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The interlayer couplings in commensurate and incommensurate bilayer structures of transition-metal
dichalcogenides are investigated with perturbative treatment. The interlayer coupling in ±K valleys can be
decomposed into a series of hopping terms with distinct phase factors. In H-type and R-type commensurate
bilayers, the interference between the three main hopping terms leads to a sensitive dependence of the interlayer
coupling strength on the translation that can explain the position dependent local band gap modulation in a
heterobilayer moiré superlattice. The interlayer couplings in the � valley of valence band and Q valley of
conduction band are also studied, where the strong coupling strengths of several hundred meV can play important
roles in mediating the ultrafast interlayer charge transfer in heterobilayers of transition-metal dichalcogenides.
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I. INTRODUCTION

Monolayer group-VIB transition-metal dichalcogenides
(TMDs) have been extensively studied in recent years, mainly
due to their exotic physical properties and potential appli-
cations in novel two-dimensional (2D) electronics devices
[1–5]. Compared with the precedent 2D material graphene,
monolayer TMDs have a finite and direct band gap located at
the two degenerate but inequivalent hexagonal Brillouin zone
(BZ) corners, i.e., the ±K valleys, which are essential for
the successful operation of transistors and valley-dependent
optoelectronics. Furthermore, the strong spin-orbit coupling
of the transition metal couples the spin and valley degrees of
freedom, making TMDs the ideal platform to develop spin-
tronic and valleytronic devices [1]. Several kinds of electronic
and optoelectronic prototype devices have been fabricated with
monolayer TMDs, including field-effect transistor, inverter
and logic gate, junction and heterostructure, photodetector,
solar cell and light-emitting devices, as well as electronic
sensors [3,4].

Similar to the monolayers, the natural TMD homobilayers
can be obtained from bulk crystals using mechanical exfolia-
tion and have been widely studied. These natural homobilayers
mostly exhibit a commensurate 2H (also called AB) stacking
where the two layers are 180◦ rotation of each other [5]. As the
two adjacent layers are bound together by the weak van der
Waals interaction, the interlayer coupling in ±K valleys can
be largely suppressed by the giant spin-orbit splitting. The re-
sulted spin-layer locking could lead to various magnetoelectric
effects allowing for their quantum manipulations [6–11]. On
the other hand, the interlayer couplings in the valence band �

and conduction band Q valleys are significantly larger, which
strongly shifts their energy positions compared to those of the
monolayers and results in a transition from direct to indirect
band gap [12,13].
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Furthermore, the current technique allows manually stack-
ing two monolayers to form a vertical homo- or heterostruc-
ture, with the uncertainty lesser than 1◦ on their mutual crystal-
lographic alignment [14–16]. This opens up an alternative way
to utilize this novel class of 2D materials [17]. For the TMD
heterobilayer formed by two different TMD materials, its con-
duction and valence band edges are located in different layers.
Such a type-II band alignment results in the ultrafast interlayer
charge transfer which facilitates the photocurrent generation
[18–26], and the formation of interlayer excitons [27–29].
Meanwhile, the manually assembled bilayer generally has
an incommensurate lattice structure due to the inevitable
interlayer twist and/or lattice constant mismatch. This brings
anomalous interlayer couplings which have profound effects
on the transport [14–16,30,31], optical [32–36], and Raman
[37,38] properties of the bilayers. Moreover, recent theoretical
studies have shown that the interlayer coupling together with
the formation of a large scale moiré superlattice pattern
can lead to the emergence of topological orders in a TMD
heterobilayer [39,40]. To gain further insights into these
interesting phenomena, it is essential to understand the strength
and the form of the interlayer coupling in TMD bilayers.

In 2H or other commensurate bilayers, the interlayer
coupling can be evaluated by comparing the bilayer band
structure to those of the monolayers. The 2π/3-rotational
symmetry of the 2H bilayer is also essential to determine
whether the interlayer coupling strength at ±K points is zero or
not [5]. For the general TMD bilayers, however, it is nontrivial
to calculate the interlayer coupling of the incommensurate
lattice structures mainly due to the lack of periodic feature.
For the limited commensurate cases, the unit cell usually
contains too many atoms to be calculated from first principles.
Thus some analytical way should be adopted instead of the
impractical numerical calculations.

In this paper we investigate the interlayer coupling in
general TMD bilayers following the previous studies in
twisted bilayer graphene [41–45], by adopting an effective
perturbative treatment. The rest of the paper is organized as
follows. In Sec. II we show that in general TMD bilayers the
interlayer coupling between the ±K valley Bloch states can
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be decomposed into a series of hopping terms with distinct
phase factors, which correspond to the Fourier components
of the hopping integral between localized atomic orbitals. In
Sec. III the symmetry properties of the monolayer TMDs
are analyzed and utilized to reveal the relation between
the hopping terms. In Sec. IV our perturbative results for
the commensurate H- and R-type TMD homobilayers are
presented, which show sensitive dependence on the interlayer
translation, and are in excellent agreement with the ab initio
calculations. In Sec. V we apply our perturbative treatment
to the lattice-mismatched bilayers, and reveal its connection
with the moiré superlattice. In Sec. VI we further study the
interlayer coupling of the valence band � and conduction
band Q valleys, and propose that they play important roles
in mediating the ultrafast interlayer charge transfer of TMD
heterobilayers. We summarize our results in Sec. VII.

II. EXPRESSION OF INTERLAYER COUPLING
IN ±K VALLEYS

Since the two TMD monolayers are bound by the weak van
der Waals force, we can first consider a decoupled bilayer,
then add the interlayer coupling as a perturbation. In the
vanishing interlayer coupling limit, the monolayer Bloch wave
functions in τK valley are denoted as ψn,k(r) ≡ 〈r|n,k〉 =
ei(τK+k)·run,k(r). Here n = {τ,l} contains both the valley index
τ = ± and the band index l = . . . ,c + 1,c,v,v − 1, . . . . Here
c (v) corresponds to the conduction (valence) band, and
we use c + j (v − j ) to denote the j th band above (below)
the conduction (valence) band. un,k(r) is the periodic part of
the Bloch wave functions.

The Bloch wave function ψn,0 can be constructed from the
local basis functions as

ψn,0(r) = 1√
N

∑
R

eiτK·RDn(r − R). (1)

Here N is the unit cell number of the corresponding monolayer,
and Dn(r − R) is the linear combination of the atomic orbitals
localized near the metal position R, which depends on the
valley index τ and band index l (see Table I). Considering
the time reversal relation between the two valleys, Dn in
the same band but opposite valleys are related by a com-
plex conjugate. Under the envelope approximation ψn,k(r) ≈
ei(τK+k)·run,0(r) = eik·rψn,0(r), one finds

ψn,k(r) ≈ 1√
N

∑
R

ei(τK+k)·RDn(r − R), (2)

where eik·(r−R)Dn(r − R) ≈ Dn(r − R) is used since we are
interested in low energy electrons and holes with small |k|,
and Dn(r − R) is well localized near R.

We define a bilayer stacking configuration as the reference
one, where the in-plane crystalline axes of the two layers are
along the same direction (R-type stacking), and the two metal
atoms in different layers horizontally overlap at the in-plane
(xy) coordinate origin. Any other stacking configuration can
then be obtained from this reference configuration through a θ -
angle rotation of the upper layer around the coordinate origin,
and followed by a translation of −r0 for the lower layer [see
Fig. 1(a)]. We use the convention that quantities in the upper

TABLE I. The orbital compositions and the corresponding 2π/3-
rotational quantum numbers M (discussed in Sec. III A) of localized
function Dn in +K valley of monolayer MoS2, obtained by following
Ref. [5]. The percentage is defined as the overlap probability between
the atomic orbital wave function and the K-point Bloch state. d0 ≡
dz2 , d±1 ≡ (dxz ± idyz)/

√
2, d±2 ≡ (dx2−y2 ± idxy)/

√
2 are the Mo-d

orbitals, and p0 ≡ pz, p±1 ≡ (px ± ipy)/
√

2 are the S-p orbitals.
Mo-p0 denotes the pz orbital of the Mo atom. Only the two most
prominent orbitals are shown.

(Band) (Major orbital) (Minor orbital) (M)

...
...

...
...

c + 3 d+1 (70%) p0 (24%) +1
c + 2 d−2 (78%) p0 (19%) +1
c + 1 d−1 (78%) p+1 (22%) −1
c d0 (88%) p−1 (7%) 0
v d+2 (84%) p+1 (16%) −1
v − 1 p0 (56%) d+1 (38%) +1
v − 2 p−1 (83%) Mo-p0 (17%) 0
v − 3 p0 (53%) d−2 (31%) +1

...
...

...
...

(lower) layer are marked with (without) the prime. The lower
layer band edges are located at ±K = ± 4π

3a
(1,0), while those

of the upper layer are located at ±K′ = ± 4π
3a′ (cos θ, sin θ ),

where a (a′) is the lower (upper) layer lattice constant.
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FIG. 1. (a) Illustration of a twisted TMD homo- or heterobilayer.
The large red (blue) dots denote the metal atoms in the upper (lower)
layer, and the small orange (green) dots denote the chalcogen atoms
in the upper (lower) layer. The enlarged view shows two unit cells in
the upper and lower layers, respectively. The in-plane (xy) coordinate
origin is set on a metal atom in the upper layer. (b) Two wave vectors
in different layers must overlap in momentum space to satisfy the
momentum conservation of interlayer hopping. (c) The blue dots
denote κ ≡ K + G points, and the red dots are their time reversals.
Thicker green circle means smaller |κ | thus larger |tnn′ (τκ)| [see
Eq. (5)]. (d) Illustration of the 2π/3-rotational (Ĉ3) symmetry and
the in-plane mirror (σ̂v) symmetry of monolayer TMDs.
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Now we add the interlayer coupling Ĥt as a perturbation.
We consider the hopping integral between the two wave
functions ψn′,k′ and ψn,k located in the upper and lower layer,
respectively, which can be expressed as

〈n,k|Ĥt |n′,k′〉 ≡
∫

ψ∗
n,k(r)Ĥtψn′,k′ (r)dr

=
∑
R,R′

ei(τ ′K′+k′)·R′−i(τK+k)·R
√

NN ′ 〈Dn,R|Ĥt |Dn′,R′ 〉.

(3)

Here 〈Dn,R|Ĥt |Dn′,R′ 〉 ≡ ∫
D∗

n(r − R)ĤtDn′(r − R′)dr is the
hopping integral between the two localized orbitals Dn′(r −
R′) and Dn(r − R). In the spirit of two-center approximation
[41–43], 〈Dn,R|Ĥt |Dn′,R′ 〉 depends only on the relative posi-
tion R′ − R. So we can write

〈Dn,R|Ĥt |Dn′,R′ 〉 = Tnn′(R′ − R)

=
∑

q

e−iq·(R′−R)

√
NN ′ tnn′ (q). (4)

Here tnn′(q) = 1√
��′

∫
Tnn′(r)eiq·rdr is the Fourier transform

of Tnn′ (r), with �′ (�) the upper (lower) layer unit cell area.
We denote the in-plane positions of the the metal atoms

in the upper (lower) layer as R′ = j ′
1a′

1 + j ′
2a′

2 (R = −r0 +
j1a1 + j2a2), where a′

1,2 (a1,2) are the corresponding unit
lattice vectors and j ′

1,2,j1,2 are integers. Substituting Eq. (4)
into Eq. (3), we obtain

〈n,k|Ĥt |n′,k′〉

=
∑

q

tnn′ (q)
∑
R,R′

ei(τ ′K′+k′−q)·R′−i(τK+k−q)·R

NN ′

=
∑

q

tnn′ (q)
∑
G,G′

δτK+k−q,Gδτ ′K′+k′−q,G′eiG·r0

=
∑
G,G′

δτK+k+G,τ ′K′+k′+G′ tnn′(τK + k + G)e−iG·r0 .

Here G′ (G) is the reciprocal lattice vector of the upper (lower)
layer. Note that the translation vector r0 appear in the phase
factor e−iG·r0 only. Since the phase factor does not change
when we replace r0 by r0 + j1a1 + j2a2, we can restrict r0 to
be inside a unit cell of the lower layer.

To simplify the above expression, we use the notation
τ ′κ ′ ≡ τ ′K′ + G′ and τκ ≡ τK + G, and write

〈n,k|Ĥt |n′,k′〉 = eiτK·r0
∑
κ ′κ

δk′−k,τκ−τ ′κ ′ tnn′ (τκ + k)e−iτκ ·r0 .

(5)

Equation (5) is the central result of this paper, closely similar
forms also appear in other works for graphene-related van der
Waals materials [41–45] and our early paper for heterobilayer
TMDs [39]. It implies that the hopping integral between two
Bloch functions in different layers is nonzero only when k′ − k
equals one of the discrete values τκ − τ ′κ ′, as illustrated in
Fig. 1(b). Furthermore we expect tnn′(q) to decay fast with the
increase of |q|, as Dn(r) and Dn′(r) vary smoothly with r and
the integral 〈Dn,R|Ĥt |Dn′,R′ 〉 is generally a smooth function of

R′ − R. Therefore, in the summation
∑

κ ′κ only a few terms
of κ ′ and κ with small magnitudes need to be kept, which
greatly reduces the number of τκ − τ ′κ ′. In Fig. 1(c) we show
three groups of κ . K, Ĉ3K, and Ĉ2

3 K on the thickest circle are
closest to � and are expected to have the most pronounced
|tnn′ |; −2K, −2Ĉ3K, and −2Ĉ2

3 K (κ1,2, Ĉ3κ1,2, and Ĉ2
3κ1,2)

are the second (third) closest to �, and the corresponding |tnn′ |
values are expected to be much weaker.

III. SYMMETRY PROPERTIES OF THE HOPPING TERMS

The monolayer hexagonal lattice structure has both the
2π/3-rotational (Ĉ3) symmetry and the in-plane mirror (σ̂v)
symmetry [see Fig. 1(d)]. The hopping terms tnn′(q) with the
same |q| values but different q directions are related by these
symmetry operations.

A. 2π/3-rotational symmetry

We use Ĉ3 to denote the in-plane counterclockwise 2π
3

rotation around r = 0 when applied on a real space vector
(around � point when applied on a k-space vector). As the τK
point has a high symmetry, i.e., Ĉ3τK = τK + G, the orbital
combination Dn(r) should be Ĉ3 symmetric: Dn(Ĉ3r) =
ei 2π

3 M(n)Dn(r), where the Ĉ3 quantum number M(n) = τM(l)
has opposite value in two valleys because of the time reversal
relation. M(l) = {0, ± 1} as a function of the band index l is
summarized in Table I. Then the hopping integral satisfies

Tnn′ (Ĉ3R′ − Ĉ3R)

=
∫

D∗
n(r − Ĉ3R)ĤtDn′(r − Ĉ3R′)dr

=
∫

D∗
n(Ĉ3r − Ĉ3R)ĤtDn′(Ĉ3r − Ĉ3R′)dr

= ei 2π
3 [M(n′)−M(n)]Tnn′ (R′ − R).

With the equation above, applying Fourier transformation to
Tnn′ (r) results in

tnn′ (Ĉ3q) = 1√
��′

∫
Tnn′ (r)eiĈ3q·rdr

= 1√
��′

∫
Tnn′ (Ĉ3r)eiĈ3q·Ĉ3rdr

= ei 2π
3 [M(n′)−M(n)]tnn′ (q). (6)

In the last step in Eq. (6), we have used the relation Ĉ3q · Ĉ3r =
q · r.

B. In-plane mirror symmetry

We use σ̂v to denote the mirror reflection operation on
a real space vector r = (rx,ry) over the vertical yz plane,
i.e., σ̂vr = (−rx,ry), or on a wave vector q = (qx,qy) as
σ̂vq = (−qx,qy). Obviously σ̂vK = −K, thus under the mirror
reflection ψτ,0,n(σ̂vr) = ψ−τ,0,n(r) = ψ∗

τ,0,n(r), where the last
step comes from the time reversal relation between the two
valleys. Together with Eq. (1), the local wave function Dn(r −
R) satisfies the property Dn(σ̂vr − σ̂vR) = D∗

n(r − R). When
both the upper and lower layer have the yz-plane mirror
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symmetry, i.e., R stacking (θ = 0◦) or H stacking (θ = 60◦),
one gets

Tnn′ (σ̂vR′ − σ̂vR)

=
∫

D∗
n(r − σ̂vR)ĤtDn′(r − σ̂vR′)dr

=
∫

D∗
n(σ̂vr − σ̂vR)ĤtDn′(σ̂vr − σ̂vR′)dr

= T ∗
nn′ (R′ − R).

A Fourier transformation of Tnn′ (r) results in

tnn′ (σ̂vq) = 1√
��′

∫
Tnn′ (r)eiσ̂vq·rdr

= 1√
��′

∫
Tnn′ (σ̂vr)eiσ̂vq·σ̂vrdr

= t∗nn′(−q). (7)

In the last step in Eq. (7), we have used the relation σ̂vq · σ̂vr =
q · r. Therefore, tnn′ (q) is real when qy = 0 in an R-type or
H-type bilayer.

IV. ±K-VALLEY COUPLING STRENGTH IN H- AND
R-TYPE HOMOBILAYERS

In homobilayer TMDs, the conduction and valence bands
of the structures will be twofold degenerate at τK point
(without considering the spin-orbit coupling) if there is no
interlayer coupling, i.e., Ec+j = Ec′+j , Ev−j = Ev′−j , with
j = 0,1,2, . . . . The presence of the interlayer coupling will
cause a finite energy level splitting 	Ec(v), which contains the
information of the hopping terms tnn′ (q).

We consider R-type (θ = 0◦) or H-type (θ = 60◦) TMD
homobilayer structures with varying r0. As the two layers are
fully commensurate, the interlayer hopping between τK in the
lower layer and τ ′K′ in the upper layer is allowed when τ ′ = τ

for R stacking, and τ ′ = −τ for H stacking. To simplify the
notation, we write |n′〉 ≡ |n′,0〉 and |n〉 ≡ |n,0〉. Using Eqs. (6)
and (7), the hopping integral of Eq. (5) between τK and τ ′K′
can be written as

e−iτK·r0〈n|Ĥt |n′〉 =
∑

κ

tnn′ (τκ)e−iτκ ·r0

≈(
e−iτK·r0 + e−iτ Ĉ3K·r0ei 2π

3 [M(n′)−M(n)]

+ e−iτ Ĉ2
3 K·r0ei 4π

3 [M(n′)−M(n)]
)
t

(0)
nn′

+ (
e2iτK·r0 + e2iτ Ĉ3K·r0ei 2π

3 [M(n′)−M(n)]

+ e2iτ Ĉ2
3 K·r0ei 4π

3 [M(n′)−M(n)])t (1)
nn′

+ (
e−iτκ1·r0 + e−iτ Ĉ3κ1·r0ei 2π

3 [M(n′)−M(n)]

+ e−iτ Ĉ2
3 κ1·r0ei 4π

3 [M(n′)−M(n)]
)
t

(2)
nn′

+ (
e−iτκ2·r0 + e−iτ Ĉ3κ2·r0ei 2π

3 [M(n′)−M(n)]

+ e−iτ Ĉ2
3 κ2·r0ei 4π

3 [M(n′)−M(n)])(t (2)
nn′

)∗
. (8)

Here t
(0)
nn′ ≡ tnn′(τK) corresponds to the main hopping term,

t
(1)
nn′ ≡ tnn′ (−2τK) is the first order term, and t

(2)
nn′ ≡ tnn′ (τκ1) =

t∗nn′ (τκ2) is the second order term. Note that t
(0)
nn′ and t

(1)
nn′ are

real due to Eq. (7), while t
(2)
nn′ is complex. We have dropped the

other higher order terms with larger |κ | whose contributions
are expected to be negligible.

Now we analyze the conduction band splitting 	Ec.
Because of the large splitting between two different bands,
the hopping between lower layer c band and upper layer n′
band with n′ 
= c′ can be well accounted by a second-order
perturbation, which results in an energy shift δEc(r0) ≡∑

n′ 
=c′
|〈c|Ĥt |n′〉|2

Ec−En′ to the c band. Similarly, the lower layer
n band with n 
= c results in an energy shift δEc′ (r0) ≡∑

n
=c
|〈c′|Ĥt |n〉|2

Ec′−En
to the c′ band. So in the subspace spanned

by |c′〉 and |c〉, the hopping Hamiltonian has a form

Ĥcc′ = [Ec + δEc(r0)]|c〉〈c| + [Ec + δEc′ (r0)]|c′〉〈c′|
+ 〈c′|Ĥt |c〉|c′〉〈c| + H.c. (9)

	Ec is then given by the energy splitting between the
eigenstates of Ĥcc′ , which is

	Ec =
√

[δEc(r0) − δEc′ (r0)]2 + 4|〈c′|Ĥt |c〉|2. (10)

The same analysis can be applied to the valence bands, which
gives

	Ev =
√

[δEv(r0) − δEv′ (r0)]2 + 4|〈v′|Ĥt |v〉|2, (11)

with δEv(r0) ≡ ∑
n′ 
=v′

|〈v|Ĥt |n′〉|2
Ev−En′ and δEv′ (r0) ≡∑

n
=v
|〈v′|Ĥt |n〉|2

Ev′−En
.

For most of the r0 values, the corresponding R- or H-type
commensurate bilayer structures are unstable and thus do not
exist in nature. However, these structures can locally exist in an
incommensurate bilayer with a large scale moiré superlattice
pattern [39,40,46]. In a local region with a size much larger
than the monolayer lattice constant but much smaller than the
moiré supercell, the atomic registry between the two layers is
locally indistinguishable from an R- or H-type commensurate
bilayer, which is characterized by a continuously varying r0.
The local band structure of this region is then given by that
of the commensurate bilayer with the corresponding r0 value
[39,40,46]. As r0 varies from position to position in a moiré
supercell, the r0-dependent conduction/valence band energy
shifts δEc/v(r0) can be responsible for the observed position-
dependent local band gap modulation [46].

A. H-type homobilayer

For H-type stacking, the two states with finite hopping
strength in different layers have the opposite valley indices
τ = −τ ′. Using Eq. (8) together with the M(n) values given in
Table I, we find δEc(r0) = δEc′(r0) and δEv(r0) = δEv′ (r0).
This can be understood from the symmetry consideration. As
shown in Fig. 2(a), an H-type homobilayer with an arbitrary r0

has a spatial inversion center, which means the two layers are
symmetric. So δEc/v(r0), the lower layer conduction/valence
band energy shift induced by the remote bands in the upper
layer, is always equivalent to δEc′/v′(r0) which is the upper
layer energy shift induced by the lower layer. The band
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FIG. 2. (a) An H-type TMD homobilayer with any interlayer
translation r0 always has an inversion center I . Here the large red
(blue) dots denote the metal atoms in the upper (lower) layer, and the
small orange (green) dots denote the chalcogen atoms in the upper
(lower) layer. (b) The ab initio results for 	Ec/v as functions of r0. (c)
2D plots showing the 	Ec/v line cuts along dashed green lines in (b),
where the symbols are the ab initio results and the solid curves are the
fits using t

(0)
cc′/vv′ , t

(1)
cc′/vv′ , and t

(2)
cc′/vv′ . The dashed curves are the results

keeping only the main terms t
(0)
cc′/vv′ . The natural TMD homobilayers

with AB stacking correspond to r0 = (a1 + a2)/3.

splittings are then simply given by

	Ec = 2|〈c′|Ĥt |c〉|, 	Ev = 2|〈v′|Ĥt |v〉|. (12)

We have performed ab initio calculations for the band struc-
tures of MoS2 H-type homobilayers with different r0. For each
given r0, we fix the interlayer distance defined as the vertical
distance between the nearest chalcogen atoms of neighboring
layers at d = 2.975 Å (the experimental bulk value [47]),
and the other lattice parameters are taken from Ref. [48].
The energy splitting values 	Ec/v are calculated with the
projector-augmented wave (PAW) method implemented in
the QUANTUM ESPRESSO package [49]. The Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional and scalar
relativistic pseudopotential without including the spin-orbit
coupling has been exploited, and the cutoff energy for plane
wave basis is set as 80 Ry. A 15 × 15 × 1 k-point sample
is generated by the Monkhorst-Pack (MP) approach, and the
self-consistent ground state is achieved with the total energy
converge criteria 10−10 Ry.

The calculation results are presented in Fig. 2(b) as surface
plots. In the 2D plot of Fig. 2(c) with r0 along the long
diagonal line of the unit cell, we show both the ab initio
results (symbols) and the corresponding fits (solid lines) using
Eqs. (12) and (8) by keeping the t

(0)
cc′/vv′ , t

(1)
cc′/vv′ , and t

(2)
cc′/vv′

hopping terms. The two show excellent agreement. The dashed
lines are the results keeping only the main hopping terms
t

(0)
cc′/vv′ , which can already reproduce the major features. Thus

those tnn′ (τκ) with larger |τκ | are indeed negligible. The fitting
parameters are summarized in Table II, which give |t (0)

cc′ | �
|t (1)

cc′ |,|t (2)
cc′ | and |t (0)

vv′ | � |t (1)
vv′ |,|t (2)

vv′ | as we expected. So in H-type
commensurate bilayers, it is a good approximation to write the
K-point conduction/valence band interlayer couplings in the

TABLE II. The obtained hopping strengths for the H-type
homobilayer MoS2 from fitting to the ab initio results of band
splitting. The main hopping term t

(0)
vv′ is consistent with our previous

result [39].

t
(0)
cc′ t

(1)
cc′

∣∣t (2)
cc′

∣∣ t
(0)
vv′ t

(1)
vv′

∣∣t (2)
vv′

∣∣
2.1 meV 0.4 meV 0.1 meV 14.4 meV 1.2 meV 0.4 meV

forms

|〈c|Ĥt |c′〉H | ≈ ∣∣eiK·r0 + eiĈ3K·r0 + eiĈ2
3 K·r0

∣∣t (0)
cc′ ,

|〈v|Ĥt |v′〉H | ≈ ∣∣eiK·r0 + ei(Ĉ3K·r0+ 2π
3 ) + ei(Ĉ2

3 K·r0+ 4π
3 )

∣∣t (0)
vv′ .

(13)

The above equations should also apply to H-type commensu-
rate heterobilayers. Similar forms have been obtained in early
papers [39,42,45,50]. Here we would like to point out that
in these interlayer coupling forms the e±i2π/3 phase factors
have different origins for bilayer TMD and graphene systems.
In bilayer TMDs it is from the Ĉ3 quantum number M(n)
of the atomic orbital combination Dn, as clearly indicated
by Eqs. (6) and (8). While in bilayer graphene, it originates
from the displacement vectors between the nearest A and B
sublattice sites.

From the above equations we get t
(0)
cc′ ≈ 	Ec/6 at r0 = 0

and t
(0)
vv′ ≈ 	Ev/6 at r0 = (a1 + a2)/3 for H-type homobilay-

ers.

B. R-type homobilayer

In contrast to the H stacking, the R-type homobilayer is not
inversion symmetric, thus generally the upper and lower layers
are not equivalent. We find δEc(r0) 
= δEc′ (r0) and δEv(r0) 
=
δEv′ (r0) for a general R-type stacking. Only for AA staking
with r0 = 0, which has the out-of-plane mirror reflection (σ̂h)
symmetry [Fig. 3(a)], the two layers become equivalent and
δEc/v(r0 = 0) = δEc′/v′ (r0 = 0).

For R-type stacking, the two states with finite hopping
strength in different layers have the same valley indices τ = τ ′.
Using Eq. (8) together with the M(n) values given in Table I,
we can write the r0 dependence of δEc/v(r0) and δEc′/v′(r0) as

δEc(r0) − δEc′ (r0) ≈ δE(0)
c f (r0),

(14)
δEv(r0) − δEv′ (r0) ≈ δE(0)

v f (r0),

where δE
(0)
c/v are from the main hopping terms:

δE(0)
c ≡

∣∣t (0)
c,v′

∣∣2

Ec − Ev

−
∣∣t (0)

c,c′+1

∣∣2

Ec+1 − Ec

−
∣∣t (0)

c,v′−1

∣∣2

Ec − Ev−1

−
∣∣t (0)

c,v′−3

∣∣2

Ec − Ev−3
+

∣∣t (0)
c,c′+2

∣∣2

Ec+2 − Ec

+
∣∣t (0)

c,c′+3

∣∣2

Ec+3 − Ec

· · · ,

(15)

δE(0)
v ≡

∣∣t (0)
v,v′−1

∣∣2

Ev − Ev−1
+

∣∣t (0)
v,v′−3

∣∣2

Ev − Ev−3
−

∣∣t (0)
v,c′+2

∣∣2

Ec+2 − Ev

−
∣∣t (0)

v,c′+3

∣∣2

Ec+3 − Ev

+
∣∣t (0)

v,c′
∣∣2

Ec − Ev

−
∣∣t (0)

v,v′−2

∣∣2

Ev − Ev−2
· · · ,
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FIG. 3. (a) An AA-type TMD homobilayer has an out-of-plane
mirror reflection (σ̂h) symmetry. (b) The ab initio results for 	Ec/v as
functions of r0 for R-type homobilayer MoS2. (c) 2D plots showing
the 	Ec/v line cuts along dashed green lines in (b), where the symbols
are the ab initio results and the solid curves are the fits using δE

(0)
c/v ,

t
(0)
cc′/vv′ , and t

(1)
cc′/vv′ . The dashed curves are the results keeping only the

main hopping terms δE
(0)
c/v and t

(0)
cc′/vv′ .

and other higher order terms are ignored. So for R-type
homobilayer TMDs, the conduction/valence band splitting has
a form

	Ec =
√(

δE
(0)
c f (r0)

)2 + 4|〈c′|Ĥt |c〉|2,
(16)

	Ev =
√(

δE
(0)
v f (r0)

)2 + 4|〈v′|Ĥt |v〉|2,
where

f (r0) ≡∣∣eiK·r0 + ei(Ĉ3K·r0+ 2π
3 ) + ei(Ĉ2

3 K·r0+ 4π
3 )

∣∣2

− ∣∣eiK·r0 + ei(Ĉ3K·r0− 2π
3 ) + ei(Ĉ2

3 K·r0− 4π
3 )

∣∣2
.

For r0 = 0, f (r0) = 0 and 	Ec = 2|〈c′|Ĥt |c〉|, 	Ev =
2|〈v′|Ĥt |v〉|, which agrees with our symmetry analysis that
the two layers of AA stacking are related by σ̂h and thus
are equivalent. On the other hand, 〈c′|Ĥt |c〉 = 〈v′|Ĥt |v〉 = 0
for r0 = ± a1+a2

3 , which leads to 	Ec = 9|δE(0)
c | and 	Ev =

9|δE(0)
v |.

We have also performed ab initio calculations for 	Ec/v in
MoS2 R-type homobilayers with different r0. The calculation
details are the same as in the H-type case, and the results are
presented in Fig. 3(b). Once gain we show both the ab initio
results (symbols) and the corresponding fits (solid lines) using
Eqs. (16) and (8) in Fig. 3(c) with r0 along the long diagonal
line of the unit cell. Keeping only the main hopping terms
δE

(0)
c/v and t

(0)
cc′/vv′ (dashed lines) can already reproduce the

major features, whereas the fits using δE
(0)
c/v , t (0)

cc′/vv′ , and t
(1)
cc′/vv′

terms (solid lines) agree almost perfectly with the ab initio
results. The fitting parameters are summarized in Table III. As
a good approximation, the K point conduction/valence band
interlayer hoppings in R-type commensurate bilayers take the
forms

|〈c|Ĥt |c′〉R| ≈ ∣∣eiK·r0 + eiĈ3K·r0 + eiĈ2
3 K·r0

∣∣t (0)
cc′ ,

|〈v|Ĥt |v′〉R| ≈ ∣∣eiK·r0 + eiĈ3K·r0 + eiĈ2
3 K·r0

∣∣t (0)
vv′ . (17)

TABLE III. The obtained hopping strengths for the R-type
homobilayer MoS2 from fitting to the ab initio results of band
splitting. The main hopping term t

(0)
vv′ is consistent with our previous

result [39].

∣∣δE(0)
c

∣∣ t
(0)
cc′ t

(1)
cc′

∣∣δE(0)
v

∣∣ t
(0)
vv′ t

(1)
vv′

6.3 meV 2.1 meV 0.6 meV 7.5 meV 14.5 meV 1.6 meV

The equations above also apply to R-type commensurate
heterobilayers. Similar forms have been obtained in early
papers [39,42,45,50].

From the above equations, we get t
(0)
cc′ ≈ 	Ec/6 and t

(0)
vv′ ≈

	Ev/6 at r0 = 0 for R stacking.

C. Variation of coupling strength with interlayer distance

As shown in both the theoretical analysis above and the
good fit results in Figs. 2(c) and 3(c), t

(j )
nn′ does not directly

depend on the interlayer translation r0. However, t
(j )
nn′ should

sensitively depend on the interlayer distance d, the equilibrium
value of which varies in a large range depending on the
stacking pattern in R- or H-type commensurate bilayers
characterized by r0 [32,33]. A recent scanning tunneling
microscopy/spectroscopy experiment has shown that in a
single heterobilayer structure with the formation of large scale
moiré superlattice, d can vary from position to position due to
the variation of local stacking patterns [46].

We have calculated these 	Ec/v as functions of d,
which can be well fitted by exponential functions 	En(d) =
	E0,ne

−d/dn . Here 	E0,c = 1.96 eV, dc = 0.62 Å and
	E0,v = 14.4 eV, dv = 0.59 Å for R stacking, 	E0,c =
1.77 eV, dc = 0.63 Å and 	E0,v = 12.7 eV, dv = 0.61 Å for
H stacking.

Considering the similarity of the d orbitals of Mo and
W atoms, the hopping strengths for the homobilayers shall
provide reasonable estimations to those in the TMD heter-
obilayers. However, in heterobilayers the ±K valleys have
much larger conduction/valence band offsets, which leads to
negligible layer mixing [51,52]. For example, in MoS2/WSe2

heterobilayer, the ±K-valley valence (conduction) band offset
is found to be 0.83 eV (0.76 eV) [51]. While in MoSe2/WSe2

heterobilayer, the valence band offset is 0.3 eV [52]. These
values are all much larger than the ±K valley coupling
strengths which are on the order of several tens of meV.
Thus unlike the homobilayers where tcc′/vv′ should be treated
nonperturbatively, in heterobilayers all tcn′/vn′ hopping terms
can be treated perturbatively.

D. Interlayer coupling strengths of other bands

Just like the c and v bands, the band splitting values
	Ec+j (	Ev−j ) of other bands in an AA-type homobilayer
give the corresponding interlayer coupling strengths t

(0)
c+j,c′+j

(t (0)
v−j,v′−j ). We show the band structure of an AA-type

homobilayer MoS2 in Fig. 4(c). The extracted 	En for n from
c + 3 to v − 3 are summarized in Table IV. Note that some
bands have much larger interlayer coupling than those of the
c and v bands, which could be related to their larger p-orbital
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FIG. 4. (a) The solid dots are our ab initio results of conduc-
tion/valence band splitting at K point for MoS2 R-type homobilayers
with r0 = 0 (AA stacking) as functions of interlayer distance d

(defined as the vertical distance between the nearest chalcogen atoms
of neighboring layers). The solid curves are the exponential fits. These
results are also presented in Ref. [39]. The vertical dashed lines show
the numerical values of interlayer distance for AB (3.0 Å) and AA
(3.6 Å) homobilayer MoS2, adopted from Ref. [32]. (b) The case
for MoS2 H-type homobilayers. 	Ec is for r0 = 0, while 	Ev is for
r0 = (a1 + a2)/3 (AB stacking). (c) The ab initio band structure of
an AA-type MoS2 homobilayer without spin-orbit coupling, where
the band splittings 	En can be clearly seen. The interlayer distance
is set as dAA = 3.72 Å, and the other calculation details are the same
as those in Figs. 2 and 3.

proportions in the corresponding orbital combinations Dn (see
Table I). It is then natural to expect that the hopping terms t

(0)
cn′

(t (0)
vn′) between the remote band n′ and the conduction band c

(valence band v) are much larger than t
(0)
cc′ (t (0)

vv′), which can
lead to a large range modulation of the c and v band energy
with r0. This is consistent with the observed ∼0.1 eV band
gap modulation in a TMD heterobilayer [46].

TABLE IV. The band splittings 	En (in unit of meV) for n from
c + 3 to v − 3 extracted from Fig. 4(c).

c + 3 c + 2 c + 1 c v v − 1 v − 2 v − 3

183 206 203 5 27 265 67 193

V. TWISTED OR LATTICE-MISMATCHED BILAYER
STRUCTURES AND MOIRÉ PATTERNS

The interlayer couplings in twisted or lattice-mismatched
bilayers can also be described by Eq. (5). Note that the local
atomic orbital Dn′(r) in the upper layer is rotated by the
interlayer twist angle θ with respect to Dn(r) in the lower
layer. So in principle the corresponding hopping term tnn′

for θ 
= 0◦ and 60◦ should be different from those given in
the previous discussion of H-type or R-type commensurate
bilayers. However, when considering the cases with close to
0◦ or 60◦ twist angle, it is a good approximation to replace tnn′

by those of the H-type or R-type commensurate bilayers.
A twisted or lattice-mismatched bilayer can still be com-

mensurate under special conditions, i.e., the two layers form a
periodic superlattice structure with the supercell size larger
than the monolayer unit cell. As the commensurability is
irrelevant to the interlayer translation, we assume a metal atom
in the upper layer horizontally overlaps with a metal atom in the
lower layer at the xy-plane origin. In the commensurate case,
the bilayer supercell is then given by the smallest rhombus
with its four vertices located at the overlapping metal atoms,
as shown in Fig. 5(a). Notice that in k space, τκ in the

FIG. 5. (a) The real space atomic registry of a lattice-matched
commensurate bilayer with θ = 21.8◦ twist angle. The solid blue
(empty red) dots denote the metal atoms in the lower (upper) layer,
with a1,2 (a′

1,2) the corresponding unit lattice vectors. The rhombus
corresponds to a supercell, with its four vertices located at 0, A1, A2,
and A1 + A2, where two metal atoms in opposite layers horizontally
overlap. (b) The corresponding k-space configurations of the two
layers. The solid blue (red) dots correspond to κ (−κ) in the lower
layer, and the empty blue (red) dots correspond to κ ′ (−κ ′) in the
upper layer. The six overlapping (τκ,τ ′κ ′) pairs on the third smallest
green circle form a hexagon (dashed lines). The k-space hexagon
corner κov (κ ′

ov) corresponds to A1 (A2) in the real space. (c) and
(d) Another commensurate bilayer with twist angle θ = 27.8◦ with
larger supercell size and |κov|.
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lower layer overlaps with τ ′κ ′ in the upper layer at certain
positions κov, which means τK and τ ′K′ are coupled through
the interlayer hopping tnn′ (κov) [see Eq. (5)]. Interestingly,
there is one-to-one correspondence between the superlattice
unit vector A1,2 and κov such that |κov| = 4π

3aa′ |A1,2|, as shown
in Fig. 5(b). So larger supercell size corresponds to larger |κov|
and thus smaller coupling strength |tnn′(κov)| between τK and
τ ′K′, which agrees with the findings in a recent work [31]. In
fact, in a twisted or lattice-mismatched commensurate bilayer,
κov always corresponds to second or higher order hopping
terms t

(j )
nn′ (j � 2), which are negligibly small compared to the

main terms t
(0)
nn′ .

Away from the band edges τK and τ ′K′, the interlayer
coupling can be significant. We can always find small wave
vectors k′ and k where k′ − k equals to τK − τ ′K′ or
τ Ĉ3K − τ ′Ĉ3K′ or τ Ĉ2

3 K − τ ′Ĉ2
3 K′. According to Eq. (5), the

coupling between τK + k and τ ′K′ + k′ is then ∼t
(0)
nn′ , which

corresponds to the main hopping term. Note that such coupling
terms are insensitive to whether the bilayer is commensurate
or not. As discussed above, in a twisted or lattice-mismatched
bilayer the commensurability only introduces direct coupling
between the two band edges τK and τ ′K′, with a negligibly
small coupling strength.

The interlayer coupling between τK + k and τ ′K′ + k′
discussed above is especially important for bilayers with τK
and τ ′K′ close to each other, in which |k| and |k′| can be
small enough that low energy carriers in different layers are
efficiently coupled. On the other hand, it is known that in such
a bilayer with |τK − τ ′K′|  4π/3a, a moiré superlattice
pattern with large scale periodicity will form [14–16,30,50], as
shown in Fig. 6(a). Below we show that the moiré superlattice
picture is fully consistent with our theoretical analysis in
Sec. II.

We note that the moiré pattern is not a rigorous periodic
structure but a good approximation, whose emergence can be
understood as follows. Any quantity involving the periodicity
of both layers [e.g., ψ∗

n,kψn′,k′ which appears in the hopping
integral in Eq. (3)] can be written as the sum of all ei(G−G′)·r
terms by a Fourier transformation. Here G = j1b1 + j2b2

(G′ = j ′
1b′

1 + j ′
2b′

2) are the lower (upper) layer reciprocal
lattice vectors, with b1,2 (b′

1,2) the corresponding primitive
reciprocal lattice vectors and j1,2, j ′

1,2 integers. Those terms
with large |G| or |G′| are related to the fast oscillating
components in ψn,k or ψn′,k′ with periods much smaller
than the lattice constant, and can be dropped. Then the
remaining slowly oscillating terms always have G − G′ =
j1(b1 − b′

1) + j2(b2 − b′
2). Thus the large scale moiré period

is characterized by the primitive reciprocal lattice vectors
B1 ≡ b1 − b′

1 and B2 ≡ b2 − b′
2. The above analysis requires

|B1,2| ≈ 4π√
3a

√
δ2 + δθ2  4π√

3a
, with δ = a/a′ − 1 and δθ the

twist angle deviation to 0 or π/3. The moiré superlattice
constant is then A ≈ a/

√
δ2 + δθ2 � a, with |δ|  1 and

|δθ |  1 the prerequisites for the existence of a moiré pattern.
The moiré superlattice mini Brillouin zone (BZ) has its

corners located at τK − τ ′K′ and its π/3 rotations [see
Fig. 6(b)][42,50,53]. The mini BZ forms a complete basis in k
space for the bilayer structure. Inside the mini BZ, the original
monolayer bands are folded into a series of closely spaced mini

FIG. 6. (a) A typical hexagonal bilayer moiré pattern with lattice
constant mismatch δ = 0.05 and twist angle θ = 9◦. (b) The mono-
layer BZs (solid blue and red hexagons) and the moiré superlattice
mini BZ (dashed black hexagon). (c) The band dispersions of two 1D
systems (denoted as blue and red colors). Only those near the band
edges located at b/2 and b′/2 are shown. The double arrows indicate
the t(jb + b/2 + k) hopping terms with j = 0, ± 1 [Eq. (19)], and
the arrow thickness corresponds to the hopping strength. (d) The
corresponding interlayer hopping terms (double arrows) between
different mini bands in the 1D moiré mini BZ.

bands, and a state with wave vector k in one layer can hop to
various mini bands in the other layer with the same k. We note
that for small |κ | and |κ ′|, the delta function in Eq. (5) can
be written as δk−k′,τκ−τ ′κ ′ = δ(τK+k)−(τ ′K′+k′),j1B1+j2B2 , which
is just the momentum conservation condition in the mini BZ
picture. The effect of the interlayer coupling is to open gaps
between the mini bands.

For convenience we use two 1D systems to illustrate the
correspondence between the individual BZs and the moiré mini
BZ in Figs. 6(c) and 6(d). The band edges of the individual
1D systems are assumed to be located at b/2 and b′/2, where
b and b′ are the primitive reciprocal lattice vectors of the
corresponding systems and |b′ − b|  |b|. Following Eq. (2)
the Bloch states can be written as

ψb/2+k(r) = 1√
N

∑
R

ei(b/2+k)·RD(r − R),

ψb′/2+k′ (r) = 1√
N ′

∑
R′

ei(b′/2+k′)·R′
D(r − R′). (18)

Here D(r − R) is the atomic orbital combination localized
near R. Analogous to Eq. (5), we write the hopping integral
between the two 1D systems as

∫
ψ∗

b/2+k(r)Ĥtψb′/2+k′ (r)dr

=
∑
jj ′

δ(j+ 1
2 )b+k,(j ′+ 1

2 )b′+k′ t(jb + b/2 + k)e−ijb·r0 . (19)
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Here t(jb + b/2 + k) with j = 0, ± 1, . . . are the Fourier
transformations of the hopping integral between the two
localized orbitals, which are indicated as double arrows near
(j + 1/2)b in Fig. 6(c). These terms with different j have
one-to-one correspondence with those between different mini
bands in the moiré mini BZ, as shown in Fig. 6(d).

Although the individual BZ picture is equivalent to the
moiré mini BZ as discussed above, we find that it is more
convenient to extract the hopping strength using the former
picture. Considering that the magnitude of t(q) decays fast
with the increase of |q|, in the individual BZ picture we can
just focus on the hopping terms t(q) with q inside the first BZs.
Whereas in the moiré mini BZ picture we cannot directly get
which two mini bands have a strong hopping strength.

On the other hand, a local picture becomes more convenient
for describing large scale moiré superlattices [39,40,46]. We
can consider a local region with a size much larger than
the monolayer unit cell, but at the same time much smaller
than the moiré supercell. The corresponding atomic registry is
locally indistinguishable from an R- or H-type commensurate
bilayer, thus we can discuss its local band structure which
is given by that of the corresponding commensurate bilayer.
Different local regions are characterized by different r0, which
results in a periodic modulation of the local band structure. In
TMD heterobilayers where the ±K valleys have negligible
layer mixing, the interlayer coupling appears as a local band
structure modulation, which is equivalent to applying band-
dependent external superlattice potentials on two decoupled
layers [40].

VI. INTERLAYER COUPLING IN �v AND Qc VALLEYS

In 2H homobilayer TMDs, the �v and Qc energies are
strongly shifted away from the corresponding monolayer
positions as evidenced by the photoluminescence and ARPES
measurements [32,33,54], which is a signature of the strong
interlayer coupling near these positions [5]. Here �v denotes
the � point of valence band, and Qc denotes the six conduction
band extrema near the middle of the �-τK lines [Fig. 7(a)].
From the ab initio results of homobilayer band structures, we
estimate that the interlayer hopping strengths in the �v and Qc

valleys are on the order of several hundred meV [Fig. 7(b)].
Note that all Qc points are located on a ring with radius ∼

|K|/2 [Fig. 7(a)], while Fig. 7(b) indicates a strong interlayer
coupling near the conduction band M/2 point (the middle
of the �-M line). Thus we speculate that all conduction
band k points on this ring have strong interlayer couplings.
Furthermore, for an arbitrary interlayer twist angle, the �

positions are not affected and the Qc valleys are always on
this ring. Therefore, we expect that the interlayer twist does
not change the strong coupling nature of �v and Qc valleys.

We have also calculated the band splitting 	E� (	EQ)
at �v (Qc) point for AA-type MoS2/WS2 heterobilayers,
which is found to depend sensitively on the interlayer distance
d. The band splitting can be approximated as 	E�/Q =√

(	E0,�/Q)2 + 4t2
�/Q , when ignoring the coupling with other

bands. For a large enough d, i.e., under the vanishing interlayer
coupling limit, the interlayer hopping strength t�/Q → 0, from
which we get the band offset values 	E0,Q = 0.3 eV and

FIG. 7. (a) The red and blue pockets illustrate the energy contours
of the six Qc valleys. The dashed circle corresponds to a ring-shaped
region with strong conduction band interlayer coupling. (b) The
ab initio band structures of AB and AA homobilayer MoS2 with
interlayer distances dAB = 2.975 Å and dAA = 3.72 Å, respectively.
The spin-orbit coupling is not considered. The band splittings at
�v, Qc, and M/2 are denoted by red arrows. (c) The obtained
interlayer coupling strength at �v and Qc for AA-type MoS2/WS2

heterobilayers. The red (blue) dashed line shows the interlayer band
offset 	E0,� = 0.16 eV (	E0,Q = 0.3 eV).

	E0,� = 0.16 eV. t�/Q for intermediate values of d are then
derived from the relation above and shown in Fig. 7(c).

The �v and Qc valley Bloch functions can be approximated
similar to Eq. (2) for the ±K valley

ψ�,k(r) ≈ 1√
N

∑
R

eik·RD�(r − R),

ψτQj ,k(r) ≈ 1√
N

∑
R

ei(τQj +k)·RDτQ(r − R). (20)

Here we use τQj with τ = ± and j = 1,2,3 to distinguish
the six degenerate but inequivalent Qc [Fig. 7(a)], which are
related by Ĉ3 or time reversal operations. D�(r − R) and
DτQ(r − R) are the linear combinations of atomic orbitals
localized around R for the corresponding valleys. Following
the derivation of Eq. (5), the hopping strength can be written
as

〈�,k|Ĥt |�′,k′〉 ≈ t�(k)δk′,k,

〈τQj ,k|Ĥt |τ ′Q′
j ′ ,k′〉 ≈ tQ(τQj + k)δτ ′Q′

j ′+k′,τQj +k.

In the last step above, we have used the fact that G + k and
τQj + G + k are well outside the monolayer first BZ when
G 
= 0, and the corresponding t�(G + k)eiG·r0 and tQ(τQj +
G + k)eiG·r0 terms have much smaller magnitudes than those
at G = 0 and can be ignored. Thus, unlike the ±K valleys
[Eqs. (13) and (17)] discussed previously, the �v and Qc valley
interlayer couplings are nearly independent of the interlayer
translation r0.

The interlayer coupling strengths of �v and Qc valleys
are comparable to the corresponding band offsets in TMD
heterobilayers [Fig. 7(c)], which is distinct from the ±K
valleys. The strong interlayer couplings of �v and Qc valleys
originate from: (1) the nonignorable pz orbital of chalcogen
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FIG. 8. (a) Schematic illustration of the electron interlayer
charge transfer process in the energy space. The blue (red) curves
are the lower (upper) layer τK (τ ′K′) valley bands, and the purple
curves are the strongly layer mixed �v and Qc valleys. The double
arrow illustrates the optical generation of electron-hole pairs in the
τK valley. The single arrows correspond to the electron relaxation
pathways. (b) The electron interlayer charge transfer process in the
momentum space. The dashed blue (solid red) hexagon is the lower
(upper) layer BZ. The electron can be scattered to three Qc valleys
through emitting a phonon with wave vector M. (c) and (d) Schematic
illustration of the hole interlayer charge transfer.

atoms [5] in D� and DτQ; and (2) the fact that they correspond
to the t(q) Fourier components with |q| < |K|. The resulting
strong layer mixing can play an important role in the interlayer
charge transfer processes of TMD heterobilayers with type-II
band alignments [18–27].

Experiments have found that the charge transfer process
is ultrafast (<50 fs) and independent on the interlayer twist
[18–20], both of which cannot be explained by the weak
interlayer coupling strength of the ±K valleys. Here we
propose the following electron (hole) interlayer charge
transfer mechanism mediated by the Qc (�v) valley. For a
type-II heterobilayer with the conduction (valence) band edge
located at τ ′K′

c (τKv), a high energy electron in τKc valley
can relax to one of the Qc valleys through scattering with
phonons, other carriers, or impurities/defects. As Qc valleys
are strongly layer mixed, this electron can further relax to the
τ ′K′

c valley, as shown in Figs. 8(a) and 8(b). A high energy
hole in τ ′K′

v can relax to the strongly layer mixed �v valley
and then to τKv, see Figs. 8(c) and 8(d). We expect that such
interlayer charge transfer rate is close to the ±K valley carrier
relaxation rate in few-layer or bulk TMDs, since they both
involve intervalley relaxation from ±K to Qc or �v. Actually
the measured intervalley relaxation time in few-layer MoS2

is ∼20 fs [55], which indeed agrees well with the interlayer
charge transfer time (<50 fs) in heterobilayer TMDs [18–20].

DFT calculations suggest that electrons in Kc valley couple
strongly with LA and A′

1 phonons with wave vectors in the

vicinity of M [56], which leads to scatterings between Kc and
−Q1,2,3 valleys. On the other hand, holes in Kv valley couple
strongly with TA phonons with wave vectors in the vicinity of
−K [57], which leads to scatterings between Kv and �v val-
leys. Using the Fermi golden rule, we can estimate the phonon
emission assisted electron/hole intervalley scattering rates as

1

τe
= 2π

h̄

∑
q

|ge,q|2
N

δ(Ec,Q,q + h̄ω − Ec,K),

1

τh
= 2π

h̄

∑
q

|gh,q|2
N

δ(Ev,�,q − h̄ω − Ev,K′ ). (21)

Here 1√
N

ge/h,q are the electron-phonon coupling matrix
elements with N the lattice number. In monolayer MoS2,
DFT calculation gives g0

e,q ∼ 0.11 eV (0.08 eV) for LA
(A′

1) phonons with wave vectors in the vicinity of M [56],
and g0

h,q ∼ 0.1 eV for TA phonons with wave vectors in the
vicinity of −K′ [57]. From the interlayer coupling strength and
band offset values given in Fig. 7(c), we assume 20% (50%) of
the involved Qc (�v) valley in the heterobilayer is in the layer
of the initial K electron (K′ hole), which then leads to ge,q ∼√

0.2g0
e,q (gh,q ∼ √

0.5g0
h,q). We also use the effective mass

approximation for the band dispersions Ec,Q,q ≈ Ec,Q + h̄2q2

2m∗
Q

and Ev,�,q ≈ Ev,� − h̄2q2

2m∗
�

. Using the value m∗
Q ∼ m0 [2], and

taking into account both the LA, A′
1 phonons, and the three

possible pathways shown in Fig. 8(b), we get τe ∼ 50 fs. For
the hole we use m∗

� ∼ 2m0 [2], which results in τh ∼ 50 fs.
They agree well with the experimental value (<50 fs) for the
interlayer charge transfer process [18–20].

The interlayer charge transfer mechanism proposed above is
also consistent with the insensitivity to the interlayer twist, be-
cause the strong layer mixing nature of �v and Qc valleys is not
affected. This is obvious for �v, where the interlayer coupling
strength and band offset are not affected by the twist angle. For
Qc valleys, they are always on the ring region with strong inter-
layer coupling for any twist angle. Meanwhile, considering the
large Qc valley effective mass in the direction perpendicular
to the �-τK line [2], the twist angle does not change the
interlayer band offset much. Therefore the strong layer mixing
of Qc valleys are unaffected by the interlayer twist. For TMD
heterobilayers with arbitrary stacking, the interlayer charge
transfer can efficiently happen through emitting two intralayer
phonons, one in the upper layer and the other in the lower layer.

VII. CONCLUSION

In conclusion, the interlayer couplings in ±K, �v, and Qc

valleys of commensurate and incommensurate TMD bilayer
structures are studied. The coupling strengths in ±K valleys
depend sensitively on the interlayer translation for R- and H-
type commensurate bilayers, which can explain the observed
band gap modulation in TMD heterobilayers with large scale
moiré pattern. The coupling strengths for �v and Qc valleys are
huge and insensitive to both the interlayer translation and twist
angle. The resulted strong layer mixing of �v and Qc can medi-
ate the twist-insensitive and ultrafast interlayer charge transfer
in TMD heterobilayers. We expect that the results presented
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in this paper would be meaningful and illuminating for further
exploring the rich physics and potential applications in various
commensurate and incommensurate TMD bilayer structures.
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