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Abstract 

The published genomic sequences of the two major host-transforming Theileria species of cattle 

represent a rich resource of information, which has allowed novel bioinformatic and experimental 

studies into these important apicomplexan parasites.  Since their publication in 2005, the genomes 

of T. annulata and T. parva have been utilised for a diverse range of applications, ranging from 

candidate antigen discovery to the identification of genetic markers for population analysis.  This 

has led to advancements in the quest for a sub-unit vaccine, while providing a greater 

understanding of variation among parasite populations in the field.  The unique ability of these 

Theileria species to induce host cell transformation is the subject of considerable scientific interest 

and the availability of full genomic sequences has also provided new insights into this area of 

research.  This article reviews data underlying published comparative analyses, focussing on the 

general features of gene expression, the major Tpr/Tar multi-copy gene family and a re-

examination of the predicted macroschizont secretome.  Codon usage between the Theileria 

species is reviewed in detail, as this underpins ongoing comparative studies investigating selection 

at the intra- and inter-species level.  The TashAT/TpshAT family of genes, conserved between 

T. annulata and T. parva, encodes products targeted to the host nucleus and has been implicated in 

contributing to the transformed bovine phenotype.  Species-specific expansion and diversification 

at this critical locus is discussed, with reference to the availability, in the near future, of genomic 

datasets which are based on non-transforming Theileria species. 

. 
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Introduction 

Theileria annulata and T. parva are apicomplexan parasites that infect and transform bovine 

leukocytes, causing a widespread leukaemia-like disease of great economic importance, reviewed 

in Dobbelaere & Rottenberg, 2003.  In the field, their tropism for specific host leukocytes differs, 

with T. parva infecting T cells, whereas T. annulata invades mostly cells of myeloid origin 

(monocytes and macrophages).  It is possible that the difference in host cell predilection may 

underlie differences in the pathology of the two diseases, with T cell-based East Coast Fever 

(ECF) caused by T. parva being more pernicious than the myeloid-based tropical theileriosis 

caused by T. annulata.  Over and above their veterinary clinical relevance, the ability of 

T. annulata and T. parva to reversibly induce leukocyte transformation, recently reviewed in 

Heussler et al., 2006, has also generated much interest due to potential mechanistic (epigenetic) 

similarities with some aspects of human cancer.  In spite of the heavy economic cost caused by the 

two diseases in large parts of the Old World, the existing live vaccines are only delivered on a 

limited scale.  The infection and treatment method of vaccination against ECF induces a persistent 

‘carrier’ state (Oura et al., 2004), although the significance of this is unclear (McKeever, 2007).  

The unique ability of these two apicomplexa to induce host cell transformation combined with the 

economically important disease syndromes that they induce provided the rationale for 

determination of the complete genome sequence of both T. parva and T. annulata and subsequent 

comparative analysis (Pain et al., 2005; Gardner et al., 2005).  Mining this data set for parasite 

genes with the potential to modulate host cell phenotypes has been reviewed recently by Shiels et 

al., 2006.   

The published genomes of T. annulata and T. parva have already been used in comparative studies 

and shed new light on the biology of apicomplexan parasites in general.  For example, it has been 

shown that across the apicomplexa, species-specific genes posses stronger bias in codon usage 

compared to other genes in the genome with a large number of genus or species-specific genes 

encoding putative surface antigens (Kuo & Kissinger, 2008).  In Theileria, surface antigen genes 
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are conserved at the genus level and distributed across chromosomes, contrasting with Plasmodium 

where antigen encoding genes are located in the sub-telomeres and are largely species-specific  

(Kuo & Kissinger, 2008).  With the advent of the published genome sequence of T. parva, it has 

been possible to screen the genome in silico for genes encoding a secretory signal peptide and this 

has facilitated a targeted approach to functional screening of T cell antigen candidates.  Of the 986 

predicted genes on T. parva chromosome I, a subset of 55 was predicted to encode secreted 

antigens.  36 of these genes were cloned and together with a series of random schizont cDNA 

clones, they were used in an immuno-screening approach to identify MHC I-presented antigens 

(Graham et al., 2007).  Comparative genomics using Theileria has also facilitated antigen 

discovery in other apicomplexan species.  Babesia and Theileria show extensive conservation of 

synteny and using positional analysis, the putative orthologue of the major Theileria sporozoite 

surface antigen SPAG-1/p67 has been identified in B. bovis (Brayton et al., 2007). 

In addition to studies focusing on those genes encoding antigens and putatively secreted proteins, 

comparative analyses of non-coding regions of the genome have yielded interesting results.  

T. annulata and T. parva were shown to share 99.7 % of intron positions in conserved regions of 

the genome, with both species being considerably more intron-rich than P. falciparum (Roy & 

Penny, 2006).  A further comparative study revealed that the common ancestor of Theileria and 

Plasmodium probably contained more introns than extant Theileria species, indicating intron-loss 

is outstripping intron-gain (Roy & Penny, 2007).  More importantly, a genome-wide analysis of 

intergenic regions of each T. annulata and T. parva  identified a number of conserved motifs (Guo 

& Silva, 2008).  This included two putative transcription factor binding sites, thus providing 

candidates for experimental investigation.  The availability of complete genomic sequences has 

also allowed the development of a new generation of genetic markers for population studies.  

Using a preliminary assembly of the genome, a panel of 11 micro-satellite and 49 mini-satellite 

polymorphic markers was identified in T. parva  (Oura et al., 2003).  These fast evolving loci were 

found to be distributed across all four chromosomes, predominantly in non-coding regions and 
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following experimental validation all were shown to be specific to T. parva.  A panel of ten 

markers was later identified in the genome of T. annulata (Weir et al., 2007) and both marker sets 

have since been applied to population genetic studies (Oura et al., 2005; Weir et al., 2007).  

Here, we extend and review the comparative analysis of these two highly syntenic genomes with 

particular attention to general features of gene expression, the major Tpr and Tar multi-copy gene 

families and a re-examination of the predicted macroschizont secretome including genes encoding 

putative peptidases.  

Codon usage in T. annulata and T. parva compared to Plasmodium 

Non-synonymous substitutions are defined as single nucleotide changes in DNA sequence, which 

encode a variant amino acid.  In contrast, synonymous substitutions do not result in amino acid 

change.  The rate of non-synonymous (dN) to synonymous substitutions (dS), referred to as dNdS is 

a useful index for quantifying the influence of purifying and diversifying selection.  We have 

performed a genome-wide analysis of codon usage and bias within and between the two Theilerias 

and Plasmodium, as this will underpin new comparative genomics and validate previous stage-

specific dNdS analysis (Pain et al., 2005).  The software package CodonW 

(http://codonw.sourceforge.net/) was used to calculate indices of Relative Synonymous Codon 

Usage (RSCU), which measures the ratio of the observed frequency of a codon relative to that 

expected if codon usage is uniform, with values tending towards one indicating an absence of bias. 

The coding sequence of T. annulata comprises 2,030,707 codons and RSCU values for this dataset 

were calculated (Table 1.i).  Certain codons are encountered more frequently than others and the 

codon with the highest RSCU value is AGA, encoding arginine (Arg) with a value of 2.95.  This 

contrasts with the lowest values for CGG (0.17) and CGC (0.29), two of the other five codons 

encoding this residue.  For each other amino acid encoded by more than one codon, the value for 

the most frequent codon ranges between 1.18 for CAU (histidine) to 1.95 for UCA (serine).  To 

assess whether codon usage differs between species, RSCU was calculated for the 1,902,549 

codons in the T. parva genome (Table 1.ii).  Similar to T. annulata, the amino acid with the most 
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divergent RSCU was arginine with values ranging from 2.67 (AGA) to 0.24 (CGG) and RSCU 

values ranging between 1.03 and 1.80 were observed for the preferred codons CAU and UCA with 

the trend of RSCU towards a particular subset of codons was identical.  RSCU values in 

T. annulata were slightly more polarised than in T. parva and this is demonstrated in Figure 1, 

where RSCU of synonymous codons is correlated between T. annulata and T. parva and between 

T. annulata and P. falciparum.  Linear regression for the T. annulata / T. parva plot has a gradient 

near, but less than, unity (0.83), underpinning the observation that preferred codons in T. annulata 

are also preferred in T. parva, but not quite to the same extent. This contrasts with the relationship 

of codon usage of T. annulata in comparison to P. falciparum.  The subset of preferred codons in 

P. falciparum is similar, but their usage is greater than in T. annulata (linear regression gradient of 

1.42) and this is probably related to the greater AT-richness of the coding sequences of 

Plasmodium compared with Theileria. 

RSCU was calculated over all genes with expressed sequence tag (EST) data in the T. annulata 

genome and codon preference was found to be almost identical across the three stages 

(Supplementary Figure 1).  Correspondence analysis was performed on the coding sequences of 

T. annulata, allowing differentiation of genes based on codon usage.  The most highly and least 

biased genes were identified as the 5 % of genes at either extreme of the principal axis and where 

RSCU for a particular codon was greater in the most biased compared to the least biased subset, a 

codon was identified as putatively optimal (Supplementary Table 1).  Using this methodology, 

putatively optimal codons were found to be broadly similar between species, across the different 

bovine stages of T. annulata and within the subset of genes that comprise the T. annulata 

secretome (Table 2). 

Importantly, as there is no evidence of differential codon usage between each species and between 

life-cycle stages, meaningful comparisons can be made using these datasets for inter-species and 

intra-species dNdS studies.  This observation supports an earlier study, which determined that 

elevated dNdS values are associated with predicted merozoite surface antigens (Pain et al., 2005).  
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Codon usage by T. annulata is clearly not random, a common observation across the majority of 

eukaryotic species.  It has been demonstrated in other organisms that the major factor explaining 

bias in codon usage between genes is the expression level of the encoded protein, with highly 

expressed genes using a limited subset of codons (Sharp & Matassi, 1994).  This hypothesis will 

be partially addressed in the near future through micro-array analysis of parasite gene expression at 

the mRNA level in T. annulata, although further proteomic studies will be required to test whether 

the effect applies at the level of translation. 

A relatively high proportion of species-specific genes encode secreted products 

On comparing species-specific genes to those genes common between T. annulata and T. parva, a 

higher proportion of species-specific genes were found to encode signal peptides and this 

observation is reflected across each of the three life-cycle stages (Table 3).  For genes expressed in 

the merozoite and/or piroplasm, a much higher proportion of species-specific genes encode trans-

membrane domains, many of which are Tar/Tpr genes without defined orthologues.  In this study, 

species-specific genes are identified where a one-to-one orthologous relationship cannot be 

established by reciprocal BLAST analysis.  In some cases, species-specific genes occur at the same 

locus in each species, show sequence similarity and are members of related gene families.  It may 

be postulated that species-specific genes have largely arisen since T. annulata and T. parva 

diverged, whereas conserved genes were present in the common ancestor and these are more likely 

to be represented in other Theileria species.  The finding that many species-specific genes are 

predicted to encode proteins that are secreted into the macroschizont-infected cell implies that 

through speciation, novel parasite genes have been selected, the products of which encode a signal 

peptide and perform their function within the host cell compartment.  Of these 42 genes, four 

genes encode multiple trans-membrane domains and likely correspond to integral membrane 

proteins, including one member of the Tar family which is constitutively expressed.  Twelve of the 

remaining 38 genes represent members of the sub-telomerically-encoded variable secreted protein 

(SVSP) family (Pain et al., 2005) and with the exception of TashAT1 and TashAT3, all the other 
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genes are annotated as encoding hypothetical proteins.  Interestingly, using the predictNLS 

algorithm (Cokol et al., 2000), only the two TashAT genes and one SVSP gene are found to 

encode a nuclear localisation signal.  TashAT family proteins have been implicated in controlling 

the host cell phenotype (Swan et al., 1999; Swan et al., 2001; Shiels et al., 2004) and the 

comparative genomics of this family is addressed later in this review.  In contrast, the SVSP family 

has not been experimentally characterised and its function is currently unknown, although its 

genomic location together with its variability within each species is compatible with a role in 

immune evasion (Barry et al., 2003).  The postulation that species-specific genes encoding 

secreted/host-interacting products have been selected is supported by the relatively high level of 

dNdS computed for genes of this class (Pain et al., 2005), while novel merozoite and piroplasm-

expressed products, and products of merozoite orthologous gene pairs that display high dNdS, are 

biased toward a trans-membrane location.  However, both polypeptides secreted by the 

macroschizont and proteins on the surface of the merozoite/piroplasm may be more likely to be 

exposed to the protective immune response than other classes of proteins expressed by these 

stages.  The resulting selection pressure in combination with gene duplication may therefore have 

generated gene sequences that are too divergent to be matched to orthologues by reciprocal 

BLASTing.  This may account for the observation that the large families of genes encoding 

proteins with signal peptides in the two genomes often contain members that lack an orthologue 

and have therefore been defined as species-specific in this study. 

Shared and species-specific genes show different RNA expression profiles 

In order to compare gene expression profiles of the two species, it was necessary to utilise 

transcriptional data generated by different techniques.  In T. annulata, transcriptional profiling of 

the different life-cycle stages is based on ESTs that were derived from sequencing around 500bp of 

individually cloned stage-specific cDNAs made from merozoites, piroplasms and macroschizonts, 

with the largest collection of tags coming from macroschizonts (Pain et al., 2005).  In T. parva, 

expression profiling was done exclusively on macroschizonts and generated by MPSS, massively 
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parallel signature sequencing, a PCR-based technique that gives short (20bp) sequence tags of very 

high coverage (Bishop et al., 2005).  Initially, the two data sets were compared by analysing all 

shared genes with both EST and MPSS sense data (n = 2216) and a correlation co-efficient of 

0.234 was calculated (p = 0.000).  In part, the low co-efficient value reflects the vastly different 

sizes of the two data sets.  Transcriptional profiles of shared versus species-specific and 

constitutive versus stage-specific genes throughout the life-cycle were also compared (Table 4).  

The remarkably high counts of species-specific piroplasm ESTs are largely due to the highly 

expressed Tar / Tpr genes without definite orthologues.  For both species, a higher percentage of 

the common gene-set is expressed in the macroschizont compared to the species-specific gene-sets.  

Moreover, T. parva-specific genes transcribed in this stage are expressed at a lower level than 

shared genes and, since MPSS data has been log2-transformed, the statistically significant 

difference of 5.58 versus 6.44 (p < 0.001, Mann-Whitney test) is suggestive of an almost a two-

fold difference in transcriptional activity. 

The MPSS approach generates both sense and anti-sense data for a given gene.  Anti-sense 

transcripts have been described for 12 % of P. falciparum genes and notably, sense and anti-sense 

tag counts from single loci across the transcriptome were inversely related, leading to the 

suggestion that anti-sense transcripts may play some negative regulatory role (Gunasekera et al., 

2004).  Similarly, 14 % of T. parva genes have anti-sense transcripts (Bishop et al., 2005).  We 

therefore analysed the 398 genes where both signals were present, comparing sense and anti-sense 

levels, however no correlation was identified.  We then compared gene-sets with anti-sense 

transcripts to those without and found the MPSS signal to be higher in the group with 

corresponding anti-sense data.  This may suggest that in Theileria, in contrast to Plasmodia, these 

more highly expressed genes or networks of genes require anti-sense regulation or perhaps that 

anti-sense transcripts act to regulate gene expression at the level of translation.  Interestingly, 

evidence for translational control of the gene encoding the major merozoite/piroplasm surface 

antigen Tams1 has been reported in the macroschizont stage (Swan et al., 2001). 
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To test if highly expressed genes are evolving at a higher rate than other genes in the Theileria 

genomes, dNdS ratios were compared to MPSS and EST scores for each gene.  We found that dNdS 

values are inversely correlated with macroschizont expression data, whether it was MPSS 

(correlation co-efficient: -0.198, p < 0.001, n = 2216), or ESTs (correlation co-efficient: -0.0402, 

p = 0.022, n = 3250).  For MPSS, the relationship is stronger and more significant, probably 

because of better distribution and larger dynamic range of the dataset compared with the EST 

collection.  Therefore, with increasing dNdS, transcriptional activity decreases and this is evidence 

that rapidly evolving genes tend not to be as highly expressed as the more slowly evolving genes.  

Consequently, the dNdS data are consistent with the previous observation that genes conserved 

between species have higher levels of transcription compared to specifies-specific genes.  The 

simplest explanation for this result is that genes shared by both species are more likely to confer a 

conserved function that requires abundant levels of protein, although again a proteomic study 

would be necessary to investigate this hypothesis. 

The Tpr and Tar multi-copy gene families of T. parva and T. annulata 

Despite the high level of genomic synteny between the two species, a striking difference between 

the T. parva and T. annulata genomes is the arrangement and expression of a rapidly evolving 

multi-copy gene family, designated ‘Tpr’ in T. parva, and ‘Tar’ in T. annulata (Pain et al., 2005; 

Gardner et al., 2005).  The organisation of Tpr is summarised in Figure 2, Panel 1 and that of Tar in 

Figure 2, Panel 2.  The conserved feature that defines the Tpr/Tar genes is an approximately 260 

amino acid domain encoded at the 3′ end of all the open reading frames (ORFs).  This core 

C-terminal domain is frequently, but not invariably, associated with additional regions of potential 

protein coding sequence that exhibit different levels of repetition in the genome.  The Tpr/Tar genes 

are normally conserved as ORFs, with coding potential.  The Tar genes are dispersed throughout 

the T. annulata genome.  In contrast, the T. parva genome has a tandem array of Tpr genes 

containing a minimum of 28 ORFs (Gardner et al., 2005) , although due to its complexity the entire 

Tpr locus has not been assembled.  T. parva also contains twelve ORFs dispersed over each of the 
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four chromosomes and combining the tandemly arrayed and dispersed copies, there are 40 defined 

Tpr genes.  One hypothesis is that both the expansion in number of the dispersed Tar copies and 

generation of the Tpr array has occurred post-speciation.  Alternatively, it is conceivable that 

ancestral dispersed copies in the gene family of T. parva have been lost following speciation. 

Previous sequence analysis identified three putative repeated protein segments Tpr3, Tpr2 and Tpr1 

arranged in the order 3, 2, 1, from the N- to C-terminus within a region of the Tpr locus (Baylis et 

al., 1991).  These repeated segments contained a high concentration of trans-membrane domains 

(TMDs).  The TMDs within the Tpr1 domain were the most conserved sections of the predicted 

protein when different strains were analysed, whereas divergence was observed in the regions 

between the TMD (Bishop et al., 1997).  Only five Tpr genes contain all three domains (Tpr3, Tpr2, 

and Tpr1) and 14 do not contain a Tpr2 domain; when all domains are present their orientation is 

always 3, 2, 1, or 2 followed by 1 when only Tpr2 and Tpr1 are present together.  In contrast, in Tar 

genes, predicted polypeptides possessing all three domains are much more frequent, 69 of the 84 

dispersed Tar genes exhibit a 3, 2, 1 domain structure (organisation of predicted Tar genes is 

summarised in Figure 2, Panel 2 and Table 5).  The presence of multiple TMDs within the Tpr and 

Tar predicted proteins suggest a membrane location.  In addition, analysis of expression patterns 

has indicated that mRNAs representing dispersed Tpr genes are associated with the transcriptome 

of the macroschizont (Bishop et al., 2005) while genes of the tandem array are more likely to be 

transcribed by the intra-erythrocytic piroplasm stage transmitted to the tick (Bishop et al., 1997).  

Unusually, more than 50 % of ORFs within a tandemly arrayed section of the Tpr locus lack an in-

frame ATG codon within the first 50 amino acids of the ORF, suggesting an unusual expression 

mechanism.  Clearer understanding of the observed diversity of these gene families, both between 

and within Theileria species, will require detailed study of the proteins they encode and a greater 

insight into their putative function. 
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Signal peptide analysis of the T. annulata proteome 

Theileria parasites alter their host leukocyte’s signal transduction programme and this is believed 

to underpin host cell transformation.  One predicted mechanism is secretion of molecules into the 

host cell cytosol that modify leukocyte signal transduction pathways and for this reason much 

attention has been paid to identifying putative host-transforming factors secreted macroschizont 

stage of the parasite (Pain et al., 2005), recently reviewed in Shiels et al., 2006. 

Given the importance of correctly estimating the Theileria secretome, we decided to re-examine 

the predicted T. annulata proteome using two different algorithms - a neural network (NN) and a 

Hidden Markov Model (HMM), and we have summarised the results using both algorithms 

(Supplementary Table 2).  Using the HMM, there are 448 proteins predicted to have a secretory 

signal and 198 with a signal anchor i.e. with a recognised signal peptide, but without a cleavage 

site; the latter have not been included in summary sheet.  An additional 180 secreted proteins are 

identified with the NN algorithm, which are included in the summary sheet.  Generally, the results 

of the two methods agree fairly well.  We re-examined T. annulata genes annotated as coding for 

kinases (79) and phosphatases (28) and one that was annotated as potentially coding for both, 

giving 106 putative proteins in total.  Two phosphatases and one kinase have a secretory signal 

predicted by SignalP3.0 and were predicted in our previous SignalP2.0 analysis (Pain et al., 2005).  

Toxoplasma gondii has been shown to secrete kinases into its host cell and alter the gene 

expression programme (Taylor et al., 2006; Saeij et al., 2007): the single Theileria kinase 

(TA09960 - putative cell-cycle-related serine/threonine protein kinase, CDK homologue) and two 

phosphatases (TA07270 - putative proton translocating inorganic pyrophosphatase and TA04960 - 

putative acid phosphatase) merit further analysis.  All three genes have orthologues in T. parva, 

denoted as TP04_0791, TP04_0216 and TP03_0512.  The kinase and acid phosphatase are well 

conserved between species with amino acid identities of 90 % and 92 % respectively and dNdS 

indicates they are both under purifying selection.  In contrast, the pyrophosphate shows lower 

identity at the protein level and evidence of positive selection, with an above average dNdS value of 

0.1594.  In addition to kinases and phosphatases, peptidases that are active in the host 
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compartment of the macroschizont-infected cell could contribute to the transformed phenotype 

(Pain et al., 2005; Shiels et al., 2006).  Further analysis of peptidases with signal peptides in silico, 

confirmed their potential to be transported across membranes.  However, unequivocal 

identification of peptidases predicted to be secreted into the host cell and specifically expressed by 

the macroschizont was not achieved.  A strong prediction that an expanded family of membrane-

bound cysteine protease genes play a role in determining the transformed phenotype is also not 

possible as they display elevated expression in infected cells undergoing merozoite production, a 

process associated with inhibition of leukocyte proliferation, or are expressed by the intra-

erythrocytic piroplasm stage.  In contrast, re-analysis of the dataset highlighted a membrane 

peptidase, TA18300/Tp03_0804, that is expressed specifically by the macroschizont stage at high 

levels.  This protein may have an important indirect role in establishment of the transformed 

phenotype: it is predicted to cleave signal peptides from proteins, thus allowing translocation of 

macroschizont secretome proteins into the host compartment. 

The TashAT/TpshAT gene families 

The TashAT family of genes in T. annulata encodes secreted proteins that translocate to the host 

nucleus and bind DNA.  This gene family is clearly replicated in T. parva with evidence of eight 

direct orthologous gene pairs.  However, the two gene families also display significant species-

specific diversification (Shiels et al., 2006).  These findings have been confirmed by further 

analysis showing that synteny across four orthologous gene pairs located at either end of the 

cluster maintains gene order and that this extends across the intergenic regions (Figure 3).  In 

contrast, genes internal to the cluster do not show the same order across species.  Phylogenetic 

analysis of the gene families also highlights that diversification has occurred at this locus within 

each species.  Sequences of the internal genes cluster separately forming two clades representing 

species-specific genes, whereas genes located at the termini show most similarity to their 

orthologues compared to paralogous sequences within their respective families (Figure 4).  It 

would appear, therefore, that the TashAT family was condensed in the common ancestor and that it 
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has undergone significant expansion and diversification as the species diverged.  Thus, genes 

flanking the cluster are more likely to perform a function conserved across the species while 

internal genes may have evolved during species diversification, including adaptation to a preferred 

host cell type.  A predicted function for TashAT family proteins is that they act as DNA binding 

cofactors, which direct the expression of genes targeted by bovine transcription factors (such as 

AP1 and NF-kB) constitutively activated following infection of the leukocyte by both species 

(Oura et al., 2006). 

Conclusions 

• Codon usage in T. annulata and T. parva compared to Plasmodium.  Codon usage is 

almost identical in the genomes of T. annulata and T. parva showing clear bias towards particular 

codons, an observation common to the majority of eukaryotes.  The subset of preferred codons in 

Theileria is similar to Plasmodia, but their usage is less polarised, probably reflecting the greater 

AT-richness of P. falciparum coding sequences compared to Theileria. 

• A relatively high proportion of species-specific genes encode secreted products.  The 

finding that many species-specific proteins were predicted to be secreted into the cytosol of the 

macroschizont-infected leukocyte implies that during speciation of T. annulata and T. parva these 

genes have diversified as each species adapted to a particular biological niche.  In addition, this 

location may promote exposure to a protective immune response resulting in pressure that allows 

selection of divergent forms.  In both cases the pressure to diversify may have resulted in the 

generation of gene families undergoing rapid expansion via gene duplication, genetic 

recombination and diversification of amino acid sequence.  

• Shared and species-specific genes show different RNA expression profiles.  The 

distribution of expression data among genes common to T. annulata and T. parva versus species-

specific genes showed that a lower percentage of species-specific genes are expressed in 

macroschizonts.  Transcription profiles of conserved versus species-specific and constitutive 

versus stage-specific genes throughout the life-cycle also showed higher expression is associated 
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with more conserved genes in all parasite stages.  Moreover, dNdS data suggest that conserved 

genes have higher levels of transcription compared to specifies-specific implying that genes shared 

by both species are more likely to confer a conserved function that requires abundant levels of 

protein. 

• Anti-sense transcription.  Anti-sense transcripts have been described for 12 % of 

P. falciparum genes and similarly, 14 % of Theileria genes have anti-sense transcripts.  The group 

of Theileria genes with anti-sense transcripts has higher sense MPSS levels, and this could suggest 

that in Theileria, in contrast to Plasmodia, these more highly expressed genes / networks might 

require anti-sense regulation. 

• The Tpr and Tar multi-copy gene families of T. parva and T. annulata.  The Tpr locus 

has the features of a system that has evolved for the generation of diversity and there are at least 28 

Tpr genes organised in a tandem array located centrally on chromosome III.  The tandem array is 

absent from T. annulata, but Tar genes dispersed throughout the genome of T. annulata are 

considerably more numerous than the twelve dispersed Tpr copies in T. parva.  It seems likely that 

the common ancestor must have contained an ancestral form of Tpr and Tar and both creation of 

the tandem array in T. parva and expansion and divergence of single copy loci have occurred.  The 

function of the species-specific diversity in Tar/Tpr gene families is not clear and requires further 

study.  

• Signal peptide analysis of the T. annulata proteome.  Theileria parasites alter their host 

leukocyte’s signal transduction programme and induce cellular transformation. One predicted 

mechanism is via secretion of parasite-encoded kinases or phosphatases into the host cell cytosol.  

Surprisingly, only two phosphatases and one kinase were predicted to have a secretory signal 

making them candidates worthy of future study at the functional level.  Interestingly, Theileria 

encode a single membrane peptidase that is specifically and strongly expressed at the 

macroschizont stage.  This protease, which is predicted to cleave signal peptides from proteins, 
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could play an important indirect role in establishing the transformed phenotype by allowing 

translocation of macroschizont secretome proteins into the host compartment.  

• The TashAT/TpshHN gene families.  These two families have expanded and diverged, 

and this may have occurred during speciation of T. annulata and T. parva. Therefore, it seems 

likely that the family encoded by the common ancestor species comprised a significantly smaller 

number of genes.  In regard to this postulation it will be interesting to analyse the genome of a 

non-transforming Theileria species to determine if an orthologous family exists and whether it is 

significantly condensed.  The most likely function for proteins encoded by the TashAT/TpshHN 

families is that they operate to tailor the profile of host genes that are expressed by the infected 

leukocyte, possibly as cofactors to host transcription factors that are constitutively activated by the 

parasite.  If so divergence of the TashAT/TpshHN families may explain the observed differences in 

genes expressed by T. annulata and T. parva infected cells (Sager et al., 1998), even though 

evidence suggests that both species activate the same bovine transcription factors (Dobbelaere & 

Kuenzi, 2004).  
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Table 1.  Relative synonymous codon usage 

(i) T. annulata genome (2,030,707 codons) 
 

AA codon n RSCU AA codon n RSCU AA codon n RSCU AA codon n RSCU 

Phe UUU 62973 1.25 Ser UCU 35836 1.23 Tyr UAU 54680 1.24 Cys UGU 23079 1.38 

 UUC 37619 0.75  UCC 19087 0.65  UAC 33568 0.76  UGC 10327 0.62 
Leu UUA 55727 1.64  UCA 56825 1.95 TER UAA 2733 2.17 TER UGA 529 0.42 

 UUG 41339 1.21  UCG 12950 0.44  UAG 516 0.41 Trp UGG 16493 1.00 
                
 CUU 35287 1.04 Pro CCU 23693 1.26 His CAU 24128 1.18 Arg CGU 8570 0.66 
 CUC 20376 0.60  CCC 10175 0.54  CAC 16823 0.82  CGC 3716 0.29 
 CUA 28827 0.85  CCA 34332 1.82 Gln CAA 41273 1.32  CGA 5387 0.42 
 CUG 22904 0.67  CCG 7134 0.38  CAG 21119 0.68  CGG 2208 0.17 
                

Ile AUU 62914 1.31 Thr ACU 45710 1.50 Asn AAU 100053 1.29 Ser AGU 35633 1.22 
 AUC 25223 0.52  ACC 20663 0.68  AAC 54634 0.71  AGC 14661 0.5 
 AUA 56163 1.17  ACA 44528 1.46 Lys AAA 98626 1.21 Arg AGA 38088 2.95 

Met AUG 41639 1.00  ACG 10973 0.36  AAG 64700 0.79  AGG 19623 1.52 
                

Val GUU 47299 1.58 Ala GCU 22312 1.32 Asp GAU 81245 1.39 Gly GGU 29885 1.31 
 GUC 16262 0.54  GCC 13331 0.79  GAC 35606 0.61  GGC 11263 0.5 
 GUA 33846 1.13  GCA 26683 1.58 Glu GAA 89349 1.36  GGA 40025 1.76 
 GUG 22380 0.75  GCG 5323 0.31  GAG 42047 0.64  GGG 9787 0.43 

 
(ii) T. parva genome (1,902,549 codons) 
 

AA codon n RSCU AA codon n RSCU AA codon n RSCU AA codon n RSCU 

Phe UUU 58772 1.25 Ser UCU 33500 1.21 Tyr UAU 45036 1.11 Cys UGU 21439 1.36 
 UUC 35149 0.75  UCC 20755 0.75  UAC 36425 0.89  UGC 10104 0.64 

Leu UUA 48298 1.5  UCA 49699 1.80 TER UAA 3001 2.21 TER UGA 588 0.43 
 UUG 39790 1.24  UCG 13058 0.47  UAG 489 0.36 Trp UGG 15090 1.00 
                
 CUU 31783 0.99 Pro CCU 23928 1.28 His CAU 21115 1.03 Arg CGU 8599 0.66 
 CUC 23119 0.72  CCC 12543 0.67  CAC 19883 0.97  CGC 4204 0.32 
 CUA 25540 0.79  CCA 29378 1.57 Gln CAA 37123 1.22  CGA 5047 0.39 
 CUG 24709 0.77  CCG 9170 0.49  CAG 23757 0.78  CGG 3202 0.24 
                

Ile AUU 54831 1.32 Thr ACU 41151 1.47 Asn AAU 80406 1.17 Ser AGU 34997 1.27 
 AUC 25851 0.62  ACC 21784 0.78  AAC 57368 0.83  AGC 13546 0.49 
 AUA 43906 1.06  ACA 37144 1.33 Lys AAA 85578 1.15 Arg AGA 35013 2.67 

Met AUG 38557 1.00  ACG 11979 0.43  AAG 63081 0.85  AGG 22482 1.72 
                

Val GUU 45566 1.54 Ala GCU 21096 1.3 Asp GAU 71221 1.28 Gly GGU 25486 1.20 
 GUC 16943 0.57  GCC 14708 0.90  GAC 40257 0.72  GGC 14417 0.68 
 GUA 29265 0.99  GCA 22186 1.36 Glu GAA 73387 1.21  GGA 33305 1.57 
 GUG 26543 0.90  GCG 7040 0.43  GAG 47522 0.79  GGG 11640 0.55 

 

AA = encoded amino acid,  n = number of codons, RSCU = relative synonymous codon usage 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 18

 

Legend Table 1. 

Relative synonymous codon usage (RSCU) values were calculated across three datasets – (i) the 
T. annulata genome, (ii) the T. parva genome and (iv) the P. falciparum genome.  RSCU 
measures the ratio of the observed frequency of a codon relative to that expected if codon usage is 
uniform, i.e. values tending towards 1.00 indicate an absence of bias.  Amino acids encoded by a 
single codon necessarily have a RSCU value of 1.00.  The number of times each codon is 
encountered in the dataset (n) is recorded, including stop codons (TER).   Standard three-letter 
codes are used to indicate amino acids. 
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Table 2. Comparison of putative optimal codons of T. annulata and 
T. parva 

 

AA codon T. 
annulata 

T. 
parva 

Macro 
only 

Mero 
only 

Piro 
only 

Secreted 
EST AA codon T. 

annulata
T. 

parva
Macro 
only 

Mero 
only 

Piro 
only 

Secreted 
EST 

Phe UUU √ √ √ √ √ √ Ser UCU √ √ √ √ √ √ 

 UUC        UCC    * √  
Leu UUA √ √ √ √ √ √  UCA  √     

 UUG        UCG       
                
 CUU  √  √ √  Pro CCU √ √ √ √ √ √ 
 CUC        CCC    * *  
 CUA  √    *  CCA √ √ √   * 
 CUG        CCG       
                

Ile AUU √ * * √ √ † Thr ACU √ √ √ √ √ √ 
 AUC        ACC     *  
 AUA √ √ √ *  √  ACA  √    † 

Met AUG        ACG       
                

Val GUU √ √ √ √ √ * Ala GCU √ √ √ √ √ √ 
 GUC     *   GCC       
 GUA √ √ √ √  √  GCA  √ *   √ 
 GUG        GCG       
                

Tyr UAU √ √ √ √ √ √ Cys UGU √ √ √ √ √ √ 
 UAC        UGC       

TER UAA       TER UGA       
 UAG       Trp UGG       
                

His CAU √ √ √ √ √ √ Arg CGU √  √ √ √ † 
 CAC        CGC       

Gln CAA √ √ √ √ √ √  CGA  √   * √ 
 CAG        CGG    * *  
                

Asn AAU √ √ √ √ √ √ Ser AGU √ √ √ * √ √ 
 AAC        AGC       

Lys AAA √ √ √ √ √ √ Arg AGA √ √ √ *  † 
 AAG        AGG       
                

Asp GAU √ √ √ √ √ √ Gly GGU √ √ √ √ √ * 
 GAC        GGC       

Glu GAA √ √ √ √ √ √  GGA  √    √ 
 GAG        GGG       

 
AA = encoded amino acid 
√ p < 0.01,        † 0.01 < p < 0.05,        * not statistically significant 
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Legend Table 2. 

Correspondence analysis of codon usage was performed on the coding sequences comprising six 
datasets – (i) the entire T. annulata genome, (ii) the entire T. parva genome, (iii) macroschizont-
specific T. annulata genes, (iv) merozoite-specific T. annulata genes, (v) piroplasm-specific 
T. annulata genes and (vi) T. annulata genes with a signal sequence and EST expression data.  
Subsets of the most highly and least biased genes were identified as the 5 % of genes at either 
extreme of the principal axis generated in each of the six analyses.  Where the RSCU for a 
particular codon was greater in the most biased subset (High RSCU) compared to the least biased 
subset (Low RSCU), a codon was identified as putatively optimal.  
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Table 3. Features of shared genes and T. annulata-specific genes  
 

Shared genes Signal 
peptide TMD GPI TA-specific genes Signal 

peptide TMD GPI 

Overall (3250) 443 (14%) * 635 (20%) * 60 (2%) Overall (517) 124 (24%) * 200 (39%) * 13 (3%) 

Macroschizont (1197) 167 (14%) * 257 (8%) 19 (0%) Macroschizont (140) 42 (30%) * 49 (9%) 2 (0%) 

Merozoite (667) 90 (13%) † 133 (4%) * 10 (0%) Merozoite (122) 30 (25%) † 66 (13%) * 1 (0%) 

Piroplasm (661) 75 (11%) * 114 (4%) * 10 (0%) Piroplasm (109) 27 (25%) * 68 (13%) * 2 (0%) 

* Chi-square, p < 0.001 
† Chi-square, p = 0.003 
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Table 4. Variation in expression among different classes of gene 

 

Number of genes expressed Expression 
value Number of genes expressed Expression 

value 

p value 
(difference in 
expression 

values *) 

Shared vs species specific 
T. annulata shared genes 

(3250) 
ESTs 

(median) T. annulata specific (517) ESTs 
(median)  

Macro 1197 (37%) 2 Macro 140 (27%) 3 0.151 
Mero 667 (21%) 2 Mero 122 (24%) 3 <0.001 
Piro 661 (20%) 2 Piro 109 (21%) 17 <0.001 

 

 

 

 

  

T. parva shared genes 
(3250) 

MPSS  
(mean) T. parva specific (753) 

MPSS  
(mean)  

Macro (S) 2216 (68%) 6.443 Macro (S) 302 (40%) 5.585 <0.001 
Macro (AS) 464 (14%) 3.585 Macro (AS) 81 (11%) 3.907 0.346 

       

Non-spliced vs spliced 

T. annulata non-spliced 
genes (1097) 

ESTs 
(median) 

T. annulata spliced genes 
(2670) 

ESTs 
(median)  

Macro 367 (33%) 3 Macro 970 (36%) 2 <0.001 
Mero 276 (25%) 3 Mero 513 (19%) 2 <0.001 
Piro 275 (25%) 4 Piro 495 (18%) 2 <0.001 

       
       

T. parva non-spliced 
genes (1025) 

MPSS  
(mean) 

T. parva spliced genes 
(2979) 

MPSS  
(mean)  

Macro (S) 589 (57%) 6.087 Macro (S) 1923 (64%) 6.443 0.002 
Macro (AS) 111 (11%) 3.585 Macro (AS) 429 (14%) 3.585 - 

       

Constitutive vs stage-specific 

T. annulata constitutive ESTs 
(median) 

T. annulata  stage-
specific 

ESTs 
(median)  

Macro 164 3.5 Macro 1173 2 <0.001 
Mero 164 3 Mero 625 2 <0.001 
Piro 164 4 Piro 606 2 <0.001 

 
 
 * Mann-Whitney Test 
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Table 5A. ORF lengths and levels of amino acid identity of five 
categories of Tpr ORF defined by presence of domain type (1-3) and 
arrangement       

 

 Identity range (%) 

Type Number Array Length (aa) Tpr3 Tpr2 Tpr1 

A 1 Y 796 n/a n/a n/a 

B 4 N 512-1249 58-72 45-60 48-60 

C 12 Y 606-738 not present 75-97 69-98 

D 6 N 451-515 not present 30-35 33-37 

E 14 Y 406-548 not present not present 87-99 

 

 

 

Table 5B. ORF lengths and levels of amino acid identity of the 69 Tar 
ORFs containing the Tar1, 2 and 3 domains   

 

 Identity range (%) 

Number Length (aa) Tar3 Tar2 Tar1 

69 432-1006 26-83 29-67 23-68 
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Figure 1. Correlation of relative synonymous codon usage of 
T. annulata vs T. parva and T. annulata vs P. falciparum 
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Legend Figure 1. 

The relative synonymous codon usage (RSCU) of synonymous codons was correlated between 
T. annulata and T. parva (corresponding to the data contained in Table 1) and between T. annulata 
and P. falciparum. RSCU values of T. annulata are plotted on the x-axis while those from T. parva 
(red) and P. falciparum (green) are on the y-axis. Linear regression lines for each of the 
comparisons are marked in blue, with a dotted grey line representing a perfect match, i.e. 
T. annulata vs T. annulata. 

T. annulata (m = 1) 

T.a. vs T.p. 

T.a. vs P.f. 
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Figure 2. Schematic representation of the organisation of repeated domains located in the Tpr and Tar genes 
of Theileria 
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Legend Figure 2 
 
Panel 1, Graphical illustration of categories of Tpr ORFs within the T. parva genome sequence according to arrangement of conserved protein 
domains; Panel 2, Graphical illustration of categories of Tar ORFs within the T. annulata genome according to the arrangement of conserved protein 
domains.  Within The Tpr family A, C and E type genes are found on the array. B and D type genes are dispersed within the T. parva genome. The 
stars indicate the location of trans-membrane domains. 
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Figure 3. Synteny between T. annulata and T. parva at the TashAT locus 
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TA03115(b) TCAGATAATGAAGAGAA---------TAATAACAATTAAATATAAATTGAACCTAATTAATT-TAAAACAAGACT---TTAAAACAGTAATATC--TAAATTAATGTAAAAT 
            **** ****** * **         **** ******** ******* **    *******  * *** ** ***   * **  *   *****   ******** *   *** 
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 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

  

Legend Figure 3. 

The TashAT locus in T. annulata is illustrated along with the orthologous locus in T. parva.  Grey lines represent orthologous genes and blue lines 
represent orthologous intergenic regions.  The two pairs of genes flanking each cluster have direct orthologues in the same position in the other 
species, together with conserved intergenic regions and are highlighted in orange. 
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Figure 4.  Tree representing the TashAT family of T. annulata and orthologues in T. parva 
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Legend Figure 4. 

The amino acid sequences of the sixteen genes in the TashAT family of T. annulata along with the twenty genes in the orthologous family in T. parva 
were aligned, clustered and used to create a tree.  T. annulata genes are highlighted in red while T. parva genes are highlighted in blue.  The 
orthologous genes corresponding to each end of the TashAT locus (Figure A) are highlighted in a grey box.   The presence of two discrete clusters of 
internal genes suggests that these genes are more closely related to each other within a species and have evolved independently in each species.  
This is supported by the fact that most internal genes do not have direct orthologues (Figure 5). 
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Supplementary Table 1.  Putative optimal codons of T. annulata 
 

AA codon High 
RSCU n Low 

RSCU n AA codon High 
RSCU n Low 

RSCU n 

Phe 
UUU * 1.69 (3754) 0.88 (1937) 

Ser 
UCU * 1.57 (1755) 0.90 (1137) 

 UUC 0.31 (683) 1.12 (2450)  UCC 0.47 (532) 0.85 (1076) 

Leu UUA * 4.18 (6168) 0.72 (1106)  UCA 1.68 (1889) 1.95 (2461) 

 UUG 0.69 (1024) 1.20 (1842)  UCG 0.14 (155) 0.67 (845) 

            

 CUU 0.66 (976) 1.05 (1599) Pro CCU * 1.40 (933) 0.77 (660) 

 CUC 0.11 (167) 1.09 (1675)  CCC 0.30 (201) 0.74 (632) 

 CUA 0.30 (443) 0.83 (1272)  CCA * 2.18 (1455) 1.90 (1633) 

 CUG 0.05 (74) 1.10 (1686)  CCG 0.12 (77) 0.59 (506) 

            

Ile AUU * 1.33 (4651) 1.13 (1802) Thr ACU * 2.08 (3790) 1.00 (1228) 

 AUC 0.12 (415) 0.96 (1539)  ACC 0.44 (808) 0.94 (1155) 

 AUA * 1.55 (5443) 0.91 (1456)  ACA 1.20 (2188) 1.52 (1868) 

Met AUG 1.00 (1827) 1.00 (2166)  ACG 0.27 (496) 0.55 (678) 

            

Val GUU * 1.66 (1491) 1.32 (2056) Ala GCU * 2.20 (927) 0.82 (858) 

 GUC 0.13 (118) 0.84 (1308)  GCC 0.37 (158) 0.98 (1029) 

 GUA * 1.79 (1607) 0.85 (1316)  GCA 1.36 (575) 1.79 (1883) 

 GUG 0.41 (367) 0.99 (1537)  GCG 0.06 (26) 0.41 (430) 

            

            

Tyr UAU * 1.90 (4009) 0.73 (1316) Cys UGU * 1.93 (1384) 0.91 (627) 

 UAC 0.10 (219) 1.27 (2286)  UGC 0.07 (52) 1.09 (749) 

TER UAA 2.39 (150) 2.27 (143) TER UGA 0.13 (8) 0.40 (25) 

 UAG 0.48 (30) 0.33 (21) Trp UGG 1.00 (554) 1.00 (813) 

            

His CAU * 1.80 (1266) 0.70 (682) Arg CGU * 1.47 (570) 0.61 (414) 

 CAC 0.20 (139) 1.30 (1259)  CGC 0.03 (11) 0.66 (444) 

Gln CAA * 1.86 (2127) 0.99 (1331)  CGA 0.31 (120) 0.44 (296) 

 CAG 0.14 (159) 1.01 (1348)  CGG 0.11 (42) 0.14 (92) 

            

Asn AAU * 1.92 (10985) 0.74 (1997) Ser AGU * 1.94 (2175) 0.77 (968) 

 AAC 0.08 (470) 1.26 (3366)  AGC 0.20 (221) 0.85 (1076) 

Lys AAA * 1.63 (6422) 0.83 (2711) Arg AGA * 3.56 (1385) 2.49 (1677) 

 AAG 0.37 (1458) 1.17 (3785)  AGG 0.53 (206) 1.66 (1122) 

            

Asp GAU * 1.87 (3984) 0.93 (2342) Gly GGU * 1.87 (2104) 0.79 (829) 

 GAC 0.13 (266) 1.07 (2710)  GGC 0.07 (78) 0.86 (903) 

Glu GAA * 1.62 (4858) 1.10 (3073)  GGA 1.83 (2062) 1.90 (2002) 

 GAG 0.38 (1126) 0.90 (2522)  GGG 0.22 (252) 0.46 (490) 

 
AA = encoded amino acid,   n = number of codons,   RSCU = relative synonymous codon usage  
* p < 0.01 
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Legend Supplementary Table 1. 

Correspondence analysis of codon usage was performed on the entire coding sequence of 
T. annulata. Subsets of the most highly and least biased genes were identified as the 5 % of genes 
at either extreme of the principal axis generated. Where the RSCU for a particular codon was 
greater in the most biased subset (High RSCU) compared to the least biased subset (Low RSCU), 
a codon was identified as putatively optimal.   
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Supplementary Figure 1. Relative synonymous codon usage across stage-specifically expressed genes for 
non-synonymous codons 

Codon

U
U

U
U

U
C

U
U

A
U

U
G

C
U

U
C

U
C

C
U

A
C

U
G

AU
U

AU
C

AU
A

G
U

U
G

U
C

G
U

A
G

U
G

U
C

U
U

C
C

U
C

A
U

C
G

C
C

U
C

C
C

C
C

A
C

C
G

AC
U

AC
C

AC
A

AC
G

G
C

U
G

C
C

G
C

A
G

C
G

U
AU

U
AC

C
AU

C
AC

C
AA

C
AG A
AU

A
AC A
AA

A
AG

G
AU

G
AC

G
AA

G
AG

U
G

U
U

G
C

C
G

U
C

G
C

C
G

A
C

G
G

A
G

U
A

G
C

A
G

A
A

G
G

G
G

U
G

G
C

G
G

A
G

G
G

R
S

C
U

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Macroschizont
Merozoite
Piroplasm

 

Legend Supplementary Figure 1 

The RSCU for non-synonymous codons was calculated for all genes in the T. annulata genome with EST information. The preference of particular 
codons is almost identical across the macroschizont (n = 736), merozoite (n = 279) and piroplasm (n = 168) stages of the life-cycle. 
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