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ABSTRACT: 

 
Double-pulsed diffusional kurtosis imaging (DP-DKI) represents the double diffusion encoding 

(DDE) MRI signal in terms of six-dimensional (6D) diffusion and kurtosis tensors. Here a 

method for estimating these tensors from experimental data is described. A standard numerical 

algorithm for tensor estimation from conventional (i.e., single diffusion encoding) diffusional 

kurtosis imaging (DKI) data is generalized to DP-DKI. This algorithm is based on a weighted 

least squares (WLS) fit of the signal model to the data combined with constraints designed to 

minimize unphysical parameter estimates. The numerical algorithm then takes the form of a 

quadratic programming problem. The principal change required to adapt the conventional DKI 

fitting algorithm to DP-DKI is replacing the three-dimensional diffusion and kurtosis tensors 

with the 6D tensors needed for DP-DKI. In this way, the 6D diffusion and kurtosis tensors for 

DP-DKI can be conveniently estimated from DDE data by using constrained WLS, providing a 

practical means for condensing DDE measurements into well-defined mathematical constructs 

that may be useful for interpreting and applying DDE MRI. Data from healthy volunteers for 

brain are used to demonstrate the DP-DKI tensor estimation algorithm. In particular, 

representative parametric maps of selected tensor-derived rotational invariants are presented.  

 

Keywords: double diffusion encoding, kurtosis, microscopic diffusion anisotropy, tensor, least 

squares, brain, DKI, MRI 

 

Abbreviations used: DDE, double diffusion encoding; DP-DKI, double pulsed diffusional 

kurtosis imaging; DKI, diffusional kurtosis imaging; dMRI, diffusion MRI; DTI, diffusion tensor 

imaging; DWI, diffusion weighted image; FA3D, fractional anisotropy for three-dimensional 

diffusion tensor; FA6D, fractional anisotropy for six-dimensional diffusion tensor; KFA3D, 

kurtosis fractional anisotropy for three-dimensional kurtosis tensor; KFA6D, kurtosis fractional 

anisotropy for six-dimensional kurtosis tensor; MGC, multiple Gaussian compartment; ROI, 

region of interest; SDE, single diffusion encoding; 6D, six-dimensional; 3D, three-dimensional; 

WLS, weighted least squares; μFA, microscopic fractional anisotropy. 
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INTRODUCTION 

 Double diffusion encoding (DDE) MRI is an emerging technique that differs from 

conventional single diffusion encoding (SDE) MRI by utilizing two diffusion wave vectors (or q-

vectors) per signal excitation rather than just one (1,2). This allows additional information 

regarding the water diffusion dynamics to be obtained that relates to the conditional probability 

of a first diffusion displacement being followed by a second diffusion displacement, to which 

SDE MRI is completely insensitive. As a consequence, several rotationally invariant diffusion 

metrics may be derived with DDE MRI, which are impossible to measure with SDE MRI (3-7). 

Some of these pertain to microscopic diffusion anisotropy, which may be large even in tissues 

for which macroscopic measures, such as the fractional anisotropy, are small or vanish.  

 Most prior studies applying DDE MRI have employed either phantoms or biological 

specimens in order to develop and validate this method (1,4,8,9), although application to in vivo 

brain has been reported in several recent studies (5-7,10,11). Most of these have focused on the 

technical aspects of DDE MRI, reflecting the challenges associated with this approach. However, 

Lawrenz and coworkers (11) report that one index of microscopic diffusion anisotropy is more 

sensitive in detecting differences in brain tissue microstructure related to aging than the 

conventional fractional anisotropy obtained with SDE MRI. The feasibility of utilizing DDE 

MRI for human imaging is expected to increase in the coming years with the growing 

availability of clinical scanners with gradient strengths of 80 mT/m and higher (5). 

 For SDE MRI, the cumulant expansion provides a natural approach for representing the 

diffusion-weighted signal and is the basis for commonly used analysis methods, including 

diffusion tensor imaging (DTI) (13) and diffusional kurtosis imaging (DKI) (14,15). The 

extension of the cumulant expansion to DDE MRI was first considered by Jespersen and Buhl 

(16,17). This leads to a series for the logarithm of the DDE signal in terms of powers of the two 

q-vectors. With mild assumptions, this series contains only even order terms. In order to 

accommodate diffusion anisotropy, each term of the series involves tensors, which encapsulate 

the essential diffusion information that can be gleaned from DDE. The leading (second order) 

term includes two tensors―the conventional diffusion tensor and a displacement correlation 

tensor (16). The next term is of fourth order and is composed of three tensors, the conventional 

kurtosis tensor together with two tensors that encode information unique to DDE (17). In this 

way, DDE MRI data can be systematically distilled into well-defined mathematical constructs. In 
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principle, the cumulant expansion approach is only applicable when the diffusion weighting is 

not too strong, but as experience with SDE suggests, it is likely to be relevant for many 

experiments of practical interest.  

 Recently, it has been shown that the cumulant expansion for DDE can be reformulated in 

terms of six-dimensional (6D) tensors (5,7,18). This simplifies the expansion considerably in that 

only a single tensor occurs with each term. Moreover, these 6D tensors are direct analogues of 

the three-dimensional (3D) tensors that arise in the cumulant expansion for SDE MRI. This 

allows the cumulant expansion for DDE to be analyzed in much the same manner as is routinely 

done for SDE.  

 In prior work, we demonstrated how to apply this 6D approach for the analysis of the 

DDE MRI signal to in vivo dMRI data from brain (5,7). As is typical for SDE, we truncated the 

cumulant expansion after the fourth order term. For SDE, this truncation corresponds to DKI  

(14,15), and so we refer to the DDE generalization as double-pulsed DKI (DP-DKI). In order to 

simplify the mathematical considerations, we extended, for these initial papers, the “fast kurtosis 

imaging” method of Hansen and coworkers (19) to DDE. This allowed us to derive a single 

novel rotational invariant without explicitly constructing the full 6D kurtosis tensor, and it also 

substantially simplified the data acquisition protocol. However in doing so, much of the 

information contained in the 6D kurtosis tensor is neglected.  

 The purpose of this paper is to describe and demonstrate a method of estimating the full 

6D diffusion and kurtosis tensors from DDE data. By virtue of the 6D cumulant expansion for 

DDE being a straightforward extension of the conventional 3D cumulant expansion for SDE, we 

are able to adapt an existing method that has been frequently applied for standard (SDE) DKI 

(20). In essence, one need only replace the 3D tensors of standard DKI with their 6D 

generalizations. While this is relatively straightforward from a coding perspective, it is 

challenging computationally due to the larger size of the 6D tensors. Specifically, the 6D 

diffusion tensor has 12 independent components, compared to 6 in 3D, and the 6D kurtosis 

tensor has 66 independent components, compared to 15 in 3D. This higher number of 

independent components also necessitates that data for at least 66 diffusion encoding directions 

be obtained, which impacts the image acquisition time.  

 At the core of our method is a weighted least squares (WLS) fit of the signal model to the 

data, which is based on one of the several methods previously proposed for standard DKI 
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(20,21). The WLS approach is chosen because of its simplicity, efficiency, and numerical 

robustness, which are key considerations in view of the large number of independent parameters 

needed to fully specify the 6D diffusion and kurtosis tensors. In order to minimize the occurrence 

of unphysical parameter values (e.g., negative diffusivities), the WLS fitting is augmented by a 

set of constraints that render the computational task into a quadratic programming problem, 

which is amenable to solution via standard techniques (22). 

 DDE data in brain from two healthy volunteers obtained with a 3T clinical scanner are 

used to demonstrate the method. Here we consider just the calculation of a few of the simplest 

possible rotational invariants that can be derived from the 6D tensors, even though they represent 

only a fraction of the total information content. Our goal is to give preliminary examples of 

parametric maps based on these diffusion metrics rather than to infer strong conclusions 

regarding brain tissue microstructure. Nonetheless, we do briefly consider the physical 

significance of the considered invariants. 

 

THEORY AND METHODS 

Cumulant Expansion for DDE Signal 

 The DDE signal magnitude S  can be regarded as a function of two 3D q-vectors, 

πγδ 2/11nq1 g≡  and πγδ 2/222 nq g≡ , where γ  is the proton gyromagnetic ratio, δ  is the 

diffusion gradient pulse duration for the DDE sequence, 1g  and 1n  are the gradient amplitude 

and direction for the first block of diffusion encoding gradients, and 2g  and 2n  are the gradient 

amplitude and direction for the second block of diffusion encoding gradients (1,2). The gradient 

directions are normalized so that 1||| 21 ==nn . A cumulant expansion for S  in terms of 1q  and 2q  

was originally derived by Jespersen and Buhl (16,17). In order to simplify this expansion, Jensen 

and coworkers (5,18) proposed concatenating these two vectors into a single 6D vector 

( )2,~ qqq 1≡ . Here and below we use a tilde to indicate 6D objects. The cumulant expansion can 

then be written as 

( )[ ] ( )[ ] ( )6
6

1,,,
4

26

1,
2

~~~~~~
~6

)~(~~~
~

~
0ln~ln qOWqqqq

q
DbDqq

q
bSS ++−= ∑∑

== δγβα
αβγδδγβα

βα
αββαq ,               [1] 
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where αβD~  is a component of the 6D diffusion tensor, D~ , and αβγδW~  is a component of the 6D 

kurtosis tensor, W~ . In addition, q~~ ≡q , αq~  indicates a component of q~ , b~  is the 6D b-value, 

and D  is the conventional mean diffusivity. The 6D b-value is defined by 

( ) 





 −∆≡

3
~2~ 2 δπ qb ,                                                             [2] 

where rectangular gradient pulses are assumed and ∆  is time between the centers of the two 

lobes for each block of diffusion encoding gradients (5,7,18). We refer to ∆  as the diffusion 

time, although some authors use this term instead for 3/δ−∆ . The validity of Equation [1] 

relies on the narrow pulse condition in which δ  is assumed to be small (18).  

 Note that b~  is proportional to 2~q  so that the prefactors before the two sums in Equation 

[1] are independent of q~ . By introducing the 6D diffusion encoding direction vector, q~/~~ qn ≡ , 

Equation [1] may be recast as 

( )[ ] ( )[ ] ( )3
6

1,,,

26

1,

~~~~~~
6

)~(~~~~0ln~ln bOWnnnnDbDnnbSS ++−= ∑∑
== δγβα

αβγδδγβα
βα

αββαq ,                 [3] 

where αn~  represents a component of n~ . Note that 1|~| =n  by definition. Equation [3] is the 6D 

generalization of the familiar 3D cumulant expansion upon which standard DKI is based (9). An 

alternative form for Equation [3] is  

( )[ ] ( )[ ] ( ) ( )[ ] ( ) ( )32 ~~~~~~
6
1~~~0ln~ln bOKDbDbSS ++−= nnnq ,                             [4] 

where 

( ) ∑
=

≡
6

1,

~~~~~
βα

αββα DnnD n                                                          [5] 

is the 6D diffusivity for the direction n~  and  

( )
( ) ∑

=








≡

6

1,,,

2
~~~~~

~~~~
δγβα

αβγδδγβα Wnnnn
D

DK
n

n                                                [6] 

is the corresponding 6D diffusional kurtosis. Since b~  and n~  uniquely determine q~  (for given 

∆  and δ ), one may equally well write ( )n~,~bS  instead of ( )q~S  in Equations [1], [3], and [4]. 

 It is important to appreciate that the 6D cumulant expansion for the DDE signal holds 

generically for all diffusive media (just as the 3D cumulant expansion does for SDE), save a few 
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exotic cases that are likely of little relevance to diffusion MRI (dMRI) in biological tissues. In 

other words, Equations [1], [3], and [4] describe the physics of the diffusion process in general, 

without relying on assumptions about the detailed properties of a tissue. This sort of signal model 

should be distinguished from those based on explicit models of the diffusion dynamics in a 

particular tissue (i.e., dMRI tissue models). Moreover, the two tensors D~  and W~  encapsulate all 

the information contained in the DDE signal up to order 2~b  and thereby provide a complete 

description of DDE phenomena for low diffusion weightings. 

 As previously noted, the 6D diffusion tensor has 12 independent components. Of these, 6 

coincide with those of the 3D diffusion tensor D , evaluated at the diffusion time ∆ . The other 6 

also depend on D , but for different diffusion times. More specifically, we have (5,16) 

( ) ( ) ( )
( ) ( ) 






∆∆
∆∆

=∆
DC

CD
D

τ
τ

τ
,

,
,~ ,                                                        [7] 

where τ  is the mixing time for the DDE sequence and  

( ) ( ) ( ) ( ) ( ) ( )[ ]τττττττ +∆+∆−++∆+∆
∆

=∆ DDDC 222
2
1, .                          [8] 

From Equation [8], it follows that C  vanishes whenever the 3D diffusion tensor is independent 

of the diffusion time. If D  has a weak time dependence, then Equation [8] implies 

  ( ) 





 +′⋅∆≈∆ )(Δ

2
3, τDC τ ,

 
                                                [9] 

where ttt ∂∂≡′ /)()( DD . Thus C  is an approximate indicator of the time derivative of D . A 

derivation of Equation [9] is given in Appendix A. 

 The 3D tensor C  represents the additional information that DP-DKI provides beyond 

standard DKI to the leading order in the b-value, and it is equivalent to the displacement 

correlation tensor introduced by Jespersen and Buhl (16). However as is evident from Equation 

[8], this information can alternatively be derived from a set of three SDE experiments with 

diffusion times of τ , τ+∆ , and τ+∆2 . So in this sense, the information contained in D~  is not 

unique to DDE, which is a special case of a more general theorem that the full time dependence 

of the 3D diffusion tensor is sufficient to predict the dMRI signal to the leading order in the 

diffusion weighting for arbitrary dMRI pulse sequences (17,23). 
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 Of the 66 independent components for the 6D kurtosis tensor, 15 recapitulate the 

independent components of the 3D kurtosis tensor. The remaining 51 components represent 

information that can only be acquired with DDE (or more complicated pulse sequences). In 

contrast to the tensor C , these additional components cannot be determined from any possible 

set of SDE experiments. Thus, it is only the terms from the cumulant expansion of order 2~b  and 

higher that provide truly novel information vis-à-vis SDE MRI. An advantage of the DP-DKI 

approach is that the order 2~b  information is fully contained within the 6D kurtosis tensor. 

 

Symmetry Properties 

 The 6D diffusion tensor has 36 components, but because of symmetry properties only 12 

of these are independent (5,18). Similarly, the 6D kurtosis tensor has 1296 components, but 

symmetry reduces this to 66 that are independent. 

 For D~ , the first symmetry is that the components αβD~  are invariant with respect to an 

interchange of the indices α  and β . This is simply the statement that D~  is a fully symmetric 

tensor, as is D . An additional symmetry, which follows from time reversal and time translation 

invariance of the microscopic molecular dynamics (18), is  

βααβ ′′= DD ~~ ,                                                              [10] 

where 

( )[ ]6mod21 ++=′ αα   and  ( )[ ]6mod21 ++=′ ββ .                            [11] 

It is the combination of these interchange and time reversal symmetries that result in only 12 of 

the 36 components being independent. 

 For W~ , the same two symmetries also apply. First, the 6D diffusion tensor is fully 

symmetric, just as for the 3D case. Second, the time invariances imply that  

δγβααβγδ ′′′′=WW ~~ ,                                                              [12] 

where in analogy to Equation [11], 

( )[ ]6mod21 ++=′ γγ    and   ( )[ ]6mod21 ++=′ δδ .                             [13] 

Again the combination of the two types of symmetries determines the number of independent 

components. 

 We also note that, as follows from Equation [7], 
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ijij DD =~ ,                                                              [14] 

where ijD  represents a component of D  and with the indices i  and j  ranging from 1 to 3. 

Similarly,  

ijklijkl WW =~ ,                                                              [15] 

where ijklW  represents a component of the 3D kurtosis tensor W  and with all the indices again 

ranging from 1 to 3. Hence, the 3D diffusion and kurtosis tensors are contained within the 6D 

tensors as subunits. Here and elsewhere Latin letters are used for indices that vary from 1 to 3, 

while Greek letters are used for indices running from 1 to 6. 

 

Rotational Invariants 

 Typically, one is most often interested in quantities that are independent of the choice for 

the physical 3D coordinate system. These are the ordinary rotational invariants, which need only 

be unchanged with respect to a rotation in 3D. A quantity that is invariant with respect to 6D 

rotations is also a 3D invariant but the converse is not necessarily true.  

 The simplest rotational invariants for DP-DKI are linear forms in either D~  or W~ . For D~

, the linear invariants span a two-dimensional space. In order to devise a basis set for this space, 

we first define the 3D direction vector 

)cos(ˆ)sin()sin(ˆ)cos()sin(ˆ),( θϕθϕθφθ zyxu ++≡ ,                     [16] 

where ( )φθ ,  are the standard spherical angles and ( )zyx ˆ,ˆ,ˆ  are Cartesian coordinate unit vectors. 

Note that Equation [16] implies that 1|| =u , so that u  is also a unit vector. From u , we can 

construct a pair of 6D direction vectors as  

                    
[ ]),(),,(

2
1),(~ ϕθϕθϕθ uuu ±=± .                                        [17] 

We then define the 6D mean parallel ( †~
+D ) and antiparallel ( †~

−D ) diffusivities by 

),(~),(~~)sin(
4
1~ 6

1,

2

00

† ϕθϕθϕθθ
π βα

βα
αβ

ππ
±±

=
± ∑∫∫≡ uuDddD ,                             [18] 

with ±
αu~  being a component of ±u~ . Since †~

+D  and †~
−D  are defined as integrals over all 3D 

diffusion directions, they are manifestly rotational invariants. After performing the integrals in 

Equation [18], this simplifies to  
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)(tr
3
1~† CD±=±D ,                                                      [19] 

Clearly, we have 

( ) ( )†† ~~
2
1tr

3
1

−+ +=≡ DDD D ,                                              [20] 

and 

( ) ( )†† ~~
2
1tr

3
1

−+ −=≡ DDC C  .                                             [21]                       

Thus any two of these four diffusivity invariants (i.e., †~
+D , †~

−D , D , C ) can be used to calculate 

the others. Moreover, any rotationally invariant metric that is linear in D~  can be expressed as a 

linear combination of †~
+D  and †~

−D . Therefore, these two metrics form a basis set for linear 

rotational invariants derived from D~ . Recalling that the 3D tensor C can be determined with 

SDE MRI, one sees that neither †~
+D  nor †~

−D  is unique to DDE MRI. As follows from Equations 

[8], [20], and [21], DDD == −+
†† ~~  whenever the diffusion tensor D  is independent of time. 

 For linear rotational invariants based on W~ , we first have the 3D mean kurtosis tensor 

given by (19) 

∫ ∑
=

Ω≡
3

1;,,,4
1

kji
lkjiijkln nnnnWdW

π
,                                        [22]  

where the integral is over all 3D directions and in  indicates the component of a 3D direction 

vector. After performing the integral, this simplifies to  

( )223311331122333322221111 222
5
1 WWWWWWW +++++= .                            [23] 

Similarly, the 6D mean kurtosis tensor is defined by (5) 

∫ ∑
=

Ω≡
6

1,,,
~3

~~~~~~1~

δγβα
δγβααβγδπ

nnnnWdW n ,                                             [24] 

with the integral being over all 6D directions, which works out to 

(
).~2~2~2~~~

~2~2~2~~~
8
1~

226611661155336622551144

223311331122333322221111

WWWWWW

WWWWWWW

++++++

+++++=
                           [25] 
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In general, W
~

 is not equal to W , and it represents an independent metric (5,7). We can also 

construct 6D mean parallel and anti-parallel kurtosis tensors as 

),(~),(~),(~),(~~)sin(
4
1~

0

2

0

6

1,,,

† ϕθϕθϕθϕθϕθθ
π δγ

π π

δγβα
βααβγδ

±±

=

±±
± ∫ ∫ ∑≡ uuuuWddW .              [26] 

After evaluating the integral, this takes the form 

(

).~4~4~4~4

~4~4~4~4~4~4~4~4~2~2

~2~3~3~3~2~2~2~~~
10
1~

2335223613341224

1136112533362225111423561346124522661166

1155336622551144223311331122333322221111
†

WWWW

WWWWWWWWWW

WWWWWWWWWWW

±±±±

±±±±±+++++

+++++++++=±

  [27] 

The metrics W , W
~

, †~
+W , and †~

−W  constitute a basis set for all linear rotational invariants derived 

from W~ , so any other rotational invariant that is linear in W~  can be expressed as a linear 

combination of W , W
~

, †~
+W , and †~

−W . One specific linear combination of interest is the 

difference WWW
~

−≡δ , which is an index of microscopic diffusion anisotropy (5,7).  

 The metric W  can also be obtained with SDE MRI, but W
~

, †~
+W , and †~

−W  cannot for 

arbitrary diffusion dynamics. However, one may show, as described in Appendix B, that 

WW =±
†~  for multiple Gaussian compartment (MGC) models without inter-compartmental water 

exchange. Henceforth when we refer to MGC models, it is assumed that inter-compartmental 

water exchange is neglected, even though one may also formulate MGC models with exchange. 

We further assume, as is typically done, that the intra-compartmental diffusion tensors are 

independent of time.  

 Another natural set of rotational invariants to consider are the fractional anisotropies for 

D , D~ , W , and W~ . These can be written as 

F

F
D

D

ID )2(

3D 2
3FA

−
⋅≡ ,                                                        [28] 

F

F
D

D

ID
~

~~

2
3FA

)2(

6D

−
⋅≡ ,                                                       [29] 

 
F

F
W

W

IW )4(

3DKFA
−

≡ ,                                                           [30] 
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and  

F

F
D

W

W

IW
~

~~~

KFA
)4(

6

−
≡ .                                                          [31] 

In Equations [28]-[31], 
F

... indicates the Frobenius norm, while )2(I , )2(~I , )4(I and )4(~I  are 

symmetric and isotropic tensors defined by their respective components: 

ijijI δ=)2( , αβαβ δ=)2(~I , ( )jkiljlikklijijklI δδδδδδ ++=
3
1)4( , and ( )βγαδβδαγγδαβαβγδ δδδδδδ ++=

3
1~ )4(I , [32] 

with ijδ  and αβδ  being the Kronecker deltas in 3D and 6D, respectively. The 3DFA  and 3DKFA  

are standard measures of diffusion anisotropy familiar from SDE MRI (24). The 6DFA  can also 

be determined with SDE MRI, if multiple diffusion times are employed in order to construct D~  

as discussed above. In contrast, the 6DKFA  is a novel metric that encodes information specific to 

DDE MRI, and it should be a sensitive indicator of microscopic diffusion anisotropy, because 

any type of anisotropy that is encompassed by the fourth order term in the cumulant expansion of 

Eq. [1] will affect 6DKFA . This is in contrast with Wδ , which is only sensitive to a specific 

type of microscopic anisotropy (5,7). The kurtosis anisotropies of Equations [30] and [31] are 

indeterminate when the denominators vanish (as occurs for Gaussian diffusion). In these cases, 

the kurtosis anisotropies may be defined as zero.  
 The quantities given by Equations [19]-[21], [23], [25], [27], and [28]-[31] are invariant 

with respect to rotations in the physical 3D space. Of these, only D , W
~

, 6DFA , and 6DKFA  are 

also generally invariant for all rotations in the 6D extended space. However, in the special case 

of MGC models, 3DFA  is invariant under 6D rotations as well. 

  

WLS for DP-DKI 

 There are a variety of methods for fitting signal models to dMRI data. Here we choose 

WLS for the sake of simplicity and numerical robustness. Since there are a total of 12+66=78 

independent parameters to be estimated, a robust method such as WLS has the important 

advantage, in comparison to many other methods, of avoiding the difficulties associated with 

multiple local minima. In addition, WLS is the basis of our publically available post-processing 

software for standard DKI (25). 
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 To define the WLS procedure, we suppose that experimental data for the DDE signal has 

been obtained for 0~ =q  and for M  6D q-vectors with 0~ >q . If mq~  is the mth nonzero q-vector, 

let us introduce the one-dimensional array, Y , with the M  components 

( )
( ) 






≡

0

~
ln

S
SY m

m
q .                                                          [33] 

Each q-vector also has an associated b-value, mb~ , and an associated 6D diffusion direction, mn~ , 

with the components mn ,
~
α . After dropping the )~( 3bO  terms, the cumulant expansion of Equation 

[3] can then be expressed as 

αβγδδ
δγβα

γβααβ
βα

βα HnnnnbDnnbY mmmm
m

mmmm
~~~~~

6

~
~~~~

,

6

1,,,
,,,

26

1,
,, ∑∑

==

+−= ,   for     Mm ,2, 1, = ,       [34] 

where 

αβγδαβγδ WDH ~~ 2≡ .                                                          [35] 

Equation [34] constitutes a set of M  linear equations for the tensor components αβD~  and αβγδH~ . 

Since there are a total of 78 unknown parameters, we require 78≥M  in order to have a unique 

solution. Once αβD~  and αβγδH~  have been determined, then D  is found from Equation [20] and 

the 6D kurtosis tensor is found by inverting Equation [35] to give 2/~~ DHW αβγδαβγδ = .  

 As shown in Appendix C, the sums in Equation [34] can be written explicitly in terms of 

the 12 independent components for D~  and the 66 independent components for .~~ 2WH D≡   

These independent tensor components may be reorganized into a one-dimensional array, X , 

with 78 components. Equation [34] can be then be written in the canonical form 

AXY = ,                                                                 [36] 

where A  is a matrix with 78×M  components. An explicit representation of A  is given in 

Appendix D.  

 If Equation [36] is solved in the least squares sense, then one has 

( ) YAAAX T1T −
= ,                                                   [37] 

where ( ) T1T AAA −  is the pseudoinverse. However, in order to take into account that the standard 

deviation for a measurement of mY  scales approximately as ( )mS q~/1 , a better estimate for X  

comes from the WLS result of (26) 
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( ) ΛYAΛAAX T1T −
= ,                                                    [38] 

where Λ  is a MM ×  diagonal matrix with the nonzero components 

( )[ ]2~
mmm S q=Λ .                                                            [39] 

Here we have assumed that the standard deviation associated with ( )0S  is negligible, which is 

the case if a sufficient number of acquisitions with 0~ =q  are averaged.  

 

Constraints and Quadratic Programming 

 Because of noise, motion, and imaging artifacts (e.g., Nyquist ghosting), the DDE signal 

may, in practice, have significant errors that can confound the accurate estimation of the 6D 

diffusion and kurtosis tensors, if WLS is implemented by applying Equation [38] directly. This 

problem can be mitigated by imposing constraints on the tensor components that help to keep 

these within physically acceptable ranges.  

 Here we adapt to DP-DKI constraints similar to those used for standard DKI (20). The 

first of these is  

        ( ) 0~~ >mD n ,                                                           [40] 

so that the 6D diffusivity is positive in each diffusion encoding direction. The second is that the 

6D kurtosis is restricted to the range 

( )
( )m

m Db
K

n
n ~~~

3~~0
max

<< ,                                                   [41] 

where max
~b  is the maximum b-value for the data acquisition. This lower bound is rigorously true 

for any MGC model (5,14,27) and is expected to hold in most biological tissues, such as brain. 

The upper bound guarantees that the solution corresponds to a monotonically decreasing DDE 

signal (20,28), over the b-value range of the data acquisition, as is empirically observed for 

brain. However, the DDE signal is not necessarily monotonically decreasing for certain highly 

ordered diffusive media (1,8), in which case the constraints of Eq. [41] may not be appropriate. 

 In order to impose these constraints, the array X  can be obtained by solving the 

quadratic programming problem 

Minimize      ( ) 22/1 YAXΛ − ,                                                     [42] 

obtained such that    0<GX ,                                                     [43] 
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where G  is a 2 78M ×  constant matrix defined in Appendix D, the vertical lines in Equation 

[42] indicate the Euclidean norm, and Equation [43] is understood to apply on an element-wise 

basis. Without the constraints of Equation [43], the solution to Equation [42] is given precisely 

by Equation [38]. With the constraints, this becomes a convex quadratic programming problem 

that can be readily solved with established methods (22). Crucially, any local minimum will also 

be a global minimum, since the objective function is convex (29). Also for 78≥M , we 

typically expect to have a unique solution (assuming the matrix A  is well conditioned). The 

practical impact of imposing the constraints of Equation [43] is illustrated below under Results.  
 

Diffusion Encoding Directions 

 For the matrix A  to be well conditioned, at least 66 independent diffusion encoding 

directions must be employed (5,7), although this by itself is not sufficient. Here we use 80 

independent 6D directions so as to have an overdetermined set of equations, which can help to 

reduce deleterious effects associated with noise and artifacts. For the first 21 of these directions, 

we choose those needed for the fast kurtosis approach, which has been previously described 

(5,7). The advantage of this is that it permits an independent fast kurtosis analysis of the data to 

be performed, which can provide a useful consistency check. The other 59 directions are selected 

to minimize the condition number of the matrix A  for the selected set of 6D b-values, similar to 

what has sometimes been done with DTI (30), in order to improve robustness with respect to 

experimental noise. For the experiments reported on here, the DDE MRI signal is sampled for 

both 1000~
=b  s/mm2 and 2200~

=b  s/mm2 in each of the 80 diffusion encoding directions. 

Thus we have 1608080 =+=M , which is just over twice the minimum of 78 q-space points 

needed for a unique solution to Equations [42] and [43]. To minimize the condition number of 

A , the extra 59 directions were selected from an ensemble of 10000 randomly generated sets of 

encoding directions. This optimal set of 21+59 directions was used for all of the experimental 

measurements and is listed in Table 1 of Appendix E. 

 

Data Acquisition 

DP-DKI datasets were acquired from two healthy volunteers, both 23 yrs of age, using a 

protocol approved by the Institutional Review Board of the University of Hong Kong under 

informed consent. All data were obtain on a 3 T whole-body MR scanner (Achieva TX, Philips 
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Healthcare, Best, The Netherlands) with a maximum gradient amplitude of 80 mT/m using an 

eight channel receive only head coil. A spin-echo echo-planar-imaging custom DDE pulse 

sequence was employed, as previously described (7). Diffusion weighted images (DWIs) were 

acquired with 3 6D b-values (0, 1000, 2200 s/mm2), as defined by Equation [2], along 80 6D 

diffusion encoding directions (Appendix E) for 8 slices with fat suppression. This choice of 6D 

b-values is comparable to that of our prior studies (5,7). The diffusion time (∆ ) was 26.3 ms, the 

pulse duration (δ ) was 13.6 ms, and the diffusion mixing time (τ ) was 30.6 ms. Other key scan 

parameters were TR/TE = 5500/115 ms, field-of-view = 230×230 mm2, acquisition matrix = 

80×80, slice thickness = 5 mm with no gap, receiver bandwidth = 3657 Hz/pixel and a SENSE 

factor of two along the phase encoding direction (anterior-posterior). For the nonzero b-values, a 

total of two signal acquisitions for each slice and diffusion encoding direction were obtained, 

while 17 acquisitions were collected with 0~
=b  (b0 images). The total acquisition time was 

approximately 32 min. 

 

Data Analysis 

All images for each subject were co-registered to the first b0 image acquired using SPM8 

(Wellcome Trust Center for Neuroimaging, London, UK). An average DP-DKI dataset was 

created by averaging all corresponding b0 images and DWIs, which was then processed with 

custom scripts implemented in MATLAB (Math Works, Natick, MA). Thus, for each subject, 17 

b0 images were averaged, and two images for each combination of diffusion encoding direction 

and nonzero b-value were averaged. The DWIs were filtered for Gibbs ringing artifact and noise 

using a Gaussian kernel with a full width at half maximum of 3.375 mm, after which a 

constrained WLS algorithm was used to estimate the 6D tensors. The diffusion and kurtosis 

tensors were computed on a voxel-by-voxel basis to obtain the parametric maps for D , C , †~
±D , 

W , W
~

, †~
±W , 3DFA , 6DFA , 3DKFA , 6DKFA . All calculations were carried out on a Dell 

Precision workstation equipped with a 2.27 GHz Pentium Xeon processor. The computational 

time for a single dataset was 790 s.  

In addition to 6DKFA , there are several other ways to quantify microscopic diffusion 

anisotropy in brain (3-7,31,32), some of which are related. For example, the microscopic 

R2,C29 

R2,C30 

R2,C32 

R2,C33 

R2,C31 



 

17 
 

fractional anisotropy (μFA) (31,32) has a close connection to the rotational invariant 

WWW
~

−≡δ . Specifically, for MGC models, one may show that (7)  

2
1

22

2

209
91

2
3μFA

−









+

+=
WD

D
δλδ

,                                        [44]  

where, λδ 2
 is the variance of the diffusion tensor eigenvalues and is simply obtained from 

2
3D

2
3D

2
2

FA23
FA2

−
=

Dλδ .                                                        [45] 

As a reference of comparison, we also used Equation [44] to estimate μFA  along with other 

measures of diffusion anisotropy.  

 

RESULTS 

 Figure 1 shows the D , C , †~
+D , and †~

−D  maps obtained using the WLS algorithm for the 

two subjects, with three representative axial slices for each metric. Note that C  is very small 

within the brain parenchyma so that †† ~~
−+ ≈≈ DDD , which is consistent with a 3D mean 

diffusivity that varies weakly with time over time scales comparable to 2/)(3 τ+∆  (≈  85 ms for 

our experiment), as suggested by Equation [9].  

 For the same subjects and slices, Figure 2 gives the corresponding maps of the linear 

kurtosis metrics W , W
~

, †~
+W , and †~

−W , along with WWW
~

−≡δ .  Although the maps of these 

four principal measures are all similar, clear differences are apparent between each of them. As 

has been previously discussed, Wδ  is an index of microscopic diffusion anisotropy, while the 

fact that †† ~~
−+ ≠≠ WWW  suggests the water diffusion dynamics is not fully consistent with an 

MGC model, at least in certain brain regions. However, some of these differences could also be 

due to estimation errors.  

 Maps for the fractional anisotropies of 3DFA , 6DFA , 3DKFA , 6DKFA  and μFA  are 

displayed in Figure 3. The 3DFA  and 6DFA  maps are nearly indistinguishable, which is a 

consequence of the fact that C  is close to zero. In contrast, 3DKFA  and 6DKFA  are quite 

different, reflecting the novel information provided by 6DKFA . Qualitatively, the 6DKFA  map is 
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seen to be similar to the μFA  map. However, these two metrics have an important conceptual 

distinction in that 6DKFA  is not tied to a specific model of the diffusion dynamics, unlike μFA  

which is only well-defined for MGC models. 

 In order to illustrate the effect of applying the constraints of Equation [43], we also 

performed a calculation of the diffusion metrics without these constraints being imposed. In most 

voxels, we find that this makes little or no difference. However, the maps for the linear kurtosis 

metrics calculated without the constraints do possess several hypointense regions that are 

lessened or removed when the constraints are applied. This is demonstrated in Figure 4 for one 

subject and is similar to the effect of imposing constraints with standard SDE DKI (20). The 

artifacts that the constraints help to attenuate may be due to a variety of factors such as signal 

noise, motion, Nyquist ghosting, Gibbs ringing, thermal drift, and incomplete fat suppression.  

 For the vast majority of voxels, the signal model of Equation [34] is found to provide a 

close fit to the data. This is a not a trivial result as in each voxel there are 160 data points (i.e., 

mY  for 160,,1=m ) but only 78 unknowns for the diffusion and kurtosis tensors. Examples of 

the fits for three selected regions of interest (ROIs) are given in Figure 5. Each ROI is a square 

containing 4 voxels on a single slice. For other choices of the 6D b-values, the quality of the fits 

would not necessarily be as good. 

 

DISCUSSION 

 The analysis of DDE MRI data can be complicated due to the rich array of information 

that this technique provides. Accordingly, a variety of related methods have been previously 

proposed for this purpose (1-7,16-18,33). Our present DP-DKI formulation in terms of 6D 

diffusion and kurtosis tensors demonstrates that DDE MRI can be analyzed in a manner 

analogous to that conventionally utilized with standard DKI. We believe this has substantial 

conceptual advantages, even if the mathematical details may seem baroque. In essence, the DP-

DKI formulation of DDE MRI follows the same fundamental logic of DTI and DKI that has 

proven successful for SDE MRI. The primary goal of this paper is to describe in detail a practical 

approach for performing DP-DKI calculations.  

 We have chosen to employ a constrained WLS algorithm because of its simplicity and 

numerical robustness. Constrained WLS is also frequently used for standard DKI, and the 

generalization to DP-DKI is relatively straightforward. The essential change is extending the 
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diffusion and kurtosis tensors from 3D to 6D. As a consequence, the number of unknowns 

increases from 21 to 78 and the minimum number of diffusion encoding directions increases 

from 15 to 66. This means both a greater data acquisition burden and a more challenging 

numerical analysis. On human scanners, the quality of the data benefits from using systems with 

strong gradients having maximum magnitudes of 80 mT/m or higher, since this allows for much 

shorter echo times in comparison to systems with the more common gradient strength limit of 

about 40 mT/m.  

 The 80 6D diffusion encoding directions listed in Table 1 of Appendix E were utilized 

primarily for reasons of expediency. The first 21 directions are identical to those of the fast 

kurtosis approach (5,7). This allows some of the rotational invariants ( D , W , W
~

) to be 

determined directly without first explicitly calculating D~  and W~ , which thereby provides a 

useful means of checking the results of the full WLS analysis. The remaining 59 directions were 

found by minimizing the condition number for the matrix A . While this method of selecting the 

diffusion encoding directions is effective (30), it is likely not ideal, and we expect that improved 

sets of directions are possible. 

 The large number of independent components (12+66=78) for the 6D diffusion and 

kurtosis tensors means that they can be used to construct several independent rotationally 

invariant quantities. Here we have only considered the simplest of these, which are those linear 

in either D~  or W~  and the fractional anisotropies for D , W , D~  and W~ . In analogy with 

standard DKI, we conjecture that these most basic diffusion metrics are likely to represent, in 

practice, much of the useful information that can be obtained with DP-DKI. Moreover, we 

remind the reader that only those metrics related to the 6D kurtosis tensor W~  provide 

information that is inaccessible with SDE MRI. The 6D kurtosis fractional anisotropy, 6DKFA , 

strikes us as a particularly promising measure for quantifying diffusion anisotropy (including 

microscopic anisotropy), although future work would be needed to verify this.  

 An important advantage of defining metrics for DDE MRI directly in terms of the 6D 

diffusion and kurtosis tensors is that this endows them with well-defined physical meanings 

independent of any particular model for the diffusion dynamics. This is in contrast with some 

other proposed metrics whose definitions rely on a priori assumptions (3,4,6,7,31,32). For 

example, the usual definition of μFA (31,32) assumes an MGC model and is therefore not 
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applicable to arbitrary diffusion dynamics. Nevertheless, for MGC models, one may directly 

relate the basic metrics we have considered here for DP-DKI to the μFA , as demonstrated by 

Equation [44]. As another example, one may readily show (e.g., see equation A6 of Ref. 5) that 

the “isotropic kurtosis” defined by Szczepankiewicz and coworkers (34) is equivalent to 

3)5
~

8( /WW −  for any MGC model. In this way, DP-DKI includes other approaches as special 

cases. It can be noted in passing that for MGC models the 6D kurtosis tensor has only 21 

independent components, which is less than one third of the number allowed in general.  

 Although our primary focus has been on the practical aspects of calculating the 6D 

diffusion and kurtosis tensors, the preliminary results presented here do lend themselves to some 

initial observations. First, for the diffusion and mixing times used in our DDE pulse sequence, 

the metric C  is quite small in comparison to D  (see Figure 1) in most brain tissue, implying 

that the mean diffusivity is not strongly time dependent. This is largely consistent with prior 

work in which the time dependence of the diffusion tensor in brain is measured directly (35). 

Another potentially significant finding is the fact that the W , †~
+W , and †~

−W  maps have noticeable 

differences. The most straightforward interpretation is that this represents a departure from the 

predictions of MGC models, which require these three quantities to be identical. Since MGC 

models are widely applied in the modeling of dMRI data (36), this could have important 

implications for the accuracy of such models. However, the observed differences might also be 

partly the result of systematic errors in the estimation of the linear 6D kurtosis metrics due either 

to the effect of truncating the cumulant expansion at the order 2~b  term (see Equation [34]) or to 

imaging artifacts (e.g., Nyquist ghosting). Nonetheless, DP-DKI provides, in principle, a 

systematic method of investigating the validity of MGC models. Finally, it is noteworthy that 

6DKFA  is substantially larger in most of the brain than 3DKFA  (see Figure 3). This suggests that 

the 6DKFA  detects considerably more diffusion anisotropy, which presumably is mainly 

microscopic diffusion anisotropy not detectable with SDE MRI.  

 

CONCLUSION  

The 6D diffusion and kurtosis tensors for DP-DKI can be conveniently estimated from 

DDE MRI data using quadratic programming in a manner very similar to that of established 

post-processing methods employed for standard DKI. This includes constraints that help to 
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reduce the effects of noise and imaging artifacts. Without these constraints, which typically have 

a significant impact on only a small fraction of the voxels, the quadratic programming algorithm 

reduces to a simple WLS fit of the signal model to the data. We have also introduced several 

rotationally invariant metrics that can be calculated from the 6D diffusion and kurtosis tensors, 

which may be useful in applying DP-DKI to the characterization of tissue microstructure.  
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APPENDIX A: DERIVATION OF EQUATION [9]  

 The diffusion tensor has the Taylor series approximation 

( ) ( ) ( )( ) ( )( )200000 2
1 tttttttt −′′+−′+≈ DDDD                                       [A1]  

about a time 0t , where  ttt ∂∂≡′ /)()( DD  and ttt ∂′∂≡′′ /)()( DD . If this is applied to Equation 

[8], one finds 

( ) ( ) ( ) ( )000 233
2
1, ttt DDC ′′⋅−+∆∆+′⋅∆≈∆ ττ .

 
                                 [A2] 

By choosing 2/)(30 τ+∆=t , one obtains Equation [9]. This is a natural choice for 0t  since it 

makes the approximation insensitive to )( 0tD ′′ . 

 

APPENDIX B: EQUALITY OF †~
+W , AND †~

−W  FOR MGC MODELS  

From Equation [27] the difference between †~
+W  and †~

−W  is seen to be 

( )233522361334122411361125333622251114
†† ~~~~~~~~~

5
4~~ WWWWWWWWWWW ++++++++=− −+ .             [B1]  

Now consider an MGC model with N compartments where the nth compartment has a water 

fraction nf  and a 6D diffusion tensor )(~ nD . Since we have assumed all the compartmental 

diffusion tensors are independent of time, the total diffusion tensor for the full model is 
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with )(nD  being the 3D diffusion tensor for the nth compartment. The total 6D kurtosis tensor is 

given by (5) 

( ) ( )








++−







++= ∑

=
βγαδβδαγγδαββγαδβδαγγδαβαβγδ DDDDDDDDDDDDf

D
W

N

n

nnnnnn
n

~~~~~~~~~~~~1~
1

)()()()()()(
2 ,   [B3]  

where )(~ nDαβ  indicates a component of )(~ nD . From Equations [B2] and [B3], it is straightforward 

to verify that all the individual components of W~  appearing in right-hand side of Equation [B1] 

vanish identically, which demonstrates that †† ~~
−+ =WW  for MGC models. 

 

APPENDIX C: EXPRESSION OF CUMULANT EXPANSION IN TERMS OF 

INDEPENDENT TENSOR COMPONENTS  

  In order to implement our numerical method for calculating the 6D diffusion and 

kurtosis tensors, one needs to express the sums in Equation [34] in terms of the 12 independent 

components for D~  and 66 independent components for WH ~~ 2D≡ . Here we give explicit 

formulae for accomplishing this. 

 Let us first consider the sum 

( ) ∑
=

≡
6

1,

~~~~~
βα

αββα DnnD n ,                                                        [C1] 

where the index m from Equation [34] has been suppressed since it plays no essential role in the 

present development, which makes Equation [C1] identical to Equation [5]. As independent 

components for D~ , we choose 11D , 12
~D , 13

~D , 14
~D , 15

~D , 16
~D , 22

~D , 23
~D , 25

~D , 26
~D , 33

~D , and 

36
~D . Any other component of D~  may be determined from these either by an interchange of 

indices or by applying the symmetry of Equation [10] or both. In terms of these components, 

Equation [C1] can be rewritten as 

( ) ( ) ( ) ( )
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 The second sum in Equation [34] is 
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where we have again suppressed the index m. For the independent components of W~ , we use 

1111
~W , 1112

~W , 1113
~W , 1114

~W , 1115
~W , 1116

~W , 1122
~W , 1123

~W , 1124
~W , 1125

~W , 1126
~W , 1133

~W , 1134
~W , 1135

~W , 

1136
~W , 1144

~W , 1145
~W , 1146

~W , 1155
~W , 1156

~W , 1166
~W , 1222

~W , 1223
~W , 1224

~W , 1225
~W , 1226

~W , 1233
~W , 1234

~W , 
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~W , 2366

~W , 2666
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~W , 3336
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~W . From these, any other 

component of W~  can be found from some combination of interchange of indices and application 

of the symmetry of Equation [12]. The corresponding independent components of H~  are simply 
2D  times the independent components for W~ . Using the 66 independent components of W~ , 

Equation [C3] takes the form 
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APPENDIX D: CONSTRUCTING MATRICES A AND G 
 By combining Equations [C1],  [34], and [C3], one can show that  

( ) ( )m
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~
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+−= ,                       for Mm ,2, 1, = .     [D1] 

Since AXY =  and X  is a vector composed of the 786612 =+  independent components for D~

and H~ , the components for A  may be easily read off by comparing Equations [C2] and [C4] 

with [D1]. This is illustrated by the following examples: 
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 The constraints of Equations [40] and [41] may be rewritten as 

( ) 0~~ <− mH n                                                          [D3] 

and 

( ) ( ) 0~~3~~~
max <− mm DHb nn ,                                             [D4] 

for all Mm ,,2,1 = . The matrix G  is defined so that Equations [D3] and [D4] are equivalent to 

the system .0<GX  The 782 ×M  components of G  can be found by comparing Equations [C2] 

and [C4] with [D3] and [D4]. For instance, we have 
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for Mm ,,2,1 = . 

 

APPENDIX E: 6D DIFFUSION ENCODING DIRECTIONS 

Table 1. The 80 6D diffusion encoding directions utilized for the data acquisition and analysis.  

m  mn~  m  mn~  

1 (1,0,0,0,0,0) 41 (0.3456,0.2255,0.3225,-0.7599,-0.1278,0.3630) 

2 (0,1,0,0,0,0) 42 (0.2730,0.0911,-0.7255,-0.3081,0.5235,-0.1469) 

3 (0,0,1,0,0,0) 43 (-0.2738,-0.5635,-0.1612,0.6311,-0.2389,-0.3551) 

4 (1,1,0,0,0,0) 2/  44 (-0.6144,0.1429,0.1611, 0.1019,0.0229,0.7517) 

5 (1,-1,0,0,0,0) 2/  45 (0.0567,-0.3176,0.1117,-0.3639,0.5460,-0.6728) 

6 (1,0,1,0,0,0) 2/  46 (0.6549,-0.3068,0.4709,-0.3602,0.1134,0.3352) 

7 (1,0,-1,0,0,0) 2/  47 (-0.6180,-0.3746,0.1895,-0.3830,0.2089, 0.5013) 

8 (0,1,1,0,0,0) 2/  48 (0.1778,0.5368,0.1873,0.5629,0.4084,0.4017) 

9 (0,1,-1,0,0,0) 2/  49 (-0.4994,-0.1890,-0.4568,-0.5835,0.0023,0.4069) 

10 (1,0,0,0,1,0) 2/  50 (0.1428,-0.0224,0.4515,0.6281,0.5415,-0.2956) 
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11 (1,0,0,0,-1,0) 2/  51 (-0.4176,-0.4481,0.0320,0.5131,0.5990,0.0391) 

12 (1,0,0,0,0,1) 2/  52 (0.0778,-0.7125,0.2687,-0.5743,-0.1641,0.2389) 

13 (1,0,0,0,0,-1) 2/  53 (0.2799,-0.5163,-0.3685,0.6873,0.1105,-0.1856) 

14 (0,1,0,0,0,1) 2/  54 (-0.5564,-0.01271,0.2968,-0.7376,0.2339,0.0561) 

15 (0,1,0,0,0,-1) 2/  55 (0.3422,0.3006,0.7451,-0.3400,-0.0245 0.3477) 

16 (1,0,0,1,0,0) 2/  56 (-0.7780,0.3670,0.0501,0.4551,0.2235,-0.0154) 

17 (1,0,0,-1,0,0) 2/  57 (-0.0203,0.1160,-0.4572,-0.8122,-0.0584,-0.3375) 

18 (0,1,0,0,1,0) 2/  58 (0.4422,-0.4742,-0.2065,-0.4800, 0.5527,0.0295) 

19 (0,1,0,0,-1,0) 2/  59 (-0.4492,-0.0022,-0.6925,-0.4220,-0.2992,-0.2253) 

20 (0,0,1,0,0,-1) 2/  60 (0.2942,0.3001,-0.1773,-0.1848,-0.8671, 0.0753) 

21 (0,0,1,0,0,-1) 2/  61 (0.1543,-0.7366,-0.2666,0.4773,-0.1862,-0.3160) 

22 (-0.2811,-0.4601,-0.70249,0.2928,-0.1600) 62 (0.5569,-0.2630,0.6358,-0.1686, 0.4302,0.0519) 

23 (0.3850,0.5550,-0.1133,-0.1068,0.4731,-0.5436) 63 (-0.0179,0.7224,0.1612,0.1725,0.6386, 0.1186) 

24 (-0.2699,0.4698,-0.4116,-0.3017,0.5460,0.3841) 64 (-0.3041,-0.2436, -0.3301,0.2978,-0.7434,-0.3125) 

25 (0.6230,0.5213,-0.2129,0.2202,-0.3474,0.3540) 65 (-0.0715,0.6053,-0.1692,0.0232,-0.0818,-0.7697) 

26 (0.5522,0.4189,0.4199,-0.1749,0.4852,0.2777) 66 (-0.0798,-0.3675,0.1451,0.5093,0.6519,-0.3910) 

27 (0.5683,-0.2285,0.6934,-0.0356,-0.0631,0.3723) 67 (-0.3433,-0.0263,-0.5302,0.5692,-0.5025,0.1538) 

28 (-0.4323,-0.2239,-0.2699,-0.7015,0.4432,0.0378) 68 (-0.3292,0.3152,0.5382,-0.5180,0.4413,0.1983) 

29 (-0.4989,0.0430,-0.7226,0.2070,0.3797,-0.1997) 69 (-0.6441,0.1404,0.4375,0.4965,-0.0278,-0.3557) 

30 (-0.1633,-0.7634,-0.3950,-0.4495,-0.1783,-0.0237) 70 (-0.4113,0.0377,-0.8172,0.1923,0.3528,0.0051) 

31 (0.1484,-0.3996,-0.7159,-0.4634,-0.1962,0.2288) 71 (-0.6476,-0.1106,0.0324,0.1381,-0.4521,-0.5862) 

32 (0.0334,0.3940,-0.4010,-0.4920,-0.2704,0.6062) 72 (-0.2679,-0.0698,0.6735,-0.3179,0.4054,0.4518) 

33 (-0.5925,-0.2337,-0.3887,-0.1743,0.6398,0.0570) 73 (0.1068,-0.2321,0.5544,-0.2748,0.5051,-0.5445) 

34 (0.3312,-0.1699,-0.8752,0.1653,-0.1146,-0.2342) 74 (-0.3387,0.3623,0.0564,-0.7209,0.30148,0.3743) 

35 (0.1965,0.2373,0.1676,-0.4726,-0.6522,0.4776) 75 (0.5899,-0.3189,-0.7207,0.0120,-0.1746,-0.0151) 

36 (-0.0724,-0.8867,-0.2288,-0.0695,0.3750,-0.1023) 76 (0.1763,-0.0660,-0.7675,-0.2409,0.2165,0.5201) 

37 (0.3251,0.5947,0.4815,0.0674,0.3835,-0.3961) 77 (-0.0555,0.4035,-0.0747,-0.1348, 0.4544,-0.7769) 
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38 (0.0885,-0.3858,0.3950,0.5256,0.1682,-0.6184) 78 (-0.2290,0.4984,0.3256,-0.0277,-0.7614, 0.1116) 

39 (0.2134,0.2114,-0.0669,-0.4148,0.6893,0.5078) 79 (-0.0531,-0.8513, 0.2401,-0.4233,0.1584,0.1017) 

40 (-0.2179,-0.5804,-0.6440,0.3290,0.1408,-0.2695) 80 (0.5263,-0.1589,0.6515,0.0085,0.5207,-0.0430) 
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FIGURE CAPTIONS: 
 

1. Representative axial maps for two subjects showing the diffusivity metrics, D , C , †~
+D , 

and †~
−D , as determined with DP-DKI using the constrained WLS method defined by 

Equations [42] and [43]. Within brain tissue, the magnitude of C  is seen to be small, 

indicating a weak dependence of the diffusivity on diffusion time over the time scale 

probed by our DDE MRI sequence. Somewhat elevated C  values are observed in some 

regions containing cerebrospinal fluid, which may be due to time-dependent changes in 

flow. The calibration bars for D , C , †~
+D , and †~

−D  are in units of μm2/ms. 

 

2. Representative maps estimated with DP-DKI showing four independent rotational 

variants, W , W
~

, †~
+W , and †~

−W , that are linear in the kurtosis tensor. The parameter W

can also be measured with conventional DKI, but the other three invariants require a 

DDE MRI method such as DP-DKI. Note the distinct contrast for each metric, reflecting 

the unique physical information that they quantify. Also shown is the difference

WWW
~~

−=δ , which has been proposed an index of microscopic anisotropy (5,7). All 

calibration bars are dimensionless. 

 

3. Maps of the fractional anisotropies for the 3D diffusion tensor ( 3DFA ), 6D diffusion 

tensor ( 6DFA ), 3D kurtosis tensor ( 3DKFA ), and 6D kurtosis tensor ( 6DKFA ), along 

with the microscopic fractional anisotropy ( μFA ). Note that while the 3DFA  and 6DFA  

maps are nearly identical the 3DKFA  and 6DKFA  are substantially different. Of these 

five rotational invariants, only 6DKFA  and μFA  are impossible to estimate with SDE 

methods, and so they provide the most novel information. All calibration bars are 

dimensionless. 

 

4. Comparison of the four linear kurtosis metrics of W , W
~

, †~
+W , and †~

−W , as obtained from 

minimizing the cost function of Equation [42] with and without applying the constraints 

R3,C2 

R2,C35 
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of Equations [43]. Several prominent hypointense regions are apparent for the 

unconstrained calculations, which are mitigated or eliminated when the constraints are 

imposed. 

 

5. A comparison of the measured and fitted values for mY  as defined by Equation [33] for 

ROIs (red squares) in the (a) corpus callosum, (b) prefrontal white matter, and (c) 

thalamus from Subject 1. The plots show their corresponding measured (left-hand side of 

Equation [34]) and modeled (right-hand side of Equation [34]) data points along each 

gradient direction ( mn~ ) as a function of diffusion weighting ( b~ ). Note that the measured 

and modeled data points closely match for the various gradient directions illustrating the 

quality of the fits. The locations of the three ROIs are shown on W  maps. 
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Figure 5 
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