

Vladislav Kazakov

The Role of Python in Visual Effects Pipeline

Case: Talvi Tools

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Thesis

21 September 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/80987673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author(s)
Title

Number of Pages
Date

Vladislav Kazakov
The Role of Python in Visual Effects Pipeline Case: Talvi Tools

41 pages + 1 appendix
21 September 2016

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Audiovisual Technology and Production Systems

Instructor(s)

Antti Laiho, Senior Lecturer
Kaj Lydecken, Animation Supervisor

The purpose of this thesis was to study the concept of visual effects pipelines and analyze
how programming language Python can fit into the post-production phase of filmmaking. In
the extremely competitive environment of visual effects industry, companies are forced to
constantly look out for newer technologies and research more optimal production method-
ologies. In search of feasible solutions studios often come across Python.

The theoretical part of the study outlines a brief history of Python and illustrates the power
of this programming language with two exemplified use case applications. In addition to that,
various possible Python implementations in the production of computer generated imagery
are extensively reviewed. To give a more complete picture of how this programming lan-
guage aids post-production, the adoption of Python by Industrial Light & Magic is examined.
As it became clear that Python would prevail in the production of computer graphics, soft-
ware vendors started embedding Python support in their products. This claim is further sup-
ported by the analysis of Python integration within major contect-creation applications.

The outcome of this study is the add-on for Blender developed in Python. The purpose of
the add-on is to facilitate and accelerate the export of character and camera animation data,
which is specifically useful for projects that require a substantial amount of computer anima-
tion to be moved from Blender to another software for later use.

Keywords Blender, VFX, pipeline, Python, post-production, filmmaking,
effects, animation

Contents

1 Introduction 2

2 Python in Visual Effects Pipeline 3

2.1 The concept of a Pipeline 3

2.2 Overview of Python 9

2.3 Python in post-production workflows 12

2.4 ILM case study 15

3 Overview of Python integration in Visual Effects Software 16

3.1 Autodesk Maya 16

3.2 SideFX Houdini 20

3.3 The Foundry Nuke 23

3.4 Blender 25

4 Development of Blender add-on Talvi Tools 27

4.1 Case Company Introduction 27

4.2 Talvi Digital’s Pipeline 27

4.3 Initiation 28

4.4 Planning 29

4.5 User Interface 30

4.6 Development 33

5 Practical implementation and Analysis 36

6 Conclusion 38

References 39

Appendixes

Appendix 1. Talvi Tools v 1.0 source code (Written in Python programming language).

1

Terms and Abbreviations

3D Three Dimensional

MEL Maya Embedded Language

API Application Programming Interface

CG Computer Graphics

OOP Object Oriented Programming

VFX Visual Effects

OBJ The Wavefront 3D object file format

MDD Motion Designer Document file format

FX Effects

GUI Graphical User Interface

DAM Digital Asset Management

FPS Frames Per Second

DCC Digital Content Creation

TV Television

IDE Integrated Development Environment

R&D Research and Development

VEX Vector Expression Language

FBX Autodesk Filmbox file format

ILM Industrial Light & Magic

2

1 Introduction

It is hard to deny that nowadays computer generated imagery and visual effects have become

an indispensable part of TV, film, animation and media industry as a whole. Ever since the

beginning of film making visual effects have provided directors a freedom to express the vision

of a story that a narrator aims to convey. The early years of filmmaking relied on practical

effects, such as stop-motion animation, miniatures and traditional matte paintings, among oth-

ers. Of course, they were truly stunning and caused “wow effect” from the audience. Never-

theless, as time progressed, technological advancements caused a massive leap forward in

visual effects and pushed visual effects in movies to an entirely new level. Notably, one of the

greatest advancement in terms of computer-generated imagery was the first cartoon feature

Toy Story created entirely through the use of a computer by Pixar in 1995. This, as a conse-

quence, contributed to the success of Pixar and boosted the popularity of full-CG animated

feature film productions. What is more, the evolving technologies used in these productions

also promoted the quality of computer-generated elements composed into feature films. [1]

The rapidly developing tools have enabled visual effects and digital artists to render remarka-

bly realistic life-like results. These days, when the digital content creation software is becoming

more and more accessible to a wide audience, computer graphics has spawn the interest

among many enthusiasts. Hence, there is actually no surprise that the amount of VFX used in

films is continually growing.

As in many other industries, VFX companies are eager to streamline production process that

would lead to financial cost and time savings while increasing overall productivity and profita-

bility. While most visual effects work is completed during post-production, it should be carefully

planned and prepared beforehand - during the pre-production and production stages [2]. How-

ever, for the purpose of this thesis the latter post-production part, likewise the production of

CG animation will be given in-depth attention. A production process or production workflow

in CG industry is often called with a term “CG pipeline” or “VFX pipeline”. In brief, it is extremely

crucial to design a strong pipeline that would fit the needs and capacity of a studio and provide

the ability to empower the production process. The following chapters will shed some light on

the benefits of a solid pipeline and will provide a better understanding of the role of pipeline

management plays in production.

This study aims to demonstrate how programming language Python fits into visual effects

workflows and serves as the backbone of any successful project. The thesis is divided into

two parts: theoretical and empirical. The theoretical part will explore the concept of a pipeline

3

and its architecture with an illustration of an exemplary case from a well-known visual effects

company. Apart from that, the theoretical overview and a brief development background of

programming language Python will be covered. Next, Python employment within major digital

content creation packages will be examined and extensively reviewed. The empirical part of

the study will expose a use case scenario of how Python programming contributed to the post-

production of Finnish feature film project and will go over the steps involved in the development

of Blender add-on with the use of Python.

2 Python in Visual Effects Pipeline

2.1 The concept of a Pipeline

In regards to visual effects, the term pipeline refers to a flow of steps, or production stages

needed to generate a VFX shot. A parallel can be drawn with a manufacturing production line,

where raw materials, comparable with the live-action plates, come in and move through a

series of repeatable processes that transform them into finished products. The finished prod-

uct in visual effects, also called a “final deliverable” is a collection of image sequences that

are later on edited and stitched together to form a movie. Even though making of effects and

animation resembles a manufacturing production model, there are a few noteworthy factors

that make a visual effects production distinguish from a manufacturing line. Essentially, a pro-

duction or assembly line implies considerably linear process whereas VFX production is far

more complex and ideally adequately flexible to support data flowing back and forth through

the ”pipe”. [3, 9.]

Evidently, visual effects pipelines differ among the companies depending on the structure of

a company, size of the crew, computational capacity and production needs. The chart below

represents an exemplary schematic illustration of a simplified generic pipeline.

4

Figure 1. Example of a visual effects pipeline. [4]

With the reference to flow chart presented in figure 1, the pipeline is distributed into production

stages. As a matter of fact, every production stage has its own specific time period. What is

more significant, there are intersecting time periods where production stages overlap. To clar-

ify, a rigging stage usually takes off when a model is ready to rig and an animation can start

as soon as a rig is prepared. In other words, a rigging stage does not necessarily have to wait

until all the modelling is finished and so forth. Each stage gets allocated to a respective de-

partment and depending on the size of a facility, it can be a single person or a group of people.

[4]

Important to realize, that there are a number of measures a VFX company must take in order

to stay afloat, complete work on schedule, while keeping rates as competitive as possible.

One of them is to develop a robust pipeline, which would help to avoid bottlenecks, support

5

iteration and maximize efficiency. One example of a such “VFX powerhouse” can be consid-

ered the pipeline designed and implemented by Rhythm & Hues in 2006.

Rhythm & Hues (R&H later in text) was one of the top global post-production and animation

company founded in 1987 and headquartered in Los Angeles, California. Among the most

notable projects produced by R&H are award-winning “Babe”, “The Golden Compass” and

“Life of Pi”. Besides headquarters in Los Angeles, R&H also had facilities in other parts of the

world: Vancouver, Mumbai, Hyderabad, Kaohsiung and Kuala Lumpur. [5]

Figure 2. The R&H pipeline compromises of 12 creative disciplines. [6]

One of the key points of Rhythm & Hues pipeline is that every production discipline with re-

gards to both 2D and 3D disciplines treats and communicates with the data flow in the same

manner. For this particular reason, R&H pipeline is considered to be unified.

Other notable features include:

 Context – everybody works within the same context

 Interaction – everybody interacts with the file system in the same way

 Sharing – the way everybody shares the work remains consistent across all stages

 Unified toolset – everybody uses the unified toolset

 Language – everybody speaks a common language

6

All Rhythm & Hues facilities are operated through a single pipeline. Nowadays, in the age of

digitalization in the movie industry, the innovative technologies of high-speed file transfers

have led to a reduction in barriers to entry. With this in mind, from the workflow point of view

there is no big difference between a colleague located nearby or in the R&H location on the

other side of the world, e.g. in Kuala Lumpur. As a result, work is divided among all facilities

based on employee availability at a given location and therefore production does not get iso-

lated to one single facility. Moreover, work within a single pipeline stage can be accomplished

by different locations at the same time. It can start in one facility and then head over to another

one if necessary.

Figure 3. Division of work of one shot from “Life of Pi”. [6]

1. Background plate preparation in Kuala Lumpur

2. Matchmoving and tracking in Hyderabad

3. Animation in Mumbai

4. Lighting and FX in Los Angeles

5. Rendering in Kaohsiung

6. Compositing in Mumbai

The technology that allowed Rhythm & Hues to spin a shot around geographically diverse

facilities as one R&H representative stated justly that “the sun never sets on Rhythm and

Hues”, also allows other companies to outsource their projects to 3rd party vendors or distribute

work based on the human resources available and possible financial incentives.

7

Furthermore, the R&H pipeline supports comprehensive sharing of assets and other produc-

tion data across locations by thoroughly tracking production dependencies inside out. It relies

on a subscription model, which links everything together and make it possible to track what

versions of which assets are in use in which locations. That is to say that production assets

can be synchronized to other R&H locations without any additional stress on an artist.

What makes R&H pipeline especially outstanding is the fact that it was developed to support

any type of production that could be ordered to the company. For this exact reason, the pipe-

line framework was originally planned without any expectations about the type of projects be-

ing done, software being used or the types of data being passed around the facilities. As a

result, this has allowed to build the highly adaptable unified pipeline that embraces all steps

of post-production. As previously mentioned, there is a subscription model, which not only

allows smart synchronization and seamless multisided asset management from any location,

but also stores the entire revision history of production, including both the work area and asset

versioning. The pipeline was shown clearly to be highly scalable and has been in use on fea-

ture film and commercial projects of different scale whether it is a 10-shot commercial project

or a 1000-shot feature-length production. Due to the fact that the pipeline was designed with

no assumptions of what type of projects might be awarded to the company, it was developed

flexible enough to handle any types of shows: effects-heavy, character-heavy or/and Full-CG.

[6]

A significant change is going on in the movie industry as the use of VFX dramatically in-

creases. As we all know, it is not just the number of shots, but also is the complexity of visual

effects elements in filmmaking that is constantly growing. Apparently, and so does the chal-

lenge of managing and tracking of data throughout the pipeline. These days when the project

deadlines are getting shorter and shorter and the pressure to complete work on time is rapidly

increasing, a pipeline organization becomes absolutely indispensable if a company aims to

deliver the ever-increasing shot complexity and volume in an effective way without obstructing

the creative side of work. Compounded by shrinking budgets and schedules, post-production

studios need ever more complex and comprehensive digital production management and shot

tracking solutions. These changes, in turn, outline what factors are inherent to a CG pipeline

of efficient post-production:

1. Communication. Communication should always be open and maintained on every pos-

sible level: within a department, in-between departments, between artists and other

studio personnel, e.g. Human Resources, IT departments and such. Everybody should

know what to do and be informed of the changes if there are any. This concerns also

8

communication between the studio and its customers. Supervisors should thoroughly

understand customer needs and communicate them to the artists. [3, 23.]

2. Benchmarking. Tracking the time and resources to complete a certain types of shots

can help to estimate the cost of production for future projects [3, 24].

3. Flexibility. Since a customer or a director can often change his mind, a pipeline needs

to be highly adaptable to such changes. These changes can often impact different

stages of production. In the best possible scenario, a pipeline should be adjustable

enough to support iterations and asset tweaking at any stage of production. It is im-

portant to understand, that while artists are often happy to make revisions, they can

have a significant impact downstream. Therefore, a CG pipeline should be bidirectional

in case data needs to pass upstream or downstream. [3, 13.]

4. Scalability. A pipeline should impeccably be capable take on a production of varied

scale. This means not only the overall scale of project, but also the functioning capacity

of different departments involved in the production can be diverse.

5. DAM. Both asset and project supervision are the integral aspects of any CG pipeline,

which allow managing supervisors to review asset preparation, versioning and observe

the status shots produced [3, 23].

6. Automation. Nearly every phase of CG production can be standardized and auto-

mated. The main purpose is to avoid repeatedly manual labor as much as possible. By

automating some of the tasks, e.g. inputting file paths, adjusting settings and presets,

setting up plugins and add-ons, one can make production smoother, provide artists

with non-distracting environment and give more freedom to perform their job. [4]

As it has been previously highlighted, one of the major challenges remained in post-production

pipeline is handling the staggering amount of data that is required to output a high-grade im-

agery. Typically, a standard character in an effects-heavy movie can encompass several hun-

dreds of sub-assets that must be compiled together to generate a working result. Some of

them are high-resolution geometry caches and texture maps, rigs, skin, muscle, cloth and hair

simulations, along with others. [7]

Referring back to figure 1, as has been pointed out, a pipeline is divided into stages, which

get allocated to a corresponding department. Keeping this in mind, there is one pivotal nuance

that each department operates with different software or sometimes with a mixed set of soft-

ware tools. While they are great on their own, these tools were not intended to interact nicely

with each other in the first place. Still, often times there is a need to synchronize sub-assets

9

and assemble all the pieces into a masterpiece. Therefore, the issue arises of finding an opti-

mal solution as how to get this diverse set of tools to collaborate with one another. This is

where programming language Python comes in handy.

2.2 Overview of Python

Python is a high-level multi-purpose programming language that supports a variety of pro-

gramming paradigms. It was created by Guido van Rossum at the National Research Institute

for Mathematics and Computer Science in the Netherlands [8]. The first version Python 1.0

was released in February 1994, followed by the next major update to version 2.0 in October

2000 [9]. Python 2.x development cycle was a huge step forward in terms of development –

by adding the unification of Python built-in types and classes created by the user into same

hierarchy, which made Python totally object-oriented language. In addition to that, the support

of a garbage collection system capable of collecting reference cycles was also added. This

update to the class system of Python introduced a number of new features, which overall

improved the programming experience. [10;11] The next serious milestone was the release of

a backwards-incompatible Python 3.0 in 2008. Although this version was designed with the

same philosophy as the previous ones, the 3.x development cycle put bigger emphasis on

getting rid of duplicate designs and modules, which have become redundant and obsolete by

that time. [12] Python 2.x and Python 3.x series coexisted in parallel for a few releases, with

Python 2.x series released mainly for the sake of compatibility and included several features

being back-ported from the 3.x series. For example, Python 2.6 was released to accompany

Python 3.0, and had some features included in that version and so forth. In the similar way,

the next release of Python 2.7 included functionality from Python 3.1. Most of its main features

were also back-ported to the backwards-compatible Python 2.6 and 2.7. The support of mul-

tiple programming paradigms such as object-oriented, imperative, procedural and functional

makes Python very powerful and thus applicable in a wide spectrum of the following program-

ming areas:

 Web development

 Database programming

 Server and network programming

 Rapid Prototyping

 Scientific and numeric calculations

 Graphical user interfaces

 Game development

 System Administration

 Education

10

In order to give a more complete picture, some real life applications will be illustrated as an

example. In particular, Dropbox, one of the most popular global cloud-based file hosting ser-

vice that offers personal and corporate cloud storage.

Dropbox is a service that allows users to send and store files on a remote server using a client

software or a browser using web interface. Once a file or a folder is sent, Dropbox then auto-

matically synchronizes it so that it will be available as the same directory with all the files, no

matter which device is used to browse it, whether it is a desktop computer, laptop or a

smartphone. Files contained in this folder will also be accessible via the Dropbox website or

Dropbox mobile applications. [13]

What is more significant is the fact that Dropbox development team used Python for nearly

everything. It is utilized in the desktop client software, back-end infrastructure, website logic

and usage analytics. In addition, it runs on a single code base and relies on the following

Python libraries: Twisted, PyObjs, WxPython, py2exe, py2app and PyWin32. [14]

Another striking example to illustrate the flexibility of programming language Python is one of

the first major multiplayer online games EVE Online, which was released by CCP Games in

2003. EVE online is a science fiction adventure game that features a massive game set that

takes place in the distant future where players can explore and battle with other players across

the universe comprised of more than 7000 star systems and planets. Stackless Python, a

lightweight micro threaded version of Python was tightly integrated since the early stage of

development of the game. Python significantly assisted in the development of the client side

of EVE Online as well as the back-end architecture. One major advantage of Stackless Python

over the default Python is that it has allowed EVE Online to effectively scale up to a compar-

atively large number of users performing tasks with no overhead of using the call stack that

comes with standard Python distribution. EVE Online has around 40 thousand simultaneous

active players on average. [15]

In fact, Python ranks in the top five most popular programming languages, along with Java, C,

C++ and C#. It has become a higher priority programming language for many big companies,

such as Google, Netflix, NASA, Reddit, IBM and many other organizations start to follow this

tendency and employ Python for their solutions. Here are the most compelling reasons, why

it is embraced by many users who want to take full advantage of all the benefits it has to offer:

11

- Accessible. Being an open-source language, Python is completely free to download

and use. This can already contribute to project cost reductions. Besides that, it requires

very little setup to run.

- Cross platform. Python is supported by all major operating systems: Windows, Linux

distributions and Mac OS.

- Easy to grasp. The reason behind that is a very simple syntax, which in turn reduces

syntactical overhead and steepens the learning curve. It is largely recommended as a

good choice for a first programming language to learn.

- Readability. Indeed, Python has a very clear syntax enhanced by a set of punctuation

rules and is easy to read and understand because it bears close resembles to English

language.

- OOP support. By creating, using and re-using data structures, one can minimize the

amount of coding required to accomplish a certain task.

- Extensive libraries. Python comes with a massive standard library and extensions for

any type of programming tasks.

- Interpreted. Python is processed at runtime and there is no need to wait for the com-

pilation phase to complete thus reducing development time and stimulating the learn-

ing process.

- Large community. Not only Python user community is very large, but also it offers a

lot of support, shares resources and in general stimulates the learning process.

- Transferable. Python is very portable and can work on a wide gamut of various hard-

ware devices.

- Great documentation. Python is equipped with comprehensive documentation mak-

ing problem solving much easier.

12

2.3 Python in post-production workflows

This chapter puts the emphasis on how Python fits into a post-production pipeline. There are

several ways how Python can aid the making of visual effects. First and foremost, one of the

most crucial application of Python in the field of computer graphics is the development of

pipeline on any scale of production facility whether it is a large or small studio, or enhancing

productivity output within a personal work place. The main question often arise during produc-

tion is how to optimize the project production workflow in as many ways as possible.

On a global scope, there are several primary concerns to be addressed that can be classified

according to the following categories:

Production global variables:

a. Settings. This refers to digital content creation software settings and preferences,

which can be general or project wise. These global variables should be pre-defined

and synchronized for all work stations across the facility. For example, when an artist

launches a program, it automatically loads the correct settings for the project he/she is

working on. Such settings include but are not limited to render resolution, FPS, deliv-

erable destination, and etcetera. Ideally, this procedure should be highly customizable

and automated through the use of global variables.

b. Modules. This concerns various scripts, plugins, add-ons and other software exten-

sions, including both 3rd party and in-house solutions. For instance, if a company has

a dedicated R&D department whose job is to develop software scripts and extensions,

these extensions should be automatically updated and put in sync for all computers.

Project working environment:

a. Project root. Assignment of a software for a certain environment, which tells the pro-

gram what project it works with. For example, a $JOB variable in Houdini. By doing

that, a software should intelligently detect the hierarchical project folder structure and

fetch necessary files (models, bitmaps, caches and etc.) automatically.

b. External data. In case the assets are stored externally or remotely, the software
should automatically know where to reference this data from.
[4]

13

Having to deal with the aforementioned concerns, pipeline engineers and technical directors

face some of the most challenging problems. As a rule, they use Python programming to tackle

these problems and help facilitate the production workflow.

Here is a more detailed analysis of pipeline related issues that can be solved with Python:

1. Automation. It is often alleged that automation of repetitive and routine tasks is one of

the main reasons why Python found its way into VFX industry. Such tasks might involve

any number of monotonous animations, e.g. copy-pasting animation keyframes, set-

ting up similar character rigs, copying light setup from one scene to another, setting up

and adjusting several scene parameters, defining output destination and many differ-

ent others. As long as the task can be described as an algorithm, it can be scripted in

Python. The ultimate goal is to automate the workflow as much as possible in order to

remove the burden from the artists and let them focus on art creation.

Another often overlooked aspect has to do with the human error component, as people

do occasionally make mistakes, typos, spelling errors and such. By automating some

of the tasks, one can reduce the human error component that in turn would result in

much more predictable outcome. [4]

2. Software extension. Some post-production companies have a dedicated R&D depart-

ment that works on proprietary in-house tools and also extends the commercial soft-

ware by addressing the needs of artists who depending on the complexity of a task

assigned might require an off-the-shelf solution. Granted that the majority of 3D pro-

grams have a Python API, which allows to communicate with the core of software, in

conjunction with rich Python library modules presents the environment where there are

countless possibilities to build new tools, scripts and plugins to go far beyond the de-

fault feature-set. Specifically, it is commonly adopted in the character rigging process,

when technical directors need to build complex dependencies between parts of a

model and control or constraint systems and Python is used to link them together. [16]

3. Pipeline/workflow enhancers. There is a vast array of utilities that can be made with

Python and be helpful in visual effects productions, that are not directly related to DCC

software. For example, various scripts that can execute shell commands for various

purposes: scan directories and delete bitmap files with specific metadata, batch con-

vert files, resize images that match a certain criterion. There are also multiple modules

to work with image processing in Python. Such include OpenImageIO, OpenEXR and

PythonMagick. They allow for basic analysis and manipulation of both image data and

metadata. Apart from that, there also modules for color manipulation that enables to

convert image from one color space to another or linearize the image – OpenColorIO

14

and ColorPy. [17] Although most established VFX studios rely on comprehensive DAM

systems, individual artists and start-ups can make use of Python programming and

develop their own solutions in the matter of file transferring, management and synchro-

nization. The same applies for project management. It is not uncommon for a facility

to have some small desktop apps that artists would use to track jobs, deadlines and

deliver project statistics for benchmarking. By and large, Python can be integrated into

any aspect of the post-production – it all comes down to the specific problem at hand.

4. Smooth stage transition. Bringing up the fact, that in certain cases every stage of pipe-

line is done in different software and sometimes a single stage can be completed with

a diverse assortment of tools, the issue of management and configuration of digital

content creation software occurs. Most of the tools used in VFX production were not

developed to easily interact with each other, besides maybe supporting a few common

file formats. In this scenario Python serves the underlying role of the glue that ties

pieces of assets together. There are different Python modules for content and data

transfer across distinctive software tools. Alembicgl is a module that allows to work

with alembic, a file format often used for geometry caching. Similarly, pyopenvdb is a

module that provides with an access to VDB volumes data management with Python.

[17]

Taking into account all the advantages of Python listed in the previous chapter, there is clearly

no doubt it has become the de facto industry standard programming language in visual effects

productions and software vendors started implementing Python support into their products. It

is widely supported by an extensive list of digital content creation applications such as:

1. Autodesk:

 Maya

 3ds Max

 MotionBuilder

 XSI

2. The Foundry:

 Nuke

 Katana

 Hiero

 Mari

 Modo

3. Blender Foundation: Blender

15

4. SideFX: Houdini

5. MAXON: Cinema 4D

6. Blackmagic Design: Fusion

7. NewTek: Lightwave 3D

8. Next Limit Technologies: RealFlow

9. Shotgun Software: Shotgun

2.4 ILM case study

Founded by George Lucas in 1975, ILM is one of the leading global visual effects company

with facilities in San Francisco, London, Vancouver and Singapore. It is famous for the projects

like Jurassic Park, Star Wars, Forrest Gump and Terminator 2. In past, ILM’s post-production

pipeline relied mostly on Unix shell scripting. As the amount of visual effects used in movies

started to grow, ILM started to research for more optimal ways of overseeing progressively

complex production processes. By that time, Python 1.4 was released as simple yet effective

programming language that could be utilized in place of Unix shell scripting. It caught the

attention of ILM, who was looking for more superlative solutions to replace their older scripts.

Due to the simplicity and smooth learning curve it was chosen by ILM, which appreciates the

speed of development. Besides that, Python could be integrated with more sophisticated soft-

ware systems and interact with other programming languages. Taking advantage of that, ILM

implemented Python into their proprietary tools. [18]

Python is everywhere at ILM. It's used to extend the capabilities of our applications, as
well as providing the glue between them. Every CG image we create has involved Python
somewhere in the process.

Philip Peterson, Principal Engineer, Research & Development, Industrial Light & Magic. [18]

Indeed, not only Python was used to extend the content-creation tools, but it was also imple-

mented to enhance the user interface of ILM’s DAM system. After the embracement of Python

in 1996, it has been applied in many different ways in ILM – asset management and batch

control, software extensions, database development and many others. [18]

Python plays a key role in our production pipeline. Without it a project the size of Star
Wars: Episode II would have been very difficult to pull off. From crowd rendering to batch
processing to compositing, Python binds all things together.

Tommy Burnette, Senior Technical Director, Industrial Light & Magic. [18]

16

3 Overview of Python integration in Visual Effects Software

The following part of thesis will more closely examine Python integration within some of the

popular visual effects applications. Despite the fact that most of these applications are shipped

with their own scripting language, the support of Python has definitely helped to extend the

standard functionality and get them to communicate better with one another.

3.1 Autodesk Maya

Initially developed and released by Alias|Wavefront in 1998 Maya has become undoubtedly

one of the most popular 3D software packages used in the production of animation, games,

film and TV. Acquired by Autodesk in 2006 Maya has been packed with many tools for a wide

gamut of tasks, ranging from polygonal modeling and sculpting to complex FX dynamics and

rendering with native and 3rd party engines. Over the years, Maya has grown into feature-rich

program that is favoured by a majority of visual effects studios, regardless of their scale, along

with individual artists. Some of the latest features include BiFrost, a realistic fluid-implicit par-

ticle simulator, xGen, procedural geometry instancing and scattering framework and the new

sculpting toolset migrated from Autodesk Mudbox, just to name a few [19]. For this reason,

many companies position Maya in a crucial place of their production pipeline.

Maya is equipped with MEL, its native scripting language that has a similar syntax with its

predecessor Tcl, a scripting language used in the very early days of Maya. MEL is not just a

powerful scripting language – it is a tool and a method to configure and modify the basic func-

tionality of Maya, as most of Maya’s environment and tools are written in MEL. As an example,

similar to creating actions in Photoshop, a Maya user can record his commands as a script in

MEL that would build a user-friendly macro. MEL can help speed up repetitive tasks, as well

as give an access to features that are not directly available through Maya interface. MEL is

also platform independent language meaning that it is not tied to the operating system. As a

result, the code written in it will run on any platform, which Maya runs on. [20]

In addition to MEL scripting, a support of Python was added since Maya 8.5 was released in

2007 [21,15]. Python scripting can be used for many tasks in Maya, from running simple com-

mands to developing plug-ins, and several different Maya related libraries are available to

target different tasks. Maya has a bilateral Python and MEL compatibility. In other words, Py-

thon scripts can be executed with MEL and the vice versa. The following list is a brief overview

of Python libraries shipped with Maya:

17

- Maya.cmds – also known as Maya commands. This module has the same capabilities

as MEL. Everything that can be done with MEL can be done using this module.

- Maya.OpenMaya - grants an access to Maya API with Python. Different types of ex-

tensions or plugins can be made using this module.

- PyMEL.core - Pymel is an open-source Python library and is another wrapper for MEL.

Although it is not officially supported by Autodesk, it still is shipped with Maya for user

convenience. [22]

Figure 4. The architecture of interaction between Maya’s Core and a user. [23]

As illustrated in figure 4, both Python and MEL enable a user to communicate with Maya

Application Core. However, unlike MEL, Python allows this communicate through Maya API

in addition to Maya Command Engine.

18

The table below will take a closer view at some of the key differences between MEL and

Python and should help a user to choose between the two.

Table 1. Differences between MEL and Python in Maya. [21,15-16; 24]

Difference MEL Python

Concept

Native Maya language, which is
used to communicate with the core
of Maya and only works inside of
Maya

VFX industry standard scripting
language that can be used with
other pipeline elements

Development speed

MEL has not changed much it since
the time it was introduced with the
first versions of Maya. It mainly
grows by commands that are added
to Maya itself

Python is an advanced scripting
language, that continues to rapidly
grow

Community size Small community of Maya users
Huge community and user base
that continually increases

Library size Large library of MEL scripts
Extensive libraries for a variety of
purposes

Dynamic typing No dynamic typing Supports dynamic typing

Object-orientation
No support for object-oriented pro-
gramming

Supports object-oriented
programming

API access
No API access, i.e. Maya functional-
ity cannot be extended with MEL

API access allows the use of clas-
ses and methods specified in
Maya API and enables the devel-
opment of new nodes and plugins

Variety of IDEs
Small variety of IDEs, mainly Maya
script editor

Wide variety of IDEs

To execute Python code in Maya, it can be entered in multiple ways:

1. Script Editor. The most common way to input Python is via Maya’s Script Editor, which

can be accessed through: Window → General Editors → Script Editor. The Script Ed-

itor supports both MEL and Python scripting and has dedicated tabs for each language.

The Script Editor’s user interface consists of two main panels – History Panel on the

top and Input Panel in the bottom. Maya’s Script Editor also has an auto-completion

feature that developers can benefit from. [25]

19

Figure 5. Script Editor in Maya 2017.

2. Shelf Editor. Additionally, in case a user wants to maintain the script and call it sev-

eral times during the session, or just to have the script always in hand, there is a con-

venient way to store it as a shelf tool, that would execute it once clicked.

Figure 6. Shelf Editor in Maya 2017.

20

3. Command line. Another possible way to input Python is through Maya’s command line.

A user can toggle between Python and MEL to choose, which language to execute. A

command line has a limitation to input only one line of code.

Figure 7. Command line in Maya 2017.

3.2 SideFX Houdini

SideFX Houdini is a node-based 3D animation software package that is famous for its broad

capabilities and powerful procedural tools. What makes Houdini so unique and different from

other content-creation applications is the fact that if offers a visual programming environment

where artists have a freedom to create their own tools and expedite their workflow in nearly

limitless possible ways. That is why many visual effects studios opt for this software and im-

plement an end-to-end Houdini pipeline.

Houdini comes with HScript, the old Houdini scripting language that nowadays is primarily

used for compatibility with older Houdini project files and scripts. HScript has some parallels

with MEL in Maya. While HScript is the early scripting language used in Houdini, it still remains

handy in some parts of the software. Given that, HScript can be applied to script some object

transformation expressions, edit properties of lights, cameras, render outputs and other types

of objects. Nevertheless, it is not so efficient when it comes to modifying geometry and doing

geometry or point related operations. In this scenario, the more practical solution would be to

go with VEX. [26]

VEX is the core Houdini language, and is extremely efficient and bears similarities with C and

C++ languages. Unlike Python, VEX is very well multi-threaded and for that reason is suitable

in the following parts of Houdini: [27]

 Shading computation

 Particle simulation

 Geometry modification

 Fur

 Channel operators

21

Python scripting came with the release of Houdini 9. Possibly, Houdini has one of the finest

Python integrations among CG software, which consequently has fostered the development

progress and enabled artists to extend the toolset even more. As figure 8 shows, Houdini is

bundled with an embedded Python interpreter that lets technical artists to create their own

modules and import other Python modules too.

Figure 8. Houdini’s Operating System Process [28]

There are a number of ways to use Python within Houdini:

1. Python Shell. Python Shell can be accessed via: Windows → Python Shell, or alterna-

tively via a shortcut Alt+Shift+P. Houdini’s Python Shell is very well suited for prototyp-

ing scripts. [29] The top line in Python Shell indicates the version of Python installed in

Houdini.

Figure 9. Houdini’s Python Shell.

22

2. Python source editor. This editor can be accessed via Windows → Python Source

Editor. It is worth mentioning, that with this editor the text code can be saved in the

project file and can be run on project startup.

Figure 10. Python Source Editor in Houdini.

3. Shelf button. Similar to Maya, Python code can also be hooked to a shelf button. The

majority of native Houdini shelf tools refer to Python script and can be used an example

for custom tools. Optionally, Shelf button editor allows to choose between Python and

HScript. [29]

Figure 11. Shelf button editor.

23

4. Expressions. Most Houdini node’s parameters can be interpreted with expressions. By

default, HScript language is used. However, a user can switch it to Python and use it

to script a parameter.

Figure 12. Choice of expression language in Houdini.

5. Python SOP. Like VEX wrangles, Python SOP is a node that allows to enter Python

code and modify the geometry or points with it. It can be useful in certain cases, when

it is more convenient to write a few lines of code, rather than dealing a mess of node

trees. [29]

Figure 13. Python SOP node in Houdini network view.

In addition to that, there are also numerous other ways to use Python in Houdini – create new

UI elements with PySide, edit Digital Assets, write SOHO scripts and many others. For the

most part, Python interpretation in Houdini is mainly targeting user interface adjustments and

pipeline-related optimizations. Unlike VEX, Python in Houdini does not handle easily perfor-

mance demanding operations. Overall, due to procedural nature of Houdini that makes the

workflow non-destructive to a certain degree, Python is more sporadically used to automate a

repetitive task or reuse a part of a process, in comparison with other CG software supporting

Python.

3.3 The Foundry Nuke

Nuke is a powerful node-based visual effects compositing software made by The Foundry. It

is widely used in film and television post-production, mainly for editing of video clips or image

sequences. Among many other features, Nuke offers very robust node-based workflow, mul-

tichannel editing, stereoscopic workflow, particle system, chroma keying and the ability to ex-

tend the software via plug-ins. Even a brief list already reveals how much the program is ca-

pable of.

24

Nuke’s functionality can be extended via external plug-ins written in Tcl or C++. As of version

5, the support of Python language was introduced. Taking into account the node-based ap-

proach, Python gives the powerful ability to create and manipulate nodes in Nuke. [30] The

following list is an overview of other Python capabilities within Nuke:

 Animation, creation of animation curves

 Geometry manipulation with geometry related operations

 Expressions

 GUI customization and creation new interfaces using PySide libraries, icon menus and

modification of existing ones

 Pipeline optimizations

 Editing default node parameters

 Node graph manipulation

One way to enter and edit Python code in Nuke is through built-in Script Editor. It can be

accessed by: Viewer → Windows → Script Editor. Script Editor allows to save and load “.py”

files for later execution and editing.

Figure 14. Script Editor window in Nuke 10.

25

Mainly, Python implementation in Nuke is not quite appropriate for handling heavy computa-

tional tasks, such as complex image or 3D manipulations, but is perfectly suitable for bridging

the pipeline gap with other software.

3.4 Blender

Unlike many commercial software for visual effects and CG production, Blender is free and

open-source, which apparently makes it explicitly attractive for smaller companies, start-ups

and individual artists. Blender carries the entire production toolset meaning that a wide range

of disciplines are supported within just a single application: polygonal modelling and sculpting,

rigging, animation, fluid and particle simulation, rendering, camera and object tracking, com-

positing and video clip editing. Importantly, Blender has a large community of professional 3D

artists and enthusiasts that are keen on further developing the software and are eager to con-

tribute in a varied capacity. For the most part Blender is being developed by a small team of

developers employed by Blender Foundation. Yet, a significant portion of advancements

comes from the community of Blender users who take advantage of Blender’s API, write new

scripts and tools or extend the existing ones, generally seeking to improve their workflow. This

became possible as a result of exceptionally tight Python language integration in Blender.

Python scripting is an effective way to extend Blender’s standard functionality. The majority of

tasks done in Blender can benefit from Python scripting - rendering, export and import, ani-

mation, rigging and so on.

Other Python capabilities in Blender include:

1. Do manipulations that are related to scene, geometry, particles and other types of in-

blender objects

2. Modify preferences, blender themes and appearance

3. Call different tools with modified settings

4. Manipulate GUI elements (tool menus and etc.)

The primary way to extend Blender’s functionality is by writing a script. However, scripts are

usually made for some simple tasks and intended for one-time execution. Whether a more

sophisticated functionality that might require graphical interface interaction or multiple execu-

tions within a Blender session needed, it is generally recommended to wrap a script into add-

on. [31] Python scripts can be executed in Blender by entering commands in the python con-

sole or via the built-in text editor.

26

1. Text Editor. Blender is supplied with a built-in text editor. It is an averagely basic editor

that allows writing, saving, loading, editing and executing Python scripts. Besides this,

there is a repository of templates available for those who want to take a closer view at

some of the examples of how a certain Blender element is made. [32]

2. Python Console. Blender’s Python console gives an overview of the entire Blender’s

Python API and provides with an auto-complete feature to check API for certain com-

mands. That is the reason why Python Console is often used to explore new com-

mands that later on can be copied to the whole script. [33]

Figure 15. Blender Python Console.

3. Animation Drivers. Analogous to expressions in Maya or Houdini, Blender animation

drivers can also be expressed in Python. By simply typing the expression in the pa-

rameter, Blender will automatically assign a driver to it.

The majority of digital content creation applications besides Blender have support for Python

2.x series. This is largely due to the fact that Python integration started when Python 3 was

not yet released. If one software package would upgrade to Python 3, this can cause compat-

ibility issues with other pipeline elements and other CG applications. After all, most of the

challenges in VFX production can be handled with Python 2.x.

https://en.wikipedia.org/wiki/Python_(programming_language)

27

4 Development of Blender add-on Talvi Tools

4.1 Case Company Introduction

The empirical part of this study is covered in this chapter. The study was conducted within a

Helsinki-based company, Talvi Digital. It is a post-production company that specializes in cre-

ating, editing and publishing video content for film, commercials, games and entertainment. It

was founded in 2002 and now has more than 10 years of experience in media industry. Main

clients include advertising agencies, production companies and game studios from Finland,

Russia, Germany and Sweden.

4.2 Talvi Digital’s Pipeline

For the feature film project awarded to the company, a team of artists and creative profession-

als was assembled from multiple disciplines. Taking into a consideration the relatively small

size of the post-production team, a few people served as generalists. While a single-discipline

specialist artist has a rather defined scope of work, a generalist artist serves as the multital-

ented professional who needs to possess an expertise of multiple visual effects specialties.

Overall, an approximate graphic representation of Talvi Digital’s post-production pipeline was

carried as follows:

Figure 15. Talvi Digital’s pipeline.

28

1. Asset sculpting – Character modelling and sculpting.

2. Prop creation. Asset assembly - Modelling and texturing of props and assets, character

texturing.

3. Asset preparation – Character rigging for later use by animators.

4. Tracking – Camera and object tracking.

5. Animation – Character and camera animation.

6. Scene Assembly & Rendering – Assembling of scene layout, setting up materials and

lights, look development, rendering.

7. Compositing – compositing of rendered elements, chroma keying.

According to figure 15, an immense part of work, especially during the first stages is completed

with the use of Blender, whereas the latter, yet equally crucial part is done in Houdini. The

severe incompatibility between Blender and Houdini project types would have resulted in the

production bottleneck, which in turn would lengthen the turnaround time and weaken commu-

nication between stage 5 and stage 6. The “X” sign represents the location of bottleneck and

suggests where the pipeline should be accelerated.

4.3 Initiation

As a rule of thumb, Alembic framework is commonly used to handle geometry and animation

data send-offs across distinct software packages. SideFX Houdini has Alembic format support

as of version 11. On the contrary, Blender did not have Alembic implementation at the time of

this study. Therefore, other options of animation interchange between Blender and Houdini

had to be explored. For static meshes the solution was found to pass the models via OBJ

format. For animated meshes the OBJ models had to be accompanied with geometry point

caches in MDD format. This method of animation data transfer was stress tested between

animation department working in Blender and scene assembly department working in Houdini

several times and then confirmed to be production approved.

As previously mentioned, one of the most challenging aspects of visual effects production is

managing the sheer volume of data that has to pass across different departments. In case of

Talvi’s pipeline that was character and camera animation data compromising of several digital

characters and cameras in the volume of dozen movie scenes with multiple shots in each

scene.

29

Essentially, to manually export a character animation from Blender to Houdini with the chosen

method, an animator would have to first export the geometry itself. This can be accomplished

by selecting the desired object → File → Export → Wavefront (.obj) → Export OBJ. During

these steps, a user would also have to specify the destination folder and select export param-

eters.

It is worthwhile to mention that OBJ export could be partly taken out of the equation, since

animators work with instanced objects that are identical across all scenes. To put it differently,

there is no need to export OBJ file every single time, but for testing purposes this feature was

still implemented in the add-on. Similar to OBJ, MDD exporting procedure is done by selecting

the object → File → Export → Lightwave Point Cache (.mdd) → Export MDD. In the course of

export operation, animators would also have to define the output destination, filename and

extra parameters, if applicable.

Having animators to go through each of these steps to just export a character would be rather

tedious and unbelievably time-consuming. Bearing in mind that the movie features multiple

CG characters, a few dozens of scenes and several shots in each scene. On top of that, from

time to time animators would have to make revisions of animation, in case any adjustments

are required. Each revision would provoke another export operation. Another important point

concerns the human error component, which cannot be neglected for the reason that at the

time of exporting a file from Blender a user is expected to manually enter the output destina-

tion. This can cause export files to proliferate extremely quickly as the time goes by. Under

these circumstances, it became indubitable that export operations should be performed in

automated fashion to remove the unnecessary burden from animation artists and allow them

to spend more time on animation. Otherwise, the production schedule could simply spiral out

of control.

4.4 Planning

In essence, it was proposed to develop a script in Python that would automate monotonous

repetitive export operations. The principle behind the script is quite straightforward. As soon

as the animation is ready for export, a user would execute the script, which in turn will complete

export operations in the background.

Consequently, various possible ways to script that operation were investigated and re-

searched. For a someone, with basic knowledge of Python language and very little experience

30

of scripting in Blender it was comparatively smooth to get the hang of Python scripting within

Blender. Online tutorials and other educational sources provided with a good starting point

and softened the learning curve. Along with that, Blender’s documentation supplied with an

extensive reference of commands and arguments.

4.5 User Interface

The following part of thesis will take a look at the user interface of the extension and break

down how certain UI related decisions were made and what factors affected those decisions.

Initially, the script was expected to run from the Text Editor and there was no user interface

intended. Later, as the set of features became more extensive, it was clear that the script

should be wrapped up in GUI interface.

As of version 2.70 Blender’s standard user interface has undergone some changes and was

slightly renovated. Prior to that the toolbar used to have one continuous row, which displayed

all the tools grouped into panels. Although these panels were collapsible, a user still often had

to scroll through the whole toolbar to find a desired tool. With the release of 2.70 vertical

toolbar tabs were introduced. This novelty has improved overall user interface design and

bettered the usability of the toolbar.

Figure 16. Comparison of Blender 2.69 toolbar (on the left) and Blender 2.70 toolbar (on the right).

31

More significantly, this has allowed to place add-ons in the dedicated tabs of the toolbar and

create new ones as well. In order to avoid confusion with native Blender operators, it was

decided to assign a new tab for the add-on. After some discussion, the very first UI mockup

was designed as shown on figure 17 below:

Figure 17. Prototype of the first Talvi Tools GUI.

By the time the basic functionality was implemented, the script was upgraded with a user

interface to make it user-friendlier and provide animators with a slightly greater control over

the export operations.

Figure 18. First phase of development of Talvi Tools GUI.

32

The introductory graphical release v 0.2 was developed with close reference to the prototype.

Afterwards, over the course of development, the user interface had to accommodate the cor-

responding changes in the add-on itself. During the first phase of development several buttons

were added. Some interface elements were complemented with Blender’s icons. As an illus-

tration, the text box beneath “Export Camera” button is marked with “!” icon to warn a user

about the importance of saving a project file first.

Figure 19. Second phase of development of Talvi Tools GUI.

During the second phase of development, the extension was populated with a few more tools.

In addition to export features, batch project creation tools were introduced. To adapt for these

changes, each set of tools was grouped to an individual panel. With the approved release of

Talvi Tools v 1.0, the user interface consisted of two collapsible panels, three checkboxes,

seven sliders, eights buttons and one string input field. Certain buttons offer extra help in form

of tooltips, which are shown when the mouse cursor is hovered over.

As can be seen the add-on’s user interface is unambiguous and very intuitive. It contains well-

known standard Blender’s UI elements.

33

4.6 Development

This chapter will bring into focus the Talvi Tools extension from a development perspective

and explore the major components on the back-end side of the plug-in. From the very begin-

ning the development was heavily supervised by the lead animator who addressed the needs

of animation department and translated them into feature requests. First and foremost, it must

be noted that throughout the whole development cycle Blender’s version 2.76 was used and

thus the corresponding version of API was referenced.

In order to access the Blender’s Python API, the bpy module had to be imported. Apart from

bpy, the script also relies on the following modules: os, sys, subprocess, shutil and time. More-

over, for the purpose of building a user interface, the appropriate application modules Types

and Property Definitions were supplied as listing 1 illustrates:

from bpy.types import Menu, Panel, UIList

from bpy.props import BoolProperty, FloatProperty,

IntProperty

Listing 1. Application modules import

In a nutshell, to build UI elements with a certain appearance, they had to be defined with a

correct property type, as it is demonstrated in figure 20.

Figure 20. Property Appearance

These UI elements, such as checkboxes, sliders and string input fields allow a user to com-

municate with the script. Thereupon, the script gets the necessary parameters from those

inputs as a result of the “communication”.

34

Buttons, on the other hand, are the real executive UI elements. Once clicked, they will call

operators, which in turn will run through the code and perform the operation they are assigned

to. As stated earlier, the primary scope of the add-on is to accelerate the export of character

and camera animation data. Sometimes animators work with several characters and cameras

in one scene but do not necessarily wish to export them all. In that case, it was agreed to

establish a special naming convention that would make distinctions between objects valid for

export and the ones that are not. Objects approved for export are identified by the prefix

“EXP_”. As listing 2 demonstrates, the script is responsible for the selection of geometry ob-

jects that fall into that category.

 for ob in scene.objects:

 if ob.type == 'MESH' and ob.name.startswith("EXP_"):

 ob.select = True

 else:

 ob.select = False

Listing 2. Object selection based on prefix

In the event that a user wishes to export objects with “Export EXP” button, the script looks

for valid objects in the scene, makes a selection of them and loops through the selection with

the command - bpy.ops.export_shape.mdd.

Figure 21. MDD export inside of the “For” loop.

As figure 21 illustrates, the MDD export will proceed, if the corresponding checkbox is ena-

bled. During the execution, the script will create a new folder in the project file location. With

this intention, it is particularly important to save a project file beforehand. The operator

bpy.ops.export_shape.mdd will be invoked with the parameters entered by a user in the cor-

responding UI inputs – FPS, Start Frame and End Frame. Another key point, for the operator

35

to work properly the default MDD export feature must be enabled in Blender’s user prefer-

ences. In like manner, OBJ and FBX exports are carried out using export scene operators:

export_scene.obj and export_scene.fbx respectively.

Likewise, the camera export is based on the same naming convention. However, the export

procedure is realized with a different approach. Once the camera animation is approved for

export, the script will “bake” the animation for every frame specified. This step is required to

clear all the possible dependencies (e.g. rigs, parent objects, constraints) and get absolute

camera object positions in 3D space.

Figure 22. Camera export part.

According to figure 22, during the next step the script fetches camera translation, rotation,

focal length and sensor size values for each frame and saves this data to a text file in “.chan”

format. This file format is recognized by SideFX Houdini, which makes it possible to import

camera animation on the next pipeline stage.

bl_info = {

 "name": "Talvi Tools",

 "description": "Accelerated export of objects in OBJ,

FBX and MDD formats",

 "author": "Vladislav Kazakov",

 "version": (1, 0),

 "blender": (2, 76, 0),

 "location": "View3D > Tools > Talvi",

 "category": "Import-Export"}

Listing 3. Add-on metadata

36

Last but not least, as shown in listing 3 the add-on is supplied with metadata, which is visible

in Blender User Preferences panel. The metadata makes it easier for new users to locate the

toolset among Blender’s dense interface.

5 Practical implementation and Analysis

During the beta stages of development, the add-on was handed to the animation department

and had immediately found its use in the daily workflow of animators. The add-on was com-

plemented with a concise guide briefly describing the functionality of each button. Coupled

with that, the lead animator gave more precise instructions to the rest of animation team.

To get the extension up and running it first has to be installed and enabled via Blender user

preferences. Once enabled, it should appear in the separate tab of the toolbar as described

in figure 23.

Figure 23. Enabling add-on in Blender User Preferences.

In the first place, Talvi Tools were oriented to speed up the boilerplate export processes. Later

on, when batch project creation tool was added, it is believed to has helped foster the post-

production even more.

Because the majority of Talvi Tools features are built upon native Blender operations, the

development boiled down to finding a specific operator in Blender API library. From time to

time Blender’s Python Console was exploited to identify a specific command and paste it into

script. The most daunting part was to implement camera export. The reason that this was so

37

comes down to the difference between camera object types in Blender architecture. The chal-

lenge was to find the common properties and link them together. Whenever any flaws oc-

curred, animators submitted bug reports, which had to be resolved. Once in a while, blender

stackexchange and stackoverflow platforms were asked for a helping hand and were looked

up for other people solutions. Moreover, a great amount of support was provided by other

post-production team members.

When considering the future development of the add-on, it should be noted that with the up-

coming release 2.78 Blender is expected to have Alembic export and import support [34]. This

positive change should definitely help Blender communicate better with other components of

a pipeline. In this respect, Talvi Tools can be advanced with automated Alembic export feature.

In effect, it should make the add-on more useful for studios that do animation in Blender and

want to transfer it to another software.

38

6 Conclusion

Even today, many people in the screen industry might not fully understand how advantageous

it can be to have an organized pipeline regardless of the scale of a workplace or its organiza-

tional structure. The purpose of this study was to raise awareness about visual effects meth-

odologies and illustrate the beneficial impacts of a solid workflow management. All things con-

sidered, a pipeline is a very broad subject that touches many facets of a post-production com-

pany, not just the movie-making workforce, but also human resources, IT and finance depart-

ments are affected as well.

Furthermore, this research examines the main obstacles faced by visual effects studios during

the post-production phase. Specifically, the extreme incompatibility between different content-

creation suites used in various creative departments was analyzed. In order to cope with this

problem, pipeline engineers often rely on Python, which in addition helps to deal with a slew

of other technical challenges that need solving. While software vendors address these prob-

lems, a significant portion of them is handled by users themselves.

As a vivid example of that, the research is backed by the empirical part, which showcases how

a subtle hack developed with a beginner knowledge of Python can evolve into a software

extension with a comprehensive feature set. The final outcome of the practical part is the add-

on for Blender, which helps facilitate the export of character and camera animations and can

yield to considerable pipeline optimizations.

Upon completion of this study, a better insight of pipeline management was acquired with the

development of theoretical framework needed to support this research. The practical part has

contributed to the improvement of Python knowledge and scripting skills within a digital content

creation software.

To conclude, Python integration can be found in almost every visual effects software and

nearly every creative discipline can benefit from Python scripting to a certain degree. More

and more individuals who are discontented with the limitations of commercial software em-

brace this programming language and develop own Python solutions that assist in their visual

effects productions. Not only this, but a constant demand in specialist expertise indicates the

undeniably important role of Python in visual effects industry.

39

References

1. Masters M. The Evolution of VFX [online]. Pluralsight.
URL: http://blog.digitaltutors.com/evolution-vfx-movies-60s-till-now/. Accessed 21
September 2016.

2. Bergeron H. The Power of Visual Effects [online]. Relghim; 18 August 2016.
URL: http://relghimthemovie.com/2016/08/18/the-power-of-visual-effects/. Accessed
21 September 2016.

3. Dunlop R. Production Pipeline Fundamentals for Film and Games. Burlington, MA:
Focal Press; 2014.

4. Python in CG Pipeline. Free masterclass [online]. Vimeo.com; 3 March 2014.
URL: https://vimeo.com/88080700. Accessed 21 September 2016.

5. Stech K. Rhythm & Hues Looks to Finish ‘Seven Son’ [online]. The Wall Street Jour-
nal; 21 February 2013.
URL: http://blogs.wsj.com/bankruptcy/2013/02/21/rhythm-hues-looks-to-finish-sev-
enth-son/. Accessed 21 September 2016.

6. Rhythm & Hues - A Framework for Global Visual Effects Production Pipelines - SIG-
GRAPH 2014 [online]. Vimeo.com; 9 January 2015.
URL: https://vimeo.com/116364653. Accessed 21 September 2016.

7. Hye Jean Chung. Global Visual Effects Pipelines: An Interview with Hannes Ricklefs
[online]. Media Fields Journal; 2011.
URL: http://www.mediafieldsjournal.org/global-visual-effects/. Accessed 21 Septem-
ber 2016.

8. Venners B. The Making of Python A Conversation with Guido van Rossum, Part I
[online]. Artima; 13 January 2003.
URL: http://www.artima.com/intv/pythonP.html. Accessed 21 September 2016.

9. Van Rossum G. A Brief Timeline of Python [online]. 20 January 2009.
URL: http://python-history.blogspot.fi/2009/01/brief-timeline-of-python.html. Accessed
21 September 2016.

10. Kuchling A, Zadka M. What's New in Python 2.0 [online]. Python Software Foundation.
URL: https://docs.python.org/3/whatsnew/2.0.html. Accessed 21 September 2016.

11. Kuchling A. What’s New in Python 2.2 [online]. Python Software Foundation.

URL: https://docs.python.org/3/whatsnew/2.2.html. Accessed 21 September 2016.

12. Wood S. A Brief History of Python [online]. Packt; 14 October 2015.
URL: https://www.packtpub.com/books/content/brief-history-python. Accessed 21
September 2016.

13. Dunn S. Dropbox File Sync Service [online]. PCWorld; 31 July 2008.
URL: http://www.pcworld.com/article/149058/dropbox.html. Accessed 21 September
2016.

http://blog.digitaltutors.com/evolution-vfx-movies-60s-till-now/
http://relghimthemovie.com/2016/08/18/the-power-of-visual-effects/
https://vimeo.com/88080700
http://blogs.wsj.com/bankruptcy/2013/02/21/rhythm-hues-looks-to-finish-seventh-son/
http://blogs.wsj.com/bankruptcy/2013/02/21/rhythm-hues-looks-to-finish-seventh-son/
https://vimeo.com/116364653
http://www.mediafieldsjournal.org/global-visual-effects/
http://www.artima.com/intv/pythonP.html
http://python-history.blogspot.fi/2009/01/brief-timeline-of-python.html
https://docs.python.org/3/whatsnew/2.2.html
https://www.packtpub.com/books/content/brief-history-python
http://www.pcworld.com/article/149058/dropbox.html

40

14. Hoff T. 6 Lessons From Dropbox - One Million Files Saved Every 15 Minutes [online].

High Scalability; 14 March 2011.
URL: http://highscalability.com/blog/2011/3/14/6-lessons-from-dropbox-one-million-
files-saved-every-15-minu.html. Accessed 21 September 2016.

15. Keen Gamer. Eve Online [online]. keengamer.com.
URL: http://www.keengamer.com/Game/eve-online/detail. Accessed 21 September
2016.

16. Thivierge E. Python: Bridging Technologies #VFX #Animation #Coding [online].

Youtube.com; 7 January 2015.
URL: https://www.youtube.com/watch?v=GerXSeJoJiU. Accessed 21 September
2016.

17. Lajoie D. Python in a VFX/Animation pipeline [online]. Youtube.com; 7 January 2015.
URL: https://www.youtube.com/watch?v=wXZ041KzcKg. Accessed 21 September
2016.

18. Fortenberry T. Industrial Light & Magic Runs on Python [online]. Python Software
Foundation.
URL: https://www.python.org/about/success/ilm/. Accessed 21 September 2016.

19. Autodesk, Inc. Maya User Guide: What's New in Autodesk Maya 2016 Extension 2
[online]. Autodesk; 11 May 2016.
URL: https://knowledge.autodesk.com/support/maya/learn-ex-
plore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-9EB2C812-0755-422A-
B472-FB4BD6ACC4E2-htm.html. Accessed 21 September 2016.

20. Autodesk, Inc. Maya User Guide: MEL Overview [online]. Autodesk; 11 May 2016.
URL: https://knowledge.autodesk.com/support/maya/learn-ex-
plore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-60178D44-9990-45B4-
8B43-9429D54DF70E-htm.html. Accessed 21 September 2016.

21. Mechtley A, Trowbridge R. Maya Python for Games and Film: A Complete Reference
for Maya Python and the Maya Python API. Boca Raton, USA: CRC Press; 2011.

22. Autodesk, Inc. Maya User Guide: Python in Maya [online]. Autodesk; 11 May 2016.
URL: https://knowledge.autodesk.com/support/maya/learn-ex-
plore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-C0F27A50-3DD6-454C-
A4D1-9E3C44B3C990-htm.html. Accessed 21 September 2016.

23. Leong T. Interacting with Maya: A Flow Chart [online]. 16 December 2011.
URL: http://teknicalanimation.blogspot.fi/2011/12/interacting-with-maya-flow-
chart.html. Accessed 21 September 2016.

24. Python vs MEL [online]. Vimeo.com; 2 July 2013.
URL: https://vimeo.com/69563564. Accessed 21 September 2016.

25. Autodesk, Inc. Maya User Guide: Using Python [online]. Autodesk; 11 May 2016.
URL: https://knowledge.autodesk.com/support/maya/learn-ex-
plore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-55B63946-CDC9-42E5-
9B6E-45EE45CFC7FC-htm.html. Accessed 21 September 2016.

http://highscalability.com/blog/2011/3/14/6-lessons-from-dropbox-one-million-files-saved-every-15-minu.html
http://highscalability.com/blog/2011/3/14/6-lessons-from-dropbox-one-million-files-saved-every-15-minu.html
https://www.youtube.com/watch?v=GerXSeJoJiU
https://www.youtube.com/watch?v=wXZ041KzcKg
https://www.python.org/about/success/ilm/
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-9EB2C812-0755-422A-B472-FB4BD6ACC4E2-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-9EB2C812-0755-422A-B472-FB4BD6ACC4E2-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-9EB2C812-0755-422A-B472-FB4BD6ACC4E2-htm.html
http://teknicalanimation.blogspot.fi/2011/12/interacting-with-maya-flow-chart.html
http://teknicalanimation.blogspot.fi/2011/12/interacting-with-maya-flow-chart.html

41

26. Estela M. Houdini: Hscript, Vops, Vex (and python), which to use? [online]. Cgwiki; 2
July 2016.
URL: http://www.tokeru.com/cgwiki/index.php?title=Hou-
dini#Hscript.2C_Vops.2C_Vex_.28and_python.29.2C_which_to_use.3F. Accessed
21 September 2016.

27. Side Effects Software Inc. Houdini 15.0 documentation: VEX [online]. sidefx.com
URL: https://www.sidefx.com/docs/houdini15.0/vex/. Accessed 21 September 2016.

28. Moore L. Python in Houdini for Technical Directors [masterclass]. Side Effects Soft-
ware; 2007.

29. Fowler D. Python in Houdini [online]. Deborah R. Fowler website/Python Resources;
16 April 2015.
URL: http://www.deborahrfowler.com/PythonResources/PythonInHoudini.html. Ac-
cessed 21 September 2016. Accessed 21 September 2016.

30. The Foundry. Release Notes for Nuke 5.0v1 [release notes]. The Foundry; 2005.

31. Williamson J. Writing Your First Blender Script [online]. CG Cookie, Inc; 11 Decem-
ber 2014.
URL: https://cgcookiemarkets.com/2014/12/11/writing-first-blender-script/. Accessed
21 September 2016.

32. Blender Documentation Team. Blender 2.77 Manual: Text Editor [online].
URL: https://www.blender.org/manual/editors/text_editor.html. Accessed 21 Septem-
ber 2016.

33. Blender Documentation Team. Blender 2.77 Manual: Python Console [online].
URL: https://www.blender.org/manual/editors/python_console.html. Accessed 21
September 2016.

34. Thacker J. Check out the new features in Blender 2.78 [online]. CG Channel Inc; 1
September 2016.
URL: http://www.cgchannel.com/2016/09/check-out-the-new-features-in-blender-2-
78/. Accessed 21 September 2016.

https://www.sidefx.com/docs/houdini15.0/vex/
http://www.deborahrfowler.com/PythonResources/PythonInHoudini.html.%20Accessed%2021%20September%202016
http://www.deborahrfowler.com/PythonResources/PythonInHoudini.html.%20Accessed%2021%20September%202016
https://cgcookiemarkets.com/2014/12/11/writing-first-blender-script/
https://www.blender.org/manual/editors/text_editor.html
https://www.blender.org/manual/editors/python_console.html.%20Accessed%2021%20September%202016
https://www.blender.org/manual/editors/python_console.html.%20Accessed%2021%20September%202016
http://www.cgchannel.com/2016/09/check-out-the-new-features-in-blender-2-78/
http://www.cgchannel.com/2016/09/check-out-the-new-features-in-blender-2-78/

Appendix 1

1 (7)

Appendixes

Appendix 1. Talvi Tools v 1.0 source code (Written in Python programming

language).

bl_info = {

 "name": "Talvi Tools",

 "description": "Accelerated export of objects named with 'EXP_' in OBJ,

FBX and MDD. Baked camera export",

 "author": "Vladislav Kazakov",

 "version": (1, 0),

 "blender": (2, 76, 0),

 "location": "View3D > Tools > Talvi",

 "warning": "",

 "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/",

 "category": "Import-Export"}

import bpy, os, sys, subprocess, shutil, time

from bpy.types import Menu, Panel, UIList

from bpy.props import BoolProperty, FloatProperty, IntProperty

class View3dPanel():

 bl_space_type="VIEW_3D"

 bl_region_type="TOOLS"

class PanelTalvi_Export(View3dPanel, Panel):

 bl_category="Talvi"

 bl_label="Talvi Batch Export"

 def draw(self,context):

 layout=self.layout

 scene = context.scene

 layout.prop(scene, "my_prop_obj")

 layout.prop(scene, "my_prop_fbx")

 layout.prop(scene, "my_prop_mdd")

 row4 = layout.row()

 row4.operator(operator = "dh.upd_opt",text = "Update settings to

scene", icon = "FILE_REFRESH")

 layout.operator(operator = "dh.oft_opt",text = "Offset 10 frames",

icon = "FORWARD")

 row1 = layout.row()

 row1.prop(scene, "my_prop_fps")

 row2 = layout.row()

 row2.prop(scene, "my_prop_start")

 row3 = layout.row()

 row3.prop(scene, "my_prop_end")

 if bpy.context.scene.my_prop_mdd == False:

 row1.enabled = False

 row2.enabled = False

 row3.enabled = False

 row4.enabled = False

 layout.operator(operator = "dh.exp_opt",text = "Export EXP_")

 layout.operator(operator = "dh.exp_local",text = "Export Local Se-

lected")

 layout.operator(operator = "dh.exp_linked",text = "Export Linked")

 layout.operator(operator = "dh.cam_opt",text = "Export Camera")

 layout.label (text = "Don't forget to save Blender project first",

icon = "ERROR")

class PanelTalvi_Create(View3dPanel, Panel):

 bl_category="Talvi"

Appendix 1

2 (7)

 bl_label="Talvi Project Create"

 def draw(self,context):

 layout=self.layout

 scene = context.scene

 layout.operator(operator = "dh.main_file",text = "Open Base File")

 layout.prop(scene, "scene_start")

 layout.prop(scene, "shot_start")

 layout.prop(scene, "scene_end")

 layout.prop(scene, "shot_end")

 layout.prop(scene, "curr_date")

 layout.operator(operator = "dh.prj_create",text = "Create Projects")

class UpdateOperator(bpy.types.Operator):

 bl_idname="dh.upd_opt"

 bl_label="Simple Operator"

 def execute(self,context):

 scene = bpy.context.scene

 if bpy.data.scenes["Scene"].my_prop_fps !=

bpy.data.scenes["Scene"].render.fps:

 bpy.data.scenes["Scene"].my_prop_fps =

bpy.data.scenes["Scene"].render.fps

 if bpy.data.scenes["Scene"].my_prop_start !=

bpy.data.scenes["Scene"].frame_start:

 bpy.data.scenes["Scene"].my_prop_start =

bpy.data.scenes["Scene"].frame_start

 if bpy.data.scenes["Scene"].my_prop_end !=

bpy.data.scenes["Scene"].frame_end:

 bpy.data.scenes["Scene"].my_prop_end =

bpy.data.scenes["Scene"].frame_end

 return{'FINISHED'}

class OffsetOperator(bpy.types.Operator):

 bl_idname="dh.oft_opt"

 bl_label="Simple Operator"

 def execute(self,context):

 scene = bpy.context.scene

 for ob in bpy.context.scene.objects:

 if ob.animation_data is not None:

 action = ob.animation_data.action

 if action is not None:

 ob.select = True

 bpy.context.scene.objects.active = ob

 action.name = action.name + '.export'

 track = ob.animation_data.nla_tracks.new()

 track.strips.new(action.name, action.frame_range[0], ac-

tion)

 bpy.context.object.anima-

tion_data.nla_tracks["NlaTrack"].strips[action.name].action_frame_start = -100

 bpy.context.object.anima-

tion_data.nla_tracks["NlaTrack"].strips[action.name].action_frame_end = 800

 bpy.context.object.anima-

tion_data.nla_tracks["NlaTrack"].strips[action.name].frame_start = -100

 bpy.context.object.anima-

tion_data.nla_tracks["NlaTrack"].strips[action.name].frame_end = 800

 bpy.context.object.anima-

tion_data.nla_tracks["NlaTrack"].strips[action.name].extrapolation = "NOTHING"

 bpy.context.object.anima-

tion_data.nla_tracks["NlaTrack"].strips[action.name].frame_start = -90

 ob.animation_data.action = None

 scene.frame_end = scene.frame_end + 20

 scene.my_prop_end = scene.my_prop_end + 20

 return{'FINISHED'}

class SimpleOperator(bpy.types.Operator):

Appendix 1

3 (7)

 bl_idname="dh.exp_opt"

 bl_label="Simple Operator"

 bpy.types.Scene.my_prop_obj = BoolProperty(

 name="Include OBJ",

 description="Enable/disable OBJ export",

 default = True)

 bpy.types.Scene.my_prop_mdd = BoolProperty(

 name="Include MDD",

 description="Enable/disable MDD export",

 default = True)

 bpy.types.Scene.my_prop_fbx = BoolProperty(

 name="Include FBX",

 description="Enable/disable FBX export",

 default = True)

 bpy.types.Scene.my_prop_fps = IntProperty(

 name="FPS",

 description="FPS of the export",

 default = 24,

 min = 1,

 step = 10,

)

 bpy.types.Scene.my_prop_start = IntProperty(

 name="Start Frame",

 description="Start frame of the export",

 default = 1,

 min = 0,

 step = 10,

)

 bpy.types.Scene.my_prop_end = IntProperty(

 name="End Frame",

 description="Final frame of the export",

 default = 250,

 min = 1,

 step = 10,

)

 def execute(self,context):

 scene = bpy.context.scene

 b = scene.objects

 a = bpy.data.objects

 c = list(set(a) - set(b))

 gen = (object for object in c if object.type == 'MESH' and ob-

ject.name.startswith("EXP_"))

 group_name = "8l60yDmQrcY6"

 if group_name in bpy.data.groups:

 group = bpy.data.groups[group_name]

 else:

 group = bpy.data.groups.new(group_name)

 for object in gen:

 scene.objects.link(object)

 if not object.name in group.objects:

 group.objects.link(object)

 print(object.name)

 for ob in scene.objects:

 if ob.type == 'MESH' and ob.name.startswith("EXP_"):

 ob.select = True

 else:

 ob.select = False

 for ob in bpy.context.selected_objects:

 bpy.ops.object.select_all(action='DESELECT')

 ob.select = True

 bpy.context.scene.objects.active = ob

 if bpy.context.scene.my_prop_obj == True:

 path = bpy.path.abspath('//export_from_blender//OBJ\\')

 if not os.path.exists(path):

 os.makedirs(path)

Appendix 1

4 (7)

 bpy.ops.export_scene.obj(filepath=str((path + ob.name +

'.obj')),

 use_selection=True)

 if bpy.context.scene.my_prop_mdd == True:

 path = bpy.path.abspath('//export_from_blender//MDD\\')

 if not os.path.exists(path):

 os.makedirs(path)

 bpy.ops.export_shape.mdd(filepath=str((path + ob.name +

'.mdd')),

 check_existing=True,

 fps=bpy.context.scene.my_prop_fps,

 frame_start=bpy.context.scene.my_prop_start,

 frame_end=bpy.context.scene.my_prop_end)

 if bpy.context.scene.my_prop_fbx == True:

 path = bpy.path.abspath('//export_from_blender//FBX\\')

 if not os.path.exists(path):

 os.makedirs(path)

 bpy.ops.export_scene.fbx(filepath=str((path + ob.name +

'.fbx')),

use_selection=True)

 ob.select = False

 for object in group.objects:

 object.select=True

 bpy.ops.object.delete(use_global=True)

 bpy.data.groups.remove(group)

 return{'FINISHED'}

class SimpleOperatorLocal(bpy.types.Operator):

 bl_idname="dh.exp_local"

 bl_label="Simple Operator"

 def execute(self,context):

 for object in bpy.context.selected_objects:

 if object.type == 'MESH':

 bpy.ops.object.select_all(action='DESELECT')

 object.select = True

 bpy.context.scene.objects.active = object

 if bpy.context.scene.my_prop_obj == True:

 path = bpy.path.abspath('//export_from_blender//OBJ\\')

 if not os.path.exists(path):

 os.makedirs(path)

 bpy.ops.export_scene.obj(filepath=str((path + object.name

+ '.obj')), use_selection=True)

 if bpy.context.scene.my_prop_mdd == True:

 path = bpy.path.abspath('//export_from_blender//MDD\\')

 if not os.path.exists(path):

 os.makedirs(path)

 bpy.ops.export_shape.mdd(filepath=str((path + object.name

+ '.mdd')),

 check_existing=True,

 fps=bpy.context.scene.my_prop_fps,

 frame_start=bpy.context.scene.my_prop_start,

 frame_end=bpy.context.scene.my_prop_end)

 if bpy.context.scene.my_prop_fbx == True:

 path = bpy.path.abspath('//export_from_blender//FBX\\')

 if not os.path.exists(path):

 os.makedirs(path)

 bpy.ops.export_scene.fbx(filepath=str((path + object.name

+ '.fbx')), use_selection=True)

 object.select = False

 return{'FINISHED'}

Appendix 1

5 (7)

class SimpleOperatorLinked(bpy.types.Operator):

 bl_idname="dh.exp_linked"

 bl_label="Simple Operator"

 def execute(self,context):

 scene = bpy.context.scene

 b = scene.objects

 a = bpy.data.objects

 c = list(set(a) - set(b))

 for object in c:

 if object.type == 'MESH':

 scene.objects.link(object)

 bpy.ops.object.select_all(action='DESELECT')

 object.select = True

 bpy.context.scene.objects.active = object

 print(object.name)

 if bpy.context.scene.my_prop_obj == True:

 path = bpy.path.abspath('//export_from_blender//OBJ\\')

 if not os.path.exists(path):

 os.makedirs(path)

 bpy.ops.export_scene.obj(filepath=str((path + object.name

+ '.obj')), use_selection=True)

 if bpy.context.scene.my_prop_mdd == True:

 path = bpy.path.abspath('//export_from_blender//MDD\\')

 if not os.path.exists(path):

 os.makedirs(path)

 bpy.ops.export_shape.mdd(filepath=str((path + object.name

+ '.mdd')), check_existing=True,

 fps=bpy.context.scene.my_prop_fps,

 frame_start=bpy.context.scene.my_prop_start,

 frame_end=bpy.context.scene.my_prop_end)

 if bpy.context.scene.my_prop_fbx == True:

 path = bpy.path.abspath('//export_from_blender//FBX\\')

 if not os.path.exists(path):

 os.makedirs(path)

 bpy.ops.export_scene.fbx(filepath=str((path + object.name

+ '.fbx')), use_selection=True)

 scene.objects.unlink(object)

 object.select = False

 else:

 object.select = False

 return{'FINISHED'}

class CameraOperator(bpy.types.Operator):

 bl_idname="dh.cam_opt"

 bl_label="Simple Operator"

 def execute(self,context):

 scene = bpy.context.scene

 camera = bpy.ops.object.camera

 for camera in scene.objects:

 camObj = bpy.context.active_object

 camObj.data.name = camObj.name

 for ob in scene.objects:

 if ob.type == 'CAMERA' and ob.name.startswith("EXP_"):

 ob.select = True

 else:

 ob.select = False

 for ob in bpy.context.selected_objects:

 bpy.ops.object.select_all(action='DESELECT')

 ob.select = True

 bpy.context.scene.objects.active = ob

 camera = bpy.ops.object.camera

 for camera in scene.objects:

Appendix 1

6 (7)

 camObj = bpy.context.active_object

 camObj.data.name = camObj.name

 path = bpy.path.abspath('//export_from_blender//DAE\\')

 if not os.path.exists(path):

 os.makedirs(path)

 anim_info = []

 camera = bpy.data.cameras[ob.name]

 for ob in bpy.context.selected_objects:

 bpy.ops.nla.bake(frame_start=scene.frame_start,

 frame_end=scene.frame_end,

 step=1,

 only_selected=True,

 visual_keying=True,

 clear_constraints=True,

 clear_parents=True,

 use_current_action=False,

 bake_types={'OBJECT'})

 def get_anim_info(obj):

 return "{} {} {} {} {} {} {} {} {}".for-

mat(scene.frame_current,

 round(obj.location.x, 4),

 round(obj.location.y, 4),

 round(obj.location.z, 4),

 round(obj.rotation_euler.x*57.2957795, 4),

 round(obj.rotation_euler.y*57.2957795, 4),

 round(obj.rotation_euler.z*57.2957795, 4),

 round(camera.lens, 4),

 round(camera.sensor_width, 4))

 for frame in range(scene.frame_start, scene.frame_end + 1):

 scene.frame_set(frame)

 anim_info.append(get_anim_info(ob))

 with open(path + ob.name + '.chan', "w") as f:

 f.write("\n".join(anim_info))

 return{'FINISHED'}

class Main_File(bpy.types.Operator):

 bl_idname="dh.main_file"

 bl_label="Simple Operator"

 def execute(self,context):

 bpy.ops.wm.open_main-

file(filepath="//ocean/work/4895_rolli/3d/anim/000_000_base.blend")

 return{'FINISHED'}

class Project_CreateOperator(bpy.types.Operator):

 bl_idname="dh.prj_create"

 bl_label="Simple Operator"

 bpy.types.Scene.scene_start = bpy.props.IntProperty(

 name = "Scene Start",

 default = 1,

 min = 1,

)

 bpy.types.Scene.shot_start = bpy.props.IntProperty(

 name = "Shot Start",

 default = 1,

 min = 1,

)

 bpy.types.Scene.scene_end = bpy.props.IntProperty(

 name = "Scene End",

 default = 1,

 min = 1,

)

 bpy.types.Scene.shot_end = bpy.props.IntProperty(

 name = "Shot End",

Appendix 1

7 (7)

 default = 1,

 min = 1,

)

 bpy.types.Scene.curr_date = bpy.props.StringProperty(

 name = "Date",

 default = (time.strftime("%Y%m%d")[2:]),

)

 def execute(self,context):

 scene = bpy.context.scene

 a = scene.scene_start

 b = scene.scene_end

 c = scene.shot_start

 d = scene.shot_end

 e = scene.curr_date

 s = 'scene_'

 src = "//filepath_to_000_000_base.blend"

 for x in range (a,b+1):

 path2 = os.path.join("//filepath_to_3d/anim/",s + str("%03d" % x))

 os.makedirs(path2, exist_ok=True)

 for y in range (c,d+1):

 path3 = "//filepath_to_syntheyes/" + str("%03d" % x) +'/ex-

port/' + 'for_blender/' + 'blendSetup_'+ str("%03d" % x) + '_' + str("%03d" %

y) + '.py'

 if os.path.exists(path3):

 path4 = os.path.join("//filepath_to_3d/anim/" + s +

str("%03d" % x), str("%03d" % x) + '_' + str("%03d" % y))

 os.makedirs(path4, exist_ok=True)

 dst = path4 + '/' + str("%03d" % x) + '_' + str("%03d" %

y) + '_' + e + '.blend'

 shutil.copyfile(src, dst)

 ghj = ("\"%s\""%dst)

 foo = ghj.replace('/','\\')

 pathscr = "\\\\filepath_to_syntheyes\\" + str("%03d" % x)

+'/export/' + 'for_blender/' + 'blendSetup_'+ str("%03d" % x) + '_' +

str("%03d" % y) + '.py'

 qwe = ("\"%s\""%pathscr)

 moo = qwe.replace('/','\\')

 blender = "C:/Program Files/Blender Founda-

tion/Blender/blender.exe"

 saver = "\\filepath_to_workfiles\batch_exp_mdd\ap-

pend_script.py"

 print (moo)

 subprocess.call([blender,'--background', foo, '--python',

moo], shell=True)

 return{'FINISHED'}

def register():

 bpy.utils.register_module(__name__)

def unregister():

 bpy.utils.unregister_module(__name__)

if __name__=='__main__':

 bpy.utils.register_module(__name__)

