof(advdata));

 advdata.name_type = BLE_ADVDATA_FULL_NAME;

 advdata.include_appearance = true;

25

 advdata.flags.size = sizeof(flags);

 advdata.flags.p_data = &flags;

 memset(&scanrsp, 0, sizeof(scanrsp));

 scanrsp.uuids_complete.uuid_cnt =

 sizeof(adv_uuids) / sizeof(adv_uuids[0]);

 scanrsp.uuids_complete.p_uuids = adv_uuids;

 err_code = ble_advdata_set(&advdata, &scanrsp);

 APP_ERROR_CHECK(err_code);

 memset(&m_adv_params, 0, sizeof(m_adv_params));

 m_adv_params.type = BLE_GAP_ADV_TYPE_ADV_IND;

 m_adv_params.p_peer_addr = NULL;

 m_adv_params.fp = BLE_GAP_ADV_FP_ANY;

 m_adv_params.interval = APP_ADV_INTERVAL;

 m_adv_params.timeout = APP_ADV_TIMEOUT_IN_SECONDS;

}

Listing 10. Advertisement parameters initialization function.

Listing 10 sets advertisement data and initializes advertisement parameters. Here the

sensor is set to include its full name in the advertisement data. The Universally Unique

Identifiers (UUID) of the services and their characteristics are also included in the

advertisement data. The sensor was set to advertise to all (undirected advertisement)

every 25ms and to stop advertising (and go to sleep) after 180s of advertisement if no

client has connected to it. It stops advertising once it connects to a client.

The next function, conn_params_init(), initializes the connection parameters:

static void conn_params_init(void){

 memset(&cp_init, 0, sizeof(cp_init));

 cp_init.p_conn_params = NULL;

 cp_init.first_conn_params_update_delay =

 FIRST_CONN_PARAMS_UPDATE_DELAY;

 cp_init.next_conn_params_update_delay =

 NEXT_CONN_PARAMS_UPDATE_DELAY;

 cp_init.max_conn_params_update_count =

 MAX_CONN_PARAMS_UPDATE_COUNT;

 cp_init.start_on_notify_cccd_handle =

26

 BLE_GATT_HANDLE_INVALID;

 cp_init.disconnect_on_fail = false;

 cp_init.evt_handler = on_conn_params_evt;

 cp_init.error_handler = conn_params_error_handler;

}

Listing 11. Connection parameters initialization function. Copied from Nordic

Semiconductor nRF51 SDK [21].

In listing 11, the function defines the variables required for the connection parameters

initialization, allocates some memory to the initialization data, sets the initialization

parameters and then calls an SDK library function that does the actual initialization.

The connection parameters initialized here concern the connection events in which

actual data transfer takes place between the sensor and a connected client. The next

function, sec_params_init() initializes the sensor's security parameters:

static void sec_params_init(void){

 m_sec_params.timeout = SEC_PARAM_TIMEOUT;

 m_sec_params.bond = SEC_PARAM_BOND;

 m_sec_params.mitm = SEC_PARAM_MITM;

 m_sec_params.io_caps = SEC_PARAM_IO_CAPABILITIES;

 m_sec_params.oob = SEC_PARAM_OOB;

 m_sec_params.min_key_size = SEC_PARAM_MIN_KEY_SIZE;

 m_sec_params.max_key_size = SEC_PARAM_MAX_KEY_SIZE;

}

Listing 12. Sensor security parameters initialization function. Copied from Nordic

Semiconductor nRF51 SDK [21].

Listing 12 initializes the security parameters, which include timeout for pairing request

or security request, bonding, man in the middle protection, input/output capabilities, out

of band data, and minimum and maximum encription sizes. Here the sensor is

configured with a relatively loose security policy. This needs to be further improved in

the next versions of the firmware. The next function, which comes immediately before

the main loop is advertising_start():

static void advertising_start(void){

27

 uint32_t err_code;

 err_code = sd_ble_gap_adv_start(&m_adv_params);

 APP_ERROR_CHECK(err_code);

}

Listing 13. Function for starting sensor advertisement. Copied from Nordic

Semiconductor nRF51 SDK [21].

Listing 13 starts the advertisement, in which the sensor advertises itself as a

connectable peripheral together with the services it offers. As this listing shows, a

softdevice function, which starts the advertisement, is called with a pointer to the

already set advertisement parameters as an arguement.

4.2 Android Mobile Client Application

The client application communicates with the sensor through BLE to read PPG

samples at the rate of 100 samples per second. The samples recieved when a finger is

placed on the sensor are considered valid samples while others are considered invalid

samples or noise. The valid samples pass through two stages of filtering. The first

stage, detrending, serves to remove the trend in the samples, and the second stage,

smoothening, serves to reduce or eliminate high frequency noise from the signal. After

filtering, the samples are visualized on a dynamic graph and the heart rate is calculated

from the filtered samples. The application starts to record PPG samples and heart rate

values once it starts recieving valid samples and stops recording after about 120

seconds or once the finger is removed from the sensor.

The mobile application implementation would be discussed along the following major

functions: BLE communication with sensor, sample filtering, heart-rate calculation,

visualization and recording.

BLE Communication with Sensor

BLE communication involves scanning, connection, registering for notifications,

recieving notifications, disconnection. The application gets from the user the id of the

remote sensor to scan for and performs a targeted scan according to the following

code:

28

private void scanLeDevice(final boolean enable) {

 if (enable) {

 mHandler.postDelayed(new Runnable() {

 public void run() {

 mLEScanner.stopScan(mLeScanCallback);

 if(mTargetSensorAddress == null){

 setResult(DEVICE_NOT_FOUND);

 finish();

 }

 }

 }, SCAN_PERIOD);

 mLEScanner.startScan(filters, settings, mLeScanCallback);

 } else {

 mLEScanner.stopScan(mLeScanCallback);

 }

}

private ScanCallback mLeScanCallback = new ScanCallback() {

 public void onScanResult(int callbackType,

 final ScanResult result) {

 BluetoothDevice device = result.getDevice();

 if (device.getName().equalsIgnoreCase(mSensorId)){

 sensorAddr = device.getAddress();

 scanLeDevice(false);

 result.putExtra(EXTRA_ADDR, sensorAddr);

 setResult(Activity.RESULT_OK, result);

 finish();

 }

 }

};

Listing 14. Scanning for sensor.

The code snippet in listing 14 scans for remote sensors based on specified UUID.

During the scanning, the application searches the scan result for a sensor with the id

specified by the user. Once the sensor of interest is found, the scanning ends,

otherwise, the scanning lasts for 10 seconds (SCAN_PERIOD). The application then

gets the address of the remote sensor of interest and initiates a connection.

29

public boolean connect(final String address) {

 if (mBluetoothAdapter == null || address == null)return false;

 final BluetoothDevice device = mBluetoothAdapter

 .getRemoteDevice(address);

 if (device == null)return false;

 mBluetoothGatt = device.connectGatt(this, false,

 mGattCallback);

 mBluetoothDeviceAddress = address;

 mConnectionState = STATE_CONNECTING;

 return true;

}

Listing 15. Connecting to remote sensor.

The code snippet in listing 15 initiates a connection with the specified remote sensor. It

checks that the Bluetooth adapter of the mobile device is turned on and that the remote

sensor address is available. It then gets a handle for the remote sensor and starts the

connection transaction. After the connection is established, the application will search

for the BLE services implemented by the remote sensor. The service of interest here is

the UART service. When this is discovered, the application will then get the RX

characteristic from the service and registers for notification on this characteristic as

shown in the following code snippet.

public void enableRXNotification(){

 mBluetoothGatt.setCharacteristicNotification(

 mRXCharacteristic, true);

 BluetoothGattDescriptor descriptor = mRXCharacteristic

 .getDescriptor(CCCD_UUID);

 descriptor.setValue(BluetoothGattDescriptor

 .ENABLE_NOTIFICATION_VALUE);

 mBluetoothGatt.writeDescriptor(descriptor);

}

Listing 16. Register for Notification

The code snippet in listing 16 registers for notification on RX characteristic, which

carries PPG samples from the sensor, so that each time the value is updated, the

30

application will get a notification of the update and read the value from the

characteristic.

public void onCharacteristicChanged(BluetoothGatt gatt,

 BluetoothGattCharacteristic characteristic) {

 if(characteristic.getUuid().equals(RX_CHAR_UUID)) {

 int value = Integer

 .parseInt(characteristic.getStringValue(0).trim());

 if(value > MIN_Y){

 if(mSamples4HRCalc.size() == TEN_SECONDS_SAMPLES){

 calculateHR(new ArrayList<>(mSamples4HRCalc));

 mSamples4HRCalc.clear();

 }

 value = iIRFilter(detrend(value));

 if(value > 0) {

 mSamples4HRCalc.add(value);

 broadcastUpdate(ACTION_RX_DATA_AVAILABLE, value);

 }

 }

 else {

 broadcastUpdate(ACTION_RX_DATA_AVAILABLE, 0);

 mSamples.clear();

 }

 }

}

Listing 17. Reading PPG samples from sensor.

The code snippet in listing 17 is called by the BLE stack each time a new sample is

read by the sensor. It reads the sample, passes it through the filtering stages and then

sends the filtered sample onward for visualization and recording. The next BLE

transaction to be discussed here is disconnection, which comes when the user wants

to end BLE communication. The user initiates the disconnection by pressing the

disconnection button on the application’s user interface. Once this button is pressed,

the application will initiate disconnection from the remote sensor in the following

snippet.

31

public void disconnect() {

 if (mBluetoothAdapter == null || mBluetoothGatt == null) {

 return;

 }

 mBluetoothGatt.disconnect();

}

Listing 18. Disconnecting from remote sensor.

The code snippet in listing 18 initiates the disconnection event. It first checks if there is

still a valid handle to a remote sensor, and if a valid handle still exists, it will initiate

disconnection from the connected remote sensor.

Sample Filtering

The PPG samples recieved from the connected sensor are filtered to make the peaks

in the signal as distinct as possible, and to further lower the signal-to-noise ratio. The

first stage of the filtering process is a simple detrending function which returns the

absolute value of a sample subtracted from the mean of the sample and the

preceeding 99 samples.

private int detrend(int sample){

 int detrended = 0;

 mFilteredSamples.add(sample);

 if(mFilteredSamples.size() < 100)

 return detrended;

 for(int i = 0; i < 100; i++)

 detrended += mFilteredSamples.get(i);

 mFilteredSamples.remove(0);

 detrended = detrended/100;

 return Math.abs(sample - detrended);

}

Listing 19. Detrending function.

Listing 19 is a simple implementation of detrending. It basically removes the trend in

the signal. As shown in the snippet, the application remembers the preceeding 99

samples in order to perform the detrending. Thus for the first 99 samples recieved, the

32

function returns 0. The second stage of filtering, shown in listing 20 below, is a simple

low pass filter implemented as a 31-point moving average to remove the high

frequency noise.

private int iIRFilter(int sample){

 int filtered = 0;

 mSamples.add(sample);

 if(mSamples.size() < 31)

 return filtered;

 for(int i = 0; i < 31; i++)

 filtered += mSamples.get(i);

 mSamples.remove(0);

 return filtered/31;

}

Listing 20. A simple low pass filter for noise reduction.

Heart Rate Calculation

In PPG-based heart rate measurment, heart rate is determined by the number of peaks

detected in the PPG signal per minute. Thus each peak in the signal represents one

heart beat. The application calculates the heart rate for every 1000 samples. Since the

sampling rate of the sensor is set at 100 samples per second, the application

calculates the heart rate every 10 seconds. The peak detection algorithm used in the

application was defined and implemented in MATLAB by Eli Billauer.[22]

private void calculateHR(final ArrayList<Integer> samples){

 for(int i = 0; i < samples.size(); i++){

 for(int i = 0; i < samples.size(); i++) {

 double cur = samples.get(i);

 if (cur > mx) {

 mx = cur; mxPos = i;

 }

 if (cur < mn) {

 mn = cur; mnPos = i;

 }

 if(lookForMax == 1){

33

 if(cur < (mx - delta)){

 mMaxPoints.add(mx);

 mMaxPos.add(mxPos);

 mn = cur; mnPos = i; lookForMax = 0;

 }

 }else{

 if(cur > (mn + delta)){

 mMinPoints.add(mn);

 mMinPos.add(mnPos);

 mx = cur; mxPos = i; lookForMax = 1;

 }

 }

 }

 double peaks = mMaxPoints.size();

 double duration = samples.size()/SAMPLING_RATE;

 mHr = (int)Math.round((peaks*60)/duration);

 }

}

Listing 19. Heart rate calculation.

In listing 19, the snippet calculates the heart rate by detecting the number of peaks in a

set of 1000 samples. It then determines how long it takes to get one peak in seconds

(T). The heart rate value is given as 60 seconds (a minute) divided by T.

Visualization and Recording

The application displays the filtered samples on a graph for visualization. The y-axis of

the graph represents the PPG samples while the x-axis represents time. The heart rate

value is also displayed on the screen and is updated each time the value changes.

private void updateGraph(int value) {

 if(mCounter > X_RANGE){

 mCounter = 0;

 }

 if(mLineGraph.getItemCount() > mCounter){

 mLineGraph.removeValue(mCounter);

34

 }

 mLineGraph.addValue(mCounter, mCounter, value);

 mCounter++;

 mGraphView.repaint();

}

private void setHeartRateValue(int value) {

 if (value != 0) {

 hrView.setText(value + "BPM");

 } else {

 hrView.setText(" ");

 }

}

Listing 20. PPG samples and heart rate display functions.

The PPG samples and heart rate values are recorded as a text file named as the

patient's id underscore date and time of recording(<patientId>_<time of recording>)

and saved in the device's local storage.

ppgM.addToData(rxInt, 0); ppgM.addToData(hr, 1);

private void saveRecord(){

 File file;

 String start = new SimpleDateFormat("yyMMddHHmmss",

 Locale.US).format(record.getStart());

 String fileName = record.getPatientId()+"_"+start+".txt";

 file = new File(dir, fileName);

 FileWriter fw = new FileWriter(file, true);

 fw.append(record.toJson());

 fw.flush();

 fw.close();

}

Listing 21. Record and save PPG samples and heart rate values.

The code snippet in listing 21 records PPG samples and hr values by adding them to a

collection. This collection is then saved as a text file in the local storage of the mobile

device for future reference. The file contains a maximum of 2 minutes of records.

35

5. Results

The outcome of this project is a laboratory-based prototype for heart rate sensor that

works with an Android mobile device to measure and record heart rate from the finger.

The following is a pictorial overview of how the device works.

Figure 16. A pictorial overview of the heart rate monitor operation

36

Figure 16 describes the operation of the heart rate monitor developed in this project.

When the sensor is turned on, the user opens the mobile application and then enters

her user id (or some other form of identification) and the sensor id. The application

remembers the most recent user and sensor ids, so if the user has just used it she

would not have to enter these again. She then places her finger on the sensor, right on

top of the oximeter chip so that the finger covers the LEDs and the photodiode. The

application then detects the user’s finger and starts to visualize the PPG samples

captured from it. At the same time it calculates both the heart rate and average heart

rate, and records both the PPG samples and the heart rate values. The recording lasts

for about two minutes.

The recorded data could be retrieved and viewed. Here only the heart rate and average

heart rate are shown together with a graph of all the heart rate values calculated during

the two minutes of recording. The heart rate presented on this view is the value that

has the highest frequency, in other words, the mode of the set of heart rate values

calculated by the application during the two minutes of recording, which could also be

seen visually on the graph. To test the functionality of this heart rate monitor, some

measurements were taken and recorded. The results of the test are presented in the

following screen shots.

37

Figure 17. Screen shots of measurements taken from two volunteers

38

Figure 17 shows screen shots of the heart rate measurements taken from two persons,

Augustine and Kai. The first five measurements were taken from Augustine and the

measured heart rates were mostly 78 beats per minute (BPM). The last measurement

in the figure was taken from Kai and the heart rate recorded was 54 BPM. The

recorded heart rates together with the PPG samples could be sent as an attachment to

a specified email. This functionality of the application would be useful if the user

intends to perform further analysis on the samples.

39

6. Evaluation

This heart rate monitor was used alongside a commercially available pulse oximeter,

Nonin G02, to heart rate results discussed in the previous chapter. The table below

shows heart rate results from the two devices taken on the same day, 17 October,

2016.

Table 1. Heart rate measurements.

In table 1 above, it is clear that the measurements obtained with the heart rate monitor

developed in this project are quite impressive when compared with those recorded

from a standard pulse oximeter for personal use. This is largely due to the high level

signal-to-noise ratio of the oximeter sensor, MAX30100, the quality of the fitering

process and the peak detection algorithm.

Even though the results look very impressive, there are still much room for

improvement which could be achieved by using an oximeter sensor with a much higher

signal-to-noise ratio, and much better filtering and peak detection algorithms. The

sensor unit in this project could also be developed further into a wearable oximeter

prototype. However, it would not bring any innovation since there are already wireless

oximeter solutions in the market which measure both SP02 and heart rate.

The most challenging task for me in this project was removing the trends in the signal

revieved from the sensor, and implementing the peak detection functionality, which is

the key to calculating the heart rate. After extensive research, I was able to find some

help on how to implement both the detrending and peak detection functionalities.

40

7. Conclusion

My goal in this project was to develop a wireless heart-rate monitor with MAX30100 for

sensing PPG signal, nRF5822 for sensor-side control and BLE communication, and the

Android system as the mobile platform for the sensor's client application for remote

control, monitoring, data recording and display. The emphasis in this goal was mostly

on the software rather than on the hardware. Therefore, the project excluded a

complete prototype that could be tested beyond the development environment.

The result of this project is a working wireless heart-rate monitor, which includes a

finger-based heart-rate sensor and a client application for the Android mobile platform.

The sensor continously captures PPG data from a subject's finger and sends them via

BLE to a connected Android mobile device running the client application, which then

displays the data graphically, calculates and displays the periodic heart-rate, and

records and saves the data for future reference.

The accuracy of the heart-rate measurements obtained from the monitor is quite

impressive when compared to measurements from a standard finger oximeter given

the circumstances and the level of this project. It could, however, be improved by using

a higher quality sensor IC with a much better signal-to-noise ratio, and a better peak

detection algorithm, since the PPG-based heart-rate is calculated from the number of

peaks detected in a PPG signal of a given duration.

The source codes for both the firmware and the mobile application can be downloaded

or cloned from these github repositories:

Firmware: https://github.com/augustio/heart_rate_sensor.git

Mobile application: https://github.com/augustio/HR_PPG_Monitor.git

41

References

1. Langereis Geert. Photoplethysmography (PPG) System Version 2 [online].

February 2010.
https://www.cs.tau.ac.il/~nin/Courses/Workshop12a/PPG%20Sensor%20System.p
df.
Accessed March 26 2016.

2. Omar Abdallah and Armin Bolz. Adaptive Filtering by Non-Invasive Vital Signals
Monitoring and Diseases Diagnosis [online].
http://www.intechopen.com/books/adaptive-filtering-applications/adaptive-filtering-
by-non-invasive-vital-signals-monitoring-and-diseases-diagnosis
Accessed 26 March 2016.

3. Allen John, ”Photoplethysmography and its application in clinical physiological

measurement” in Physiological Measurement, Vol. 28, Number 3 [serial online]
2007.
http://iopscience.iop.org/article/10.1088/0967-3334/28/3/R01/meta.
Accessed 26 March 2016.

4. Bluetooth SIG. Bluetooth low energy [online].

https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-
basics/low-energy.
Accessed 26 March 2016.

5. Bluetooth Smart (Low Energy) Technology [online].

https://developer.bluetooth.org/TechnologyOverview/Pages/BLE.aspx
Accessed 26 March 2016.

6. Bluetooth SIG. Specification of the Bluetooth System,

Version 4.0, Vol. 1. June 30, 2010.

7. Open handset alliance. “Industry Leaders Announce Open Platform for Mobile

Devices” November 5, 2007.
http://www.openhandsetalliance.com/press_110507.html
Accessed 26 March 2016.

8. Dunn Jeff, “There's no hope of anyone catching up to Android and iOS”

in Business Insider, [online] August 22, 2016.
http://www.businessinsider.com/smartphone-market-share-android-ios-windows
blackberry-2016-8?r=US&IR=T&IR=T
Accessed 16 October 2016.

9. open Handset Alliance. Android

http://www.openhandsetalliance.com/android_overview.html
Accessed 26 March 2016.

10. Smieh. Anatomy Physiology of an Android, CC BY-SA 3.0.

https://commons.wikimedia.org/w/index.php?curid=20067152
Accessed 26 March 2016.

11. Android Architecture.

http://www.tutorialspoint.com/android/android_architecture.htm
Accessed 26 March 2016.

42

12. An Overview of the Android Architecture.
http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
Accessed 26 March 2016.

13. Nordic Semiconductor. nRF51822

https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-
energy/nRF51822
Accessed 26 March 2016.

14. Nordic Semiconductor. nRF51822 Product Specification V3.1.

15. Nordic Semiconductor. nRF51822 Evaluation Kit User Guide V1.2.

16. Maxim integrated. MAX30100 pulse Oximeter and Heart-Rate Sensor ICs

Datasheet.
https://datasheets.maximintegrated.com/en/ds/MAX30100.pdf
Accessed 26 March 2016.

17. LG Nexus 5.
http://www.lg.com/us/cell-phones/lg-D820-Sprint-Black-nexus-5
Accessed 26 March 2016.

18. Gadgets 360. LG Google Nexus 5

http://gadgets.ndtv.com/lg-google-nexus-5-1115
Accessed 26 March 2016.

19. Mouser Electronics. Maxim MAX30100 Pulse Oximeter & Heart-Rate Sensor ICs.

http://www.mouser.in/search/refine.aspx?Ntk=P_MarCom&Ntt=109862494
Accessed 26 March 2016.

20. Nordic Developer Zone.

https://devzone.nordicsemi.com/question/60/what-is-connection-parameters
Accessed 27 March 2016.

21. Nordic Semiconductor. nRF51 SDK Version 5.2.0.

21. Billauer Eli, “Peakdet: Peak detection using MATLAB” July 20 2012.

http://www.billauer.co.il/peakdet.html
Accessed 16 October 2016.

22. Townsend K, Cufi C, Akiba and Davidson R, Getting Started with Bluetooth Low

Energy. Sebastopol, California: O’Reilly Media; 2014 [online edition].
https://www.safaribooksonline.com/library/view/getting-started-
with/9781491900550/ch01.html
Accessed 5 November 2016.

