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Monolayer transition metal dichalcogenides (TMDs) feature a valley degree of freedom, giant spin-orbit
coupling, and spin-valley locking. These exotic natures have stimulated efforts of exploring potential applications
in conceptual spintronics, valleytronics, and quantum computing. Among all the exotic directions, a long
relaxation time of spin and/or valley polarization is critical. The present valley dynamics studies concentrate
on the band edge excitons which predominate the optical response due to an enhanced Coulomb interaction in
two dimensions. The valley relaxation time of free carriers remains ambiguous. In this Rapid Communication,
we use time-resolved Kerr rotation spectroscopy to probe the valley dynamics of excitons and free carriers in
monolayer tungsten diselenide. The valley relaxation time of free carriers is found around 2 ns at 70 K, about
three orders of magnitude longer than the excitons of about 2 ps, and 15 times larger than that of trions (130 ps).
The extended valley relaxation time of free carriers evidences that an exchange interaction dominates the valley
relaxation in optical excitations. The pump-probe spectroscopy also reveals an exciton binding energy of 0.60 eV
in monolayer WSe2.
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In solid state physics, a valley refers to the local energy
extreme, either a conduction band local minimum or valence
band local maximum, in crystal electronic band structures.
The occupation of carriers at inequivalent valleys, carrying
different momentum phases, represents different quantum
states. This leads to conceptual valleytronics, which utilizes the
valley degree of freedom as a quantum information carrier, in a
similar way as the spintronics where a spin degree of freedom
is utilized [1–4]. Monolayer transition metal dichalcogenides
(TMDs), an emerging two-dimensional (2D) semiconductor,
feature degenerate but inequivalent valleys K and K ′ (or −K)
located at the band edges of both conducting and valence
bands, which are separated by a large momentum space. Owing
to spatial inversion symmetry breaking in monolayer TMDs,
the Berry curvature, a function describing the properties of
valence electron orbits in crystal lattices, shows opposite signs
at the K and K ′ valleys. This could work as a knob to
selectively manipulate the K or K ′ valley [5–9]. Besides, K

and K ′ valleys are constructed by the metal’s d orbits, which
experience strong spin-orbit coupling (SOC). The SOC splits
the band, particularly the valence band, into two subbands. As
a result of time-reversal symmetry, the spin splitting shows
opposite signs between the K and K ′ valleys at equal energies
[5,10–12]. Namely, if the band edge at the K valley is a spin-up
state, the band edge at the K ′ valley must be a spin-down state,
as illustrated in Fig. 1(a). This leads to a definite relationship
between the valley and spin indices, the so-called spin-valley
locking [13–15]. This unique spin-valley locking interplays
the valley and spin degrees of freedom and suppresses the
valley/spin relaxation: In the relaxation process of a hot carrier
around a K valley, the conservation of momentum (valley)
and spin both must be satisfied. It theoretically supports a long
valley/spin relaxation time in monolayer TMDs.

On the experimental side, however, the valley/spin re-
laxation time of free carriers remains ambiguous. Spin-
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resolved photocurrent measurements estimated the valley/spin
relaxation time in the range of 100–102 ns in monolayer
WS2 [16], while optical pump-probe spectroscopy and time-
resolved photoluminescence (PL) experiments gave a very
short valley relaxation time of several picoseconds [17–25].
Long valley relaxation times of bound excitons or residue
holes were reported [26–30]. The huge discrepancy lies in
the fact that the excitonic effect is prevalent in the optical
responses of monolayer TMDs [31–37]. The giant exciton
binding energy implies a short effective radius of the excitons,
a close separation between electrons and holes, enhancing the
exchange interactions. Spin exchange interactions are believed
to be the major valley/spin relaxation channel in monolayer
TMDs that causes the short valley/spin relaxation time of
excitons [23,38–40]. To date, the direct measurement of free
carriers is lacking. In this Rapid Communication, we use
time-resolved Kerr rotation spectroscopy to unambiguously
identify the valley/spin relaxation time of free carriers in
monolayer WSe2. It is three orders of magnitude longer
than that of excitons. The results show that monolayer TMD
is a promising platform for conceptual valleytronics and
nonmagnetic spintronics.

WSe2 flakes are mechanically exfoliated from single-
crystal WSe2 onto Si/SiO2 substrates for PL and pump-probe
measurements, and mica for transmittance measurements.
The two-color pump-probe measurement setup is shown
in Fig. 1(b). More details of the helicity-resolved PL and
the pump-probe measurement setups have been illustrated
elsewhere [6,41,42]. Monolayer WSe2 flakes are identified
by an optical microscope and PL.

The optical interband transitions are characterized by PL
and absorption spectroscopy at room temperature, as shown
in Fig. 1(c). There are three prominent absorption peaks,
consistent with previous reports [43], which are labeled as
A, B, and C. Peaks A and B correspond to the two exciton
states of spin-split interband transitions at the K and K ′
valleys. Peak C corresponds to several exciton states of the
interband transition near the � and � points in the Brillouin
zone as a result of the band nesting effect [44,45]. The energy
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FIG. 1. (a) A schematic diagram of the monolayer WSe2 band structure in the K (left) and K ′ (right) valleys, their spin states (shown in red
and blue colors, respectively), and the light-matter interaction in a time-resolved Kerr rotation experiment. (b) Schematic of pump-probe Kerr
rotation spectroscopy. D1 is a balanced photodetector and D2 a photodiode, working together to get the Kerr rotation as an optical bridge. D2
is a photodiode monitoring the reflectivity change. (c) PL spectrum of the monolayer WSe2 on a Si/SiO2 substrate (green dots), and absorption
spectrum on mica (the blue dots) with a Gaussian function fit (red line). The data are measured at room temperature. (d) Helicity-resolved PL
spectra of monolayer WSe2 pumped by a 1.824 eV left-handed circularly polarized laser (σ+) at 70 K. The PL circular polarization, calculated
by (Iσ+ − Iσ−)/(Iσ+ + Iσ−), is also shown in the figure by the black dots.

shift of the A exciton between the absorption and PL spectra
shows a Stokes shift, indicating the unintentional doping in
the material [8]. Different exciton binding energies modified
by the dielectric permittivity of the mica and SiO2 substrates
may also contribute to the energy shift [36,46].

Figure 1(d) shows the helicity-resolved PL spectra of a
WSe2 flake excited by a left-handed circularly polarized laser
(σ+, right-handed circularly polarized is represented as σ−) at
70 K. The emission peak at 1.734 eV and the lower energy peak
at 1.712 eV are identified as the A excitons and the charged
excitons (trions). The collected PL signal shows a prominent
circular polarization of about 24% for both excitons and trions,
indicating a clear valley polarization in the K and K ′ valleys.
The lower energy tail, consisting of defect bound excitons,
shows negligible valley polarization.

We measured the valley relaxation of A excitons by
pumping the sample at 1.834 eV and probing at 1.737 eV
(pumping A, probing A). The probing beam intensity is tuned
to be a tenth of the pumping beam to minimize its influence.
The pumping beam injected exciton density is estimated to
be at the magnitude of 1012 cm−2, given the absorption ratio
shown in Fig. 1(c) and the laser spot radius of 1 μm. Both
data with left-handed and right-handed circularly polarized

pumping beams are shown in Fig. 2(a). The valley polarization
relaxations are well described with single exponential decay
functions. The valley relaxation time is extracted to be
1.8 ± 0.3 ps, consistent with previous studies [23,42]. Such
a quick relaxation process is attributed to exciton intervalley
(K-K ′) scattering through the strong electron-hole exchange
interaction, which is diagramed in the inset of Fig. 2(a) [38,39].
The pump energy is tuned slightly larger than the A exciton
1s transition energy due to the experiment’s limitation. The
valley relaxation time dependence on pump energy in WSe2 is
rather weak, as shown in Fig. S3 [47]. This may be related to
the dark exciton, which characterizes a smaller energy than the
bright exciton, resulting in pumped excitons that easily relax
to the dark exciton state [48–50].

The time-resolved reflection spectrum with the same pump-
ing and probing energy is shown in Fig. 2(d). The biexponential
decay function fit shows the �R decay time constants are
5 ± 0.1 and 25 ± 3 ps. The fast decay may be related to
the phase space redistribution via exciton-exciton annihilation
[51]. More details may be found in the Supplemental Material
[47]. The exciton formation time is deduced to be less
than 0.5 ps, limited by the present time resolution of the
experimental setup.
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FIG. 2. (a), (b) Time-resolved Kerr rotation of monolayer WSe2 measured at 70 K. The red and blue dotted lines indicate the Kerr rotation
traces when pumped by left-handed (red) and right-handed (blue) circularly polarized pulses, respectively. The solid lines follow an exponential
decay fit. (a) The sample is pumped by the pulse centered at 1.834 eV and probed at 1.737 eV (pumping A, probing A). Please refer to
the Supplemental Material [47] for the pump-energy-dependent valley relaxation time. The insets illustrate the band structure and transitions
between different bands. (b) The sample is pumped at 2.023 eV and probed at 1.737 eV (pumping B, probing A). The sign change in the Kerr
rotation signal implies that the B excitons first relax to A excitons via intervalley scatterings, shown in the inset. (c) The Kerr rotation angle at
zero time delay as a function of the pumping energy. (d) The time-resolved reflectance spectrum probed at 1.737 eV and pumped at 1.834 eV,
with an exponential decay function fit in the red solid line.

While we tune the pumping energy to 2.023 eV, near
resonant with B excitons, the Kerr rotation at 1.737 eV
(pumping B, probing A) changes its sign, as shown in Fig. 2(b).
This implies that spin-conserved intervalley scattering prevails
over spin-flip intravalley scattering in the hot carrier relaxation
process, as illustrated in the inset of Fig. 2(b). For B excitons
generated by a left-handed circularly polarized pump in the
K valley, the holes could be scattered to the valence band
edge and electrons to the higher spin-split subband of the
conduction band at the K ′ valley via Coulomb interactions
without a spin flip, forming A excitons at the K ′ valley. Thus
a sign change in Kerr rotation is observed. The rise time of
the Kerr rotation signal here is approximately 0.8 ps longer
than that in the case of pumping A, probing A, possibly
resulting from the time of hot exciton intravalley relaxation,
intervalley scattering, and the formation of A excitons. The
relaxation time is deduced to be 2 ± 0.2 ps, similar to that
of the pumping A, probing A situation within the error bar.
It is consistent with the proposed relaxation mechanism, for
the depolarization process of the A excitons in both cases

shares the same relaxation channel, the electron-hole exchange
interactions.

The Kerr rotation angle measured at zero time delay is
plotted as a function of the pumping energy, which is shown
in Fig. 2(c). There is a clear region centered at 1.97 eV that
shows that the Kerr rotation exhibits a negative signal. We
assign it to the B exciton states while Figs. 1(c) and 1(d) imply
an energy of B excitons of around 2.184 eV. The large energy
shift of about 0.21 eV between the time-resolved and steady-
state spectra is attributed to the band-gap renormalization, i.e.,
the energy lowering correlation of free carriers, caused by
the dense exciton density up to 1012 cm−2 injected by the
pumping pulses in the transient measurement. The energy shift
is much larger compared to the quasi-2D systems such as
GaAs quantum wells as a result of enhanced electron-electron
interactions [17,52,53].

To further study the valley dynamics in monolayer WSe2,
we set the pumping energy to be 1.737 eV, which is resonant
with the A excitons, and tune the probing energy in the
range between 1.968 and 2.505 eV. The transient differential
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FIG. 3. (a), (b) Transient differential reflection intensity and the Kerr rotation angle at zero time delay as a function of the probing energy.
Both experiments are conducted with the pumping laser energy set at 1.737 eV and the probing laser energy tuned from 1.95 to 2.5 eV.
(c) Time-resolved reflectance pumped at 1.737 eV and probed at 2.318 eV. The inset shows the same trace in a larger time scale.

reflections at zero time delay are plotted as a function of
the probing energy, as shown in Fig. 3(b). To be noted,
signals measured here indicate that higher energy states are
occupied, which may be related to Auger-like scatterings. An
efficient upconversion from the A exciton to the B exciton has
been reported [54]. Negative differential reflection peaking
at 2.15 eV is observed, close to 2.184 eV of the B excitons
extracted from steady-state optical measurements. The tran-
sition is confirmed at the same energy in Fig. 3(a), in which
the probing-energy-dependent Kerr rotation spectrum at zero
time delay is shown. The redshift of 0.034 eV of B excitons is
remarkably different from that of 0.21 eV in Fig. 2(c), owing to
the band-gap renormalization concentrating on different states.
In the setup shown in Fig. 3, the band-gap renormalization has
the most affect on the A exciton states (pumping resonantly A
excitons) and only few excitons are scattered to the B states,
while in the setup in Fig. 2(c), hot carriers concentrate on states
around the B excitons (pumping resonantly B excitons).

The differential reflection spectrum [Fig. 3(b)] also reveals
another transition when the probing energy is around 2.32 eV.
A typical �R curve is shown in Fig. 3(c). A positive differential
reflection usually results from the band filling effect, implying
that the transition is likely associated with the continuum state
of the A exciton, i.e., the free carriers from the band edge
transition. A portion of the pumped A excitons could be excited
to higher excited states and eventually could be ionized to
free carriers due to the exciton-exciton annihilation, phonon
scattering, or local electric field originating from defects. The
ionized electrons and holes occupy the quasiparticle electronic
band edges. Note that the population of C excitons upon
pumping around the A exciton states is negligible owing to the
large energy and momentum separation [45]. The relaxation
process, shown by the time-resolved reflectance spectrum in
Fig. 3(c), is fitted by a biexponential decay function. The
reflectance signal decays with a time constant of 130 ± 13 ps
after a rapid decay characterized by a time constant of 8 ± 1 ps.
The fast decay likely originates from the defect filling, as
the ionized carriers rather than electrically neutral excitons
experience strong long-range Coulomb interactions induced
from local or even remote charge traps. Once the strong local
electric field is subsidized, the slow component is prominent.

The probing-energy-dependent Kerr rotation spectrum at
zero time delay shown in Fig. 3(a) reads a significant Kerr
signal across that area. This also rules out the potential
detection of high energy excitons (C excitons) around the
� points in their Brillouin zone as the valley-dependent
optical selection rules are not valid around the Brillouin zone
center. So it is concluded that the transition around 2.32 eV
corresponds to the quasiparticle band edge. Compared to

FIG. 4. (a) Time-resolved Kerr rotation of monolayer WSe2

pumped at 1.8 eV and probed at 1.71 eV (trion) at 70 K. The
illustration of negatively charged exciton valley relaxation is shown
on the right-hand side. (b) Kerr rotation pumped at 1.737 eV and
probed at 2.318 eV at 70 K, and the sketch of the band structure
with the dashed lines indicates the quasiparticle bands without the
modification of excitonic effects.
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the PL result, the exciton binding energy is extracted to be
0.596 eV, close to the values reported by other methods [55,56].
The free interband transition has a relatively weak optical
oscillator strength and is totally submerged with the broad
C excitons in the absorption spectrum shown in Fig. 1(c),
while in our pump-probe measurement, only the band edge (A
excitons) is pumped and the high energy state C excitons are
not populated, so the signal from the C excitons fades and only
a free interband appears in the pump-probe spectrum. This is
one advantage of the pump-probe technique in exciton binding
energy measurements.

Figures 4(a) and 4(b) show the time-resolved Kerr rotation
spectra of trions and free carriers under pumping A excitons.
The trion valley polarization (probing at 1.71 eV) relaxes
significantly slower than that of A excitons, qualitatively
consistent with previous reports [26–28]. A two-section
exponential fit gives time constants of 5 ± 1 and 80 ± 14 ps,
respectively. The valley polarization of free carriers (probing
at 2.318 eV) experiences a rapid decay near zero time delay,
followed by an even slower decay, with time constants of
5 ± 2 ps and 2.4 ± 1 ns, respectively. The large error results
from the relatively short delay line limited by the experimental
conditions. The three orders of magnitude increase of the val-
ley relaxation time at free carrier states originates from the sup-
pressed valley relaxation channel via electron-hole exchange
interactions. The increased spatial separation between free
electrons and holes dramatically weakens the electron-hole

exchange interactions which dominate the valley relaxation
of excitons. Considering the electron-hole symmetry and the
large spin splitting in the valence band, we attribute the Kerr
rotation signal to the valley polarization of holes.

Note that both the rapid relaxation channel of the trions and
the continuum states share a similar fast decay process after
initial pumping, with a time constant similar to the A excitons.
Thus, we infer that the valley polarization of high-density
trions and free carriers decays rapidly via band edge exciton
states. It is suggested that the trion’s valley relaxation likely
goes through a similar channel as excitons, the electron-hole
exchange interactions as illustrated in Fig. 4(a). The prolonged
valley relaxation time of trions likely results from the weaker
Coulomb interaction compared to that in excitons, while this
relaxation channel is invalid for free carriers.

In conclusion, monolayer WSe2 is examined by the time-
resolved Kerr rotation technique. We have experimentally
revealed the exciton binding energy to be 0.60 eV. The valley
relaxation time constants of excitons, trions, and free carriers
are derived to be approximately 2 ps, 80 ps, and 2 ns at
70 K, respectively. Our observations of valley relaxation in
monolayer WSe2 provide insights into the valley dynamics in
monolayer TMDs and valleytronics development.

The work is financially supported by Area of Excellency
(AoE/P-04/08), GRF (17317316 and 17300415) of University
Grants Committee of Hong Kong.
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